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Abstract

This paper proposes a model for estimating the underlying cross-sectional dependence structure of a

large panel of time series. Technical difficulties meant past researchers usually assume the dependence

structure of the data is known before further analysis. We propose to estimate such a structure by

penalizing the elements in the spatial weight matrices, which are essential for specifying dependence

structure in our model, using the adaptive LASSO proposed by Zou [2006]. Technical hurdles are over-

come with a Nagaev-type inequality for dependent data. Non-asymptotic oracle inequalities, together

with the asymptotic sign consistency of the estimators, are presented and proved when the dimension

N of the time series can be larger than the sample size T . A block coordinate descent algorithm is

introduced for numerical computations. A simulation experiment and a real data analysis are carried

out to demonstrate its practical performance.
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1 Introduction

The study of spatial panel data is of increasing importance in econometrics and many other disciplines.

As obtaining large panel of time series data becomes easier, more researchers look into these data as they

provide valuable information on spatial-temporal dependence structure. Various models are proposed to

study the cross-sectional dependence of variables, including fixed or random effects spatial lag (or spatial

autoregressive) and spatial error models (see Elhorst [2003]). Spatial autoregressive models (SAR) can be

seen as another formulation of a spatial error model (see Lesage and Pace [2009] for example).

One important feature of these models is the need for the specification of the spatial weight matrix,

which is the key in quantifying the spatial lag structure in the panel time series data. Method of specification

ranges from using prior expert knowledge (for example see Lesage and Polasek [2008]), to imposing special

structures. For example, the contiguity structure has contagious regions having corresponding elements in

the weight matrix set to one and zero otherwise (see Lesage and Pace [2009] for more details). The more

general “distance metric” has elements corresponding to further away regions smaller than those that are

closer together. Exact “distance” specification, however, is not universal. Bavaud [1998] suggested various

specifications, including a distance decay model, and their implications and interpretations with theoretical

supports. Anselin [2002] has also addressed the issue of weight matrix specification and interpretation.

In this paper, we study a more general form of spatial autoregressive model as detailed in section

2. In the terminology of Anselin [2002], we include both global and local spillover effects, through the

terms W∗
1yt and W∗

2Xtβ
∗ respectively in model (2.1). Few researchers attempted to estimate the weight

matrices, including a well known paper by Pinkse et al. [2002]. They estimate a nonparametric smooth

function ĝ(·) assuming normality of data, and the (i, j)-th element of the weight matrix W∗
1 is estimated

as ĝ(dij), where dij is a distance measure specified by the user. In our paper, we focus on estimating the

spatial weight matrices themselves, which are assumed to be sparse: having a lot of zero entries. There is

no need to specify a distance measure for our method as long as the true weight matrices are sparse. We

provided non-asymptotic bounds on various estimated quantities on a set with probability approaching 1

asymptotically (see Lemma 2 for example). We demonstrate that sparsity is a common endeavor with a

structural equation model in Example 1 in section 3.1.

The aims in estimating the weight matrices are twofold. First, it is not always clear what exactly the

spatial dependence structure is for the panel data. Even with expert knowledge of what the spatial matrices

should look like, estimating them from data may reveal dependence structures that our assumptions can

miss out. Presenting the estimated weight matrix as a network connecting the components of the panel

time series provide a visual tool for deeper understanding of cross-sectional dependence structure. Second,

as presented previously, there are no universal rules in specifying a spatial weight matrix. We quote a part

of the criticism summarized in Arbia and Fingleton [2008], “... arbitrary nature of weight matrix... are

not the results obtained conditional on somewhat arbitrary decisions taken about its structure?” Although

debate is still on about the sensitivity of results towards the specification of spatial weight matrices, this

paper provides partly a solution to the criticism and potential sensitivity towards “arbitrary” specification

of these matrices if they themselves can be estimated from the data as well. In fact in Lemma 2, we have

specified how the error upper bound for the estimation of β∗ in model (2.1) is related to the error of the

estimated/assumed weight matrices. This result sheds some lights on the potential seriousness of wrongly

specifying the weight matrices.
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The rest of the paper is organized as follows. In section 2, we introduce the spatial autoregressive

model considered, with examples. Section 3 presents the model in a compact form and introduces the

minimization problems for obtaining the estimators of the sparse weight matrices. These estimators are

analyzed in section 4 using a relatively new concept of time dependence in time series data, with non-

asymptotic oracle inequalities and rates of convergence spelt out, as well as asymptotic sign consistency

presented. Section 5 discusses the computational issue of our estimators, and presented a block coordinate

descent algorithm as a solution. Section 6 presents our extensive simulation results and real data analysis.

The paper concludes with section 7, outlining our main contributions and some future research directions.

Finally all technical proofs of the theorems in section 4 are presented in section 8.

2 The Model

The spatial autoregressive model we consider is

yt = W∗
1yt +W∗

2Xtβ
∗ + ǫt, t = 1, . . . , T, (2.1)

where yt is an N × 1 vector of dependent time series variables, W∗
j for j = 1, 2 are the N × N weight

matrices to be estimated, Xt is an N ×K matrix of centered exogenous variables at time t, β∗ (with the

first element fixed at 1 for identifiability) is a vector of K regression parameters for the exogenous variables,

and finally {ǫt} is an innovation process with mean 0 and variance Σǫ, and is independent of {Xt}. Both

{Xt} and {ǫt} are assumed second order stationary. The matrix Σǫ is assumed to have uniformly bounded

entries as N, T → ∞. Detailed assumptions A1- A8 can be found in section 4.

The weight matrix W∗
1 has 0 on the main diagonal, and we assume that there exists a constant η < 1

such that
∥∥W∗

1

∥∥
∞ < η < 1, i.e. max1≤i≤N

∑N
j=1 |w∗

1,ij | < η < 1 uniformly as N, T → ∞, where w∗
1,ij is

the (i, j)-th element of W∗
1. This regularity condition ensures yt has a reduced form

yt = Π∗
1W

∗
2Xtβ

∗ +Π∗
1ǫt, Π∗

1 = (IN −W∗
1)

−1, (2.2)

with innovations in Π∗
1ǫt having finite variances, where IN is the identity matrix of size N . See also

Corrado and Fingleton [2011] or Kapoor et al. [2007] for a similar row sum regularity condition for the

weight matrices in a slightly different spatial model specification. Hence each component ytj is a weighted

linear combination of the other components in yt. If w∗
1,ij 6= 0, it means that yti depends on ytj explicitly.

An analysis of the links among financial markets is given in section 6 to illustrate the use of such a model.

The weight matrix W∗
2 has 1 on the main diagonal, with the same row sum condition as W∗

1 excluding

the diagonal entries. Hence while each component ytj has the same regression coefficients β∗ for their

respective exogenous variables xT

t,j (the j-th row of Xt), model (2.1) gives flexibility through W∗
2 by

allowing each ytj to depend on a linear combination of exogenous variables for other components as well.

This is also related to the local spatial spillover effects. For more details please refer to Anselin [2002]. See

section 3.1 for an illustrative example with covariates.

Remark 1. The spatial error model with spatial autoregressive-moving average (ARMA) error can
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be defined by (see also Yao and Brockwell [2006])

{
yt = Xtβ + ut,

ut = ρWut + (IN + λW′)vt,
implying yt = ρWyt +Xtβ − ρWXtβ + ǫt,

where ǫt = (IN + λW′)vt. Model (2.1) entails this spatial ARMA error model, by setting β∗ = β,

W∗
1 = ρW, W∗

2 = IN − ρW, and Σǫ = (IN +λW′)var(vt)(IN +λ(W′)T). From assumption A4 in section

4.1, as long as the spatial autocovariance between xt,jk and xt,j′k for j 6= j′ decays fast enough as |j−j′| gets

larger, the correlation matrix for ǫt can have a general structure, including that of a spatial moving-average

structure as above.

3 Sparse Estimation of the Weight Matrices

The weight matrices W∗
1 and W∗

2 are assumed to be sparse. We give an example with covariates to

illustrate that sparseness of weight matrices is a common endeavor.

3.1 Example 1

Irwin and Geoghegan [2001] considered an example of modeling jointly the population and property tax

rate in different counties, assuming that households migration pattern is determined by local tax rate.

They gave an example of a very much simplified structural equation model for jointly modeling the two:

POPit = w1TAXit + β1EMPit + β2PUBSit + ǫ1it,

TAXit = w2POPit + γ1PUBSit + γ2INCit + ǫ2it,

where POP = total population, TAX = property tax rate, EMP = employment level, PUBS = mea-

sure of the quantity and quality of public services, and INC = per capita income of households. The

index i represents measurements at county i, while the index t represents period t. If we write yt =

(POP1t, . . . ,POPNt,TAX1t, . . . ,TAXNt)
T where N=number of counties, the model can be written as

yt = W∗
1yt +W∗

2Xtβ
∗ + ǫt, where

Xt =




EMP1t PUBS1t INC1t 0 0 0
...

...
...

...
...

...

EMPNt PUBSNt INCNt 0 0 0

0 0 0 EMP1t PUBS1t INC1t

...
...

...
...

...
...

0 0 0 EMP1t PUBSNt INCNt




, β∗ =




β1

β2

0

0

γ1

γ2




,

W∗
1 =

(
0 w1IN

w2IN 0

)
, W∗

2 = I2N , ǫt = (ǫ11t, . . . , ǫ1Nt, ǫ21t, . . . , ǫ2Nt)
T.

Thus both the weight matrices W∗
1 and W∗

2 are very sparse in this model. Rather than fixing the weight

matrices, our sparse estimation of the weight matrices gives flexibility on the network structure between

the TAX and POP variables.
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For a low dimensional model like this example, a reduced form model can be calculated like that in

(2.2) and we can consistently estimate the parameters from the reduced form model. We can then try to

recover the parameters w1, w2, β1, β2, γ1 and γ2 from the reduced form model parameters. This is also done

in Irwin and Geoghegan [2001] for this particular example. However, for higher dimensional model where

the weight matrices are our target, the problem can become intractable, and we in general need the decay

assumption A2 in section 4.1 for asymptotic sign consistency for all the estimated entries in the weight

matrix. See example 2 in section 4.2 as well.

Penalization has become a well-known tool for estimating a sparse vector/matrix over the past two

decades. In this paper, we employ the adaptive LASSO developed in Zou [2006] for penalizing the elements

in the matrices W1 and W2, resulting in the minimization problem (with
∥∥ ·
∥∥ being the usual L2-norm)

min
W1,W2,β

T∑

t=1

∥∥yt −W1yt −W2Xtβ
∥∥2 + γT

∑

i,j

(v1,ij |w1,ij |+ v2,ij |w2,ij |),

subj. to
∑

j 6=i

|w1,ij |,
∑

j 6=i

|w2,ij | < 1,

where γT is a tuning parameter with rate given in Theorem 2 in section 4.3, and vr,ij = 1/|w̃r,ij|k for

r = 1, 2 and some integer k ≥ 1, with w̃r,ij being the solutions of the above minimization problem with

all vr,ij set to 1. The w̃r,ij ’s thus represent the LASSO solutions (see e.g. Zhao and Yu [2006]) with

constraints. The vr,ij becomes the weight of penalization. The larger the magnitude of w̃r,ij , the smaller

vr,ij becomes, and vice versa. This is a sensible weighting scheme since a larger w̃r,ij means w∗
r,ij is less

likely to be zero, and hence should be penalized less to reduce estimation bias, and vice versa.

The above penalization problem is cumbersome to write and makes presentation and proofs of theorems

difficult. Hence we rewrite model (2.1) as a more familiar regression type model:

y = Zξ∗1 +Xβ∗ξ∗2 + ǫ

= Mβ∗ξ∗ + ǫ,
(3.1)

where y = vec{(y1, . . . ,yT )
T}, Z = IN ⊗ (y1, . . . ,yT )

T, Xβ∗ = IN ⊗ {(IT ⊗ β∗T)(X1, . . . ,XT )
T}, ξ∗j =

vec(W∗T

j ) for j = 1, 2, and ǫ = vec{(ǫ1, . . . , ǫT )T}. Here ⊗ represents the Kronecker product, and the

vec operator stacks the columns of a matrix into a single vector, starting from the first column. Defining

Mβ∗ = (Z,Xβ∗) as the “design matrix” and ξ∗ = (ξ∗T
1 , ξ∗T

2 )T as the true “regression parameter”, model

(3.1) looks like a typical linear model, except that the design matrix Mβ∗ is dependent on y as well.

With model (3.1), we can find the LASSO solutions by solving

(ξ̃, β̃) = argmin
ξ,β

1

2T

∥∥y −Mβξ
∥∥2 + γT

∥∥ξ
∥∥
1
,

subj. to
∑

j 6=i

|w1,ij |,
∑

j 6=i

|w2,ij | < 1,
(3.2)

where
∥∥ ·
∥∥
1

represents the L1-norm, and the definitions of Mβ and ξ are parallel to those in model (3.1).
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The adaptive LASSO solutions are then

(ξ̂, β̂) = argmin
ξ,β

1

2T

∥∥y −Mβξ
∥∥2 + γTv

T|ξ|,

subj. to
∑

j 6=i

|w1,ij |,
∑

j 6=i

|w2,ij | < 1,
(3.3)

where |ξ| = (|ξ1|, . . . , |ξ2N2 |)T and v = (|ξ̃1|−k, . . . , |ξ̃2N2 |−k)T. A general block coordinate descent algo-

rithm is introduced in section 5 to carry out the minimization.

4 Properties of LASSO and adaptive LASSO Estimators

An ideal estimator for a weight matrix is one that recovers the correct locations of zeros and non-zeros in a

sparse matrix, along with their correct magnitudes. Corollary 4 and Theorem 5 tell us that under certain

conditions such estimators for W∗
1 and W∗

2 are possible with high probability (as stated in Theorem 1),

with explicit rates of convergence given.

In this paper we assume that the processes for the covariates {xt} = {vec(Xt)} and for the noise {ǫt}
are defined by

xt = f(Ft), ǫt = g(Gt), (4.1)

where f(Ft) = (f1(Ft), . . . , fNK(Ft))
T and g(Gt) = (g1(Gt), . . . , gN (Gt))

T are both vectors of measurable

functions defined on the real line. The shift processes Ft = (. . . , ex,t−1, ex,t) and Gt = (. . . , eǫ,t−1, eǫ,t)

are defined by independent and identically distributed (i.i.d.) processes {ex,t} and {eǫ,t}, and they are

independent of each other. Hence {xt} and {ǫt} are assumed independent. The representation (4.1) is

used in Wu [2011] and provides a very general framework for stationary ergodic processes. See Wu [2011]

for some examples as well.

For measuring dependence, instead of using traditional measures, like mixing conditions for time series,

we use the functional dependence measure introduced in Wu [2005]. This measure lays the framework for

applying a Nagaev-type inequality for obtaining the results of our theorems to be presented later. For the

time series {xt} and {ǫt} in (4.1), define for a > 0,

θxt,a,j =
∥∥xtj − x′

tj

∥∥
a
= (E|xtj − x′

tj |a)1/a,
θǫt,a,ℓ =

∥∥ǫtℓ − ǫ′tℓ
∥∥
a
= (E|ǫtℓ − ǫ′tℓ|a)1/a,

(4.2)

where j = 1, . . . , NK, ℓ = 1, . . . , N , and x′
tj = fj(F ′

t), F ′
t = (. . . , ex,−1, e

′
x,0, ex,1, . . . , ex,t), with e′x,0

independent of all other ex,j’s. Hence x′
tj is a coupled version of xtj with ex,0 replaced by an i.i.d. copy

e′x,0. Finally, we have similar definitions for ǫ′tℓ. Such a definition of “physical” or functional dependence

of time series on past “inputs” is used in various papers, for example in Shao [2010] and Zhou [2010].

There are no direct relationships between the usual mixing conditions and this “physical” functional

dependence measure. But this measure is easier to handle mathematically and leads to simpler and stronger

proofs in our paper, through the Nagaev-type inequality in Lemma 1. Moreover, many well-known processes

are not strong mixing, yet can be handled by using the dependence measure (4.2), like the Bernoulli shift

process in Andrews [1984].
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4.1 Main assumptions and notations

With these definitions in place, we state the main assumptions in the paper. Note that
∥∥A
∥∥
∞ =

maxi
∑

j≥1 |Aij | for a matrix A.

A1. The entries in the weight matrices W∗
1 and W∗

2 are constants as N, T → ∞, on top of the row sum

conditions introduced after model (2.1) in section 2.

A2. There exists a constant σ2
0 such that var(ǫtj) = σ2

ǫ,j ≤ δTσ
2
0 for all j = 1, . . . , N , with δT → 0 as

T → ∞.

A3. Both {Xt} and {ǫt} are mean 0 second-order stationary, and ǫt is independent of Xs for each s ≤ t.

A4. Let Xt,k be the k-th column of Xt, k = 1, . . . ,K. Define ζt = ǫt/δ
1/2
T . Write Xt,k = Σ

1/2
xk X∗

t,k and

ζt = Σ
1/2
ζ ζ∗

t , where Σxk and Σζ are covariance matrices for Xt,k and ζt respectively. We assume the

elements in Σxk,Σζ are all less than σ2
max < ∞ uniformly as N, T → ∞.

Also, either
∥∥Σ1/2

xk

∥∥
∞ ≤ Sx < ∞ uniformly as N, T → ∞, with {X∗

t,jk}1≤j≤N being a martingale

difference with respect to the filtration generated by (X∗
t,1k, . . . , X

∗
t,jk); or,

∥∥Σ1/2
ζ

∥∥
∞ ≤ Sζ < ∞

uniformly as N, T → ∞, with {ζ∗t,j}1≤j≤N being a martingale difference with respect to the filtration

generated by (ζ∗t,1, . . . , ζ
∗
t,j).

A5. The tail condition P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied for Xt,jk, X

∗
t,jk, ζt,j and ζ∗t,j by the same

positive constants D1, D2 and q.

A6. Define Θx
m,a =

∑∞
t=m max1≤j≤NK θxt,a,j and Θζ

m,a =
∑∞

t=m max1≤j≤N θζt,a,j, where θζt,a,j = θǫt,a,j/δ
1/2
T .

Then we assume Θx
m,2w,Θ

ζ
m,2w ≤ Cm−α for some w > 2, with α > 0 and C > 0 being constants that

can depend on w. These dependence measure assumptions also hold for ζ∗
t and X∗

t,k for each k ≤ K

in assumption A4.

A7. Let λmin(M) be the minimum eigenvalue of a square matrix M . Then λmin(E(xtx
T
t )) > u > 0

uniformly for some constant u as N, T → ∞.

Assumption A1 can be relaxed, so that the weights in W∗
i can be decaying at a certain rate, at the

expense of lengthier proofs. Assumption A2 is needed in general. Otherwise, as demonstrated numerically

in section 6, the estimators for the weight matrices will perform badly even if T grows larger and N stays

fixed. See example 2 in section 4.2 as well for a simple illustration, and a remark therein about estimating

the reduced form model (2.2) instead.

Assumption A3 requires only that ǫt to be independent of Xt, allowing the covariates to be poten-

tially the past values of yt. If Xt = (yt−1, . . . ,yt−d, zt) where zt contains exogenous covariates, the

term W∗
2Xtβ

∗ =
∑d

j=1 β
∗
jW

∗
2yt−j + W∗

2ztβ
∗
2 , where β∗ = (β∗

1 , . . . , β
∗
d ,β

∗T
2 )T . Hence there is a vector

autoregressive part with coefficient matrices βjW
∗
2 . The reduced form model for yt is then

yt =

(
IN −Π∗

1

d∑

j=1

β∗
jW

∗
2B

)−1

Π∗
1(W

∗
2ztβ

∗
2 + ǫt), (4.3)
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where Π∗
1 is defined in (2.2), and B is the backward shift operator. For the inverse operator above to be

defined (i.e. the system is stationary), we need

det

(
IN −Π∗

1

d∑

j=1

β∗
jW

∗
2z

j

)
6= 0 for |z| ≤ 1,

which impose constraints on β∗ as well. Allowing past values as covariates extends the applicability of the

model, since example 2 in section 4.2 demonstrates that covariates have to be included for sign consistent

estimation.

The uniform boundedness assumption in A4 for elements of Σxk and Σζ is a direct consequence of the

tail assumption in A5. We assume this for notational convenience only. The other half of assumption A4

says that either the cross-correlations between more “distant” components for the k-th covariate Xt,k are

getting smaller quick enough, or this happens for the components in the noise ǫt. The settings in (4.1)

and (4.2) allows us to assume either {X∗
t,jk}j or {ζ∗t,j}j is a martingale difference, which is weaker than

assuming that as an independent sequence.

Assumption A5 is a relaxation to normality, allowing sub-gaussian or sub-exponential tails for the

concerned random variables. Together with A6, they allow for an application of the Nagaev-type inequality

in Lemma 1 for our results. There are many examples of time series where A6 is satisfied. See Chen et al.

[2013] for examples in stationary Markov Chains and stationary linear processes. Hence in particular we

are allowing the noise series to have weak serial correlation. Finally, assumption A7 is needed for the

convergence of β̃ or β̂ to β∗. This is a mild condition and is satisfied in particular if all Σxk have their

smallest eigenvalues uniformly bounded away from 0, and the cross covariance between the cov(Xt,k1 ,Xt,k2)

is not too strong for all 1 ≤ k1 6= k2 ≤ K.

4.2 Example 2

We demonstrate that the decay assumption A2 is needed in general for estimating the weight matrices. In

fact this condition is closely related to the conditions of the proximity theorem in Wold [1953] where the

variance of the disturbance are small for negligible bias.

Consider N = 3, and the model yt = Wyt +Xtβ + ǫt, where Xt is a vector of covariates with mean

0, and denote σ2
ǫ,j = var(ǫt,j), σ

2
X,j = var(Xt,j). Suppose we know w13 = w23 = w31 = w32 = 0 and β = 1,

so that essentially the model becomes

(
yt1

yt2

)
=

(
0 w12

w21 0

)(
yt1

yt2

)
+

(
Xt1

Xt2

)
+

(
ǫt1

ǫt2

)
, yt3 = Xt3 + ǫt3.

With w12, w21 < 1, a simple inversion results in

yt1 =
w12(ǫt2 +Xt2) + ǫt1 +Xt1

1− w12w21
, yt2 =

w21(ǫt1 +Xt1) + ǫt2 +Xt2

1− w12w21
.

The least square estimator for w12 is

ŵ12 =
T∑

t=1

yt2(yt1 −Xt1)/
T∑

t=1

y2t2 = w12 +
T∑

t=1

yt2ǫt1/
T∑

t=1

y2t2.
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Assume proper convergence of all relevant quantities, and that cov(Xt1, Xt2) = cov(ǫt1, ǫt2) = 0, the bias

can be calculated to be converging in probability to

ŵ12 − w12
P−→

w21σ
2
ǫ,1

1− w12w21

/w2
21(σ

2
ǫ,1 + σ2

X,1) + σ2
ǫ,2 + σ2

X,2

(1− w12w21)2
=

w21σ
2
ǫ,1(1− w12w21)

w2
21(σ

2
ǫ,1 + σ2

X,1) + σ2
ǫ,2 + σ2

X,2

,

which is not going to 0 unless either w21 or σ2
ǫ,1 goes to 0 as T → ∞, since assumption A7 ensures that

σ2
X,j > u > 0 uniformly.

By symmetry of the formulae for the asymptotic biases of ŵ12 and ŵ21, we can easily see that if σ2
ǫ,1

and σ2
ǫ,2 are not decaying, these biases can have larger magnitudes then the corresponding weight w12 or

w21, so that the corresponding estimator cannot be sign consistent even if w12 or w21 are going to 0 as

T → ∞. This demonstrates the necessity of decaying variances for the noise.

If σ2
X,1 = σ2

X,2 = 0 (assumption A7 fails), and σ2
ǫ,1 = σ2

ǫ,2, we see that the asymptotic bias becomes

independent of σ2
ǫ,j , and ŵ12 and ŵ21 cannot be both sign consistent. Hence it is important that covariates

are included in our model. Luckily, assumption A3 allows for past values of yt to be our covariates Xt.

See (4.3) in section 4.1 for more details.

One final remark is that, for this simple toy example, we may consistently estimate the parameters of

the reduced form model like that in (2.2), and recover w12 and w21 from the estimated reduced form model

without assumption A2. But, as explained in example 1, when N is large and a general weight matrix

is our target, the problem can become intractable and consistent estimation is then not achievable unless

assumption A2 is satisfied. See also section 7 where an instrumental variable approach is mentioned and

is still under research to overcome major technical difficulties when used together with LASSO.

We introduce more notations and definitions before presenting our results. Define

J = {j : ξ∗j 6= 0, and does not correspond to w∗
2,ss, s = 1, . . . , N}. (4.4)

Hence J is the index set for all truly non-zero weights in W∗
1 and W∗

2 excluding the diagonal entries of

W∗
2, which are known to be 1. Define n = |J |, s1 =

∑
j∈J ξ∗1,j , s =

∑
j∈J ξ∗j and s2 = s − s1. Denote vS

a vector v restricted to those components with index j ∈ S. Let λT = cT−1/2 log1/2(T ∨N) where c is a

large enough constant (see Theorem 1 for the exact value of c), and define the sets

A1 =
{

max
1≤j,ℓ≤N

max
1≤k≤K

∣∣∣ 1
T

T∑

t=1

ζt,jXt,ℓk

∣∣∣ < λT

}
,

A2 =
{

max
1≤k≤K

∣∣∣ 1
T

N∑

j=1

T∑

t=1

ζt,jXt,jk

∣∣∣ < λTN
1/2+1/2w

}
,

A3 =
{

max
1≤i,j≤N

∣∣∣ 1
T

T∑

t=1

[ζt,iζt,j − E(ζt,iζt,j)]
∣∣∣ < λT

}
,

A4 =
{

max
1≤i,j≤N

max
1≤ℓ,m≤K

∣∣∣ 1
T

T∑

t=1

Xt,iℓXt,jm − E(Xt,iℓXt,jm)
∣∣∣ < λT

}
,

M =

{
max
1≤t≤T

max
1≤j≤N

max
1≤k≤K

|Xt,jk| <
(
3 log(T ∨N)

D2

)1/q
}
,

(4.5)
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where w is as defined in assumption A6.

4.3 Main results

We first present a Nagaev-type inequality for a general time series {xt} under similar settings in (4.1) and

(4.2), which is a combination of Theorems 2(ii) and 2(iii) of Liu et al. [2013].

Lemma 1. For a zero mean time series process xt = f(Ft) as defined in (4.1) with dependence measure

θxt,a,j as defined in (4.2), assume Θx
m,w ≤ Cm−α for some w > 2 and constants C,α > 0. Then there exists

constants C1, C2 and C3 independent of v, T and the index j such that

P

(∣∣∣∣
1

T

T∑

t=1

xt,j

∣∣∣∣ > v

)
≤ C1T

w( 1
2−α̃)

(Tv)w
+ C2 exp

(
− C3T

β̃v2
)
,

where α̃ = α ∧ (1/2− 1/w), and β̃ = (3 + 2α̃w)/(1 + w).

Furthermore, assume another zero mean time series process {zt} (can be the same process {xt})
with both Θx

m,2w,Θ
z
m,2w ≤ Cm−α, as in assumption A6. Then provided there is a constant µ such that

maxj
∥∥xtj

∥∥
2w

,maxj
∥∥ztj

∥∥
2w

≤ µ < ∞, the above Nagaev-type inequality holds for the product process

{xtjztℓ − E(xtjztℓ)}.

Remark 2. Note if α > 1/2− 1/w, then w(1/2 − α̃) = β̃ = 1, simplifying the form of the inequality.

Hereafter we assume α > 1/2 − 1/w where w is in assumption A6, and is large enough as specified in

Remark 3. We assume this purely for the simplification of all results. For instance, if α < 1/2 − 1/w,

then we can define λT = cT−β̃/2 log1/2(T ∨ N) and (more complicated) rates of convergence in different

theorems can be derived.

Proof of Lemma 1. The first part is a direct consequence of Theorems 2(ii) and 2(iii) of Liu et al.

[2013]. The second part follows from E(xtjztℓ) = E(x′
tjz

′
tℓ), and using the generalized Hölder inequality,

θxzt,w,jℓ =
∥∥xtjztℓ − x′

tjz
′
tℓ

∥∥
w
≤
∥∥xtjztℓ − xtjz

′
tℓ

∥∥
w
+
∥∥xtjz

′
tℓ − x′

tjz
′
tℓ

∥∥
w

≤ max(
∥∥xtj

∥∥
2w

,
∥∥z′tℓ

∥∥
2w

)(θxt,2w,j + θzt,2w,ℓ)

≤ µ(θxt,2w,j + θzt,2w,ℓ),

so that

Θxz
m,w ≤

∞∑

t=m

max
j,ℓ

µ(θxt,2w,j + θzt,2w,ℓ) ≤ µ(Cm−α + Cm−α) = 2µCm−α.

The result follows by applying the first part of Lemma 1. �

With Lemma 1, we can use the union sum inequality to find an explicit probability lower bound for

the event A1 ∩ . . . ∩ A4. The proof of the theorem is relegated to the Appendix.

Theorem 1. Let assumptions A3 - A6 be satisfied. Suppose α > 1/2−1/w, and suppose for the applications

of the Nagaev-type inequality in Lemma 1 for the processes in A1 to A4, the constants C1, C2 and C3 are

10



the same. Then with c ≥
√
3/C3 where c is the constant defined in λT , we have

P (A1 ∩ . . . ∩ A4 ∩M) ≥ 1− 4C1K
2

(
C3

3

)w/2
N2

Tw/2−1 logw/2(T ∨N)
− 4C2K

2N2 +D1NTK

T 3 ∨N3
.

It approaches 1 if we assume further that N = o(Tw/4−1/2 logw/4(T )).

Remark 3. With tail assumptions A5, we can easily show that
∥∥ζtj

∥∥
2w

,
∥∥xtj

∥∥
2w

< ∞ for any w > 0

(see the proof of Theorem 1 in the Appendix), and there are many examples with Θx
m,2w,Θ

ζ
m,2w ≤ Cm−α

where only the constant C is dependent on w (see for example the stationary linear process example 2.2

in Chen et al. [2013]). Therefore we can set w to be large enough so that N = o(Tw/4−1/2 logw/4(T )) from

the beginning, ensuring P (A1 ∩ . . . ∩ A4 ∩M) → 1.

Lemma 2. Let assumptions A1 to A7 be satisfied. Denote W̃1 and W̃2 any estimators for W∗
1 and W∗

2

respectively (not necessarily the LASSO estimators). Define a generic notation A⊗ = IN ⊗A for a matrix

A, and denote yv = (yT
1 , . . . ,y

T

T )
T, X = (XT

1 , . . . ,X
T

T )
T.

Then on A1 ∩ . . . ∩ A4, the least square estimator β̃ = (XTW̃⊗T

2 W̃⊗
2 X)−1XTW̃⊗T

2 (ITN − W̃⊗
1 )y

v is

well-defined, and

∥∥β̃ − β∗∥∥
1
≤ a1(s2 +N

1
2+

1
2w )λT δ

1/2
T

N
+

a2
N

∥∥ξ̃ − ξ∗
∥∥
1
,

where the constants a1 and a2 are defined in Theorem 3.

The proof is relegated to the Appendix. If we treat W̃1 and W̃2 as some assumed weight matrices,

for example distance weight matrices with a particular distance metric, this lemma together with Theorem

1 tells us that with high probability, the error upper bound for estimating β∗ is related to the error for

estimating the weight matrices through
∥∥ξ̃ − ξ∗

∥∥
1
. As long as

∥∥ξ̃ − ξ∗
∥∥
1

is much less than N , estimation

error is related to how sparse the weight matrix W∗
2 (i.e., s2) is. Otherwise, the error can be large. We

provide some simulation results for the estimation of β∗ in section 6.

We now present an oracle inequality for the error bounds of the LASSO and adaptive LASSO estimators

ξ̃ and ξ̂ respectively. The proof is presented in the Appendix.

Theorem 2. Let assumptions A1-A7 be satisfied. Suppose α > 1/2 − 1/w, and suppose λT = o(δ
1/2
T ),

λTN
1/w = O(δ

1/2
T ) and s2 = O(N1/2δ

1/4
T /λ

1/2
T ). Then there is a tuning parameter γT with γT ≍ δT such

that on A1 ∩ . . . ∩A4, the LASSO estimator ξ̃ satisfies

∥∥ξ̃ − ξ∗
∥∥
1
≤ 4
∥∥ξ̃J − ξ∗J

∥∥
1
, so that

∥∥ξ̃Jc − ξ∗Jc

∥∥
1
≤ 3
∥∥ξ̃J − ξ∗J

∥∥
1
.

For ξ̂, denote ξS,min /max = min /maxj∈S ξj and J̃ the LASSO estimator for J in (4.4). Then

∥∥ξ̂ − ξ∗
∥∥
1
≤

4|ξ̃J̃,max|k

|ξ̃J,min|k
∥∥ξ̂J − ξ∗J

∥∥
1
, so that

∥∥ξ̂Jc − ξ∗Jc

∥∥
1
≤
(
4|ξ̃J̃,max|k

|ξ̃J,min|k
− 1

)∥∥ξ̂J − ξ∗J
∥∥
1
.

For the exact value of the constant B where γT = BδT , see the proof of the theorem which is relegated

to the Appendix. The rate λT = o(δ
1/2
T ) implies that the rate of decay for the standard deviation of the

noise is slower than λT .
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The results in Theorem 2 are consistent with the properties of the LASSO estimators under the usual

linear regression settings (see (3.2) of Bickel et al. [2009]). With these oracle inequalities, we need to

introduce a restricted eigenvalue condition which is similar to condition (3.1) of Bickel et al. [2009]. We

however define this condition on a population covariance matrix instead, since our raw design matrix Mβ∗

in (3.1) is always random:

A8. Restricted eigenvalue condition: Let Σ̂∗ = T−1MT

β∗Mβ∗ , and Σ = E(Σ̂∗). Define

κ(r) = min

{∥∥Σ1/2α
∥∥

∥∥αR

∥∥ ,

∥∥Σ1/2α
∥∥

∥∥αRc

∥∥ : |R| ≤ r,α ∈ R
2N2\{0},

∥∥αRc

∥∥
1
≤ c0

∥∥αR

∥∥
1

}
,

where c0 = 8
|ξ∗

J,min|k
− 1. Then we assume κ(n) > 0 uniformly as N, T → ∞.

This condition is automatically satisfied if Σ has the smallest eigenvalue bounded uniformly away from 0.

Similar population restricted eigenvalue condition is also introduced in Zhou et al. [2009] for the analysis

of LASSO and adaptive LASSO estimators when the design matrix is formed by i.i.d. rows which are

multivariate normally distributed.

Theorem 3. Let assumption A8 and the assumptions in Theorem 2 be satisfied. Suppose also λTn, γTn
1/2 =

o(1), (N1/2w + s2N
−1/2)λT γ

−1/2
T log1/q(T ∨N) = o(n1/2), n = o(N log−2/q(T ∨N)), where γT is the same

as in Theorem 2. Then on A1 ∩ . . . ∩ A4 ∩M, for large enough N, T ,

∥∥ξ̃J − ξ∗J
∥∥ ≤ 5γTn

1/2

κ2(n)
,
∥∥ξ̂J − ξ∗J

∥∥ ≤ 5γTn
1/2

κ2(n)|ξ∗J,min|k
.

Furthermore, for N, T large enough and suitable constants a1 and a2, on A1 ∩ . . . ∩ A4 ∩M,

∥∥β̃ − β∗∥∥
1
≤ a1

(
s2
N

+N
1

2w− 1
2

)
λT δ

1/2
T +

20a2γTn

Nκ2(n)
,

∥∥β̂ − β∗∥∥
1
≤ a1

(
s2
N

+N
1

2w− 1
2

)
λT δ

1/2
T +

25a2|ξ∗J,max|kγTn
Nκ2(n)|ξ∗J,min|2k

.

The proof is relegated to the Appendix. Theorems 2 and 3 together implies the following.

Corollary 4. Under the assumptions of Theorems 2 and 3, for large enough N, T ,

∥∥ξ̃ − ξ∗
∥∥
1
≤ 20γTn

κ2(n)
,
∥∥ξ̂ − ξ∗

∥∥
1
≤

25|ξ∗J,max|kγTn
κ2(n)|ξ∗J,min|2k

.

Corollary 4 says that, in addition to the assumptions in Theorem 3, if γTn = o(1) also, then all the

LASSO and adaptive LASSO estimators from (3.2) and (3.3) converge to their respective true quantities

in L1 norm on the set A1 ∩ . . . ∩ A4 ∩M, which has probability approaching 1 with explicit probability

lower bound shown in Theorem 1. The need for large enough N, T are merely for the simplification of the

different error bounds, and can be removed at the expense of more complicated expressions. The proof is

omitted.

We conclude this section with the sign consistency theorem for the weight matrices. In the following

and hereafter we denote MAB a matrix M with rows restricted to the set A and columns to the set B.

The proof of the Theorem can be found in the Appendix.
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Theorem 5. Let the assumptions in Theorem 2 and 3 be satisfied. Assume further that λmin(ΣJJ ) is

uniformly bounded away from 0, and n = o
(
γ
− 2k

k+1

T

)
. Then on A1 ∩ · · · A4 ∩M and for large enough N, T ,

sign(ξ̂) = sign(ξ∗).

This theorem says that with a suitable rate of decay for the noise variances and the true spatial weight

matrices sparse enough, we can correctly estimate the sign (i.e. 0, positive or negative) of every element

in the spatial weight matrices W∗
1 and W∗

2 on A1 ∩ · · · A4 ∩ M. Hence asymptotic sign consistency is

achieved by Theorem 1. This is very important in recovering the correct sparse pattern for understanding

the underlying cross-sectional dependence structure of the panel data.

The rate n = o
(
γ
− 2k

k+1

T

)
suggests that the number of non-zero elements allowed in the weight matrices

W∗
1 and W∗

2 without violating sign consistency depends on the rate of decay for the variance of the

noise. For instance if γT ≍ λT log1/2(T ∨ N) and k = 1, then n = o(T 1/2 log−1(T ∨N)). If k = 2,

n = o(T 2/3 log−4/3(T ∨N)). Theoretically when k is larger, n can grow larger too. However in practice k

cannot be much larger than 1 since all weights ξj ≤ 1, meaning that the weights vj in the adaptive LASSO

problem (3.3) can be too large for the truly non-zero components if k is large, rendering some of them being

penalized wrongly to zero. Also, the error bound for ξ̂ in Corollary 4 gets worse as k increases. Hence we

set k ≤ 3 in the theorem.

5 Practical Implementation

In this section, we provide details of the block coordinate descent (BCD) algorithm for carrying out the

minimizations for (3.2) and (3.3). We need the BCD algorithm since the objective functions in these

problems are not convex in (ξ,β), although given β, they are convex in ξ and vice versa.

The BCD algorithm is closely related to the Iterative Coordinate Descent of Fan and Lv [2011], and

is also discussed in Friedman et al. [2010] and Dicker et al. [2010]. While it is difficult to establish global

convergence of the BCD algorithm without convexity, it is easy to see that for (3.2) and (3.3), each iteration

delivers an improvement of the objective functions since given one parameter, the objective functions are

convex in the other. From our experience, starting from an appropriate initial value, a minimum will be

achieved with good performance in practice. Indeed in the simulation experiments in section 6 (not shown),

it is found that the algorithm is robust to a variety of initial values chosen.

We choose blocks to take advantage of intra-block convexity. The parameter β forms one block, and

for j = 1, . . . , N , ηT
j = (ηT

1j ,η
T
2j) = the j-th row of (W1,W2) form N other blocks. Given the values of β

and η−j = (ηT
1 , . . . ,η

T

j−1,η
T

j+1, . . . ,η
T

N )T, ηj is solved by the Least Angle Regression algorithm (LARS) of

Efron et al. [2004]. Given ξ, β is solved by the ordinary least square (OLS) estimator.

The Block Coordinate Descent Algorithm

0. Start with an initial value ξ = ξ(0). This can be obtained by using β(0) = (XTX)−1XTyv (for

notations see Lemma 2), and solves (3.2) given β(0) using LARS. This gives ξ(0).

1. At step r, set β(r) = (XTW⊗
2 (r − 1)TW⊗

2 (r − 1)X)−1XTW⊗
2 (r − 1)T(ITN −W⊗

1 (r − 1))yv, where

W⊗
j (r) = IN ⊗Wj(r), with W1(r),W2(r) the weight matrices recovered from ξ(r).
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2. Using LARS, solve sequentially for j = 1, . . . , N ,

η
(r)
j = argmin

ηj

∥∥y −Mβ(r)η
∥∥2 + λ

∥∥ηj

∥∥
1
, subj. to

∥∥η1j

∥∥
1
< 1,

∥∥η2j

∥∥
1
< 2,

where η = (η̌T
1 , η̌

T
2 )

T with η̌i = (η
(r−1)T
i1 , . . . ,η

(r−1)T
i,j−1 ,ηT

ij ,η
(r−1)T
i,j+1 , . . . ,η

(r−1)T
iN )T. Then

ξ(r) = (η
(r)T
11 , . . . ,η

(r)T
1N ,η

(r)T
21 , . . . ,η

(r)T
2N )T.

3. Iterate steps 1-2 until
∥∥ξ(r) − ξ(r−1)

∥∥
1

is smaller than some pre-set number. The LASSO solution is

then (β̃, ξ̃) = (β(r), ξ(r)).

4. Take ξ(0) = ξ̃. Repeat steps 1-3 for the adaptive LASSO solutions, where in step 2 the penalty

function is modified to λvT

j |ηj|, with the components in vj having the form 1/|ξ̃j|k.

Cross-validation is performed to select the tuning parameter λ, with prediction error in L2-norm being

the criterion used. In steps, denote Ta a set with consecutive time points. Then the sample with t ∈ Ta

is the test set. We then compute the LASSO solutions (β̃a,λ, ξ̃a,λ) for the sample with t ∈ Ta on a grid of

values of λ. Recovering the weight matrices W1;a,λ and W̃2;a,λ from ξ̃a,λ, we then solves

λCV = argmin
λ

∑

a

∑

t∈T c
a

∥∥yt − (IN − W̃1;a,λ)
−1W̃2;a,λXtβ̃a,λ

∥∥2.

In practice, we usually set Ta to have 3/5 to 4/5 of the total time points, and define T1, . . . , T5 by moving

the test data window forward.

6 Numerical Examples

We give detailed simulation results in section 6.1 for our LASSO and adaptive LASSO estimators. A set

of stock markets data is analyzed in section 6.2 to visualize the connection among international financial

markets.

6.1 Simulation Results

We generate data from model (2.1) and investigate the practical performance of the LASSO and adaptive

LASSO estimators.

First, we generate independent Gaussian data from the model as a baseline for studying the performance

of the estimators. To this end, we generate the spatial weight matrices W∗
1 and W∗

2 by randomly setting

elements in a row of the matrices (except diagonal elements) to be either 0.3 or 0, with an overall sparsity

level (i.e. n, the number of non-zero elements) set at a pre-specified level. If the sum of a row excluding

any diagonal elements is larger than 1, then we normalize it by 1.1 times the L1 norm of the row. We set

β∗ = (1, 0.5)T. The covariate matrix Xt has independent rows xT

t,j generated by xt,j ∼ N(0, (σx,ij)) where

σx,11 = σx,22 = 2 and σx,12 = 0.5 for each time t. Finally the noise ǫt is a spatially uncorrelated Gaussian

white noise with mean 0 and variance σ2
ǫ = log(T∨N)√

T

/
log(50)√

50
, so that σ2

ǫ = 1 for the case N = 25, T = 50.
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We simulate 2 different pairs of W∗
1 and W∗

2, and generate data 100 times according to the scheme

above for each pair. Hence in total 200 set of data is generated and analyzed for each particular (N, T )

combination. We used N = 25, 50, 75 and T = 50, 100, 200 to explore the effects of dimension on the

performance of our estimators when it can be larger than the sample size T .

Table 1 shows the results of this baseline simulation. From T = 50 to 100 the sensitivity (see the table

for definition) improved hugely, while specificity remains at a similar level. It is intuitive since the non-zero

elements are relatively small, and hence when T is too small they cannot be picked up easily. Bias are

mostly negative, meaning that we usually underestimate the non-zero values of the weight matrices. Also

it is clear that the performance of the adaptive LASSO is much better than LASSO in general. It is of

interest to note that while the L1 error norm can be large, the L2 error norm is usually much smaller. These

are consistent with the results in Theorem 3, where the L2 error norm goes to 0 as long as γTn
1/2 = o(1),

but for the L1 error norm to go to 0 we need γTn = o(1) in general.

Table 2 shows the average value of the tuning parameter λ using 5 fold cross-validation. Clearly the

true sparsity level is approximately retained at all combinations of N and T .

Table 3 consider two more cases. One is when the covariates include a lagged variable yt−1 on top of

Xt. We set β∗ = (1, 0.5, 0.15)T which ensures the model for yt is stationary. While when N = 25 results

are similar to the baseline simulations, for N = 50 and 75 the performance is getting worse in general. This

indicates that while in theory it is fine to include lagged variables, we may need a larger T or a limited N

for good performance in practice.

Another case is when the noise exhibits spatial correlations. To this end, we randomly pick the

off-diagonal elements in the noise covariance matrix to be 0.3, while keeping it sparse with around 95%

elements still 0. The performance is similar to the baseline simulations in general. This is consistent with

our theories. In particular this scenario fits assumption A4 (see section 4.1): when there are weak or no

spatial correlations in the covariates, then the spatial correlation structure in the noise can be general.

Finally, Table 4 shows some results when some assumptions are violated. The first case is setting the

variance of the noise equal to σ2
ǫ = 1, instead of letting it decay as in the baseline simulations. Clearly the

performance is worse in general even when T = 200. The results are consistent with Example 2 in section

4.2. The performance when there are no covariates is also shown in the table. The poor performance

all round under the absence of covariates is again consistent with Example 2 in section 4.2. Lastly, we

simulate the noise using the t3 distribution rather than normal distribution, violating the tail assumption

A5 in section 4.1. While the performance is worse in general, it is still better than when there are no

covariates or no variance decay. Hence the method is more robust to fat tails.

6.2 Analysis of stock markets data

Performance of stock markets around the world are well-known to be under mutual influence of each

other. More diverse geographic production and globalization deepen this fact. Financial linkages are also

well-documented.

To study the dependence structure of worldwide stock markets in more detail, we use model (2.1) to

analyze the data. We estimate the spatial weight matrix W∗
1 using the adaptive LASSO estimator. The

response variable yt is taken as the panel of stock market returns for the 26 biggest world markets. We

15



κ = 0.95 κ = 0.99

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

W∗
1

W∗
2

W∗
1

W∗
2

W∗
1

W∗
2

W∗
1

W∗
2

W∗
1

W∗
2

W∗
1

W∗
2

Specificity 92.59% 98.86% 96.11% 98.55% 96.29% 98.72% 96.66% 98.79% 97.81% 98.37% 98.45% 98.89%

Sensitivity 78.76% 30.59% 96.54% 79.49% 99.54% 95.45% 68.05% 47.51% 95.04% 88.67% 99.02% 97.05%

N = 25 Bias -.0335 -.1368 -.0048 -.0338 -.0075 -.0235 -.0622 -.1086 -.0194 -.0262 -.0101 -.0136

LASSO L1 7.8323 7.6321 10.7733 10.0291 11.5132 11.7350 2.6372 1.8735 9.3369 8.6764 7.1839 7.0933

LASSO L2 0.9919 1.8643 0.8634 1.0301 0.8831 0.9978 0.2447 0.3078 0.6217 0.6680 0.3749 0.4043

AdaLASSO L1 7.2676 8.0508 3.4799 3.9148 2.1098 2.0332 1.8196 1.6875 0.9946 1.0002 0.5095 0.5035

AdaLASSO L2 1.3345 2.1873 0.4630 0.7927 0.1883 0.2669 0.2834 0.3868 0.1088 0.1398 0.0398 0.0487∥∥β̂ − β∗
∥∥
1

.0631 .0362 .0336 .0197 .0169 .0113

Specificity 95.22% 98.92% 92.70% 98.81% 97.04% 98.72% 98.48% 99.99% 96.78% 98.89% 97.77% 98.37%

Sensitivity 76.82% 40.86% 84.82% 35.94% 98.77% 92.24% 83.09% 57.48% 90.80% 74.92% 99.27% 97.40%

N = 50 Bias -.0179 -.0676 -.0557 -.1928 -.0068 -.0429 -.0307 -.0381 -.0624 -.1204 -.0091 -.0142

LASSO L1 63.5781 29.9079 24.4255 32.5351 8.0875 9.9059 42.2633 31.3463 32.1011 27.0674 26.1828 25.1055

LASSO L2 7.2787 9.2961 2.9375 7.9924 1.6371 1.9855 3.8004 3.5031 0.5061 0.7882 1.2952 1.3716

AdaLASSO L1 27.0909 7.8570 3.7208 8.8239 0.7099 1.4649 6.2692 6.2161 5.0422 5.0152 2.5933 2.4494

AdaLASSO L2 4.8459 7.8570 3.7208 8.8239 0.7099 1.4649 1.0332 1.4425 0.5519 0.9805 0.1705 0.2057∥∥β̂ − β∗
∥∥
1

.0609 .0582 .0511 .0520 .0392 .0180

Specificity 95.24% 98.92% 97.03% 99.48% 96.60% 98.33% 98.25% 99.95% 98.84% 99.57% 97.53% 98.35%

Sensitivity 76.03% 41.21% 85.81% 73.51% 95.59% 90.38% 80.96% 46.06% 95.69% 84.43% 99.51% 96.42%

N = 75 Bias -.0178 -.0673 -.0199 -.0901 -.0088 -.0651 -.0284 -.0400 -.0173 -.0342 -.0042 -.0145

LASSO L1 63.6976 56.7362 53.1475 51.5816 49.5190 46.2353 82.5607 53.8498 80.7792 69.5684 31.1932 24.9452

LASSO L2 7.3024 9.1839 8.2361 11.4955 2.6296 3.7519 7.6407 6.7404 5.3195 5.4675 1.2661 1.2283

AdaLASSO L1 27.4082 29.4429 33.6911 44.6034 19.6262 28.4384 15.9184 15.2392 7.2987 7.4012 5.5895 5.1590

AdaLASSO L2 4.9189 7.7206 4.3452 9.8865 1.7318 4.5238 2.6822 3.7875 0.8878 1.3655 0.3218 0.4329
∥∥β̂ − β∗

∥∥
1

.0591 .0547 .0396 .0718 .0440 .0238

Table 1: Baseline Simulations. All values are averages over 200 simulations. The parameter κ represents the true sparsity level of the both W∗
1 and W∗

2.
Specificity is the percentage of zeros estimated as zeros. Sensitivity is the percentage of non-zeros estimated as non-zeros. LASSO L1 is the L1 error norm∥∥ξ̃ − ξ∗

∥∥
1

for the LASSO estimator, and AdaLASSO represents the adaptive LASSO. Bias is the sum of error for the estimated non-zero values without
taking absolute values.
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κ = 0.95 κ = 0.99

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

N = 25 λ 26.56 31.37 32.31 31.25 22.69 52.31
Sparsity 96.58% 94.25% 94.20% 99.41% 98.01% 98.76%

N = 50 λ 8.21 31.25 31.54 13.13 31.28 43.71
Sparsity 94.27% 96.36% 95.65% 98.50% 99.04% 98.78%

N = 75 λ 8.30 12.54 34.31 10.85 13.61 31.08
Sparsity 94.28% 94.52% 94.72% 98.13% 98.40% 99.06%

Table 2: Average value of the tuning parameter λ over 200 simulations using five fold cross-validation. The
parameter κ represents the true sparsity level of the weight matrix W∗

1 in the simulation.

use daily data available for the whole of 2012 (T = 252). See Table 5 for details of the markets and their

respective indices.

For the covariates we use the S&P Global 1200 Index and the Dow Jones World Stock Index. By

definition, firms that belong to the world index are constituents of the indices of some markets. Hence the

exogeneity of the covariates cannot be sustained. Nevertheless, the global variables are included with the

purpose of eliminating a global-wide variance that could prevent the identification of W∗
1. Due to the lack

of variance in the cross-sectional dimension, W∗
2 is unidentified and hence it is simply set as the identity

matrix.

The model is estimated by the adaptive LASSO, with the tuning parameter λ chosen by cross-validation

described in section 5. Figure 1 shows the graph of Ŵ1, where a non-zero Ŵ1,ij is represented by an edge

directed from market i to j. With only 38 directed edges out of 262−26 = 650 possible, this is a very sparse

graph. It is clear that there is a subgraph dominated by eastern countries, another by western countries,

and a third for the United States and Switzerland.

We carry out further study by seeking a connection between the estimated spatial weight matrix Ŵ1

and the number of common opening hours among different markets. Define

Common Opening Hoursi,j = max

{
Close Timei −max

{
Open Timei,Open Timej

}

Close Timei − Open Timei
, 0

}

as the time of market i exposed within a day to market j. The numerator is simply the number of hours

of market i subject to the influence from the j-th one, even if the latter has already closed before market

i opens. The fraction is therefore the ratio of hours of market i subject to the influence of market j. It is

naturally bounded below by zero.

In Figure 2, the elements of Ŵ1 are plotted against the common opening hours. From this figure, it

is clear that for markets with less overlapping of opening hours, the estimated elements are zero in Ŵ1.

In fact, markets are only affecting each other if they are commonly open for at least half of their opening

times.

7 Conclusion

In this paper, we developed an adaptive LASSO regularization for the spatial weight matrices in a spatial

lag model when the dimension of the panel can be larger than the sample size. An important feature for
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Original Simulations Time Dependence Spatial Dependence
T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

W
∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2

Specificity 96.11% 98.55% 96.29% 98.72% 94.91% 98.36% 96.09% 99.65% 97.03% 98.51% 96.82% 98.04%

Sensitivity 96.54% 79.49% 99.54% 95.45% 93.75% 84.31% 99.99% 93.10% 97.06% 89.73% 98.34% 91.98%

Bias -.0048 -.0338 -.0075 -.0235 -.0213 -.0162 -.0273 -.0456 -.0075 -.0222 -.0045 -.0124

N = 25 Lasso L1 10.7733 10.0291 11.5132 11.7350 14.0459 11.5385 11.4053 12.1764 2.8841 2.8482 5.2222 5.2578

Lasso L2 0.8634 1.0301 0.8831 0.9978 1.2523 1.2454 1.0141 1.1657 0.3635 0.4177 1.2039 1.2388

AdaLasso L1 3.4799 3.9148 2.1098 2.0332 4.4262 3.2545 2.8581 2.6339 1.8718 2.0391 2.1397 2.2883

AdaLasso L2 0.4630 0.7927 0.1883 0.2669 .5997 .6189 .3954 .4560 0.3339 2.0391 2.1397 2.2883
∥∥β̂ − β∗

∥∥
1

.0362 .0336 .0512 .0394 .0044 .0068

Specificity 92.70% 98.81% 97.04% 98.72% 93.65% 86.70% 95.78% 98.89% 94.22% 99.48% 97.04% 98.48%

Sensitivity 84.82% 35.94% 98.77% 92.24% 57.36% 9.26% 95.31% 78.57% 97.39% 80.25% 98.68% 97.21%

Bias -.0557 -.1928 -.0068 -.0429 -.0937 -.0937 .0022 -.0865 -.0357 -.1175 -.0077 -.0243

N = 50 Lasso L1 24.4255 32.5351 8.0875 9.9059 38.4113 60.9752 40.2475 37.8140 13.8891 17.8884 8.2285 8.5885

Lasso L2 2.9375 7.9924 1.6371 1.9855 6.5169 13.1556 2.7584 3.5580 1.2833 3.2541 0.4916 0.6557

AdaLasso L1 3.7208 8.8239 0.7099 1.4649 35.4057 56.1173 14.3274 16.5937 13.8437 19.4374 4.5166 5.2155

AdaLasso L2 3.7208 8.8239 0.7099 1.4649 6.4232 12.5275 1.4847 3.4627 1.5294 4.0252 0.4110 0.5682∥∥β̂ − β∗
∥∥
1

.0582 .0511 .8182 .1312 .0173 .0153

Specificity 97.03% 99.48% 96.60% 98.33% 78.07% 99.99% 78.07% 99.98% 99.23% 99.99% 96.25% 98.72%

Sensitivity 85.81% 73.51% 95.59% 90.38% 24.37% 3.18% 24.37% 0.00% 85.50% 64.82% 99.25% 98.14%

Bias -.0199 -.0901 -.0088 -.0651 -.2519 -.2208 -.2318 -0.2791 .0056 -.0731 -.0113 -.0314

N = 75 Lasso L1 53.1475 51.5816 49.5190 46.2353 74.5943 79.5124 61.7143 79.8384 28.9961 27.5597 24.5726 26.4133

Lasso L2 8.2361 11.4955 2.6296 3.7519 15.0406 23.8510 14.7065 23.8531 2.1741 5.6786 1.2291 1.6740

AdaLasso L1 33.6911 44.6034 19.6262 28.4384 74.5943 79.5124 61.7143 79.8384 13.1129 21.9017 11.1335 13.3919

AdaLasso L2 4.3452 9.8865 1.7318 4.5328 15.0406 23.8510 14.7065 23.8531 4.2185 8.2501 0.6687 1.0429∥∥β̂ − β∗
∥∥
1

.0547 .0396 1.3902 1.4853 .0728 .0661

Table 3: Comparisons to the baseline simulations when the covariates include yt−1 (under the columns “Time Dependence”) and when the noise exhibits
spatial correlations (under the columns “Spatial Dependence”). Refer to Table 1 for the explanations of different items.
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Original Simulations. No Variance Decay No Covariates Fat Tails
T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

W
∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
2 W

∗
1 W

∗
1 W

∗
1 W

∗
2 W

∗
1 W

∗
2

Specificity 96.11% 98.55% 96.29% 98.72% 94.88% 98.62% 95.04% 98.33% 58.00% 61.92% 94.61% 98.36% 94.38% 98.01%

Sensitivity 96.54% 79.49% 99.54% 95.45% 95.04% 54.07% 98.52% 80.59% 42.00% 41.55% 85.99% 46.35% 96.89% 76.98%

Bias -.0048 -.0338 -.0075 -.0235 -.0056 -.0392 -.0163 -.0638 -.2456 -.2592 -.0098 -.0284 -.0203 -.0591

N = 25 Lasso L1 10.7733 10.0291 11.5132 11.7350 14.7335 13.1964 16.9506 17.3715 17.4593 18.7124 17.4760 15.1448 17.6558 17.7609

Lasso L2 0.8634 1.0301 0.8831 0.9978 1.4060 1.8144 1.5490 1.9357 3.7079 3.2821 2.2824 2.8294 2.1185 2.5928

AdaLasso L1 3.4799 3.9148 2.1098 2.0332 5.0450 6.3607 4.4057 3.9808 17.4593 18.7124 7.0409 6.9634 5.4979 5.1720

AdaLasso L2 0.4630 0.7927 0.1883 0.2669 0.7370 1.5669 0.5351 -0.7717 3.7079 3.2821 1.4905 2.2062 0.9899 1.3242∥∥β̂ − β∗
∥∥
1

.0362 .0336 .0558 .0468 — — .0521 .0479

Specificity 92.70% 98.81% 97.04% 98.72% 89.45% 99.30% 95.16% 98.66% 54.60% 60.19% 89.97% 99.95% 94.83% 98.45%

Sensitivity 84.82% 35.94% 98.77% 92.24% 84.95% 29.06% 96.23% 71.64% 45.40% 47.32% 81.05% 17.31% 93.32% 57.62%

Bias -.0557 -.1928 -.0068 -.0429 -.0691 -.1999 -.0229 -.0897 -.1809 -.2071 -.0611 -.2055 -.0206 -.0881

N = 50 Lasso L1 24.4255 32.5351 8.0875 9.9059 28.7581 30.9560 53.9934 50.8391 55.5067 53.9241 29.2132 35.6802 57.3559 54.7110

Lasso L2 2.9375 7.9924 1.6371 1.9855 3.3456 8.3228 4.3632 5.5186 8.9744 9.7472 3.8837 10.1041 5.9993 7.9254

AdaLasso L1 3.7208 8.8239 0.7099 1.4649 28.3113 31.7817 15.5946 20.3610 55.5067 53.9241 28.5963 36.0980 19.6727 27.3955

AdaLasso L2 3.7208 8.8239 0.7099 1.4649 4.1735 8.8233 1.7174 4.4298 8.9744 9.7472 4.8213 10.4364 3.2320 7.0662
∥∥β̂ − β∗

∥∥
1

.0582 .0511 .1168 .0987 — — .0729 .0612

Specificity 97.03% 99.48% 96.60% 98.33% 96.66% 99.89% 92.08% 97.95% 55.76% 60.56% 96.75% 99.77% 97.43% 99.82%

Sensitivity 85.81% 73.51% 95.59% 90.38% 76.26% 27.76% 87.36% 48.52% 43.20% 47.94% 69.29% 20.07% 82.30% 79.31%

Bias -.0199 -.0901 -.0088 -.0651 -.0148 -.0958 -.0097 -.1137 -.2307 -.2109 -.0013 -.0934 -0.0011 -.0761

N = 75 Lasso L1 53.1475 51.5816 49.5190 46.2353 121.240 107.822 79.0006 63.6286 85.0331 88.6169 127.653 102.507 75.2035 78.0112

Lasso L2 8.2361 11.4955 2.6296 3.7519 11.2820 16.3793 5.5820 8.2053 9.8341 8.2868 13.1635 18.5941 7.2351 8.1063

AdaLasso L1 33.6911 44.6034 19.6262 28.4384 49.3344 65.8009 39.1014 62.1415 84.9210 84.9809 52.9285 79.5576 29.1066 25.1037

AdaLasso L2 4.3452 9.8865 1.7318 4.5328 7.9461 18.4804 4.0581 15.3782 8.3519 7.6390 9.5241 22.7887 5.9502 10.5102∥∥β̂ − β∗
∥∥
1

.0547 .0396 .1366 .1282 — — .1579 .1003

Table 4: Comparisons to the baseline simulations when assumptions are violated. Refer to Table 1 for the explanations of different items.
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Country Code Index Country Code Index
Argentina ARG Merval Australia AUL Dow Jones Australian
Austria AUT Viena ATX-5 Brazil BRZ Dow Jones Brazil Stock
Canada CAN S&P/CDNX Composite Chile CHL Santiago SSE Inter-10
China CHN Shanghai SE Composite Egypt EGP SE 100
France FRA Paris CAC-40 Germany GER CDAX Total Return
Hong Kong HHK Hang Seng Composite India IDI NSE-50
Indonesia IDO Jakarta SE Liquid 45 Italy ITA Milan SE MIB-30
Japan JPN Nikkei 500 Mexico MEX SE Index (INMX)
New Zealand NZZ NZSX-15 Russia RUS Russia MICEX Composite
Spain SPA Madrid SE IBEX-35 Singapore SIN Singapore FTSE All-shares
South Africa STA FTSE/JSE Top 40 South Korea SKK Korea SE Stock Price

Tradable Stocks
Switzerland SWZ Swiss Market Thailand THA Thailand SET General
United Kingdom UKK S&P United Kingdom United States USA S&P 500

Table 5: Markets and their respective indices used. Data source: Global Financial Data.
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Figure 1: Graph of Ŵ1. An edge directed from market i to j means that Ŵ1,ij is non-zero.
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Figure 2: Elements of Ŵ1 plotted against Common Opening Hours.

our LASSO/adaptive LASSO regularized estimation is that unlike many others, our method does not need

the specification of the spatial weight matrices or a distance metric for them as in Pinkse et al. [2002].

All parameters in the model are estimated together with the spatial weight matrices, with explicit rates

of convergence of various errors stated and proved. In particular, an error upper bound is derived for the

regression parameter β∗ in our spatial lag model under an arbitrary specification/estimation of the spatial

weight matrices, showing that as long as these matrices are specified/estimated with an L1 error much less

than the panel size N , the estimation for β∗ will be accurate.

The asymptotic sign consistency of the estimated spatial weight matrices is proved as well, showing

that we can recover the cross-sectional dependence structure in the spatial weight matrices asymptotically.

Another contribution is the development of a practical block coordinate descent algorithm for our method,

which is used for the simulation results and a real data analysis.

We argued that covariates are important for our results. Yet there are applications without obvious

covariates. Also, the variance of the noise in the panel may not be small enough to satisfy the variance decay

assumption in practice. Indeed if enough instruments are available for each covariate, the instrumental

variable approach can potentially remove the need for variance decay. There are still major technical hurdles

to overcome in this direction. A further study will be to regularize on the reduced form model directly

and we impose sparsity on the weight matrices by simple thresholding. This way not even instrumental

variables are needed. These are the potential future problems to be tackled.

8 Appendix

Proof of Theorem 1. We first show that, with the tail condition in A5 for a process {zt}, we have for any

w > 0, maxj
∥∥ztj

∥∥
2w

≤ µ2w < ∞. Hence we can fix a w large enough such that N = o(Tw/4−1/2 logw/4(T ));

21



see Remark 3 after Theorem 1. Indeed by the Fubini’s Theorem,

E|ztj |2w = E

∫ |ztj |2w

0

ds =

∫ ∞

0

P (|ztj | > s1/2w) ds ≤
∫ ∞

0

D1 exp(−D2s
q/2w) ds

=
4wD1

q

∫ ∞

0

x4w/q−1e−D2x
2

dx =
2wD1

qD
2w/q
2

Γ(2w/q) [define as µ2w
2w] < ∞, (8.1)

so that maxj
∥∥ztj

∥∥
2w

≤ µ2w < ∞ for any w > 0. Together with assumption A6, Lemma 1 can then

be applied for the processes {ζt,jXt,ℓk}, {ζt,iζt,j − E(ζt,iζt,j)} and {Xt,iℓXt,jm − E(Xt,iℓXt,jm)}. Since

α > 1/2− 1/w, we have w(1/2− α̃) = β̃ = 1 in Lemma 1. The union sum inequality implies

P (Ac
1) ≤

∑

1≤j,ℓ≤N

1≤k≤K

P

(∣∣∣∣T−1
T∑

t=1

ζt,jXt,ℓk

∣∣∣∣ ≥ λT

)
≤ N2K

(
C1T

(TλT )w
+ C2 exp(−C3Tλ

2
T )

)

≤ C1K

(
C3

3

)w/2
N2

Tw/2−1 logw/2(T ∨N)
+

C2KN2

T 3 ∨N3
. (8.2)

Similarly, we have

P (Ac
3) ≤ C1

(
C3

3

)w/2
N2

Tw/2−1 logw/2(T ∨N)
+

C2N
2

T 3 ∨N3
,

P (Ac
4) ≤ C1K

2

(
C3

3

)w/2
N2

Tw/2−1 logw/2(T ∨N)
+

C2K
2N2

T 3 ∨N3
.

(8.3)

The tail assumption A5 and the union sum inequality imply that

P (Mc) ≤ NTK ·D1 exp(−3 log(T ∨N)) =
D1NTK

T 3 ∨N3
. (8.4)

Finally, if we can show that

max
1≤k≤K

∥∥N− 1
2− 1

2w ζT

t Xt,k

∥∥
2w

< ∞, (8.5)

Θm,2w =

∞∑

t=m

max
1≤k≤K

∥∥N− 1
2− 1

2w (ζT

t Xt,k − ζ′T
t X′

t,k)
∥∥
2w

≤ am−α, (8.6)

for some a > 0 and all m ≥ 1, then we can apply Lemma 1 for A2 to obtain

P (Ac
2) ≤

K∑

k=1

P

(∣∣∣∣∣T
−1

T∑

t=1

N− 1
2− 1

2w ζT

t Xt,k

∣∣∣∣∣ ≥ λT

)

≤ C1

(
C3

3

)w/2
K

Tw/2−1 logw/2(T ∨N)
+

C2K

T 3 ∨N3
. (8.7)

Combining (8.2), (8.3), (8.4) and (8.7), we can then use

P (A1 ∩ . . . ∩ A4 ∩M) ≥ 1−
4∑

j=1

P (Aj)− P (M)

to yield the conclusion of the Theorem. It remains to show (8.5) and (8.6).
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We use assumption A4 and we assume first that
∥∥Σ1/2

xk

∥∥
∞ ≤ Sx < ∞, and {X∗

t,jk}1≤j≤N is a martingale

difference with respect to the filtration generated by (X∗
t,1k, . . . , X

∗
t,jk). Assuming the other part of A4 for

the noise results in very similar proof and we omit it. Write
∑N

j=1 ζt,jXt,jk = ζT
t Xt,k = ζT

t Σ
1/2
xk X∗

t,k =
∑N

j=1(ζ
T
t Σ

1/2
xk )jX

∗
t,jk, where Xt,k,X

∗
t,k are the k-th columns of Xt and X∗

t respectively. Then by the

independence assumption A3,

E
(
(ζT

t Σ
1/2
xk )jX

∗
t,jk|(ζT

t Σ
1/2
xk )s, X

∗
t,sk, s ≤ j − 1

)
= E

(
(ζT

t Σ
1/2
xk )j |(ζT

t Σ
1/2
xk )s, s ≤ j − 1

)

· E(X∗
t,jk|X∗

t,sk, s ≤ j − 1) = 0,

since {X∗
t,jk}1≤j≤N is a martingale difference. Hence {(ζT

t Σ
1/2
xk )jX

∗
t,jk}1≤j≤N is a martingale difference.

By Lemma 2.1 of Li [2003], assumptions A3, A4 and (8.1), we then have

E
∣∣∣N− 1

2− 1
2w ζT

t Xt,k

∣∣∣
2w

= E

∣∣∣∣N− 1
2− 1

2w

N∑

j=1

(ζT

t Σ
1/2
xk )jX

∗
t,jk

∣∣∣∣
2w

≤ N−2(36w)2w(1 + (2w − 1)−1)w
N∑

j=1

E|(ζT

t Σ
1/2
xk )jX

∗
t,jk|2w

= N−2(36w)2w(1 + (2w − 1)−1)w
N∑

j=1

E|(ζT

t Σ
1/2
xk )j |2wE|X∗

t,jk|2w

≤ N−2(36wµ2w)
2w(1 + (2w − 1)−1)w

N∑

j=1

E
∣∣∣ max
1≤j≤N

|ζt,j |
∣∣∣
2w∥∥Σ1/2

xk

∥∥2w
∞

≤ N−2(36wµ2wSx)
2w(1 + (2w − 1)−1)w

N∑

j=1

N max
1≤j≤N

E|ζt,j |2w

≤ (36wµ2
2wSx)

2w(1 + (2w − 1)−1)w < ∞,

so that max1≤k≤K

∥∥N− 1
2− 1

2w ζT
t Xt,k

∥∥
2w

< ∞, which is (8.5).

To prove (8.6), observe that

Θm,2w ≤
∞∑

t=m

max
1≤k≤K

N− 1
2− 1

2w

[∥∥ζT

t Σ
1/2
xk (X∗

t,k −X′∗
t,k)
∥∥
2w

+
∥∥(ζT

t Σ
1/2
xk − ζ′T

t Σ
1/2
xk )X′∗

t,k

∥∥
2w

]
,

≤
∞∑

t=m

max
1≤k≤K

N− 1
2− 1

2w


∥∥

N∑

j=1

(ζT

t Σ
1/2
xk )j(X

∗
t,jk −X ′∗

t,jk)
∥∥
2w

+
∥∥

N∑

j=1

(ζT

t Σ
1/2
xk − ζ′T

t Σ
1/2
xk )jX

′∗
t,jk

∥∥
2w


 .

With similar arguments as before, {(ζT
t Σ

1/2
xk )j(X

∗
t,jk − X ′∗

t,jk)}j and {(ζT
t Σ

1/2
xk − ζ′T

t Σ
1/2
xk )jX

′∗
t,jk}j can be

shown to be martingale differences with respect to the filtration

Fj = σ(X∗
t,sk, X

′∗
t,sk, (ζ

T

t Σ
1/2
xk )s, (ζ

′T
t Σ

1/2
xk )s, s ≤ j).
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Hence we can use Lemma 2.1 of Li [2003], assumptions A3, A4, A6 and (8.1) to show that

∥∥N− 1
2− 1

2w

N∑

j=1

(ζT

t Σ
1/2
xk )j(X

∗
t,jk −X ′∗

t,jk)
∥∥
2w

≤ 36w(1 + (2w − 1)−1)1/2

·


N−2

N∑

j=1

E
∣∣∣ max
1≤j≤N

|ζt,j |
∣∣∣
2w∥∥Σ1/2

xk

∥∥2w
∞ (θx

∗

t,2w,jk)
2w



1/2w

≤ 36wµwSx(1 + (2w − 1)−1)1/2 max
1≤j≤N

θx
∗

t,2w,jk.

Similarly,

∥∥N− 1
2− 1

2w

N∑

j=1

(ζT

t Σ
1/2
xk − ζ′T

t Σ
1/2
xk )jX

′∗
t,jk

∥∥
2w

≤ 36wµwSx(1 + (2w − 1)−1)1/2 max
1≤j≤N

θζt,2w,j.

Hence combining and using assumption A6, we have

Θm,2w ≤ 36wµwSx(1 + (2w − 1)−1)1/2(Θx∗

m,2w +Θζ
m,2w) ≤ 72CwµwSx(1 + (2w − 1)−1)1/2m−α,

which is (8.6). The proof is now completed. �

Proof of Lemma 2. Denote U = IN ⊗ T−1
∑T

t=1 xtx
T
t , and

V =




IK ⊗ w̃21

...

IK ⊗ w̃2N


 , where w̃T

2j is the j-th row of W̃2.

Then XTW̃⊗T

2 W̃⊗
2 X = VTUV, and we decompose β̃ − β∗ =

∑5
j=1 Ii, where

I1 = −(VTE(U)V)−1VT (U − E(U))V(β̃ − β∗),

I2 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
2 − W̃⊗

2 )Xβ∗,

I3 = (VTE(U)V)−1T−1XTW̃⊗T

2 ǫv,

I4 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
1 − W̃⊗

1 )(ITN −W∗⊗
1 )−1W∗⊗

2 Xβ∗,

I5 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
1 − W̃⊗

1 )(ITN −W∗⊗
1 )−1ǫv,

where ǫv is defined similar to yv. Note by assumptions A1 and A7,

∥∥(VTE(U)V)−1
∥∥
∞ ≤ K1/2

λmin(VTE(U)V)
≤ K1/2

λmin(E(U))λmin(VTV)
≤ K1/2

uN
. (8.8)

Then on A4, using (8.8),

∥∥I1
∥∥
1
≤ K

∥∥(VTE(U)V)−1
∥∥
∞
∥∥VT

∥∥
∞
∥∥U− E(U)

∥∥
max

∥∥V(β̃ − β∗)
∥∥
∞

≤ K3/2

uN
· 2N · λT ·

∥∥β̃ − β∗∥∥
1
=

2K3/2λT

u

∥∥β̃ − β∗∥∥
1
.
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Similarly on A4, using (8.8) and assumptions A1, A4,

∥∥I2
∥∥
1
≤ K1/2

uN
·
∥∥T−1XTW̃⊗T

2 (W∗⊗
2 − W̃⊗

2 )X
∥∥
∞
∥∥β∗∥∥

1

=
K1/2

∥∥β∗∥∥
1

uN
max

1≤i≤K

K∑

j=1

∣∣∣∣
N∑

ℓ,s=1

(w∗
2,sℓ − w̃2,sℓ)

N∑

k=1

(
w̃2,skT

−1
T∑

t=1

Xt,kiXt,ℓj

)∣∣∣∣

≤
K1/2

∥∥β∗∥∥
1

uN
· 2K(σ2

max + λT )
∥∥ξ̃2 − ξ∗2

∥∥
1
=

2K3/2(σ2
max + λT )

∥∥β∗∥∥
1

uN

∥∥ξ̃2 − ξ∗2
∥∥
1
.

Similarly on A1 and A2, using (8.8) and assumptions A1, A4,

∥∥I3
∥∥
1
≤ K1/2δ

1/2
T

uN
·
∥∥T−1XTW̃⊗T

2 ζv
∥∥
1
=

K1/2δ
1/2
T

uN

K∑

k=1

∣∣∣∣
N∑

s,ℓ=1

w̃2,sℓT
−1

T∑

t=1

Xt,skζt,ℓ

∣∣∣∣

=
K3/2δ

1/2
T

uN
max

1≤k≤K

∣∣∣∣
N∑

s,ℓ=1

(w̃2,sℓ − w∗
2,sℓ)T

−1
T∑

t=1

Xt,skζt,ℓ +

N∑

s,ℓ=1

w∗
2,sℓT

−1
T∑

t=1

Xt,skζt,ℓ

∣∣∣∣

≤ K3/2δ
1/2
T

uN
(λT

∥∥ξ̃2 − ξ∗2
∥∥
1
+ λTN

1
2+

1
2w + λT s2).

Finally, note that the row sum condition in assumption A1 implies

∥∥(IN −W∗
1)

−1
∥∥
∞ ≤

∑

k≥0

∥∥W∗
1

∥∥k
∞ ≤

∑

k≥0

ηk = (1− η)−1. (8.9)

Hence using this, (8.8) and assumptions A1,A4, on A1 and A4, we have (tedious algebra omitted)

∥∥I4
∥∥
1
≤

4K3/2
∥∥β∗∥∥

1
(σ2

max + λT )

(1 − η)uN

∥∥ξ̃1 − ξ∗1
∥∥
1
,

∥∥I5
∥∥
1
≤ 2K3/2λT δ

1/2
T

(1− η)uN

∥∥ξ̃1 − ξ∗1
∥∥
1
.

Using the expressions for
∥∥I1
∥∥
1
to
∥∥I5
∥∥
1
, rearranging and simplifying, we thus have

∥∥β̃ − β∗∥∥
1
≤ K3/2

u− 2K3/2λT

{
(s2 +N

1
2+

1
2w )λT δ

1/2
T

N
+

4
∥∥β∗∥∥

1
(σ2

max + λT ) + 2λT δ
1/2
T

(1− η)N

∥∥ξ̃ − ξ∗
∥∥
1

}

≤ a1(s2 +N
1
2+

1
2w )λT δ

1/2
T

N
+

a2
N

∥∥ξ̃ − ξ∗
∥∥
1
,

which is the inequality for
∥∥β̃ − β∗∥∥

1
if we set constants

a1 ≥ K3/2

u− 2K3/2λT
, a2 ≥

4K3/2
∥∥β∗∥∥

1
(λT + σ2

max) + 2λT δ
1/2
T K3/2

(1− η)(u − 2K3/2λT )
. �

Proof of Theorem 2. For the LASSO estimator ξ̃, (3.2) implies

1

2T

∥∥y −M
β̃
ξ̃
∥∥2 + γT

∥∥ξ̃
∥∥
1
≤ 1

2T

∥∥y −Mβ∗ξ∗
∥∥2 + γT

∥∥ξ∗
∥∥
1
,
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which, using model (3.1), can be rearranged to

1

2T

∥∥Mβ∗ξ∗ −M
β̃
ξ̃
∥∥2 ≤ 1

T
ǫTX

β̃−β∗vec(IN ) +
1

T
ǫTX

β̃−β∗(ξ̃2 − vec(IN ))

+
1

T
ǫTMβ∗(ξ̃ − ξ∗) + γT (

∥∥ξ∗
∥∥
1
−
∥∥ξ̃
∥∥
1
). (8.10)

On A2, using ǫtj = δ
1/2
T ζtj ,

∣∣∣∣
1

T
ǫTX

β̃−β∗vec(IN )

∣∣∣∣ =
∣∣∣∣
1

T

T∑

t=1

N∑

j=1

ǫtj

K∑

k=1

Xt,jk(β̃k − β∗
k)

∣∣∣∣ ≤ λT δ
1/2
T N

1
2+

1
2w

∥∥β̃ − β∗∥∥
1
.

On A1, recalling s2 =
∥∥ξ∗2 − vec(IN )

∥∥
1
,

∣∣∣∣
1

T
ǫTX

β̃−β∗(ξ̃2 − vec(IN ))

∣∣∣∣ ≤ max
1≤j 6=ℓ≤N

∣∣∣∣
1

T

T∑

t=1

ǫtj

K∑

k=1

Xt,ℓk(β̃k − β∗
k)

∣∣∣∣ ·
∥∥ξ̃2 − vec(IN )

∥∥
1

≤ λT δ
1/2
T

∥∥β̃ − β∗∥∥
1
(s2 +

∥∥ξ̃2 − ξ∗2
∥∥
1
).

Finally,

∣∣∣∣
1

T
ǫTMβ∗(ξ̃ − ξ∗)

∣∣∣∣ ≤ max
1≤j 6=ℓ≤N

1≤k≤K

{∣∣∣∣
1

T

T∑

t=1

ǫtjytℓ

∣∣∣∣,
∣∣∣∣
1

T

T∑

t=1

ǫtjXt,ℓk

∣∣∣∣ ·
∥∥β∗∥∥

1

}
∥∥ξ̃ − ξ∗

∥∥
1
.

Writing the ℓ-th row of Π1 as πT

1,ℓ, using (8.9), we have on A1 and A3,

∣∣∣∣
1

T

T∑

t=1

ǫtjytℓ

∣∣∣∣ ≤
∣∣∣∣
1

T

T∑

t=1

ǫtjπ
∗T

1,ℓW
∗
2Xtβ

∗
∣∣∣∣ +
∣∣∣∣
1

T

T∑

t=1

ǫtjπ
∗T

1,ℓǫt

∣∣∣∣

≤
2δ

1/2
T

∥∥β∗∥∥
1

1− η
max
1≤ℓ≤N

1≤k≤K

∣∣∣∣
1

T

T∑

t=1

ζtjXt,ℓk

∣∣∣∣+
δT

1− η
max

1≤i≤N

∣∣∣∣
1

T

T∑

t=1

[ζtjζti − E(ζtjζti)]

∣∣∣∣+
δTσ

2
0

1− η

≤
2λT δ

1/2
T

∥∥β∗∥∥
1
+ λT δT + δTσ

2
0

1− η
,

where we used assumption A2 that |E(ζtiζtj)| ≤ σ2
0 . Combining these bounds, on A1 and A3,

∣∣∣∣
1

T
ǫTMβ∗(ξ̃ − ξ∗)

∣∣∣∣ ≤ (λT δ
1/2
T aT + cηδT )

∥∥ξ̃ − ξ∗
∥∥
1
,

where cη =
σ2
0

(1− η)
, aT =

∥∥β∗∥∥
1
+

2
∥∥β∗∥∥

1
+ δ

1/2
T

1− η
.

Hence utilizing all these bounds, (8.10) becomes

1

2T

∥∥M
β̃
ξ̃ −Mβ∗ξ∗

∥∥2 ≤ λT δ
1/2
T (N

1
2+

1
2w + s2 +

∥∥ξ̃2 − ξ∗2
∥∥
1
)
∥∥β̃ − β∗∥∥

1

+ (λT δ
1/2
T aT + cηδT )

∥∥ξ̃ − ξ∗
∥∥
1
+ γT (

∥∥ξ∗
∥∥
1
−
∥∥ξ̃
∥∥
1
).

Using the result of Lemma 2 on the LASSO estimator β̃, and assuming
∥∥ξ̃ − ξ∗

∥∥
1
> λT δ

1/2
T , we have
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(tedious algebra omitted)

1

2T

∥∥M
β̃
ξ̃ −Mβ∗ξ∗

∥∥2 ≤ a1λT δ
1/2
T

(
N

1
2w + s2N

− 1
2 + λT δ

1/2
T

)2 ∥∥ξ̃ − ξ∗
∥∥
1

+ a2λT δ
1/2
T

(
2 +N

1
2w− 1

2 + s2N
−1
) ∥∥ξ̃ − ξ∗

∥∥
1

+ (λT aT + cηδT )
∥∥ξ̃ − ξ∗

∥∥
1
+ γT (

∥∥ξ∗
∥∥
1
−
∥∥ξ̃
∥∥
1
).

Using the rates condition specified in the theorem, the dominant term is cηδT
∥∥ξ̃ − ξ∗

∥∥
1
, so that there is a

constant D ≥ 3a1 + 4a2 + cη + aT such that

1

2T

∥∥M
β̃
ξ̃ −Mβ∗ξ∗

∥∥2 ≤ DδT
∥∥ξ̃ − ξ∗

∥∥
1
+ γT (

∥∥ξ∗
∥∥
1
−
∥∥ξ̃
∥∥
1
).

Setting γT = 2DδT , we then have

DδT
∥∥ξ̃ − ξ∗

∥∥
1
≤ 1

2T

∥∥M
β̃
ξ̃ −Mβ∗ξ∗

∥∥2 +DδT
∥∥ξ̃ − ξ∗

∥∥
1

≤ 2DδT (
∥∥ξ̃ − ξ∗

∥∥
1
+
∥∥ξ∗
∥∥
1
−
∥∥ξ̃
∥∥
1
)

= 2DδT (
∥∥ξ̃J − ξ∗J

∥∥
1
+
∥∥ξ∗J

∥∥
1
−
∥∥ξ̃J

∥∥
1
)

≤ 4DδT
∥∥ξ̃J − ξ∗J

∥∥
1
.

Hence
∥∥ξ̃ − ξ∗

∥∥
1
≤ 4
∥∥ξ̃J − ξ∗J

∥∥
1
, which implies

∥∥ξ̃Jc − ξ∗Jc

∥∥
1
≤ 3
∥∥ξ̃J − ξ∗J

∥∥
1
.

Following exactly the same lines of proof, for the adaptive LASSO estimator ξ̂ we have

1

2T

∥∥M
β̂
ξ̂ −Mβ∗ξ∗

∥∥2 ≤ DδT
∥∥ξ̂ − ξ∗

∥∥
1
+ γTv

T(|ξ∗| − |ξ̂|).

Again set γT = 2DδT , then using 2vj − 1 ≥ vj since vj > 1,

1

2T

∥∥M
β̂
ξ̂ −Mβ∗ξ∗

∥∥2 + 2DδTv
T|ξ̂ − ξ∗| −DδT

∥∥ξ̂ − ξ∗
∥∥
1
≤ 2DδTv

T(|ξ̂ − ξ∗|+ |ξ∗| − |ξ̂|), so

DδTv
T|ξ̂ − ξ∗| ≤ 4DδTv

T

J |ξ̂J − ξ∗J |.

It is easy to see that the left hand side is great than DδT
|ξ̃

J̃,max|k
∥∥ξ̂−ξ∗

∥∥
1
, while the right hand side is less than

4DδT
|ξ̃J,min|k

∥∥ξ̂J − ξ∗J
∥∥
1
, where ξ̃J̃,max = maxj∈J̃ ξ̃j and ξ̃J,min = minj∈J ξ̃j . The remaining two inequalities for

ξ̂ follow immediately. �

Proof of Theorem 3. For α such that
∥∥αJc

∥∥
1
≤ c0

∥∥αJ

∥∥
1

with n = |J |, define ǫ =
∥∥Σ̂∗ −Σ

∥∥
max

,

|αTΣ̂∗α−αTΣα| ≤ ǫ
∥∥α
∥∥2
1
≤ ǫ(1 + c0)

2
∥∥αJ

∥∥2
1
≤ ǫn(1 + c0)

2
∥∥αJ

∥∥2,

so that by assumption A8,

κ(n)
∥∥αJ

∥∥ ≤
∥∥Σ1/2α

∥∥ ≤ T−1/2
∥∥Mβ∗α

∥∥+ ǫ1/2n1/2(1 + c0)
∥∥αJ

∥∥. (8.11)
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Put α = ξ̃ − ξ∗, so that Theorem 2 implies that
∥∥αJc

∥∥
1
≤ c0

∥∥αJ

∥∥
1

as c0 > 3. Suppose ǫ = O(λT ) (to be

proved later), and using

1

2T

∥∥M
β̃
ξ̃ −Mβ∗ξ∗

∥∥2 ≤ 4DδT
∥∥ξ̃J − ξ∗J

∥∥
1

which is an intermediate result from the proof of Theorem 2, we can apply (8.11) to have, on A1 ∩ · · · ∩
A4 ∩M,

κ(n)
∥∥ξ̃J − ξ∗J

∥∥ ≤ T−1/2
∥∥Mβ∗(ξ̃ − ξ∗)

∥∥+ ǫ1/2n1/2(1 + c0)
∥∥ξ̃J − ξ∗J

∥∥

≤ T−1/2
∥∥M

β̃
ξ̃ −Mβ∗ξ∗

∥∥+ T−1/2
∥∥X

β̃−β∗ ξ̃2
∥∥+ ǫ1/2n1/2(1 + c0)

∥∥ξ̃J − ξ∗J
∥∥

≤ 2
√
2D1/2δ

1/2
T

∥∥ξ̃J − ξ∗J
∥∥1/2
1

+ T−1/2

∥∥∥∥∥2
∥∥β̃∗ − β∗∥∥

1
max
1≤t≤T

1≤i≤N, 1≤k≤K

|Xt,ik|1TN

∥∥∥∥∥

+ ǫ1/2n1/2(1 + c0)
∥∥ξ̃J − ξ∗J

∥∥

≤ 2
√
2D1/2δ

1/2
T n1/4

∥∥ξ̃J − ξ∗J
∥∥1/2 + h1,N,T + h2,N,T

∥∥ξ̃ − ξ∗
∥∥
1
+ h3,N,T

∥∥ξ̃J − ξ∗J
∥∥

≤ 2γ
1/2
T n1/4

∥∥ξ̃J − ξ∗J
∥∥1/2 + ((1 + c0)n

1/2h2,N,T + h3,N,T )
∥∥ξ̃J − ξ∗J

∥∥+ h1,N,T ,

where 1TN is a vector of ones of size TN , and we used the result in Lemma 2 such that

h1,N,T = 2a1(3/D2 log(T ∨N))1/qN−1/2λT δ
1/2
T (s2 +N

1
2+

1
2w ),

h2,N,T = 2a2(3/D2 log(T ∨N))1/qN−1/2, h3,N,T = ǫ1/2n1/2(1 + c0).

With ǫ = O(λT ) assumed, the explicit rates assumed in Theorem 3 ensure that h1,N,T , n
1/2h2,N,T and

h3,N,T are all going to 0, with h1,N,T = o(γTn
1/2). Hence solving the above quadratic inequality for∥∥ξ̃J − ξ∗J

∥∥1/2,

∥∥ξ̃J − ξ∗J
∥∥1/2 ≤ γ

1/2
T n1/4 +

[
γTn

1/2 + κ(n)h1,N,T

]1/2

κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T
, so that

∥∥ξ̃J − ξ∗J
∥∥ ≤ 4γTn

1/2 + 4κ(n)h1,N,T

(κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T )2
≤ 5γTn

1/2

κ2(n)

for large enough N, T , which is the inequality for ξ̃.

To prove the inequality for ξ̂, first note that for large enough N, T ,

|ξ̃J,min| ≥ |ξ∗J,min| − |ξ̃J,min − ξ∗J,min| ≥ |ξ∗J,min| −
∥∥ξ̃J − ξ∗J

∥∥

≥ |ξ∗J,min| − (1 − 2−k)|ξ∗J,min| = 2−k|ξ∗J,min|,

so that |ξ̃J,min|k ≥ |ξ∗J,min|k/2. Hence using the result in Theorem 2 for ξ̂,

∥∥ξ̂ − ξ∗
∥∥
1
≤ 4|ξ̃J̃ max|k

|ξ∗J,min|k/2
∥∥ξ̂J − ξ∗J

∥∥
1
≤ 8

|ξ∗J,min|k
∥∥ξ̂J − ξ∗J

∥∥
1
= (1 + c0)

∥∥ξ̂J − ξ∗J
∥∥
1
,
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so that
∥∥ξ̂Jc − ξ∗Jc

∥∥
1
≤ c0

∥∥ξ̂J − ξ∗J
∥∥
1
. Then using an intermediate result

1

2T

∥∥M
β̂
ξ̂ −Mβ∗ξ∗

∥∥2 ≤ 4DδTv
T

J |ξ̂J − ξ∗J | ≤
4DδT

|ξ̃J,min|k
∥∥ξ̂J − ξ∗J

∥∥
1
,

which is from the proof of Theorem 2, putting α = ξ̂ − ξ∗ in (8.11), we have on A1 ∩ · · · ∩ A4 ∩M,

κ(n)
∥∥ξ̂J − ξ∗J

∥∥ ≤ 2γ
1/2
T n1/4

|ξ̃J,min|k/2
∥∥ξ̂J − ξ∗J

∥∥1/2 + ((1 + c0)n
1/2h2,N,T + h3,N,T )

∥∥ξ̂J − ξ∗J
∥∥+ h1,N,T .

Solving for
∥∥ξ̂J − ξ∗J

∥∥1/2 as before and squaring, we obtain

∥∥ξ̂J − ξJ
∥∥ ≤ 4γTn

1/2|ξ̃J,min|−k + 4κ(n)h1,N,T

(κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T )2
≤ 5γTn

1/2

κ2(n)|ξ∗J,min|k

for large enough N, T , which is the inequality for ξ̂. The bounds for β̃ and β̂ are obtained by using the

results in Lemma 2 and Theorem 2, and substituting the error upper bounds we just proved. It remains

to show that ǫ = O(λT ).

We can easily see that, for xT

t,j the j-th row of Xt,

ǫ =
∥∥Σ̂∗ −Σ

∥∥
max

= max
1≤i,j≤N

{∣∣∣∣T−1
T∑

t=1

ytiytj − E(ytiytj)

∣∣∣∣,
∣∣∣∣β∗T

(
T−1

T∑

t=1

ytixt,j − E(ytixt,j)

)∣∣∣∣,

∣∣∣∣β∗T

(
T−1

T∑

t=1

xt,ix
T

t,j − E(xt,ix
T

t,j)

)
β∗
∣∣∣∣
}
.

The largest upper bound is given by max1≤i,j≤N |T−1
∑T

t=1 ytiytj − E(ytiytj)| (details omitted), where

using yti = π∗T

1,iW
∗
2Xtβ

∗ + π∗T

1,iǫt (see (2.2), with π∗T

1,i the i-th row of Π∗
1),

∣∣∣∣T−1
T∑

t=1

ytiytj − E(ytiytj)

∣∣∣∣ ≤
∥∥T−1

T∑

t=1

Xtβ
∗β∗TXT

t − E(Xtβ
∗β∗TXT

t )
∥∥
max

·
∥∥W∗T

2 π∗
1,i

∥∥2
1

+ 2
∥∥T−1

T∑

t=1

Xtβ
∗ǫT

t − E(Xtβ
∗ǫT

t )
∥∥
max

·
∥∥W∗T

2 π∗
1,i

∥∥
1

∥∥π1,i

∥∥
1

+
∥∥T−1

T∑

t=1

ǫtǫ
T

t − E(ǫtǫ
T

t )
∥∥
max

·
∥∥π1,i

∥∥2
1

≤
4λT

∥∥β∗∥∥2
1

(1 − η)2
+

4λT

∥∥β∗∥∥
1

(1 − η)2
+

λT

(1− η)2
=

λT (2
∥∥β∗∥∥

1
+ 1)2

(1 − η)2
,

since it is on A1 ∩ · · · A4 ∩M. Hence ǫ = O(λT ). This completes the proof of the theorem. �

Proof of Theorem 5. First, similar to (8.11), we can use assumption A8 for
∥∥αJc

∥∥
1
≤ c0

∥∥αJ

∥∥
1

to arrive

at κ(n)
∥∥αJc

∥∥ ≤ T−1/2
∥∥Mβ∗α

∥∥ + ǫ1/2n1/2(1 + c0)
∥∥αJ

∥∥. Putting α = ξ̃ − ξ∗ and follow the same lines

as in the proof of Theorem 3, we can use
∥∥ξ̃J − ξ∗J

∥∥ = O(γTn
1/2) on A1 ∩ · · · ∩ A4 ∩M (by the result of
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Theorem 3) to show that, for j ∈ Jc,

ξ̃j ≤
∥∥ξ̃Jc

∥∥ =
∥∥ξ̃Jc − ξ∗Jc

∥∥ = O(γTn
1/2). (8.12)

Define the set D = {j : ξ∗j does not corr. to diagonal elements of W∗
1,W

∗
2}. The KKT condition implies

that ξ̂ is a solution to (3.3) if and only if there exists a subgradient

g = ∂(vT|ξ̂|) =




g ∈ R

2N2

:





gi = 0, i ∈ Dc;

gi = visign(ξ̂i), ξ̂i 6= 0;

|gi| ≤ vi, otherwise.





such that, differentiating the expression to be minimized in (3.3) with respect to ξD,

T−1M̂T

DM̂Dξ̂D − T−1M̂Ty + γTgD + T−1M̂T

DXβ̂
vec(IN ) = 0,

where we denote M̂ = M
β̂

and M∗ = Mβ∗ . Substituting y = M∗
Dξ∗D +Xβ∗vec(IN ) + ǫ,

Σ̂DDξ̂D − T−1M̂T

DM∗
Dξ∗D + T−1M̂T

DX
β̂−β∗vec(IN )− T−1M̂T

Dǫ = −γTgD,

where Σ̂ = T−1M̂TM̂. For sign consistency of ξ̂, we have ξ̂Jc∩D = 0 and sign(ξ̂J ) = sign(ξ∗J ). Then it is

easy to see that ξ̂ is a sign consistent solution if and only if sign(ξ̂J ) = sign(ξ∗J ) and

Σ̂JJ ξ̂J − T−1M̂T

JM
∗
Jξ

∗
J + T−1M̂T

JXβ̂−β∗vec(IN )− T−1M̂T

Jǫ = −γTgJ ;

|Σ̂J′J ξ̂J − T−1M̂T

J′M
∗
Jξ

∗
J + T−1M̂T

J′Xβ̂−β∗vec(IN )− T−1M̂T

J′ǫ| ≤ γTvJ′ ,

where J ′ = Jc ∩ D. Recall from assumption A8 that Σ̂∗ = T−1M∗TM∗ and Σ = E(Σ̂∗). Rearranging,

these yield

sign(ξ̂J ) = sign
{
ξ∗J + I1 + I2 + I3 + I4 + I5

}
= sign(ξ∗J ); (8.13)

|L1 + L2 + L3 + L4 + L5| ≤ γTvJ′ (8.14)

as the necessary and sufficient conditions for ξ̂ to be a sign consistent solution to (3.3), where

I1 = −Σ−1
JJ

[
T−1(M̂J −M∗

J)
T(M̂J ξ̂J −M∗

Jξ
∗
J)
]
, I2 = −Σ−1

JJ

[
T−1M∗T

J (M̂J −M∗
J)ξ̂J

]
,

I3 = −Σ−1
JJ (Σ̂

∗
JJ −ΣJJ)(ξ̂J − ξ∗J ), I4 = −Σ−1

JJ

[
T−1M̂T

JXβ̂−β∗vec(IN )
]
,

I5 = Σ−1
JJ

[
T−1M̂T

Jǫ− γTgJ

]
, D1 = T−1(M̂J′ −M∗

J′)T(M̂J −M∗
J)ξ̂J ,

D2 = T−1(M̂J′ −M∗
J′)TM∗

J(ξ̂J − ξ∗J ), D3 = T−1M∗T

J′ (M̂J −M∗
J)ξ̂J ,

D4 = Σ̂∗
J′J(ξ̂J − ξ∗J ), D5 = T−1M̂T

J′(Xβ̂−β∗vec(IN )− ǫ).

We first prove that
∥∥Σ−1

JJ

∥∥
∞ ≤ C on A ∩ · · · ∩ A4 ∩ M for some constant C. To this end, denote

X∗ = Xβ∗ , and consider the partition ΣJJ = (Aij)1≤i,j≤2. Then

A11 = E(T−1ZT

JZJ ), A12 = AT

21 = E(T−1ZT

JX
∗
J), A22 = E(T−1X∗T

J X∗
J).
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Assumption A1 implies that there are finite number of non-zeros in each row of W∗
1 and W∗

2 . Let nr be

the maximum number of non-zeros in a row of W∗
1 or W∗

2 . Then nr is a constant, and each block diagonal

Aij defined above has at most nr non-zeros in each row. Using the inverse formula of partitioned matrix,

we thus have

∥∥Σ−1
JJ

∥∥
∞ ≤

∥∥(A11 −A12A
−1
22 A21)

−1
∥∥
∞ +

∥∥A−1
11 A12(A22 −A21A

−1
11 A12)

−1
∥∥
∞

≤ nrλmax{(A11 −A12A
−1
22 A21)

−1}
+ nrλmax(A

−1
11 ) ·

∥∥A12

∥∥
∞ · nrλmax{(A22 −A21A

−1
11 A12)

−1}
≤ nrλmax(Σ

−1
JJ ) + n3

rλ
2
max(Σ

−1
JJ )
∥∥A12

∥∥
max

≤ nr

u
+

n3
r

u2
(σ2

max + λT )(2
∥∥β∗∥∥

1
+ 1)2(1− η)−2 ≤ C,

where we use the last part of the proof of Theorem 3 and assumption A4 (details omitted) to arrive at, on

A1 ∩ · · · ∩ A4 ∩M, ∥∥A12

∥∥
max

≤ (σ2
max + λT )(2

∥∥β∗∥∥
1
+ 1)2(1 − η)−2,

and the assumption of uniform boundedness, say λmin(ΣJJ ) > u > 0 uniformly.

For proving (8.13), it suffices to show that
∥∥Ij
∥∥
∞ = o(1) since by assumption A1, ξ∗j is a constant for

j ∈ J . Consider

∥∥I1
∥∥
∞ ≤

∥∥Σ−1
JJ

∥∥
∞ · (

∥∥T−1XT

β̂−β∗,J
X

β̂−β∗,J

∥∥
∞ ·
∥∥ξ̂2,J

∥∥
max

+
∥∥T−1XT

β̂−β∗,J
M∗

J

∥∥
∞ ·
∥∥ξ̂J − ξ∗J

∥∥
max

)

≤ C
∥∥β̂ − β∗∥∥

1
(σ2

max + λT )

{
nr

∥∥β̂ − β∗∥∥
1
(1 +

∥∥ξ̂2,J − ξ∗2,J
∥∥) +

4nr

∥∥β∗∥∥
1

1− η

∥∥ξ̂J − ξ∗J
∥∥
}

= O

(
s2λTγ

1/2
T + γTn

N
·
(
s2λTγ

1/2
T + γTn

N
+ γTn

1/2

))
= O

(
γ2
Tn

2

N2
+

γ2
Tn

3/2

N

)
= o(1),

where we used the rates assumed in Theorem 2, the last part of the proof of Theorem 3 for the rates

of
∥∥T−1XT

β̂−β∗,J
X

β̂−β∗,J

∥∥
∞ and

∥∥T−1XT

β̂−β∗,J
M∗

J

∥∥
∞ (details omitted, but we also used the fact that

these two matrices are of block diagonal structure with at most 2nr non-zero entries in each row), and

the results of Theorem 3 for the rates of
∥∥β̂ − β∗∥∥

1
and

∥∥ξ̂J − ξ∗J
∥∥. We also used n ≤ 2nrN , so that

γTn/N ≤ 2nrγT = o(1). Similarly, on A1 ∩ · · · A4 ∩M,

∥∥I2
∥∥
∞ ≤ C

∥∥T−1M∗T

J X
β̂−β∗,J

∥∥
∞
∥∥ξ̂2,J

∥∥
max

= O

(
2nrs2λT γ

1/2
T + 2nrγTn

N

)
= O

(γTn
N

)
= o(1);

∥∥I3
∥∥
∞ ≤ C

∥∥Σ̂∗
JJ −ΣJJ

∥∥
∞
∥∥ξ̂J − ξ∗J

∥∥
max

= O(2nrλT γTn
1/2) = o(λT γ

1
k+1

T ) = o(1);

∥∥I4
∥∥
∞ ≤ C

∥∥∥∥∥

(
T−1

∑T
t=1 yt(β̂ − β∗)TXT

t

T−1
∑T

t=1 Xtβ̂(β̂ − β∗)TXT
t

)∥∥∥∥∥
max

= O

(
s2λT γ

1/2
T + γTn

N

)
= O

(γTn
N

)
= o(1);

∥∥I5
∥∥
∞ ≤ C

(
∥∥T−1M̂Tǫ

∥∥
max

+
γT

|ξ̃J,min|k

)
= O(γ

1/2
T (λT + γ

1/2
T ) + γT ) = O(γT ) = o(1),

Hence we have proved (8.13) on A1 ∩ · · · A4 ∩M when N, T are large enough.
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For proving (8.14) on A1 ∩ · · · ∩A4 ∩M when N, T are large enough, it suffices to show by (8.12) that

∥∥Dj

∥∥
∞ ≤ γT /max

j∈Jc
|ξ̃j |k = o

(
γT /(γTn

1/2)k
)
.

To show this, consider on A1 ∩ · · · ∩ A4 ∩M,

∥∥D1

∥∥
∞ ≤

∥∥T−1XT

β̂−β∗,J′Xβ̂−β∗,J

∥∥
∞
∥∥ξ̂2,J

∥∥
max

≤ (σ2
max + λT )nr

∥∥β̂ − β∗∥∥2
1
(1 +

∥∥ξ̂J − ξ∗J
∥∥)

= O

(
γ2
Tn

2

N2

)
;

∥∥D2

∥∥
∞ ≤

∥∥T−1XT

β̂−β∗,J′
M∗

J

∥∥
∞
∥∥ξ̂J − ξ∗J

∥∥
max

= O
(γTn

N
· γTn1/2

)
= O

(
γ2
Tn

3/2

N

)
;

∥∥D3

∥∥
∞ ≤

∥∥T−1M∗T

J′ Xβ̂−β∗,J
∥∥
∞
∥∥ξ̂J

∥∥
max

= O
(γTn

N

)
;

∥∥D4

∥∥
∞ ≤ (

∥∥Σ̂J′J −ΣJ′J

∥∥
∞ +

∥∥ΣJ′J

∥∥
∞)
∥∥ξ̂J − ξ∗J

∥∥
max

= O(γTn
1/2);

∥∥D5

∥∥
∞ ≤ O

(γTn
N

+ γT

)
.

The largest order is
∥∥D4

∥∥
∞ = O(γTn

1/2), which is of smaller order than γT /(γTn
1/2)k by the assumption

n = o
(
γ
− 2k

k+1

T

)
. This proves (8.14), and completes the proof of the theorem. �

References

Andrews, D. (1984). Nonstrong mixing autoregressive processes. J. Appl. Probab. 21 (4), 930–934.

Anselin, L. (2002). Under the hood. issues in the specification and interpretation of spatial regression

models. Agric. Econ. 27 (3), 247–267.

Arbia, G. and B. Fingleton (2008). New spatial econometric techniques and applications in regional science.

Papers in Regional Science 87 (3), 311–317.

Bavaud, F. (1998). Models for spatial weights: A systemic look. Geographical Analysis 30, 153–171.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009). Simultaneous analysis of lasso and dantzig selector.

Ann. Statist. 37 (4), 1705–1732.

Chen, X., M. Xu, and W. B. Wu (2013). High-dimensional covariance estimation for time series.

Manuscript .

Corrado, L. and B. Fingleton (2011, January). Where is the economics in spatial econometrics? Working

Papers 1101, University of Strathclyde Business School, Department of Economics.

Dicker, L., B. Huang, and X. Lin (2010). Variable selection and estimation with the seamless-l0 penalty.

Working Paper .

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. Annals of Statis-

tics 32 (2), 407–499.

Elhorst, J. (2003). Specification and estimation of spatial panel data models. International Regional Science

Review 26 (3), 244–268.

32



Fan, J. and J. Lv (2011). Non-concave penalized likelihood with np-dimensionality. IEEE Transactions on

Information Theory 57, 5467–5484.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear models via

coordinate descent. Journal of Statistical Software 33, 1–22.

Irwin, E. G. and J. Geoghegan (2001). Theory, data, methods: developing spatially explicit economic

models of land use change. Agriculture, Ecosystems and Environment 85, 7–23.

Kapoor, M., H. H. Kelejian, and I. R. Prucha (2007). Panel data models with spatially correlated error

components. Journal of Econometrics 140, 97–130.

Lesage, J. and R.-K. Pace (2009). Introduction to Spatial Econometrics. New York: CRC Press.

Lesage, J. and W. Polasek (2008). Incorporating transportation network st ructure i n spatial econometric

models of commodity flows. Spatial Economic Analysis 3 (2), 225–245.

Li, Y. (2003). A martingale inequality and large deviations. Statistics & Probability Letters 62, 317–321.

Liu, W., H. Xiao, and W. Wu (2013). Probability and moment inequalities under dependence. Statistica

Sinica. To appear.

Pinkse, J., M. E. Slade, and C. Brett (2002). Spatial price competition: A semiparametric appraoch.

Econometrica 70 (3), 1111–1153.

Shao, X. (2010). Nonstationarity-extended whittle estimation. Econometric Theory 26, 1060–1087.

Wold, H. (1953). Demand Analysis: A Study in Econometrics. New York: Wiley.

Wu, W. B. (2005). Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA 102,

14150–14154.

Wu, W. B. (2011). Asymptotic theory for stationary processes. STATISTICS AND ITS INTERFACE 4,

207–226.

Yao, Q. and P. Brockwell (2006). Gaussian maximum likelihood estimation for arma models ii: Spatial

processes. Bernoulli 12 (3), 403–429.

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. Journal of Machine Learning Re-

search 7, 2541–2563.

Zhou, S., S. van de Geer, and P. Bühlmann (2009). Adaptive lasso for high dimensional regression and

gaussian graphical modeling. arXiv:0903.2515v1.

Zhou, Z. (2010). Nonparametric inference of quantile curves for nonstationary time series.

Ann. Statist. 38 (4), 2187–2217.

Zou, H. (2006, December). The adaptive lasso and its oracle properties. Journal of the American Statistical

Association 101, 1418–1429.

33


	Introduction
	The Model
	Sparse Estimation of the Weight Matrices
	Example 1

	Properties of LASSO and adaptive LASSO Estimators
	Main assumptions and notations
	Example 2
	Main results

	Practical Implementation
	Numerical Examples
	Simulation Results
	Analysis of stock markets data

	Conclusion
	Appendix

