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TWO-STEP ESTIMATION OF MODELS BETWEEN LATENT CLASSES AND
EXTERNAL VARIABLES

Abstract

We consider models which combine latent class measurement models for
categorical latent variables with structural regression models for the relationships
between the latent classes and observed explanatory and response variables. We
propose a two-step method of estimating such models. In its first step the
measurement model is estimated alone, and in the second step the parameters of
this measurement model are held fixed when the structural model is estimated.
Simulation studies and applied examples suggest that the two-step method is an
attractive alternative to existing one-step and three-step methods. We derive
estimated standard errors for the two-step estimates of the structural model which
account for the uncertainty from both steps of the estimation, and show how the

method can be implemented in existing software for latent variable modelling.
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1. Introduction

Latent class analysis is used to classify objects into categories on the basis of multiple
observed characteristics. The method is based on a model where the observed variables are
treated as measures of a latent variable which has some number of discrete categories or latent
classes (Lazarsfeld & Henry, 1968; Goodman, 1974; Haberman, 1979; see McCutcheon, 1987
for an overview). This has a wide range of applications in psychology, other social sciences,
and elsewhere. For example, latent class analysis was used to identify types of substance abuse
among young people by Kam (2011), types of music consumers by Chan and Goldthorpe
(2007), and patterns of workplace bullying by Einarsen, Hoel, and Notelaers (2009).

In many applications the interest is not just in clustering into the latent classes but in
using these classes in further analysis with more complex models. Such extensions include
using observed covariates (explanatory variables) to predict latent class membership, and
using the latent class as a covariate for other outcomes. For instance, in our illustrative
examples we examine how education and birth cohort predict tolerance for nonconformity as
classified by latent class analysis, and how latent classes of perceived psychological contract
between employer and employee predict the employee’s feelings of job insecurity.

Models like these have two main components: the measurement model for how the latent
classes are measured by their observed indicators, and the structural model for the
relationships between the latent classes and other explanatory or response variables. Different
approaches may be used to fit these models, differing in how the structural and measurement
models are estimated and whether they are estimated together or in separate steps. In this
article we propose a new “two-step” method of estimating such models, and show that it is an
attractive alternative to existing “one-step” and “three-step” methods.

In the one-step method of estimation both parts of the model are estimated at the same
time, to obtain maximum likelihood (ML) estimates for all of their parameters (see e.g. Clogg,
1981, Dayton & Macready, 1988, Hagenaars, 1993, Bandeen-Roche, Miglioretti, Zeger, &
Rathouz, 1997, and Lanza, Tan, & Bray, 2013; this is also known as Full Information ML, or
FIML, estimation). Although this approach is efficient and apparently natural, it also has
serious defects (see e.g. the discussions in Croon, 2002, Vermunt, 2010, and Asparouhov &
Muthén, 2014). These arise because the whole model is always re-fitted even when only one

part of it is changed. Practically, this can make the estimation computationally demanding,
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especially if we want to fit many models to compare structural models with multiple variables.
The more disturbing problem with the one-step approach, however, is not practical but
conceptual: every change in the structural model — for example adding or removing covariates
— affects also the measurement model and thus in effect changes the definition of the latent
classes, which in turn distorts the interpretation of the results of the analysis. This problem is
not merely hypothetical but can in practice occur to an extent which can render comparisons
of estimated structural models effectively meaningless. One of our applied examples in this
article, which is discussed in Section 4.1, provides an illustration of this phenomenon.

“Stepwise” methods avoid the problems of the one-step approach by separating the
estimation of the different parts of the model into distinct steps of the analysis. Existing
applications of this idea to latent class analysis are different versions of the three-step method.
This involves (1) estimating the measurement model alone, using only data on the indicators
of the latent classes, (2) assigning predicted values of the latent classes to the units of analysis
based on the model from step 1, and (3) estimating the structural model with the assigned
values from step 2 in the role of the latent classes. The most common version of this is the
naive three-step method where the values assigned in step 2 are treated as known variables in
step 3. In this and the other stepwise methods discussed below, the first-step modelling may
even be done by different researchers or with different data than the subsequent steps.

The naive three-step method has the flaw that the values assigned in its second step are
not equal to the true values of the latent classes as defined by the first step. This creates a
measurement error (misclassification) problem which means that the third step will yield
biased estimates of the structural model (Croon, 2002). The misclassification can be allowed
for and the biases corrected by using bias-adjusted three-step methods (Bolck, Croon, &
Hagenaars, 2004; Vermunt, 2010; Bakk, Tekle, & Vermunt, 2013; Asparouhov & Muthén,
2014) which have been developed in recent years and which are now also implemented in two
mainstream software packages for latent class analysis, Latent GOLD (Vermunt & Magidson,
2005, 2016) and Mplus (Muthén & Muthén, 2017). However, applied researchers who are
unfamiliar with the correction methods, or who are using other software packages, will still
most often be using the naive three-step approach.

In this paper we propose an alternative two-step method of estimation. Its first step is the

same as in the three-step methods, that is fitting the latent class measurement model on its
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own. In the second and final step, we then maximise the joint likelihood (i.e. the likelihood
which is also used in the one-step method), but with the parameters of the measurement
model and of exogenous latent variables (if any) fixed at their estimated values from the first
step, so that only the parameters of the rest of the structural model are estimated in the
second step. This proposal is rooted in the realization that the essential feature of a stepwise
approach is that the measurement model is estimated separately, not that there needs to be
an explicit classification step. This is especially important because the classification error of
the three-step method is introduced in its second step. So by eliminating this step, we
eliminate the circular problem of introducing an error that we then need to correct for later
on. As a result, the two-step method is more straightforward and easier to understand than
the bias-adjusted three-step methods.

This approach was suggested as a possibility (although not actively used by them) by
Bandeen-Roche et al. (1997, p. 1384), and it was used by Bartolucci, Montanari, and Pandolfi
(2014) for latent Markov models with covariates for longitudinal data. We describe it and its
properties as a general method for latent class analysis. We note that it can be motivated as
an instance of two-stage pseudo ML estimation (Gong & Samaniego, 1981). The general
theory of such estimation shows that the two-step estimates of the parameters of the
structural model are consistent, and it provides asymptotic variance estimates which correctly
allow also for the uncertainty in the estimates from the first step. Software which can carry
out one-step estimation can also be used to implement the two-step method. Our simulations
suggest that the two-step estimates are typically only slightly less efficient than the one-step
estimates, and a little more efficient than the bias-adjusted three-step estimates.

Although we focus in this article on latent class models, the conceptual issues and the
methods that we describe apply also to other latent variable models (we discuss this briefly
further in Section 5). In particular, they are also relevant for structural equation models
(SEMs) where both the latent variables and their indicators are treated as continuous variables
(see e.g. Bollen, 1989). There the most commonly used methods are one-step (standard
SEMs) and naive three-step estimation (using factor scores as derived variables). For some
models it is possible to assign factor scores in such a way that the bias of the naive three-step
approach is avoided (Skrondal & Laake, 2001; comparable methods have been proposed for

item response theory models by Lu & Thomas, 2008, and for latent class models by Petersen,
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Bandeen-Roche, Budtz-Jgrgensen, & Groes Larsen, 2012), and bias-corrected three-step
methods can also be developed (Croon, 2002; Devlieger, Mayer, & Rosseel, 2016), but these
approaches are less often used in practice. Another stepwise approach for SEMs is two-stage
least squares (2SLS) estimation, different versions of which have been proposed by Joreskog
and Sérbom (1986), Lance, Cornwell, and Mulaik (1988) and Bollen (1996). It uses the ideas
of instrumental variable estimation, and is quite different in form to our two-step method.

The conceptual disadvantages of the one-step method were discussed in the context of
SEMs already by Burt (1976, 1973). He introduced the idea of “interpretational confounding”
which arises when the variables that a researcher uses to interpret a latent variable differ from
the variables which actually contribute to the estimation of its measurement model. As a way
of avoiding such confounding, Burt proposed a stepwise approach which was two-step
estimation in the same sense that we describe here. Subsequent literature has, however, made
little use of this proposal, even when it has drawn on Burt’s ideas otherwise. In particular,
stepwise thinking is now much more commonly applied to model selection rather than
estimation — in other words, the form of the measurement model is selected separately, but
the parameters of this measurement model and any structural models are then estimated
together using one-step estimation (Anderson & Gerbing, 1988). It is likely that in the large
SEM literature there are individual instances of the use of two-step estimation (one example is
Ping, 1996), but they are clearly not widespread. There appear to be no systematic
theoretical expositions of two-step estimation of the kind that is offered in this article.

The model setting and the method of two-step estimation are introduced in Section 2
below, followed in Section 3 by a simulation study where we compare it to the existing
one-step and three-step approaches. We then illustrate the method in two applied examples in

Section 4, and give concluding remarks in Section 5.

2. Two-step estimation of latent class models with external variables

2.1. The variables and the models

Let X be a latent variable, Y = (Y1,...,Yx) observed variables which are treated as
measures (indicators) of X, and Z = (Z,, Z,,) observed variables where Z,, are covariates
(predictors, explanatory variables) for X and Z, is a response variable to X and Z,. We take

X and Z, to be univariate for simplicity of presentation, but this can easily be relaxed as
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discussed later. Here X is a categorical variable with C' categories (latent classes)

c=1,...,C, and each of the indicators Y} is also categorical, with R} categories for
k=1,...,K. Suppose we have a sample of data for n units such as survey respondents, so
that the observed data consist of (Z;,Y;) for i = 1,...,n, while X; remain unobserved.

We denote marginal density functions and probabilities by p(-) and conditional ones by

p(+|-). The measurement model for X; for a unit ¢ is given by

K K Ry
I(Yig=
P(YilXi, Z0) = p(Yi X = o) = [ p(YaulXi = &) = [T [ w0 ™" (1)
k=1 k=1r=1
forc=1,...,C, where 7. are probability parameters and I(Y;x = r) = 1 if unit ¢ has

response 7 on measure k, and 0 otherwise. This is the measurement model of the latent class
model with K categorical indicator variables for C' latent classes. It is assumed here that Y;
are conditionally independent of Z; = (Z,;, Z,;) given X; (i.e. that Y; are purely measures of
the latent X; and there are no direct effects from other observed variables Z; to Y;), and that
the indicators Y, are conditionally independent of each other given X;. These are standard
assumptions of basic latent class analysis.

The structural model p(Z;, X;) = p(Zpi)p(XilZpi)p(Zoi|Zpi, X;) specifies the joint
distribution of Z; and X;. Then p(Z;, X;,Y;) = p(Z;, X;)p(Y;]|X;), and the distribution of the
observed variables is obtained by summing this over the latent classes of X; to get

C K

P(Zi,Y3) = p(Zp) > |P(Xi = c|Zpi) D(Zoi|Zpi, Xi = ¢) [ [ p(Virl Xi = o) | - (2)
c=1 k=1

This model thus combines a latent class measurement model for X; with a structural model
for the associations between X; and observed covariates Z,; and/or response variables Z;.

Substantive research questions typically focus on those parts of the structural model
which involve X, so the primary goal of the analysis is to estimate p(X;|Z,;) and/or
P(Zoi|Zpi, X;). The measurement model is then of lesser interest, but it too needs to be
specified and estimated correctly to obtain valid estimates for the structural model, not least
because the measurement model provides the definition and interpretation of X;. The
marginal distribution p(Z,;) can be dropped and the estimation done conditionally on the
observed values of Z,;.

For simplicity of illustrating the methods in specific situations, we will focus on structural

models where either Z, or Z, is absent. These cases will be considered in our simulations in
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Section 3 and the examples in Section 4. We thus consider first the case where there is no Z,
and the object of interest is p(X; = ¢|Zy;), the model for how the probabilities of the latent

classes depend on observed covariates Z,. This is specified as the multinomial logistic model

eXp(ﬁOc + /Bczpi)

P(Xi = lZp) = — 3)
>~ exp(Boe + By Zypi)
d=1
forc=1,...,C, where (8o1,3,) = 0 for identifiability. Second, we consider the case where

there is no Z, and the object of interest is p(Z,;|X;), a regression model for an observed
response variable Z, given latent class membership. Here p(X; = ¢|Z,;) = p(X; = ¢), the
explanatory variables in p(Z,;|X;) are dummy variables for the latent classes ¢ = 2,...,C, and
the form of this model depends on the type of Z,. In our simulations and applied example Z,

is a continuous variable and the model for it is a linear regression model.

2.2. Emisting approaches: The one-step and three-step methods

Let 6 = (m,,,1,) denote the parameters of the joint model, where  are the
parameters of the measurement model, 1, of the structural model for X given Z, (or just the
probabilities p(X; = ¢), if there are no Z,), and 1, of the structural model for Z, (if any). If
the units ¢ are independent, the log likelihood for 6 is £(0) = Y"1 | log p(Zoi, Yi|Zyi), obtained
from (2) by omitting the contribution from p(Z,;). Maximizing ¢(6) gives maximum likelihood
(ML) estimates of all of 8. These are the one-step estimates of the parameters. They are most
conveniently obtained using established software for latent variable modelling, currently in
particular Latent GOLD or Mplus. These software typically use the EM algorithm, a
quasi-Newton method, or a combination of them, to maximize the log likelihood. They also
provide other estimation facilities which are important for complex latent variable models,
such as automatic implementation of multiple starting values.

Stepwise methods of estimation begin instead with the more limited log likelihood

li(p,m) =321 log p(Y;), where

~—

C K
p(Yi) =Y |p(Xi =) [[ p(Viel Xi = €) | , (4
k=1

c=1
7 are the same measurement parameters (response probabilities) as defined above, and

p=(p1,...,pc) with p. = p(Xi = ¢) = [ p(Zpi)p(X; = c|Zy;) dZy;; thus p are the same as 1p,,
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if there are no covariates Z, but not otherwise. Expression (4) defines a standard latent class
model without covariates or response variables Z. In step 1 of all of the stepwise methods, we
maximize ¢1(p, ) to obtain ML estimates of the parameters of this model.

Since this step-1 model gives estimates of p(X; = ¢) and p(Y;|X; = ¢), it also implies
estimates of the probabilities p(X; = ¢|Y;) of latent class membership given observed response
patterns Y;. In step 2 of a three-step method, these conditional probabilities are used in some
way to assign to each unit ¢ a value ¢; of a new variable X; which will be used as a substitute
for X;. The most common choice is the “modal” assignment, where ¢; is the single value for
which p(X; = ¢[Y;) is highest. In naive three-step estimation, step 3 then consists of using X;
as an observed variable in the place of X; when estimating the structural models for the
associations between X; and Z;, to obtain naive three-step estimates of the parameters of
interest 1, and/or 1,. These estimates are, however, generally biased, because of the
misclassification error induced by the fact that X; are not equal to X;. It is important to note
that this bias arises not just from modal assignment but from any step-2 assignment whose
misclassification is not subsequently allowed for; this includes even methods where each unit is
assigned to every latent class with fractional weights which are proportional to p(X; = ¢[Y;)
(Dias & Vermunt, 2008; Bakk et al., 2013).

Bias-adjusted three-step methods remove this problem of the naive methods. Their basic
idea is to use the estimated misclassification probabilities p(Xi = ¢|X; = ¢;) of the values
assigned in step 2 to correct for the misclassification bias. The two main approaches for doing
this are the “BCH” method proposed by Bolck et al. (2004) and extended by Vermunt (2010)
and Bakk et al. (2013), and the “ML” method proposed by Vermunt (2010) and extended by
Bakk et al. (2013) (see also Asparouhov & Muthén, 2014). Both of them are available in

Latent GOLD and Mplus, while in other software additional programming would be required.

2.3. The proposed two-step method

We propose a two-step method of estimation. Its first step is the same as in the three-step
methods, that is estimating the latent class model (4) without covariates or response variables
Z. Some or all of the parameter estimates from this model are then passed on to the second
step and treated as fixed there while the rest of the parameters of the full model are estimated.

Let 6 = (01, 02) denote the decomposition of € into those parameters that will be
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estimated in step 1 (01) and those that will be estimated in step 2 (62). There are two
possibilities regarding what we will include in € (these two situations are also represented
graphically in Figure 1). If there are any covariates Z,, then 6; = 7, i.e. it includes only the
parameters of the measurement model (and estimates of p from step 1 will be discarded before
step 2). If there are no Z,, then 61 = (m,1,,), i.e. it includes also the probabilities 1, = p of
the marginal distribution of X. The logic of this second choice is that if X is not a response
variable to any Z,, we can treat it as an exogenous variable whose distribution can also be
estimated from step 1 and then treated as fixed when we proceed in step 2 to the estimation
of models conditional on X. Thus 63 includes either all the parameters (1,,,) of the

structural model, or all of them except those of an exogenous X.

Denoting the estimates of 81 from step 1 by 6:, in step 2 we use the log likelihood
02(01,02), which is _7 1og p(Z,i, Yi|Zp:) evaluated at @; = @, and treated as a function of
6> only. Maximizing this with respect to 05 gives the two-step estimate of these parameters,
which we denote by 0.

This procedure achieves the aims of stepwise estimation, because the measurement model
is held fixed when (all or most of) the structural model is estimated. If we change the
structural model, 8; remains the same and only step 2 is done again (or even if we do run
both steps again, 6, will not change). This would be the case, for example, if we wanted to
compare models with different explanatory variables Z,, for the same latent class variable X.

Although we focus here on the case of a single X for simplicity, the idea of the two-step
method extends naturally also to more complex situations. For instance, suppose that there
are two latent class variables X7 and X5 with separate sets of indicators Y1 and Yy, and the
structural model is of the form p(X1)p(Z1|X1)p(X2|Z1, X1)p(Z2| X1, Z1, X2). In step 1 we
would then estimate two separate latent class models, one for X; and one for Xy (and both
again without Z = (Z1, Z»)). The step-1 parameters 6; would be the measurement
probabilities of X; and X» and the parameters of p(X;), and the step-2 parameters would be

those of the rest of the structural model apart from p(X7).
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2.4. Properties and implementation of two-step estimates

Two-step estimation in latent class analysis is an instance of a general approach to
estimation where the parameters of a model are divided into two sets and estimated in two
stages. The first set is estimated in the first step by some consistent estimators, and the second
set of parameters is then estimated in the second step with the estimates from the first step
treated as known. When the second step is done by maximizing a log likelihood, as is the case
here, this is known as pseudo maximum likelihood (PML) estimation (Gong & Samaniego,
1981). The properties of our two-step estimators can be derived from the general PML theory.

Such two-stage estimators are consistent and asymptotically normally distributed under
very general regularity conditions (see Gourieroux & Monfort, 1995, Sections 24.2.4 and
24.2.2). In our situation these conditions are satisfied because the one-step estimator 6 and
the step-1 estimator 6 of the two-step method are both ML estimators, of the joint model
and the simple latent class model (4) respectively, and because the models are such that 6,
and 05 can vary independently of each other.

Let the Fisher information matrix for @ in the joint (one-step) model be

(%) = L
Ty Io
where 8% denotes the true value of @ and the partitioning corresponds to 61 and 6. The
asymptotic variance matrix of the one-step estimator 6 is thus Vp, = Z71(6*), which is
estimated by Vs = I_l(é). Let ¥1; denote the asymptotic variance matrix of the step-1
estimator 6, of the two-step method, obtained similarly from the Fisher information matrix

for model (4) and estimated by substituting 0,. The asymptotic variance matrix of the

two-step estimator ég is then
V=T, +ZTnT1EuTyTy =Va+ V. (5)

Here V5 describes the variability in 05 if the step-1 parameters 8; were actually known, and
V; the additional variability arising from the fact that @; are not known but estimated by 0.
Comparable methods for bias-adjusted three-step estimators, which also allow for both of
these sources of variation, have been proposed by Bakk, Oberski, and Vermunt (2014a). The
variance matrix V is estimated by substituting @ = (01, 63) for *. It can then be used also to

calculate confidence intervals for the parameters in @5, and Wald test statistics for them.
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The standard errors that are routinely displayed by the software when we fit the step-2
model are based on V5 only. Because they omit the contribution from Vi, these standard
errors will underestimate the full uncertainty in 5. In the simulations of Section 3 we
examine the magnitude of this underestimation in different circumstances. The results suggest
that the contribution from the step-1 uncertainty can be substantial, and that it can be safely
ignored only if the measurement model is such that Y are very strong measures of X.

As noted in the previous section, if the joint model had more than one latent class
variable X, in the first step we would propose to estimate the latent class models for each of
these variables separately. The simplest way to estimate 317 would then be to take it to be a
block-diagonal matrix with the blocks corresponding to the parameters from these models.
This would ignore the correlations between these blocks of step-1 parameter estimates and
would thus imply some misspecification of the resulting form of V1, but we might expect the
effect of this misspecification to be relatively small.

If we have software which can fit the full model using the one-step approach, it can be
adapted to produce also the point estimates and their variance matrix for the two-step
approach. First, 0, and the estimate of 311 are obtained by fitting the step-1 latent class
model. Second, 05 and the estimate of Vy are obtained by fitting a model which uses the
same code as we would use for one-step estimation, except that now the values of 81 are fixed
at 01 rather than estimated. After these steps, the only quantity that remains to be estimated
is Z19, the cross-parameter block of the information matrix Z(6*). In some applications of
PML estimation this can be an awkward quantity which requires separate calculations. Here,
however, it too is easily obtained. This is because software which can fit the one-step model
can also evaluate this part of the information matrix. All that we need to do to trick the
software into producing the estimate of Z19 that we need is to set up estimation of the
one-step model with 0= (91, 92) as the starting values, get the software to calculate the
information matrix with these values (i.e. before carrying the first iteration of the estimation
algorithm), and extract from it the part corresponding to Z12. [The code included in the
supplementary materials for this article shows how this and the other parts of the two-step

estimation can be done in Latent GOLD.]
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3. Simulation studies

In this section we carry out simulation studies to examine the performance of the
two-step estimator and to compare it to the existing one-step and three-step estimators. The
simulations consider the two specific situations which were discussed in Section 2.3 and
represented in Figure 1, i.e. one with models where the latent class is a response variable and
one where it is an explanatory variable. The settings of the studies draw on those of previous
simulations by Vermunt (2010), Bakk et al. (2013) and Bakk et al. (2014a).

In all of the simulations there is one latent class variable X with C' = 3 classes. It is
measured by six items Y = (Y7,...,Ys), each with two values which we label the “positive”
and “negative” responses. The more likely response is positive for all six items in class 1,
positive for three items and negative for three in class 2, and negative for all items in class 3.
The probability of the more likely response is set to the same value 7 for all classes and items.
Higher values of m mean that the association between X and Y is stronger, separation
between the latent classes larger, and precise estimation of the latent class model easier. We
use for 7 the three values 0.9, 0.8 and 0.7, and refer to them as the high, medium and low
separation conditions respectively. In other words, the probabilities of a positive response are,
for example, all 0.9 in class 1 in the high-separation condition, and (0.7,0.7,0.7,0.3,0.3,0.3) in
class 2 in the low-separation condition. The association between X and Y can be summarised
in one number by using the entropy-based pseudo-R? measure (see e.g. Magidson, 1981): here
its value is 0.36, 0.65 and 0.90 in the low, medium and high-separation conditions respectively.
We consider simulations with sample sizes n of 500, 1000, and 2000, resulting in nine sample
size-by-class separation simulation settings in each of the two situations we consider.

In the first simulations the structural model is the multinomial logistic model (3) where
the probabilities p(X = ¢|Z),) of the latent classes are regressed on a single interval-level
covariate Z, with uniformly distributed integer values 1-5. Class 1 is the reference level for X,
and the coefficients for classes 2 and 3 are 5 = —1 and (83 = 1. The intercepts were set to
values yielding equal class sizes when averaged over Z,. In the second set of simulations the
structural model is a linear regression model with X as the covariate for a continuous response
Z,, with residual variance of 1. Omitting the intercept term but including dummy variables
for all three latent classes, the regression coefficients 51 = —1, o = 1 and 3 = 0 are the

expected values of Z, in classes 1, 2, and 3 respectively.
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We compare the two-step estimates to ones from the one-step method, the naive
three-step method with modal assignment to latent classes in step 2, and the “BCH” and
“ML” methods of bias-adjusted three-step estimation. The models were estimated with Latent
GOLD Version 5.1, with auxiliary calculations done in R (R Core Team, 2016). In each
setting, 500 simulated samples were generated. In a small number of samples in the
low-separation condition (11 of the 500 when n = 500, and 4 when n = 1000) one or both of
the bias-adjusted three-step methods produced inadmissible estimates (the reasons for this are
discussed in Bakk et al., 2013), and these samples are omitted from the results for all

estimators. The two-step method produced admissible estimates for all of the samples.

Results of the simulations where X is a response variable are shown in Tables 1 and 2.
For simplicity we report here only results for one of the regression coefficients, which had the
true value of B3 = 1 (the results for the other coefficient were similar). Table 1 compares the
performance of the different estimators of this coefficient in terms of their mean bias and root
mean squared error (RMSE) over the simulations. We note first that the one-step estimator is
essentially unbiased in all the conditions and has the lowest RMSE. The naive three-step
estimator is severely biased (and has the highest RMSE), with a bias which decreases with
increasing class separation but is unaffected by sample size. The bias-adjusted three-step
methods remove this bias, except in cases with low class separation where some of the bias
remains. These results are similar to those found by Vermunt (2010).

The two-step estimator is comparable to the bias-adjusted three-step estimators, but
consistently slightly better than them. Its smaller RMSE suggests that there is a gain in
efficiency from implementing the stepwise idea in this way, avoiding the extra step of
three-step estimation. In the medium and high-separation conditions the two-step estimator
also performs essentially as well as the one-step estimator, suggesting that there is little loss of
efficiency from moving from full-information ML estimation to a stepwise approach.

The low-separation condition is the exception to these conclusions. There all of the

stepwise estimators have a non-trivial bias and higher RMSE than the one-step estimator
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(although the two-step estimator is again better than the bias-corrected three-step ones). A
similar result was reported for the three-step estimators by Vermunt (2010) and (in
simulations where X was a covariate) by Bakk et al. (2013). They concluded that this
happens because the first-step estimates are biased for the true latent classes when the class
separation is low. They also observed that the level of separation in the low condition
considered here (where the entropy R? is 0.36) would be regarded as very low for practical
latent class analysis, i.e. if the observed items Y were such weak measures of X they would
provide poor support for reliable estimation of associations between the latent class
membership and external variables. The one-step estimator performs better because the
covariate Z, in effect serves as an additional indicator of the latent class variable, and indeed
one which is arguably stronger than the indicators Y in the low-separation condition (for

example, the standard R? for Zy given X is here 0.48).

In Table 2 we examine the behaviour of the estimated standard errors of the two-step
estimators, obtained as explained in Section 2.4. We compare them to the one-step estimator
(for which the standard errors are obtained from standard ML theory and should behave
well), omitting the three-step estimators which are not the focus here (simulation results for
their estimated standard errors are reported by Vermunt, 2010 and Bakk et al., 2014a).

The first three columns for each estimator in Table 2 show the simulation standard
deviation of the estimates of the parameter, the average of their estimated standard errors,
and the coverage proportion of 95% confidence intervals calculated using the standard errors.
Here the one-step and two-step estimators both behave well in the medium and high
separation conditions, in that the standard errors are good estimates of the sampling variation
and the confidence intervals have correct coverage or very close to it (with 500 simulations,
observed coverages between 0.932 and 0.968 are not significantly different from 0.95 at the 5%
level). The variability of the estimates is also comparable for the two methods, again
indicating that the two-step method is here nearly as efficient as the one-step method. An

exception is again the low-separation condition, where the variability of the two-step
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estimators is higher. Even then their estimated standard errors correctly capture this
variability, so the undercoverage of the confidence intervals in the low-separation condition is
due to the bias in the two-step point estimator which was shown in Table 1.

The last two columns of Table 2 examine the performance of estimated standard errors of
the two-step estimators if they were based only on Vs in (5), i.e. if we ignored the
contribution from the uncertainty from the first step of estimation which is captured by V.
The “C95(2)” column of the table shows the coverage of 95% confidence intervals if we do
this, and “SE%(2)” shows the percentage that the step 2-only standard errors contribute to
the full standard errors (this is calculated by comparing the simulation averages of these two
kinds of standard errors). It can be seen that in the low-separation conditions around half of
the uncertainty actually arises from the step-1 estimates, and ignoring this results in severe
underestimation of the true uncertainty and very poor coverage of the confidence intervals.
Even in the more sensible medium-separation condition the contribution from the step-1
uncertainty is over 10% and the coverage is non-trivially reduced, and it is only in the
high-separation condition that we could safely treat the step-1 estimates as known. These
results suggest that there is a clear benefit from using standard errors calculated from the full

variance matrix (5) derived from pseudo-ML theory.

Tables 3 and 4 show the same statistics for the simulations where the latent class X is an
explanatory variable for a continuous response Z,. Here we again focus on just one parameter
in this model, with true value 85 = 1. The results of these simulations are very similar to the
ones where X was the response variable (and for the one-step and three-step estimators they
are also similar to the results in Bakk et al., 2013). The two-step estimator again performs a
little better than the three-step estimators and, except in situations with low class separation,

essentially as well as the one-step estimator.
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4. Empirical examples

4.1. Latent class as a response variable: Tolerance toward nonconformity

In this first applied example we consider a latent class analysis of items which measure
intolerance toward different groups of others. The substantive research question is whether
different levels and patterns of intolerance are associated with individuals’ education and birth
cohort. We use data from the 1976 and 1977 U.S. General Social Surveys (GSS) which was
first analyzed by McCutcheon (1985) using the naive three-step method with modal
assignment of latent classes to individuals. Bakk et al. (2014a) re-analyzed the data using the
one-step and bias-corrected three-step methods, thus showing how McCutcheon’s original
estimates are affected when the misclassification from the second-step class allocation is taken
into account. We examine how two-step estimates compare with these previously proposed
approaches in this example.

For the definitions of variables and for the first-step latent class modelling we follow the
choices made by the previous authors (data and code for the analysis of Bakk et al., 2014a is
given in Bakk, Oberski, & Vermunt, 2014b[, and for our analysis in [final] supplementary
materials for this article]). The original survey measured a respondent’s tolerance of
communists, atheists, homosexuals, militarists and racists, using three items for each of these
groups. The items asked if the respondent thought that members of a group should be allowed
to make speeches in favour of their views, teach in a college, and have books written by them
included in a public library (the wordings of the questions are given in McCutcheon, 1985).
Thus “tolerance” here essentially means willingness to grant members of a group public space
and freedom to disseminate their views. McCutcheon recoded the data into five dichotomous
items, one for each group, by coding the attitude toward a group as tolerant if the respondent
gave a tolerant answer to all three items for that group, and intolerant otherwise.

The first-step latent class analysis is carried out on a sample of 2689 respondents who had
an observed value for all five items. This complete-case analysis was used to match that of
McCutcheon (1985). It is not essential, however, and all of the estimators can also
accommodate observations with missing values in some of the items (we will do that in our
second example in Section 4.2). There were further 21 respondents who are excluded from

estimation of the structural model because they had missing values for the covariates; this also
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illustrates the general point that the first step of the stepwise methods may be based on a
different set of observations than the subsequent steps.

We use the same four-class latent class model for the tolerance items which was also
employed by the previous authors. Its estimated parameters are shown in Table 5. The upper
part of the table gives the estimated parameters of the measurement model, that is the
probabilities w1 = P(Y;r = 1|X; = ¢) that a respondent ¢ who belongs to latent class ¢ gives
a response which is coded as tolerant of group k. Using the labels introduced by McCutcheon,
the class in the first column is called “Tolerant” since respondents in this class have a high
probability of being tolerant of all five groups. The ”Intolerant of Right” class is intolerant of
groups such as racists and militarists and the ”Intolerant of Left” class particularly intolerant
of communists, while the ”Intolerant” have a low probability of a tolerant response for all five
groups. The entropy-based pseudo-R? measure is here 0.72, placing the separation of these
classes between the medium and high-separation conditions in our simulations in Section 3.
The last row of the table gives the estimated probabilities p of the latent classes; these show

that the intolerant class is the largest, with a probability of 0.56.

The structural models are multinomial logistic models (3) for these latent classes given a
respondent’s education and birth cohort (which in these cross-sectional data is
indistinguishable from age). Educational attainment was coded into three categories, based on
years of formal education completed: less than 12 (“Grade school”), 12 (“High school”) or
more than 12 years (“College”). Birth cohort was coded by McCutcheon into four categories:
those born after 1951 (and thus aged 17-23 in 1976), in 1934-51 (24-42), 1915-33 (43-61), or
before 1915 (62 or older). Here we treat this variable as continuous for simplicity of

presentation, with values 1-4 respectively.
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The estimates of the structural model are shown in Table 6, in the form of estimated
coefficients for being in the other three classes relative to the Tolerant class. Consider first the
estimates from the stepwise approaches, which are here all fairly similar to each other. The
overall Wald tests show that both education and birth cohort have clearly significant
associations with membership of the different tolerance classes. People from the older cohorts
are more likely to be in the Intolerant of Left and (especially) the Intolerant classes, but there
is no significant cohort effect on being in the Intolerant of Right rather than Tolerant class.
Having college education rather than either of the two lower levels of education is very
strongly associated with lower probabilities of all of the three intolerant classes, and the same
is true for high school vs. grade school education in the comparison of Intolerant and
Intolerant of Left against the Tolerant class (the latter contrast is significant only for the

two-step and naive three-step estimates).

The one-step estimates in Table 6 are rather more different from all the stepwise
estimates. This difference arises from a deeper discrepancy than just that of different
estimates for the same parameters. Here the parameters are in fact not the same, because the
one-step estimates are effectively coefficients for a different response variable. This point is
demonstrated in Table 7. It shows the estimated measurement probabilities and marginal
class sizes of the latent class model from one-step estimation with different choices of the
covariates in the structural model. The first column for each class shows the results when no
covariates are included, so it is the same as the model in Table 5 (with the classes there
numbered here 1-4 in the same order). We refer to this pattern and interpretation of the
classes as “pattern A”. The estimates from one-step estimation follow this pattern also if the
structural model includes only the birth cohort, or the cohort plus education included as years
completed rather than in the grouped form. In other words, in these cases the one-step
estimates of the measurement probabilities of the latent classes are sufficiently similar from
one model to the next so that the interpretation (and labelling) of the classes remains

unchanged, even though the exact values of these probabilities still change between models.
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In other models, however, the estimated measurement model changes so much that the
latent classes themselves change. We refer to these cases in Table 7 as “pattern B” (nearest
matches from the two patterns are shown under the same number of class in the table). In
this pattern the Tolerant class maintains its interpretation and estimated size, but the other
three classes are re-arranged so that we end up with two classes (numbers 2 and 4) with
slightly different patterns of low tolerance and one class (3) with a probability of a tolerant
response around 50% for all the groups. This pattern emerges when the structural model
includes education alone in either years completed or in the grouped form. It also emerges
when the covariates are cohort and the grouped education, which was the model we considered
in Table 6. The one-step model there is thus a model for latent classes of pattern B (with the
measurement probabilities shown in the second column for each class in Table 7), whereas all
the stepwise models are for classes of pattern A.

This example illustrates the inherent property of one-step estimation that every change in
the structural model will also change the measurement model. Sometimes these changes are
small, such as those between the different versions of pattern A in Table 7, but sometimes
they are so large, such as the jumps between patterns A and B, that they effectively change
the meaning of the latent class variable. There is no reason even to expect that the possible
patterns would be limited to two as here, so in analyses with a larger number of covariates
still more patterns could appear. In practical analysis it could happen that the analyst failed
to notice these changes and hence to realise that comparisons between some structural models
were effectively meaningless. Even if the analyst did pay attention to this feature, there is
nothing they could really do about it within one-step estimation. This is because the method
provides no entirely coherent way of forcing the measurement model to remain the same. In
contrast, all stepwise methods achieve this by definition, because their key feature is that the

measurement model is fixed before any structural models are estimated.

4.2. Latent class as an explanatory variable: Psychological contract types and job insecurity

Our second example draws on the Dutch and Belgian samples of the Psychological
Contracts across Employment Situations project (PSYCONES, 2006). These data were used
by Bakk et al. (2013) to compare the one-step and bias-adjusted three-step approaches, and

we follow their choices for the models and variables. The goal is to examine the association
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between an individual’s perceived job insecurity and their perception of their own and their
employee’s obligations in their current employment (the “psychological contract”). Job
insecurity is measured on a scale used by the PSYCONES project (originally from De Witte,
2000), treated as a continuous variable. Psychological contract types are measured by eight
dichotomous survey items. Four of them refer to perceived obligations (promises given) by the
employer and four to obligations by the employee, and in each group of four, two items refer to
relational and two to transactional obligations. The labels in Table 8 give an idea of the items’
content, and their full wordings are given by De Cuyper, Rigotti, Witte, and Mohr (2008) who
also analysed these items (for a different sample) with latent class analysis. We derive a
classification of psychological contract types from a latent class model and use it as a covariate
in the structural model which is a linear regression model for perceived job insecurity.

There are 1431 respondents who answered at least one of the eight items, and all of them
are used for the first-step latent class modelling. In general, all of the methods considered here
can accommodate units of analysis which have missing data in some of the items. For
estimation steps which employ a log-likelihood of some kind (such as one-step estimation and
both steps of two-step estimation) this is done by defining it in such a way that all observed
variables contribute to the log-likelihood for each unit, and for the second step of the
three-step methods it is achieved by calculating the conditional probability of latent classes
given all the observed items for each unit. Four respondents for whom the measure of job

insecurity was not recorded are omitted when the structural model is estimated.

The step-1 model is a four-class latent class model, for which the parameter estimates are
given in Table 8. The first class, which consists of an estimated 52% of the individuals and is
labelled the class of “Mutual High” obligations, is characterised by a high probability of
thinking that both the employer and the employee have given obligations to each other. The
“Under-obligation” class (10%) are likely to perceive that obligations were given by the
employer but not the employee, the opposite is the case in the “Over-obligation” class (29%),

and the “Mutual Low” class (9%) have a low probability of perceiving that any obligations
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have been given or received. The entropy-based R? for this model is 0.71, which is again

between the medium and high-separation conditions in our simulation studies.

Estimated coefficients of the structural model are shown in Table 9. Here the naive
three-step estimates are the most different, in that they are closer to zero than are the other
estimates. The rest of the estimates are similar, and the one-step ones are now also comparable
to the rest because their estimated measurement model (not shown) implies essentially the
same latent classes as the first-step estimates used by the stepwise approaches. The estimated
coefficients show that the expected level of perceived job insecurity is similar (and not
significantly different) in the Mutual High and Under-obligation classes, and significantly
higher in the Overobligation and Mutual Low classes (which do not differ significantly from
each other). In other words, employees tend to feel more secure in their job whenever they
perceive that the employer has made a commitment to them, whereas an employee’s

perception of their own level of commitment has no association with their insecurity.

5. Discussion

The stepwise approaches that we have explored in this article obey the principle that
definitions of variables should be separated from the analyses that use them. This is natural
and goes unmentioned in most applications where variables are treated as directly observable,
where they are routinely defined and measured first and only then used in analysis. Things
are not so straightforward in modelling with latent variables, where these variables are defined
by their estimated measurement models. One-step methods of modelling do not follow the
stepwise principle but estimate simultaneously both the measurement models and the
structural models between variables. As a result, the interpretation of the latent variables may
change from one model to the next, possibly dramatically so. Stepwise methods of modelling
avoid this problem by fixing the measurement model at its value estimated from their first
step. In naive three-step estimation this incurs a bias because the derived variables used in its

third step are erroneous measures of the variables defined in the first step. This bias is
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removed by the bias-adjusted three-step and the two-step methods. In this article we have
argued that the two-step method that we have proposed is the more straightforward of them,
and has somewhat better statistical properties.

We have focused on latent class analysis, but both the methods and the principles that
we have described apply also more generally. They could be extended to models with other
kinds of latent variables, such as linear structural equation models (SEMs) where both the
latent variables and their measures are treated as continuous. In this context, the one-step
method (conventional SEMs) and the naive three-step method (using factor scores as derived
variables) are routinely used, while other stepwise methods are not fully developed. There too
the one-step approach has the property that the measurement models of the latent factors do
not remain fixed, although it could be that the consequences of this are less dramatic than
they can be for the categorical latent variables in latent class analysis. Two-step estimation
can be defined and implemented for models with continuous latent variables in the same way
as described in this article for latent classes, in effect by making the appropriate changes to
the distributions defined in our Section 2. The behaviour of the two-step approach in this

context remains to be investigated.
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FIGURE 1.

Graphical representation of the two-step method of latent class analysis with latent class variable X measured
by indicators Y1, Y2, ..., Yrx. Two specific structural models are represented, (A) with only covariates Z, for X
and (B) with only response variables Z, for it. In Step 2, the dashed lines represent those parts of the model

which are held fixed at their estimates from Step 1.
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Tables

TABLE 1.
Mean bias and root mean squared error (RMSE) of one regression coefficient (with true value 83 = 1) over
500 simulated data sets from a model where a latent class variable X is a response variable for an observed
explanatory variable Z,, under different specifications for the separation between the latent classes and the
sample size (please see the main text for more details on the simulation specifications). The results are shown for
the proposed two-step estimator and for one-step, naive three-step (with modal assignment) and two bias-adjusted
three-step (“BCH” and “ML”) estimators.

MEAN BIAS RMSE
Class Sample 3-step: 3-step:
separation  size l-step 2-step Naive BCH ML l-step 2-step Naive BCH ML
Low 500 .04 =24  -59 -25 -.27 .25 .38 .60 A48 .42
1000 .03 -.16 -.60 -.16 -.20 .19 .32 .62 45 .35
2000 .01 -.09 -.60 -.11 -.12 12 .22 .61 36 .24
Medium 500 .01 -.05 -40 -.03 -.06 A7 .20 41 300 .22
1000 .01 -.01 -.37 .02 -.02 A1 13 .38 24 14
2000 -.01 -.01 -.37 .01 -.01 .08 .09 .38 15 .10
High 500 .02 .01 -.11 .02 .01 13 13 A7 16 .14
1000 .01 .01 -.12 .01 .01 .09 .09 .15 .10 .10
2000 .00 .00 -.12 .01 .00 .07 .07 13 .07 .07
TABLE 2.

Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in
Table 1. Here only the two-step and one-step estimators are compared. The table shows the simulation standard
deviation of the point estimates of the parameter (SD), mean of their estimated standard errors (m(SE)) and
coverage percentage of 95% confidence intervals (C95). For the two-step estimators, also shown are coverage of
95% confidence intervals when the estimated standard errors include only the uncertainty from the second step
of estimation (C95-2), and the average percentage that this standard error contributes to the full standard error

(SE%-2).

Class Sample 1-STEP ESTIMATOR 2-STEP ESTIMATOR
separation  size SD m(SE) C95 SD m(SE) C95 SE%-2 C95-2
Low 500 .25 25 .96 .30 3177 60 .59
1000 18 A7 .95 27 .28 .86 48 .63
2000 12 A2 .95 .20 24 .93 42 .66
Medium 500 A7 16 .94 .19 A8 .92 80 .85
1000 A1 A1 .95 13 A2 .94 86 .90
2000 .08 .08 .95 .09 .09 .96 88 .92
High 500 13 A3 .96 13 A3 .96 98 .96
1000 .09 09 .95 .09 .09 .95 99 .94

2000 .06 07 .96 .06 .06 .95 99 95
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Simulation results for point estimates of one regression coefficient (with true value 82 = 1) over 500 simulated
data sets from a model where a latent class variable X is an explanatory variable for an observed response variable
Zo. The table shows the same quantities as Table 1.

MEAN BIAS RMSE
Class Sample 3-step: 3-step:
separation  size l-step 2-step Naive BCH ML l-step 2-step Naive BCH ML
Low 500 .01 -.32  -66 -38 -.36 .19 44 .70 .50 47
1000 .01 -16  -.60 -22 -20 12 .30 .63 3733
2000 .00 -.08 -58 -12 -11 .08 21 .59 27 .23
Medium 500 .00 -.03 -31 -.03 -.03 A1 13 .33 16 .13
1000 .00 -.01 -.29 .01 -.01 .08 .09 .30 12 .09
2000 .00 .01 -.29 .00 .00 .05 .07 .29 .09 .07
High 500 .00 .00 -.08 .00 .00 .08 .09 12 .09 .09
1000 .01 .01 -07 .01 .01 .06 .06 10 .07 .06
2000 .00 .00 -.08 .00 .00 .04 .04 .09 05 .04
TABLE 4.

Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in
Table 3. The table shows the same quantities as Table 2.

Class Sample 1-STEP ESTIMATOR 2-STEP ESTIMATOR
separation  size SD m(SE) C95 SD m(SE) C95 SE%-2 (95-2
Low 500 .19 16 .89 .30 3177 46 43
1000 12 A1 94 .25 27 .88 40 A7
2000 .08 .08 94 .19 .20 .88 32 .52
Medium 500 A1 A1 .95 12 12 .93 76 .88
1000 .08 07 .95 .09 08 94 74 .85
2000 .05 .05 .95 .07 .06 .95 73 .85
High 500 .09 .08 .94 .09 .09 95 99 .94
1000 .06 .06 .95 .06 .06 .96 99 .95
2000 .04 .04 .95 .04 05 .95 99 .94
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Estimated probability parameters for the four-class latent class model for survey items on tolerance toward
different groups. Here ‘Class size’ refers to probabilities p. = P(X = c¢) of the latent classes, and the other
numbers in the table are the probabilities of giving a tolerant response to an item given the membership of a

latent class.

Latent class:

“Tolerant” “Intolerant  “Intolerant  “Intolerant”
of Right” of Left”
Probability of Tolerance for...
Atheists .98 41 .61 .03
Communists .95 .59 .27 .02
Militarists .92 .34 .38 .05
Racists .90 .02 .81 .08
Homosexuals .96 72 .56 .13
Class size: .23 A1 .10 .56
TABLE 6.

Estimated coefficients (with estimated standard errors in parentheses) of the multinomial logistic structural
model in the example in Section 4.1, for the latent class of tolerance toward different groups given a respondent’s
education and birth cohort.

Estimator
Latent class 3-step:
(vs. Tolerant) Covariate 1-step' Naive BCH ML
Intolerant of  Education
Right High school  0.12 (0.36)  0.38 (0.44) -0.12 (0.21) -0.04 (0.31) -0.08 (0.30)
College -1.07 (0.39) -1.12 (0.46) -1.23 (0.20) -1.31 (0.31) -1.29 (0.29)
Cohort 0.07 (0.13)  0.87 (0.10) 0.12 (0.09) -0.01 (0.14) -0.04 (0.15)
Intolerant of  Education
Left High school -0.65 (0.29) -0.35 (0.23) -0.45 (0.21) -0.53 (0.31) -0.41 (0.31)
College -2.06 (0.30) -1.69 (0.23) -1.55(0.22) -1.80 (0.32) -1.75 (0.31)
Cohort 0.36 (0.16)  0.23 (0.09) 0.42 (0.10) 0.44 (0.14) 0.42 (0.14)
Intolerant Education
High school -0.77 (0.19) -1.83 (0.38) -0.61 (0.15) -0.76 (0.19) -0.72 (0.19)
College -2.33 (0.19) -3.75 (0.49) -1.94 (0.14) -2.25(0.18) -2.22 (0.17)
Cohort 0.97 (0.08) 1.14 (0.13) 0.82 (0.06) 0.96 (0.08) 0.96 (0.08)
p-values of overall Wald tests of the covariates:
Education (df = 6) < .001 < .001 < .001 < .001
Cohort (df = 3) < .001 < .001 < .001 < .001

1 Note: The latent classes implied by the 1-step estimates are not really the same as for the other methods.
Please see Table 7 for the measurement model of this model, and the discussion in the text.
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TABLE 7.
Estimated class sizes and probabilities of giving a tolerant response toward different groups, in four-class latent
class models estimated as part of one-step estimation with different covariates for the latent class variable included
(4+) or not included (—) in the model. The first model, with no covariates, is the model obtained from step 1 of
stepwise approaches and shown also in Table 5. The second model, with cohort and grouped education variable,
is the measurement model from the 1-step estimation in Table 6. Two broad patterns of the latent classes appear
here, labelled in the table as patterns A and B.

Covariates:
Cohort - + - + — + — + — + — +
Education (grouped) - + + - - - -+ o+ - - -
Education (years) - - - - + o+ - - - - + +
Class pattern: A B B A B A A B B A B A
Class 1: Class 2:
Atheists 98 1.00 1.00 .99 1.00 .99 41 .01 .02 40 .02 .36
Communists 95 94 95 95 95 .95 b9 10 .10 46 .11 .46
Militarists 92 94 94 92 95 .93 34 .04 .04 .30 .03 .28
Racists 90 91 91 .89 91 .89 .02 .00 .00 .00 .00 .00
Homosexuals .96 .96 .96 .96 96 .95 20022 .23 .60 .25 .62
Class size:t 23 .21 .21 .28 .21 .22 11 .28 .28 .16 .25 .16
Class 3: Class 4:
Atheists .61 b5 .56 .62 BT .63 03 .02 .03 .02 .04 .02
Communists 27 42 44 30 45 .32 .02 .00 .01 .03 .02 .03
Militarists 38 37 38 .38 .39 .39 .05 .07 .07 .05 .08 .05
Racists .81 42 .45 1.00 45 .96 08 .16 .16 .09 .15 .09
Homosexuals .56 .63 .66 .58 .68 .60 A3 .05 .05 13 .05 .12
Class size:t 100 .28 .22 .09 .22 .09 b6 .27 .29 .58 .32 .52

1 Obtained by averaging conditional class probabilities over the sample distribution of the covariates
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TABLE 8.
Estimated probability parameters for the four-class latent class model for survey items on perceived psychological
contract of employment. Here ‘Class size’ refers to probabilities of the latent classes, and the other numbers in
the table are the conditional probabilities (given each latent class) of believing that a particular type of obligation
has been given by the employer or the employee.

Latent class:

“Mutual “Over- “Under- “Mutual
High” obligation”  obligation” Low”
Employer’s obligations:
Secure job .90 .37 .87 21
Advancement .89 .30 .84 A7
Good pay .87 .29 .75 .27
Safe work environment .98 .55 .73 .29
Employee’s obligations:
Loyalty .96 .73 37 .08
Volunteering .96 .83 37 A7
Being on time .98 .96 .38 .18
Good performance 1.00 .97 77 .28
Class size: .b3 .29 .09 .09
TABLE 9.

Estimated coefficients for a linear regression model for perceived job insecurity given latent classes of types of
psychological contract. Here the class of “Mutual High” obligation is the reference category. The p-value in the
last column is for the Wald test (with 3 degrees of freedom) that the coefficients for the other three classes are
all zero.

Coefficient (with s.e.) of latent class
(vs. Mutual High):

Over- Under- Mutual
Estimator  obligation obligation Low p-value!
2-step 0.51 (0.08) -0.11 (0.12) 0.45 (0.11) < .001
1-step 0.55 (0.08) -0.16 (0.12) 0.48 (0.11) < .001

3-step:
Naive  0.39 (0.06) -0.06 (0.09) 0.37  (0.10) < .001
BCH 0.49 (0.08) -0.11 (0.12) 0.43 (0.11) < .001
ML 0.51 (0.08) -0.11 (0.10) 0.43 (0.12) < .001
1 For the Wald test (with df = 3) that all three coefficients are zero.




