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Moveover, by penalizing on the coefficients of these linear combinations, oracle properties for these

penalized coefficient estimators are proved, including their asymptotic normality and sign consistency.

Other parameters of the model are estimated by profile-least square type of estimators after introduc-
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real financial data.
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1 Introduction

Spatial econometrics focus on models which allow for cross-sectional interactions among units under study.

As it is easy to obtain panel data nowadays, the study of spatial econometrics is becoming more impor-

tant. Since Cliff and Ord (1973), economists have investigated cross-sectional models, especially spatial

autoregressive (SAR), or spatial lag models. Anselin et al. (2008) defined four types of spatial dynamic

models. The first type is “pure space recursive” if only a spatial time lag is included. The second type is

“time-space recursive” if both an individual time lag and a spatial time lag are included. The third type is

“time-space simultaneous” if an individual time lag and a contemporaneous spatial lag are specified. And

finally, “time-space dynamic” if all forms of lags are included. Elhorst (2005) considered a dynamic panel

data model in spatial disturbance. Lee and Yu (2010) established asymptotic properties of quasi-maximum

likelihood estimators for SAR panel data models with fixed effects and SAR disturbances. Based on these

developments, spatial dynamic panel models can be used in regional markets in Keller and Shiue (2007),

labour economics in Foote (2007) or public economics in Franzese and Hays (2007), to name but a few

areas.

However, many estimation methods rely on the assumption that the spatial weight matrix, which mea-

sures the strength of interactions among units, is known. Applied researchers may specify a spatial weight

matrix based on certain distance measures, for instance the contiguity of units. Overall, the choice of

the spatial weight matrix very much depends on individual specifications. Even for a simple distance r

between two units, we can specify an entry in the spatial weight matrix using r−1, r−2 or r−3. There

are actually infinite possibilities, and it may be that certain such specifications are important while the

others are not (see our real data analysis in Section 6, for instance). Because of this, spatial economet-

rics is often criticized, like that in Corrado and Fingleton (2012). Recently, Lam and Souza (2014) has

provided an error upper bound for the spatial regression parameter estimators in a spatial lag model,

showing that misspecification of the spatial weight matrix can indeed introduce large bias in the final

estimates. To avoid such misspecification, non-parametric models are considered in past researches, see

Tran and Yakowitz (1993) and Hallin et al. (2004) for instance. The Nadaraya-Watson kernel estimator

is frequently used for nonparametric regression in econometrics. Robinson (2011) established consistency

and asymptotic distribution theory for the Nadaraya-Watson estimator in a framework designed for various

kinds of spatial data. Koroglu and Sun (2016) improved estimation accuracy by applying a nonparametric

two-stage least squares estimation method. More specifically, the second-step estimator of the unknown

functional coefficients are estimated by local linear regression. However, Kostov (2013) shows that it can

lead to reduced efficiency of the estimators when the sample size is small.

With these drawbacks in mind, Bhattacharjee and Jensen-Butler (2013) proposes to estimate such a spatial

weight matrix with a symmetric assumption, while Lam and Souza (2016) proposes to estimate the block

pattern in such a matrix. With the development of high dimensional statistics, Ahrens and Bhattacharjee

(2015) considers a two-step lasso estimation, which is based on the sparsity assumption of the spatial weight

matrix. Meanwhile, adaptive lasso is used in Lam and Souza (2015) to estimate a sparse spatial weight

matrix together with fixed effects in the spatial lag model. All these models do not consider time-lagged

effects, however. The difficulty certainly lies in the fact that more than one spatial weight matrices have

to be considered when time lags are added in the model, and hence such a time-space dynamic form has

attracted little attentions so far.
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Motivated by the evidence in our data example, our model includes pure dynamic effects and time lags

simultaneously, while each spatial weight matrix involved in the model is estimated by a linear combination

of user-specified spatial weight matrices. It helps avoid the risk of misspecification of the spatial weight

matrices, while maintaining the overall parsimony of the model. As for the innate endogeneity in our

dynamic spatial lag model, the direct least square estimation will result in inconsistent estimators. To

overcome this difficulty, we introduce instrumental-like variables. In the particular case when the covariates

are exogenous, they themselves can act as these instrumental-like variables. We estimate the “best” linear

combination for each required spatial weight matrix, highlighting the relative contributions of each specified

one. Asymptotic normality of all estimators are presented under the functional dependence measure of

time series variables in Wu (2005) or Wu (2011), allowing both the sample size T and the panel size N grow

to infinity together. With the input of different specified spatial weight matrices, the scope of applications

of our model is expanded since there are many applications where there are numerous ways to specify a

spatial weight matrix. See our theoretical results in Section 3.3.

The rest of the paper is organized as follows. Section 2 introduces our methodology, including the model

and the estimation method. Properties of our estimators, including asymptotic normality are presented in

Section 3. Simulation results and real data analysis are reported, respectively, in Section 4 and 5. All the

technical proofs are relegated to the Appendix.

2 Methodology

2.1 The Model

Consider the following dynamic spatial lag model

yt = µ+W 0yt +W 1yt−1 + · · ·+W pyt−p +Xtβ + ǫt, t = 1, . . . , T, (2.1)

where yt = (yt1, yt2, ..., ytN )T is an N × 1 vector of observed time series variables. The data starts from

y1−p, and hence the true sample size is T + p. It does not affect our asymptotic analysis since p is finite

in this paper. Hereafter when we talk about the sample size, we use T instead of T + p for simplicity. For

j = 0, 1, . . . , p, W j is an N × N spatial weight matrix with 0 on the main diagonal, and µ is an N × 1

constant vector. The N×K matrix of covariates Xt can contain yt−j for j = 1, . . . , p in its columns on top

of other covariates, while β is the K × 1 vector of regression coefficients. The series {ǫt} is an innovation

process with mean 0 and covariance matrix Σǫ.

In many applied spatial econometrics applications, W 0 is assumed known and there are no lagged terms

W jyt−j for j = 1, . . . , p. Instead of assuming all the spatial weight matrices are known, in this paper we

assume that there are M specified spatial weight matrices W 0i, i = 1, . . . ,M , such that each spatial weight

matrix is a linear combination of the M specified ones. This is motivated by the fact that there are often

more than one measures of spatial interactions. For instance, for the geographical distance r alone between

two specific locations, we can specify three different entries r−1, r−2 and r−3, creating three specified

spatial weight matrices. These are indeed our distance specifications included in our data application in

Section 6. Spatial contiguity is also another popular choice in spatial econometrics. The linear combination
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for each W j is written as

W j =

M∑

i=1

δjiW 0i,

where δji for i = 1, . . . ,M , j = 0, . . . , p are unknown coefficients in the linear combinations.

On top of allowing for estimating the spatial weight matrices from pre-specified ones, our model also

includes time-lagged spatial effects. In a differently specified spatial lag model, Dou et al. (2016) includes

one lag to reflect such effects. We generalize this to p time-lagged effects, with p to be determined by

data driven methods as described in Section 4. The pure dynamic effects are captured by the term Xtβ,

since we can allocate {yt−1, . . . , yt−p} to be the columns in Xt, so that then K ≥ p, and K = p if no

other covariates are present. Not counting the parameters in µ, there are K +M(p+ 1) parameters to be

estimated in total.

With µ, the spatial fixed effects of the model is then (IN −W 0)
−1µ. For identifiability of such, we assume

without loss of generality that E(Xt) = 0. If not, we can write

Xtβ + µ = (Xt − E(Xt))β + (µ+ E(Xt)β)

so that the spatial fixed effects are now captured by µ+ E(Xt)β rather than µ, and the covariates are of

mean 0.

To present our model more neatly, we rewrite (2.1) as

y = µ⊗ 1T +Z0V 0δ0 +Z1V 0δ1 + · · ·+ZpV 0δp +Xβvec(IN ) + ǫ,

where y = vec(y1, . . . , yT )
T , ǫ = vec(ǫ1, . . . , ǫT )

T , Zj = IN⊗(y1−j , . . . , yT−j)
T and δj = (δj1, δj2, . . . , δjM )T

for j = 0, 1, . . . , p, Xβ = IN ⊗ (IT ⊗ βT )(X1, . . . ,XT )
T , and V 0 = (vec(W T

01), . . . , vec(W
T
0M )). The no-

tation ⊗ is the Kronecker product, and 1T defines a vector of ones with size T . Simplifying, we have

y = µ⊗ 1T +ZV δ +Xβvec(IN ) + ǫ, (2.2)

where Z = (Z0, . . . ,Zp), δ = (δT
0 , . . . , δ

T
p )

T , and V = Ip+1 ⊗ V 0.

2.2 Profiled least square estimation

Note that µ is of size N , while β and δ together have K + p(M + 1) parameters which is potentially

much smaller than N . To estimate β and δ more efficiently while overcoming the problem of endogeneity

contributed from Z0 in model (2.2), we assume that there are variables Bt of size N ×K such that they

are correlated with Xt but independent of ǫt for each t = 1, . . . , T . In particular, if Xt is exogenous, we

can set Bt = Xt. Define

B = T−1/2N−a/2(Bγ −Bγ) = T−1/2N−a/2IN ⊗ {(IT ⊗ γT )(B1 − B̄, . . . ,BT − B̄)T },

where B̄ = T−1
∑T

t=1 Bt, and γ = K−11K . The value of a is not important in practice, and we set a = 1

in our algorithms. It is there only to adjust the order of eigenvalues of some constructs involving B in

the proof of our theorems. See the technical assumptions in Section 7 for more details. The value of γ is
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not the only choice, and we will introduce a way to choose a data driven one in Section 4.3. We naturally

assumes Bt takes on different values so that Bt is different from B̄ in general.

To utilize B, multiplying BT on both sides of (2.2), we arrive at the augmented model

BT
y = BTZV δ +BTXβvec(IN) +BT ǫ. (2.3)

The constant term disappears since BT(µ⊗ 1T ) = 0. Removing the N -dimensional constant term makes

estimation much easier, while the error term BTǫ is now weaker in correlations with the design matrix

BTZV , so that least square estimation becomes viable again. This way, B serves a similar function as an

instrumental variable.

In order to profile out β and estimate δ, we rewrite the augmented model (2.1) as

BvT
y
v
0 = BvT (

M∑

i=1

δ0iW
⊗
0i)y

v
0 +BvT

p∑

j=1

(

M∑

i=1

δjiW
⊗
0i)y

v
j +BvTXβ +BvT ǫv,

where yvj = (yT1−j , . . . , y
T
T−j)

T for j = 0, 1, . . . , p, ǫv = (ǫT1 , . . . , ǫ
T
T )

T , Bv = ((B1− B̄)T , . . . , (BT − B̄)T )T ,

X = (XT
1 , . . . ,X

T
T )

T and W⊗
0i = IT ⊗W 0i for i = 1, . . . ,M . Assuming δ is known, we can estimate β

by the least squared method, resulting in

β(δ) = (XTBvBvTX)−1XTBvBvT
{
(ITN −

M∑

i=1

δ0iW
⊗
0i)y

v
0 −

p∑

j=1

(
M∑

i=1

δjiW
⊗
0i)y

v
j

}
. (2.4)

This formula provides a basis for a profile least square estimator for δ. We can show that by substituting

the above into the augmented model (2.3) (proof omitted), the profile least square estimator for δ is

δ̂ = {(H −BTZV )T (H −BTZV )}−1(H −BTZV )T (Ky
v
0 −BT

y), (2.5)

where

K = T−1/2N−a/2(
T∑

t=1

Xt ⊗ (Bt − B̄)γ)(XTBvBvTX)−1XTBvBvT ,

H = K
[
W⊗

01, . . . ,W
⊗
0M

]
(IM ⊗ y

v
0, IM ⊗ y

v
1 , . . . , IM ⊗ y

v
p).

With this, the profile least square estimator of β is given by

β̂ = β(δ̂) = (XTBvBvTX)−1XTBvBvT
{
(ITN −

M∑

i=1

δ̂0iW
⊗
i )y

v
0 −

p∑

j=1

(

M∑

i=1

δ̂jiW
⊗
i )y

v
j

}
. (2.6)

Finally, to estimate µ, we can use

µ̂ =
(
IN −

p∑

j=0

Ŵ j

)
ȳ− X̄β̂, where Ŵ j =

M∑

i=1

δ̂jiW 0i.

The corresponding spatial fixed effects estimator is then given by (IN − Ŵ 0)
−1µ̂.
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2.3 Selection of specified spatial weight matrices

Since δ̂ is a least square-type estimator, each element in it is not estimated to be exactly 0 in general. This

hinders the selection of the specified spatial weight matrices, which is important for us to see which one

contributes to the overall spatial weight matrices and which one does not. To ameliorate this, we can find

a penalized profile least square estimator δ̃ for δ, with

δ̃ = argmin
δ

1

2T
‖BT

y−BTZV δ −BTXβ(δ)vec(IN )‖2 + γTu
T |δ|, (2.7)

where u = (|δ̂0,1|−1, . . . , |δ̂0,M |, . . . , |δ̂p,1|−1, . . . , |δ̂p,M |−1)T , and |δ| represents the same vector δ with all

its entries taken absolute value. A more direct penalized least square formulation is given by

δ̃ = argmin
δ

1

2T
‖BT

y− (BTZV −H)δ − g‖2 + γTu
T |δ|, where

g = T−1/2N−a/2(
T∑

t=1

Xt ⊗ (Bt − B̄)γ)(XTBvBvTX)−1XTBvBvT
y
v.

The tuning parameter γT can be found in Assumption R6 in the Appendix. For choosing an appropriate

γT in practice, see Section 4.2.

3 Theoretical Properties

To present the theoretical properties of our estimators, we first present the notations used hereafter and

introduce the measure of time dependence of all the time series variables involved.

Denote {bt} = {vec(Bt)} and {xt} = {vec(Xt)} the vectorized processes for {Bt} and {Xt} respectively,

both with length NK. For t = 1, . . . , T , we assume that

xt = {fj(Ft)}1≤j≤NK , bt = {gj(Gt)}1≤j≤NK , ǫt = {hl(Ht)}1≤l≤N ,

where the fj(·), gj(·) and hl(·) are measurable functions defined on the real line, and Ft = (..., ex,t−1, ex,t),

Gt = (..., eb,t−1, eb,t) and Ht = (..., eǫ,t−1, eǫ,t) are definde by independent and identically distributed

processes {ex,t}, {eb,t} and {eǫ,t} respectively, with {eb,t} independent of {eǫ,t} but correlated with {ex,t}.

We use the functional dependence measure introduced in Wu (2005) for gauging the serial dependence of

a process. For d > 0, define

θxt,d,j = ‖xtj − x′
tj‖d = (E|xtj − x′

tj |d)1/d,
θbt,d,j = ‖btj − b′tj‖d = (E|btj − b′tj |d)1/d,
θǫt,d,l = ‖ǫtl − ǫ′tl‖d = (E|ǫtl − ǫ′tl|d)1/d,

where j = 1, ..., NK, l = 1, ..., N and x′
tj = fj(F ′

t), F ′
t = (..., ex,−1, e

′
x,0, ex,1, ..., ex,t), with e′x,0 independent

of all other ex,j’s. Hence x
′
tj is a coupled version of xtj with ex,0 replaced by an independent and identically

distributed copy e′x,0. Intuitively, a large θxt,d,j means that serial correlation is strong at least for variables

at most time t apart. Finally, we have similar definitions for b′tj and ǫ′tl.
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3.1 Main assumptions

We present the main assumptions of the paper in this section.

M1. The elements in all W i’s can be negative and W i itself can be asymmetric. Moreover, defining

S = {s = 1, . . . ,K|The sth column of Xt contains yt−l, l = 1, . . . , p}, we assume
∑M

i=1 |δ0i| < 1 and
∑p

j=1

∑M
i=1 |δji|+

∑
s∈S |βs| < 1.

M2. The processes {Bt}, {Xt} and {ǫt} are second-order stationary, with {Xt} and {ǫt} having zero

means, and {Bt} independent of {ǫt}. The tail condition P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied

for the variables Bt,jk, Xt,jk and ǫt,j by the same constants D1, D2 and q.

M3. Define

Θx
m,a =

∞∑

t=m

max
1≤j≤NK

θxt,a,j, Θ
b
m,a =

∞∑

t=m

max
1≤j≤NK

θbt,a,j , Θ
ǫ
m,a =

∞∑

t=m

max
1≤j≤N

θǫt,a,j .

Then we assume that for some w > 2, Θx
m,2w,Θ

b
m,2w,Θ

ǫ
m,2w ≤ Cm−α with α,C > 0 being constants

that can depend on w.

M4. (Identification condition) Assume that the two sets of parameters (δ∗,β∗) and (δo,βo) both satisfy

the proposed model (2.2). Write δ = (δℓ)1≤ℓ≤M(p+1), and define the set H to be

H = {ℓ : δ∗ℓ 6= 0 or δoℓ 6= 0}.

Then the identification condition is that the matrix OTO has all its eigenvalues uniformly bounded

away from 0, where

O = (T−1/2
E(BTZV H), T−1/2

E(BT X̃)), and

X̃ = (x1,1, . . . ,xT,1, . . . ,x1,N , . . . ,xT,N )T .

The notation AH means that the matrix A has columns restricted to the set H , while xT
t,j is the jth

row of Xt.

Assumption M1 ensures that our model has a reduced form

yt = Πµ+ΠW 1yt−1 + · · ·+ΠW pyt−p +ΠXtβ +Πǫt, Π = (IN −W )−1, t = 1, . . . , T.

The matrix Π exists with the assumption
∑M

i=1 |δ0i| < 1. The condition
∑p

j=1

∑M
i=1 |δji|+

∑
s∈S |βs| < 1

implies that each
∥∥W j

∥∥
∞

<
∑M

i=1 |δji|
∥∥W 0i

∥∥
∞

< 1 since row-standardization means
∥∥W 0i

∥∥
∞

= 1. At

the same time, without loss of generality assuming S = φ and writing the model as

Φ(L)yt = Πµ+ΠXtβ +Πǫt, Φ(L) = (IN −ΠW 1L− · · · −ΠW pL
p),

where L is the lag operator, then stationarity is ensured if det(Φ(z)) = 0 has all roots lying outside the

unit circle. This is ensured by the condition
∑p

j=1

∑M
i=1 |δji| +

∑
s∈S |βs| < 1, which is thus a sufficient

condition for stationarity. In practice, we implement these restrictions when finding δ̃ in Section 2.3.
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The independence between {Bt} and {ǫt} in M2 ensures that {Bt} serves a function similar to an instru-

ment for model (2.2). The tail condition in M2 implies that all the random variables involved are with

sub-exponential tails, which is a relaxation to strict normality.

The assumption Θx
m,2w ≤ Cm−α essentially means that the strongest serial dependence for the xtj ’s with

at least m time units apart is decaying polynomially as m increases. It allows for the application of a

Nagaev-type inequality in Lemma 1 in the Appendix for our results to hold.

3.2 Identification of the model

To prove that the parameters β and δ in model (2.2) are identified, we assume that we have two sets

of parameters (β∗, δ∗) and (βo, δo) that satisfy model (2.2), as stated in the identification condition M4.

Then

0 = BTZV H(δ∗
H − δoH) +BTXβ∗−βovec(IN ).

But we can write

T−1/2BTXβ∗−βovec(IN ) = N−a/2




T−1
∑T

t=1(Bt − B̄)γxT
t,1(β

∗ − βo)
...

T−1
∑T

t=1(Bt − B̄)γxT
t,N (β∗ − βo)




= T−1/2BT X̃(β∗ − βo),

so that

[T−1/2BTZV H T−1/2BT X̃]

(
δ∗
H − δo

H

β∗ − βo

)
= 0.

Hence taking expectation and multiplying OT on both sides and then (OTO)−1, we have shown that

δ∗
H = δo

H and β∗ = βo.

Note that the matrix O has size N2 × (|H |+K). Since |H | ≤ M(p+ 1) and K are finite and N2 is much

larger than |H |+K, assuming O has full rank is reasonable.

3.3 Main results

Define the rate λT = cT−1/2log1/2(T ∨ N), where c > 0 is a constant. In all the theorems presented

here, we assume that α ≥ 1/2 − 1/w in Assumption M3, which is part of the further assumptions listed

in Theorem 5 in the Appendix. See the Appendix for more details on the technical assumptions for this

paper.

Theorem 1. Let the assumptions in Section 3.1 and in Theorem 5 hold. Then defining the L1 norm

‖a‖1 =
∑N

i=1 |ai| for a vector a, the estimators δ̂ in (2.5) and β̂ in (2.6) satisfy

‖δ̂ − δ‖1 = OP (λTN
−1/2+1/2w) = ‖β̂ − β‖1.

Since w > 2 is assumed in M3, the above immediately implies ‖β̂−β‖1, ‖δ̂− δ‖1 → 0 in probability. This

certainly makes sense as T → ∞. It also makes perfect sense as N → ∞ since we are accumulating more

8



information cross-sectionally for the finite-sized parameters δ and β as N goes to infinity. We present the

asymptotic normality of β̂ and δ̂ in the following two theorems.

Theorem 2. Let the assumptions in Section 3.1 and in Theorem 5 hold. Moreover, define the predictive

dependence measures

P b
0(Bt,qk) = E(Bt,qk|G0)− E(Bt,qk|G−1), P ǫ

0(ǫt,qk) = E(ǫt,qk|H0)− E(ǫt,qk|H−1),

where Gt and Ht are defined in Section 3. Assume

∑

t≥0

max
1≤q≤N

max
1≤k≤K

‖P b
0(Bt,qk)‖ ≤ ∞,

∑

t≥0

max
1≤j≤N

‖P ǫ
0(ǫtj)‖ ≤ ∞.

Then we have

T 1/2
Σ

−1/2
1 (β̂ − β)

D−→ N(0, IK),

where Σ1 = M 1

∑
τ∈Z

E(BT
t ǫtǫ

T
t+τBt+τ )M

T
1 , with M1 = (E(XT

t Bt)E(B
T
t Xt))

−1
E(XT

t Bt).

Theorem 3. Let the assumptions in Section 3.1 and in Theorem 5 hold. Assume that the predictive

dependence measures P b
0(Bt,qk) and P ǫ

0(ǫt,qk) are as defined in Theorem 2 with the same assumptions

applied. Then

T 1/2
Σ

−1/2
2 (δ̂ − δ)

D−→ N(0, IM(p+1)),

where Σ2 = M 2(S1 + S2 − S3 − S
T
3 )M

T
2 , and

S1 =
∑

τ∈Z

E(MBT
t+τǫt+τǫ

T
t B

T
t M

T ),

S2 =
∑

τ∈Z

[
E(ǫtǫ

T
t+τ )⊗ E(Btγγ

TBT
t+τ )

T
]
,

S3 =
∑

τ∈Z

E(MBT
t+τǫt+τ (vec(Btγǫ

T
t ))

T ),

M2 = {(H20 −H10)
T (H20 −H10)}−1(H20 −H10)

T , with

H10 = [IN ⊗ E((Bt − B̄)γyTt ), . . . , IN ⊗ E((Bt − B̄)γyTt−p)]V ,

H20 = M [E((Bt − B̄)TW 01yt), . . . ,E((Bt − B̄)TW 0Myt), . . . ,

E((Bt − B̄)TW 01yt−p), . . . ,E((Bt − B̄)TW 0Myt−p)],

where M = E(Xt ⊗ (Bt − B̄)γ)
[
E(XT

t Bt)E(B
T
t Xt)

]−1

E(XT
t Bt).

These two theorems are the main ones we use, since they provide the tools for practical data analysis such

as hypothesis testing and confidence intervals construction. For calculating Σ1 and Σ2, we calculate all

expectations by replacing them with the corresponding sample means. For the infinite summations in τ

in S1 to S3, we check if the matrix at a particular τ has very small elements overall. If so, we discard the

whole matrix and all the matrices beyond this particular τ . In the real data analysis in Section 6, we find

that we always discard those with τ ≥ 5. See Section 4.1 for further treatments regarding the estimation

of the matrices S1 to S3.

Theorem 4. (Oracle property for δ̃) Let the assumptions in Section 3.1 and in Theorem 5 hold. Then as
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T,N → ∞, with probability approaching 1,

sign(δ̃H) = sign(δH), δ̃Hc
= 0,

where H = {ℓ : δℓ 6= 0} and ℓ = 1, . . . ,M(p + 1). Moreover, let the predictive dependence measures

P b
0(Bt,qk) and P ǫ

0(ǫt,qk) be as defined in Theorem 2 with the same assumptions applied. Then

T 1/2
Σ

−1/2
3 (δ̃H − δH)

D−→ N(0, I |H|),

where Σ3 = M 3(S1 + S2 − S3 − S
T
3 )M

T
3 , and M3 = {(H20 −H10)

T
H(H20 −H10)H}−1(H20 −H10)

T
H

With Theorem 4, we can carry out the selection of the importance of the specified spatial weight matrices

by the penalized estimator δ̃, and the usual inferences on the non-zero elements in δ̃. The practical

performances of these estimators and the asymptotic normality results are presented in Section 5.

4 Practical Implementation

4.1 Regularized estimation of Σ2 and Σ3 in Theorem 3 and 4

In Theorem 3, the definitions of S1 to S3 involve some high dimensional matrices to be estimated. Since

S1 to S3 are in fact all N × N , in this paper we regularize S1 and S3 by banding them directly (see

Bickel and Levina (2008) for more details). In simulations and real data analysis, we find that retaining

only two off-diagonals (two upper and two lower, while setting 0 in all other off-diagonals) when τ = 0,

and retaining only one when |τ | ≥ 1 in the infinite summations in S1, S2 and S3 achieves good results

when N is moderate to large. Again similar to the discussion after Theorem 3, when |τ | ≥ 5, we set the

matrices inside the summations in the definitions of S1 to S3 to exactly zero. For S2, there are two N ×N

matrices E(ǫtǫ
T
t+τ ) and E(Btγγ

TBT
t+τ ). We band them separately, again retaining only two off-diagonals

each when τ = 0, and only one when |τ | ≥ 1. We make these suggestions because in both simulations and

real data analysis, using the 5-fold cross-validation procedure suggested in Bickel and Levina (2008), these

are the banding numbers chosen for |τ | < 5.

4.2 Choice of the number of time lags p, and γT

In our analysis, we assume that p in model (2.1) is fixed. For practical data analysis, we choose p by

minimizing the following BIC criterion:

BIC(p) = log
(
N−1‖BT

y−BTZV δ̂ −BTX
β̂
vec(IN )‖2

)
+ p

logT

T
log(logT ), (4.8)

This BIC criterion follows the one in Wang et al. (2009), and proves to work well in practice. Note that in

the definition of B, there is a rate a which is unknown. However, because of the logarithmic operation in

the first term in BIC(p), the value of a does not change where the minimum of BIC(p) is achieved.

For the choice of γT , we use the BIC criterion above, but with δ̂ replaced by δ̃, so that we are effectively

choosing p and γT together.
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4.3 Choice of γ in B

We have set γ = K−11K as fixed in the definition of B in Section 2.2. In fact this can be estimated

to provide maximal correlation between B and the response variable yt through two-stage least squares.

Consider the model

yt = α+Btγ + vt,

where α is an N × 1 vector of unknown coefficients, and γ is the K × 1 vector of coefficients we want to

estimate. To get γ̂, we can consider the problem

min
α,γ

T∑

t=1

‖yt −α−Btγ‖2,

with solution

γ̂ =
( T∑

t=1

(Bt − B̄)T (Bt − B̄)
)−1 T∑

t=1

(Bt − B̄)T (yt − ȳ).

Implementing this does not change our proofs, since it is easy to show that
∥∥γ̂
∥∥
1
= OP (1), which substitutes∥∥γ̂

∥∥
1
= 1 in all of our proofs. We have tried this in our simulations and real data analysis, and the practical

differences between using this and γ = K−11K is negligible.

5 Simulation Experiments

5.1 Setting and results

To generate yt through model (2.1), we generate Xt by using vec(Xt) = 0.2 · 1K ⊗ ǫt + ǫXt with K = 3,

where ǫt ∼ N(0, IN ) is the innovation series for model (2.1), with the ǫt’s being independent of each other.

The ǫXt ’s are independent of each other and of other variables, with ǫXt ∼ N(0,ΣX), and

ΣX =




2IN 0.5IN 0.5IN

0.5IN 2IN 0.5IN

0.5IN 0.5IN 2IN


 .

Since Xt depends on ǫt, we set Bt to be such that vec(Bt) = 0.7ǫXt + ǫBt , where the ǫBt ’s are drawn

independently from the same distribution as ǫXT , and they are independent of all other variables.

We set M = 3 and p = 2 for the model. Each element of β and δ is generated independently from the

uniform distribution U(0, 1). Elements in δ are then randomly chosen to be 0 while maintaining p = 2.

To make sure the stationarity of {yt}, every element in β and δ is then divided by 1.1 times the absolute

sum of all elements in β and δ respectively.

For the M = 3 specified spatial weight matrices, to facilitate stationarity of the model, we construct each

W i such that only the first three off-diagonals (upper and lower) have non-zero elements. This way, as N

increases, we can still control the eigenvalues of W i to be less than 1 in magnitude. In another setting,

we generate an orthogonal matrix V i and a diagonal matrix Di with all values in Di to be less than 1 in

magnitude, such that W i = V iDiV
T
i . Ultimately, both settings achieves very similar results, and hence

we only show the results of the former setting.
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Figure 1: Boxplots of averaged L1 errors. Upper row:
∑3

i=1 |β̂i − βi|/3. Bottom row:
∥∥δ̂ − δ

∥∥
1
/9. Left

column (from left to right): N = 40, 80, 120, T = 60. Right column (from left to right): T = 40, 80, 120, N =
60.
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Figure 2: Histograms and normal probability plots for standardized β̂1 (upper row) and δ̂1,3 (lower row)
with N = T = 80. Standardization used respectively the asymptotic results from Theorem 2 and 3.
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We repeat our simulations for 500 times, and report the averaged L1-error for β̂ and δ̂ (i.e., respectively,∥∥β̂ − β
∥∥
1
/3 =

∑3
i=1 |β̂i − βi|/3 and

∥∥δ̂ − δ
∥∥
1
/9) in Figure 1, which illustrates the convergence of β̂ and δ̂

respectively as N, T or both gets larger.

Next we consider the asymptotic normality of β̂ and δ̂. We choose β̂1 and δ̂1,3 with (N, T ) = (80, 80) as

examples for illustration. For each simulation, we construct β̂1 and δ̂1,3, and standardize them according

to the asymptotic results in Theorem 2 and Theorem 3 respectively. Figure 2 shows histograms and

normal probability plots of the standardized estimators. They both show good fit for a standard normal

distribution. It means that the asymptotic variance formulae in Theorem 2 and 3 are reliable for inference,

and the way that we estimate any high dimensional covariance matrices mentioned in Section 4.1 helps in

achieving an accurate estimation of the covariance matrices for β̂ and δ̂. We actually get very similar good

fits for the non-zero components of δ̃, showing the asymptotic normality in Theorem 4 is reliable as well.

The results are omitted here to save space.

On top of asymptotic normality, δ̃ also enjoys sign consistency as shown in Theorem 4. We illustrate the

selection consistency of δ̃ in practice by calculating the specificity (i.e., proportion of correctly identified

zeros) and the sensitivity (i.e., proportion of correctly identified non-zeros) of δ̃. Table 1 shows that at

various combinations of (N, T ), the sensitivity and specificity are all 100%, showing perfect identifications

of zeros and non-zeros. The table also shows the decreasing error for β̂ and δ̃ as N or T increases.

T = 40 T = 80 T = 120

‖β̂ − β‖1 9.06(3.58) 6.26(1.04) 3.16(0.58)

N = 60 ‖δ̃ − δ‖1 0.13(0.05) 0.05(0.04) 0.02(0.02)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

N = 40 N = 80 N = 120

‖β̂ − β‖1 7.60(0.89) 6.24(0.77) 3.51(0.65)

T = 60 ‖δ̃ − δ‖1 0.02(0.01) 0.01(0.00) 0.00(0.00)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

Table 1: Mean L1 error for β̂ and δ̃. Standard deviations are shown in brackets. Sensitivity and specificity
of δ̃ are also shown for various combinations of T,N . The values of

∥∥β̂ − β
∥∥
1
are multiplied by 104.

5.2 Performance of BIC for choosing p

To examiner the performance of the BIC defined in (4.8), we run our simulations 100 times for each

particular (N, T ) combination using the same setting as before, except that each time p is randomly

generated from 1 to 7. With each simulation, we construct the positive selection rate (PSR) and the false

discovery rate (FDR), defined as

PSR =

∑100
j=1 |s∗j ∩ s0,j |∑100

j=1 |s0,j |
, FDR =

∑100
j=1 |s∗j ∩ sc0,j |∑100

j=1 |s∗j |
,

where s0,j represents the index set for all δir that should be included in the model at the jth repetition.

Since we do not set δir to be exactly 0 in this experiment, we have |s0,j | = pM = 3p, where p is in fact

different for different j. The set s∗j is the index set for all δ̂ir estimated when p is estimated as p∗. Clearly,

if p∗ ≤ p, then |s∗j ∩ s0,j| = |s∗j | and |s∗j ∩ sc0,j| = 0, meaning we may not be having the whole true set
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s0,j but we do not falsely “discover” something that is not in s0,j . On the other hand, if p∗ > p, then

|s∗j ∩ s0,j | = |s0,j | and |s∗j ∩ sc0,j | > 0, meaning we have included all that are in s0,j , but we have falsely

“discovered” something outside of s0,j . Hence in a sense, PSR measures an average number of times where

we do not underestimate p, while FDR measures an average number of times we overestimate p. Ideally,

we want PSR=100% while FDR = 0%. These two measures are also used in Chen and Chen (2008) and

Chen and Chen (2012) in different contexts.

T = 40 T = 50 T = 60
N = 50 PSR 100.00% 100.00% 98.00%

FDR 2.00% 0.00% 0.00%

N = 40 N = 50 N = 60
T = 50 PSR 98.00% 100.00% 100.00%

FDR 0.00% 0.00% 2.00%

Table 2: Positive selection rate (PSR) and false discovery rate (FDR) for the choice of p using BIC defined
in (4.8).

Table 2 shows the results. Our BIC definitely performs very well with PSR almost always equal 100% and

FDR 0% in various (N, T ) combinations.

6 Analysis of Stock Return Data

Spatial lag model has been widely applied to economic or geographic data, yet financial data is rarely

analyzed using spatial econometrics tools. We illustrate the performance of our model using the daily

log-returns of some important stocks in the Euro Stoxx 50 and S&P 500 in 2015. Our aim is to analyze the

spatial interactions of these stocks and to see how different macroeconomic and financial indicators affect

the dynamics of the returns.

The table below shows all the stocks we use:

France Alstom, Total, BNP, Scociete,
Sanofi, Carrefour, LVMH, Vivendi

Germany Daimler, Allianz, Deutsche Bank
Italy ENEL, ENI, Intesa, Unicredit, Tele Italy
Spain Repsol, Banco, Telefonica
US GM, PG, Nextera, American Express,

Citi, Wells Frago, Amgen, Gilead,
Johnson, Costco, Home, Centurylink, Verizon

Energy Alstom, Total, ENEL, ENI, Repsol, PG, Nextera
Finance BNP, Scociete, Allianz, Deutsche Bank,

Intesa, Unicredit, Banco, American Express,
Citi, Wells Fargo

Pharmacy Sanofi, Amgen, Gilead, Johnson
Retails Carrefour, LVMH, Costco, Home
Telecom Vivendi, Tele Italy, Telefonica, Centurylink, Verizon
Auto Daimler, GM

Arnold et al. (2013) illustrates, with the help of a spatial lag model, that the stocks belonging to the same

country or the same industry are more related to each other, in the sense that spatial interactions of the log-

returns are stronger. They analyze the Euro Stoxx 50 stock returns using a combination of three adjacency

matrices as an estimator for the spatial weight matrix in their model. The first one being the weight of the

stocks in Euro Stoxx 50, and the second and third ones being the adjacency matrices corresponding to the
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same industry and to the same country, respectively. They found that all these matrices contribute to the

final spatial weight matrix in their model, and improves risk estimation in a portfolio allocation exercise.

However, no inferences on the estimated parameters are performed due to the lack of asymptotic results.

To fill in this gap and generalize on their model, we include four types of spatial weight matrix specifications

instead of only three matrices as in Arnold et al. (2013). The first type is on the physical distance dij

between city i and j where the headquarters of the stocks’ associated companies are built. Three specified

spatial weight matrices with elements 1/dij , 1/d
2
ij and 1/d3ij are included for selection. The second to fourth

types coincide with the three adjacency matrices specified in Arnold et al. (2013). Namely, one contains

the weights of stocks in Euro Stoxx 50 or S&P 500, and the remaining two having (i, j)th element equal

to 1 if the corresponding stocks belong to the same industry or country respectively. This way, we have

M = 6 specified spatial weight matrices for selection in our model. We have done row standardization on

all of these six matrices.

As for the covariates Xt, we use the Fama-French three factors (excess return = market return - risk free

rate, SMB = Small (market capitalization) Minus Big, HML = High (book-to-market ratio) Minus Low),

national stock index (S&P 500, CAC40, DAX, IBEX or MIB) and the corresponding European or US

industry index for each stock. Hence K = 5, and we are treating these as exogenous covariates, so we set

Bt = Xt, the same as the covariates. Minimizing the BIC defined in (4.8) results in p = 1.

1/d 1/d2 1/d3 Stock weight Country Industry

δ̃0i -0.0052 0.0811 -0.3880 0 0.0001 0.3122
(0.0015) (0.0036) (0.0497) (—) (10−5) (0.0346)

δ̃1i 0 0 -0.0612 0 2.22× 10−5 0.0610
(—) (—) (0.0062) (—) (6.1× 10−6) (0.0051)

Market excess return SMB HML National Index Industry Index

β̂ 1.516(0.616) −4.884(2.662) 1.869(0.841) 14.788(5.563) 19.746(10.274)

Table 3: The values of δ̃ and β̂, where p = 1 and γT = 1.6438 are chosen by minimizing the BIC defined
in (4.8). Estimated standard deviations are in brackets. All values associate with β̂ are multiplied by 106.

Table 3 shows the values of δ̃. Clearly, stock weights in their respective market indices do not contribute to

the two spatial weight matrices W 0 and W 1. However, the adjacency matrices for country and industry

do contribute to both of the spatial weight matrices. For physical distance, clearly, a traditional approach

where one chooses a distance 1/d, 1/d2 or 1/d3 for the spatial weight matrix would fail, since it is clear

that all three specified spatial weight matrices are significant and cannot be omitted for W 0. Only the

one for 1/d3 is significant to W 1 though. In the same table, we can see that all factors in Xt are at least

marginally significant, with national and industry indices play a more important role practically than the

Fama-French three factors.

Figure 3 shows the heat map of the spatial weight matrices W 0 and W 1. It is clear that there are

some block patterns in these matrices, which mainly represent stocks in the same country or industry.

Meanwhile, they are related strongly with each other in general if they are all from Europe or US, with

France and Italy showing strong connections. It is interesting to note that the ninth stock Daimler, and

the twentieth stock GM, are related to each other (two bright yellow dots on both W 0 and W 1), although

they belong to Germany and US auto-industry respectively. Since Daimler owns part of GM by spin-offs,

the relation itself is not surprising. However, it means that our method of taking linear combination of

15



different specified spatial weight matrices can indeed reflect a general pattern of spatial interactions. In

W 1, we can also find some blocks for stocks in Germany and Spain.
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7 Appendix

7.1 Technical assumptions

We present and explain the more technical assumptions of the paper in this section. Most of these assump-

tions are extended from Lam and Souza (2015).

R1. The column vectors vec(W T
0i) in V 0 are linearly independent to each other, such that there exists a

constant u > 0 with σ2
M (V 0) ≥ u > 0 uniformly as N → ∞, where σi(A) is the ith largest singular

value of a matrix A. Moreover, max1≤i≤M ‖W 0i‖1 ≤ c < 1 uniformly as N → ∞ for some constant

c > 0.
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R2. Write ǫt = Σ
1/2
ǫ ǫ∗t , where Σǫ is the covariance matrix for ǫt. Then the elements in Σǫ are all less

than σ2
max uniformly as N → ∞. Same for the variance of the elements in Bt. We also assume

‖Σ1/2
ǫ ‖∞ ≤ Sǫ < ∞ uniformly as N → ∞, with {ǫ∗t,j}1≤j≤N being a martingale difference with

respect to the filtration generated by σ(ǫ∗t,1, ..., ǫ
∗
t,j). The tail condition P (|Z| > v) ≤ D1 exp(−D2v

q)

is also satisfied by ǫ∗t,j .

R3. All singular values of E(XT
t Bt) are uniformly larger than Nu for some constant u > 0, while the

maximum singular value is also of order N . Individual entries in the matrix E(xtb
T
t ) are uniformly

bounded away from infinity.

R4. For the same constant a, we have for each N

max
1≤i≤N

N∑

j=1

∥∥∥E(
∑

q≥0

bt,ix
T
t−q,j)

∥∥∥
max

, max
1≤j≤N

N∑

i=1

∥∥∥E(
∑

q≥0

bt,ix
T
t−q,j)

∥∥∥
max

≤ CbxN
a

where Cbx > 0 is a constant and bt,i, xt,j are the column vectors for the ith row of Bt and jth row

of Xt respectively. At the same time, assume also that E(Xt ⊗Btγ) has all singular values of order

N1+a.

R5. Assume 0 < b < 1. For fixed = 1, . . . ,K, the eigenvalues of N−bvar(Bt,k) and var(ǫT ) are uniformly

bounded away from 0 and infinity, and respectively dominates the singular values of the sum of

N−bcov(Bt+τ,k,Bt,k) over τ 6= 0 and the sum of E(ǫtǫ
T
t+τ ) over τ 6= 0. Also, for each i = 1, . . . , N ,

we assume that

∑

τ

σi

(
N−bcov(Bt+τ,k,Bt,k)

)
< ∞,

∑

τ

σi

(
E(ǫtǫt+τ )

)
< ∞.

R6. Define λT = cT−1/2log1/2(T ∨ N) for some constant c > 0. The tuning parameter γT is such that

γT = CλT for some constant C > 0.

R7. In all the assumptions above, we assume that as N, T → ∞, λTN
1−a = o(1), N−a+b−1/wlog−1(T ∨

N) = o(1), log(T ∨N)N1/w−b = o(1) and N b−a = o(TλT ).

Assumption R1 essentially requires that each specification W 0i is different from one another to a certain

extent. This is intuitive, since if W 0i and W 0l are too similar to each other, the coefficients δji and δjl

are not well defined, and this will have anegative impact on the performance of our estimators.

The assumptions on Σǫ in R2 is mainly for the convenience of proofs, while the martingale difference

assumption for ǫt is a relaxation to independence.

Assumptions R3 and R4 are closely related. They paint a picture of how the exogenous variables in Bt

are correlated with Xt−q. Assumption R3 essentially says that the covariance between a variable in Bt

and one in Xt is finite uniformly as N → ∞. Then for k = 1, . . . ,K, considering the kth diagonal entry

of E(XT
t Bt) is

∑N
j=1 E(Xt,jkBt,jk) with each E(Xt,jkBt,jk) being finite, it is indeed reasonable to assume

that each diagonal entry in the matrix is of order N . This assumption is needed for the estimator β = β(δ)

to be well-defined.
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Assumption R4 essentially describes how each row of variables in Bt are correlated with different rows of

variables in Xt. With this, we can actually derive easily that ‖E(Xt ⊗Btγ)‖1 has order at most N1+a.

Hence the assumption of having all the singular values of E(Xt ⊗Btγ) of order N
1+a is reasonable.

Assumption R5 assumes a rate for the singular values of var(Bt,k) essentially, which is important in certain

asymptotic normality results. The rate N b, possibly differing from Na, is reasonable as well since the way

that Bt and Xt are correlated do not directly indicate how the variables in Bt itself are correlated, unless

of course when Bt = Xt where Xt itself is exogenous, in which case a = b. The variance-covariance matrix

being dominating the lag τ auto-covariances is for the ease of presentation of rates of convergence in the

asymptotic normality results in this paper.

7.2 Proof of theorems

The followings are Lemma 1 and 2 of Lam and Souza (2015) respectively.

Lemma 1. For a zero mean time series process xt = f(F) with dependence measure θxt,d,j defined in

Section 3, assume Θx
m,a ≤ Cm−α as in Assumption M3. Then there exists constants C1, C2 and C3

independent of v, T and the index j such that

P (|1/T
T∑

t=1

xt,j | > v) ≤ C1T
w(1/2−α̃)

(Tv)w
+ C2 exp(−C3T

β̃v2),

where α̃ = α ∧ (1/2− 1/w), and β̃ = (3 + 2α̃w)/(1 + w).

Furthermore, assume another zero mean time series process zt (can be the same process xt) with both

Θx
m,2w, Θz

m,2w ≤ Cm−α, as in Assumption M3. Then provided maxj ‖xtj‖2w, maxj ‖ztj‖2w ≤ c0 ≤ ∞
where c0 is a constant, the above Nagaev-type inequality holds for the product process {xtjztl − E(xtjztl)}.

Lemma 2. For any N ×N matrix H = (h1, . . . , hN)T and any N ×K matrix M , define

V H =




IK ⊗ h1

...

IK ⊗ hN


 .

Then we have

HM = (IN ⊗ vecT (M))V H .

We first present an Theorem 5 which states that a set M is such that P (M) → 1 as T,N → ∞, and

our estimators enjoy nice properties on M. This theorem is in fact exactly the same as Theorem S.1 of

Lam and Souza (2015).
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Denote Bt,ij and Xt,ij the (i, j) entry of Bt and Xt respectively, and define M = ∩7
i=1Ai, where

A1 =

{
max

1≤i,k≤N
max

1≤j,l≤K
|T−1

T∑

t=1

[Bt,ijXt,kl − E(Bt,ijXt,kl)]| < λT

}
,

A2 =

{
max

1≤i,k≤N
max

1≤j≤K
|T−1

T∑

t=1

Bt,ijǫt,k| < λT

}
,

A3 =

{
max

1≤k≤K
|T−1

T∑

t=1

N∑

s=1

Bt,skǫt,s| < λTN
1/2+1/2w

}
,

A4 =

{
max

1≤i≤N
max

1≤j≤K
|B̄.,ij − E(Bt,ij)| < λT

}
,

A5 =

{
max

1≤j≤N
|ǭ.,j| < λT

}
,

A6 =

{
max

1≤i≤N
max

1≤j≤K
|X̄.,ij | < λT

}
,

A7 =

{
max

1≤k≤K
|

N∑

s=1

B̄·,sk ǭ.,s| < 21/2λTN
1/2log1/2(T ∨N)Sǫ(max

i.j
|E(Bt,ij)|+ λT )

}
.

Theorem 5. Let Assumptions M1-M4 in Section 3.1 and R1-R7 in Section 7.1 hold. Suppose α ≥
1/2 − 1/w in Assumption M3, and for the application of the Nagaev-type inequality in Lemma 1 for the

processes defined in A1 to A7, suppose the constants C1, C2 and C3 are the same. Then with c ≥
√
3/C3

where c is the constant defined in λT = cT−1/2log1/2(T ∨N), we have

P (M) ≥ 1− 8C1K
2(C3/3)

w/2 N2

Tw/2−1logw/2(T ∨N)
− 8C2K

2N2

T 3 ∨N3
− 2K

T ∨N
.

It approaches 1 if we assume further that N = o(Tw/4−1/2logw/4(T )).

Proof of Theorem 1

From (2.4) and that

y
v
0 =

M∑

i=1

δ0iW
⊗
0iy

v
0 +

p∑

j=1

( M∑

i=1

δjiW
⊗
0i

)
y
v
j +Xβ + ǫv + 1T ⊗ µ

=
(
ITN −

M∑

i=1

δ0iW
⊗
0i

)−1
( p∑

j=1

( M∑

i=1

δjiW
⊗
0i

)
y
v
j +Xβ + ǫv + 1T ⊗ µ

)
,

it is easy to get, since BvT (1T ⊗ µ) = 0, that

β(δ)− β = (XTBvBvTX)−1XTBvBvT ǫv.
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Moreover,

β̂ = β(δ̂) = (XTBvBvTX)−1XTBvBvT
[(

ITN −
M∑

i=1

δ̂0iW
⊗
0i

)
y
v
0 −

p∑

j=1

( M∑

i=1

δ̂jiW
⊗
0i

)
y
v
j

]

= (XTBvBvTX)−1XTBvBvT
[(

ITN −
M∑

i=1

δ0iW
⊗
0i

)
y
v
0 −

p∑

j=1

( M∑

i=1

δjiW
⊗
0i

)
y
v
j

+
M∑

i=1

(δ0i − δ̂0i)W
⊗
0iy

v
0 +

p∑

j=1

( M∑

i=1

(δji − δ̂ji)W
⊗
0i

)
y
v
j

]

= β(δ) + (XTBvBvTX)−1XTBvBvT

·
[ M∑

i=1

(δ0i − δ̂0i)W
⊗
0iy

v
0 +

p∑

j=1

( M∑

i=1

(δji − δ̂ji)W
⊗
0i

)
y
v
j

]
.

Using the above, we can decompose

β̂ − β = I0 + I1 + I2 + I3 + I4 + I5, where

I0 = (E(XT
t Bt)E(B

T
t Xt))

−1(E(XT
t Bt)E(B

T
t Xt)− T−2XTBvBvTX)(β̂ − β),

I1 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT ǫv,

I2 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT (
M∑

i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗Xβ,

I3 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT (

M∑

i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗ǫv,

I4 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT (

M∑

i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗(

p∑

j=1

(

M∑

i=1

δjiW
⊗
0i)y

v
j ),

I5 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT (

p∑

j=1

(
M∑

i=1

(δji − δ̂ji)W
⊗
0iy

v
j )),

with Π
⊗ = (ITN −

∑M
i=1 δ0iW

⊗
0i)

−1. We need to find the rate of convergence of I0 I1, I2, I3, I4 and I5.

To this end, using Assumption R3 in Section 7.1,

‖E(XT
t Bt)E(B

T
t Xt)

−1‖1 ≤ K1/2

λmin(E(X
T
t Bt)E(B

T
t Xt))

≤ K1/2

N2u2
.

Define U = IN⊗T−1
∑T

t=1 vec(Bt−B̄)vecT (Xt) andU0 = IN⊗E(btx
T
t ), then we can write T−1XTBv =

V T
IN

UV IN
and E(XT

t Bt) = V T
IN

U0V IN
. Also, denote W c

j ,Bt,j and Xt,j the jth column of W , Bt and
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Xt respectively, and let πT
j be the jth row of Π. Then on M,

‖I0‖1 ≤ ‖(E(XT
t Bt)E(B

T
t Xt))

−1‖1‖((E(XT
t Bt)E(B

T
t Xt)) − T−2XTBvBvTX)(β̂ − β)‖1

≤ K1/2

N2u2

[
‖V T

IN
(U0 −U)TV IN

V T
IN

U0‖1 + ‖V T
IN

UTV IN
V T

IN
(U0 −U)‖1

]
‖V IN

(β̂ − β)‖1

≤ K1/2

N2u2

[
K‖U0 −U‖max ·N ·K‖U0‖max

+ (K‖V T
IN

(U −U0)
TV IN

‖max +K‖V T
IN

UT
0 V IN

‖max) ·K‖U0 −U‖max

]
·N‖β̂ − β‖1

≤ K1/2(2λTσbx(1 + µb,max + λT ) + λ2
T (1 + µb,max + λT )

2)‖β̂ − β‖1
= O(λT ‖β̂ − β‖1),

where µb,max =
∥∥E(bt)

∥∥
max

. At the same time, on M,

‖I1‖1 ≤ K1/2

N2u2
‖T−1XTBv‖1‖T−1BvT ǫv‖1

≤ K1/2

N2u2
‖V T

IN
(U −U0)V IN

+ V T
IN

UT
0 V IN

‖1

· (KλTN
1/2+1/2w +

√
2KλTN

1/2log(T ∨N)Sǫ(µb,max + λT ))

≤ K1/2

N2u2
N(λT (1 + µb,max + λT ) + σbx)

· (KλTN
1/2+1/2w +

√
2KλTN

1/2log(T ∨N)Sǫ(µb,max + λT ))

= O(λTN
−1/2+1/2w).

Recall that W j =
∑M

i=1 δjiW 0i, and denoting Ŵ j =
∑M

i=1 δ̂jiW 0i for j = 0, 1, . . . , p, then on M,

‖I2‖1 ≤ K1/2

N2u2
‖T−1XTBv‖1‖T−1

T∑

t=1

(Bt − B̄)T (W 0 − Ŵ 0)ΠXt‖1‖β‖1

≤ K1/2

N2u2
O(N)

(
K · max

1≤r≤K

∣∣∣
N∑

j=1

(W c
0,j − Ŵ

c

0,j)
TT−1

T∑

t=1

(Bt,r − B̄.,r)X
T
t,rπj

∣∣∣
)

≤ O(N−1)(

N∑

j=1

(λT (1 + µb,max + λT ) + σbx)‖W c
0,j − Ŵ

c

0,j‖1‖πj‖1)

≤ O(N−1)(N‖δ0 − δ̂0‖1) = O(‖δ0 − δ̂0‖1).

Similarly, on M,

‖I3‖1 ≤ K1/2

N2u2
‖T−1XTBv‖1‖T−1

T∑

t=1

(Bt − B̄)T (W 0 − Ŵ 0)Πǫt‖1

≤ K1/2

N2u2
O(N)

(
K max

1≤r≤K

∣∣∣∣
N∑

j=1

(W c
0,j − Ŵ

c

0,j)
T
(
T−1

T∑

t=1

(Bt,r − B̄.,r)ǫ
T
t

)
πj

∣∣∣∣
)

≤ O(N−1) ·O(NλT max
1≤j≤N

∥∥πj

∥∥
1

max
1≤j≤N

∥∥W c
0,j − Ŵ

c

0,j

∥∥
1
) = O(λT

∥∥δ0 − δ̂0
∥∥
1
).
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For bounding
∥∥I4
∥∥
1
and

∥∥I5
∥∥
1
, recall that from Section 3.1, we can express yt as

yt = Φ
−1(L)Π(µ+Xtβ + ǫt) =

∑

q≥0

ΨqΠ(µ+Xt−qβ + ǫt−q), (7.9)

where Ψq is N ×N such that
∑

q≥0

∥∥Ψq

∥∥
∞

< ∞ because of stationarity. Then we can decompose

‖I4‖1 ≤ K1/2

N2u2
‖T−1XTBv‖1

∥∥∥T−1
T∑

t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑

j=1

W jΦ
−1(L)Π(Xt−jβ + ǫt−j)

∥∥∥
1

= O(N−1(‖I41‖1 + ‖I42‖1)), where

‖I41‖1 =
∥∥∥T−1

T∑

t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑

j=1

W jΦ
−1(L)ΠXt−jβ

∥∥∥
1
,

∥∥I42
∥∥
1
=
∥∥∥T−1

T∑

t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑

j=1

W jΦ
−1(L)Πǫt−j

∥∥∥
1
.

On M, we have

∥∥I41
∥∥
1
≤ max

1≤j≤p
max

1≤r,k≤K
pK2

∥∥β
∥∥
1

∣∣∣∣
∑

q≥0

{
T−1

T∑

t=1

(Bt,r − B̄·,r)
T (W 0 − Ŵ 0)ΠW jΨqΠXt−q−j,k

}∣∣∣∣

= O(Nσbx

∥∥W 0 − Ŵ 0

∥∥
∞

∥∥W j

∥∥
∞

∥∥Π
∥∥2
∞

∑

q≥0

∥∥Ψq

∥∥
∞
)

= O(N
∥∥δ0 − δ̂0

∥∥
1
),

where the second line is by Assumption R4. At the same time on M,

∥∥I42
∥∥
1
≤ max

1≤j≤p
max

1≤r≤K
pK

∣∣∣∣
∑

q≥0

{
T−1

T∑

t=1

(Bt,r − B̄·,r)
T (W 0 − Ŵ 0)ΠW jΨqΠǫt−q−j

}∣∣∣∣

= O(NλT

∥∥W 0 − Ŵ 0

∥∥
∞

∥∥W j

∥∥
∞

∥∥Π
∥∥2
∞

∑

q≥0

∥∥Ψq

∥∥
∞
)

= O(NλT

∥∥δ0 − δ̂0

∥∥
1
),

where the second line follows from the rate on A2. These imply that on M,

∥∥I4
∥∥
1
= O(

∥∥δ0 − δ̂0

∥∥
1
).
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To bound
∥∥I5
∥∥
1
, we can decompose

‖I5‖1 ≤ K1/2

N2u2
‖T−1XTBv‖1

∥∥∥T−1
T∑

t=1

(Bt − B̄)T
p∑

j=1

(W j − Ŵ j)Φ
−1(L)Π(Xt−jβ + ǫt−j)

∥∥∥
1

= O(N−1(‖I51‖1 + ‖I52‖1)), where

‖I51‖1 =
∥∥∥T−1

T∑

t=1

(Bt − B̄)T
p∑

j=1

(W j − Ŵ j)Φ
−1(L)ΠXt−jβ

∥∥∥
1
,

‖I52‖1 =
∥∥∥T−1

T∑

t=1

(Bt − B̄)T
p∑

j=1

(W j − Ŵ j)Φ
−1(L)Πǫt−j

∥∥∥
1
.

To bound
∥∥I51

∥∥
1
, similar to the treatment on

∥∥I41
∥∥
1
, on M,

∥∥I51
∥∥
1
≤ max

1≤r,k≤K
K2
∥∥β
∥∥
1

∣∣∣∣T−1
T∑

t=1

(Bt,r − B̄·,r)
T

p∑

j=1

(W j − Ŵ j)
∑

q≥0

ΨqΠXt−q−j,k

∣∣∣∣

= O(Nσbx

p∑

j=1

∥∥W j − Ŵ j

∥∥
∞

∥∥Π
∥∥
∞

∑

q≥0

∥∥Ψq

∥∥
∞
)

= O(N
∥∥δ − δ̂

∥∥
1
).

Finally, on M,

∥∥I52
∥∥
1
≤ max

1≤r≤K
K

∣∣∣∣T−1
T∑

t=1

(Bt,r − B̄·,r)
T

p∑

j=1

(W j − Ŵ j)
∑

q≥0

ΨqΠǫt−q−j

∣∣∣∣

= O(NλT

p∑

j=1

∥∥W j − Ŵ j

∥∥
∞

∥∥Π
∥∥
∞

∑

q≥0

∥∥Ψq

∥∥
∞
)

= O(NλT

∥∥δ − δ̂
∥∥
1
).

Hence on M, we have ∥∥I5
∥∥
1
= O(

∥∥δ − δ̂
∥∥
1
).

Combining the rates for
∥∥I0
∥∥
1
to
∥∥I5
∥∥
1
, we can conclude that on M,

∥∥β̂ − β
∥∥
1
= O(λTN

−1/2+1/2w +
∥∥δ − δ̂

∥∥
1
). (7.10)

We need to find the order of ‖δ̂ − δ‖1. From (2.3) and (2.5), it is easy to show that

Ky
v
0 −BT

y = Ky
v
0 − (BT ǫ+BTZV δ +BTXβvec(IN)),
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where

Ky
v
0 = Hδ +KXβ +Kǫv

= Hδ + T−1/2N−a/2
T∑

t=1

Xt ⊗ (Bt − B̄)γβ +Kǫv

= Hδ +BTXβvec(IN ) +Kǫv.

Hence,

Ky
v
0 −BT

y = −BT ǫ+ (H −BTZV )δ +Kǫv.

Substituting the above back to (2.5), we can decompose

δ̂ − δ =
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )T
[
Kǫv −BT ǫ

]
= D1 +D2, where

D1 =
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )TKǫv,

D2 = −
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )TBT ǫ.

To bound
∥∥D1

∥∥
1
and

∥∥D2

∥∥
1
, we introduce some notations and find their L1 norm bounds first. For

i = 1, . . . ,M , define

U q = IN ⊗ T−1
T∑

t=1

vec(Bt − B̄)vecT (Xt−q), U0q = IN ⊗ E(btx
T
t−q).

Also, define for i = 1, . . . ,M and j = 1, . . . , p,

A1 = T−1
T∑

t=1

Xt ⊗ (Bt − B̄)γ, A0
1 = E(Xt ⊗Btγ),

A2 = (V T
IN

UTV IN
V T

IN
UV IN

)−1, A0
2 = (V T

IN
UT

0 V IN
V T

IN
U0V IN

)−1,

A3 = V T
IN

UTV IN
, A0

3 = V T
IN

UT
0 V IN

, (7.11)

A4ij =
∞∑

q=0

V T
WT

0i
U q+jV Π̃q

β, A0
4ij =

∞∑

q=0

V T
W T

0i
U0,q+jV Π̃q

β,

A5ij =

∞∑

q=0

V T
WT

0i

(
IN ⊗ T−1

T∑

t=1

vec(Bt − B̄)ǫTt−q−j

)
vec(Π̃

T

q ).

where Π̃q = ΨqΠ. It is straightforward to see that, on M,

‖A1 −A0
1‖max = O(λT ) (7.12)

Meanwhile, by Assumptions R4 and R7, on M,

‖A1‖1 ≤ ‖A0
1‖1 + ‖A1 −A0

1‖1 = O(N1+a + λTN
2) = O(N1+a). (7.13)
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Similarly, on M,

‖A0
3‖1 ≤ K‖V T

IN
UT

0 V IN
‖max = O(N), ‖A3 −A0

3‖1 = O(λTN), ‖A3‖1 = O(N). (7.14)

As A0
2 = (A0

3A
0T
3 )−1,

‖A0
2‖1 ≤ K1/2

λmin(A
0
3A

0T
3 )

≤ K1/2

N2u2
= O(N−2). (7.15)

Moreover, we know that A2 −A0
2 = (A2 −A0

2)((A
0
2)

−1 −A−1
2 )A0

2 +A0
2((A

0
2)

−1 −A−1
2 )A0

2, and on M,

‖(A0
2)

−1 −A−1
2 ‖1 = ‖A0

3A
0T
3 −A3A

T
3 ‖1 ≤ ‖A0

3 −A3‖1‖A0T
3 ‖1 + ‖A3‖1‖A0T

3 −AT
3 ‖1 = O(λTN

2).

Therefore, on M,

‖A2 −A0
2‖1 ≤ ‖(A0

2)
−1 −A−1

2 ‖1‖A0
2‖21

1−O(λTN2N−2)
= O

( λTN
2N−4

1− λTN2N−2

)
= O(λTN

−2). (7.16)

As for ‖A4ij‖1, by Assumptions M1 and R4, defining π̃
T
q,r to be the rth row of Π̃q, we have on M,

‖A0
4ij‖1 ≤

∞∑

q=0

K‖β‖1‖V T
W T

0i
U0,q+jV Π̃q

‖max =

∞∑

q=0

K‖β‖1 max
1≤k,m≤K

∣∣∣
N∑

r=1

W cT
0i,rE(Xt−q−j,kB

T
t,m)π̃q,r

∣∣∣

= O(‖W 0i‖1
∑

q≥0

‖Π̃q‖∞ ·N) ≤ O(‖W 0i‖1
∑

q≥0

(‖Π‖∞‖Ψq‖∞) ·N) = O(N). (7.17)

Similarly, we can easily show on M that

‖A4ij −A0
4ij‖1 = O(λTN).

Hence we have

‖A4ij‖1 = O(N). (7.18)

To bound ‖A5ij‖1, an element in A5ij is bounded on M by

∣∣∣
N∑

r=1

∞∑

q=0

W cT
0i,rT

−1
T∑

t=1

(Bt,k − B̄k)ǫ
T
t−q−jπ̃q,r

∣∣∣ = O(λTN), so ‖A5ij‖1 = O(λTN). (7.19)

We now decompose D1 = F1 + F2 + F3, where

F1 =
[
(H20 −H10)

T (H20 −H10)
]−1

·
[
(H20 −H10)

T (H20 −H10)− T−1Na(H −BTZV )T (H −BTZV )
]
D1,

F2 =
[
(H20 −H10)

T (H20 −H10)
]−1

· (T−1/2Na/2H −H20 − T−1/2Na/2BTZV +H10)
T · T−1/2Na/2Kǫv,

F3 =
[
(H20 −H10)

T (H20 −H10)
]−1

(H20 −H10)
T · T−1/2Na/2Kǫv.

Both H20 and H10 are N2 ×M(p+ 1) matrices defined in Theorem 3. By Assumptions R3 and R4, it is
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easy to show that

σM (H20) ≥ σK(A0
1)σK(A0

2)σK(A0
3)σmin(A

0
410, . . . ,A

0
4M0, . . . ,A

0
41p, . . . ,A

0
4Mp)

≥ CN1+a ·N ·N
λmax(E(X

T
t Bt)E(B

T
t Xt))

≥ CN1+a,

σ2
M (H10) ≥ σ2

M (V 0)σ
2
N

(
(IN ⊗ γT )

∞∑

q=0

E(vec(BT
t )vec(X

T
t )

T )(IN ⊗ β)Π̃q

)
≥ CN1+a.

Hence the smallest singular value of H20 dominates that of H10, and so for some constant u > 0,

σ2
M(p+1)(H20 −H10) ≥ uN1+a. (7.20)

With this, we have

‖[(H20 −H10)
T (H20 −H10)]

−1‖1 ≤ M1/2(p+ 1)1/2

λmin[(H20 −H10)T (H20 −H10)]
≤ M1/2(p+ 1)1/2

uN1+a
(7.21)

To bound ‖D1‖1, using (7.21), we have

‖F1‖1 ≤ M3/2(p+ 1)1/2

N1+au

[
‖H20 −H10‖1

(
‖T−1/2Na/2H −H20‖max + ‖T−1/2Na/2BTZV −H10‖max

)

+ ‖T−1/2Na/2(H −BTZV )‖max

·
(
‖T−1/2Na/2H −H20‖1 + ‖T−1/2Na/2BTZV −H10‖1

)]
‖D1‖1, (7.22)

‖F2‖1 ≤ M3/2(p+ 1)1/2

N1+aµ

(
‖T−1/2Na/2H −H20‖max + ‖T−1/2Na/2BTZV −H10‖max

)

· ‖T−1/2Na/2Kǫv‖1, (7.23)

‖F3‖1 ≤ M3/2(p+ 1)1/2

N1+aµ
‖H20 −H10‖max · ‖T−1/2Na/2Kǫv‖1. (7.24)

Now, to bound ‖F1‖1, ‖F2‖1 and ‖F3‖1, we consider

‖T−1/2Na/2H −H20‖max = max
1≤i≤M

max
1≤j≤p

‖A1A2A3(A4ij +A5ij)−A0
1A

0
2A

0
3A

0
4ij‖max

≤ max
1≤i≤M

max
1≤j≤p

‖A1‖max‖A2‖1‖A3‖1‖A5ij‖1+

max
1≤i≤M

max
1≤j≤p

[
‖A1‖max‖A2A3A4ij −A0

2A
0
3A

0
4ij‖1 + ‖A1 −A0

1‖max‖A0
2A

0
3A

0
4ij‖1

]
, with (7.25)

‖A2A3A4ij −A0
2A

0
3A

0
4ij‖1 ≤ max

1≤j≤p

[
‖A2‖1‖A3 −A0

3‖1‖A4ij‖1+

‖A2‖1‖A0
3‖1‖A4ij −A0

4ij‖1 + ‖A2 −A0
2‖1‖A0

3‖1‖A0
4ij‖1

]
.

Therefore, base on the rates found in (7.12) to (7.19), and (7.25), we have on M that

‖T−1/2Na/2H −H20‖max = O(λT ), and ‖T−1/2Na/2H −H20‖1 = O(λTN
2). (7.26)

Define Lq = T−1
∑T

t=1 vec((Bt−B̄)T )vecT (Xt−q) and L
q
0 = E(vec(BT

t )vec
T (XT

t−q). Then, by Assumption
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R4 and on M, we have

‖T−1/2Na/2BTZ‖1 = max
0≤l≤p

‖T−1
T∑

t=1

(Bt − B̄)γyt−l‖1 = ‖T−1
T∑

t=1

(Bt − B̄)γyTt ‖1

≤ ‖T−1
T∑

t=1

∞∑

q=0

(Bt − B̄)γ(ΨqΠ(Xt−qβ + ǫt−q))
T ‖1

≤ O(λTN +Na + λTN) = O(Na), and (7.27)

‖T−1/2Na/2BTZV −H10‖max = max
0≤l≤p

max
1≤i≤M,1≤j≤N

‖
(
T−1

T∑

t=1

(Bt − B̄)γyTt−l − E((Bt − B̄)γyTt−l)
)
W c

0i,j‖max

= max
1≤i≤M,1≤j≤N

‖
(
T−1

T∑

t=1

(Bt − B̄)γyTt − E((Bt − B̄)γyTt )
)
W c

0i,j‖max

≤ max
1≤i≤M,1≤j≤N

[
‖IN ⊗ γT ‖∞

∑

q≥0

‖Lq − L
q
0‖max‖Π̃

T

q ‖1‖IN ⊗ β‖1‖W c
0i,j‖1

+ ‖IN ⊗ γT ‖∞
∑

q≥0

‖T−1
T∑

t=1

vec((Bt − B̄)T )ǫTt−q‖max‖Π̃
T

q ‖1‖W c
0i,j‖1

]

= O(λT ). (7.28)

Hence on M,

‖T−1/2Na/2BTZV −H10‖1 = O(λTN
2). (7.29)

Using the rates found in (7.12) to (7.19), on M (in particular using the rate on A3),

‖T−1/2Na/2Kǫv‖1 =
∥∥∥A1A2A3(T

−1
T∑

t=1

(Bt − B̄)T ǫt)
∥∥∥
1
= O(λTN

1/2+1/2w+a). (7.30)

Therefore, using results from (7.21) to (7.30), we know that

‖D1‖1 ≤
M3/2

N1+au

(
o(λTN

2) + o(1)o(λTN
2 + λTN

2)
)
‖D1‖1

+
M3/2

N1+au

(
O(λT )O(λTN

1/2+1/2w+a)
)
+

M3/2

N1+au
O(λTN

1/2+1/2w+a)

= O(λTN
−1/2+1/2w).

For the rate of
∥∥D2

∥∥
1
, we refer to the proof of asymptotic normality of δ̂ − δ in Theorem 3 for the proof

of the asymptotic normality of D2 (along the exact same lines of proofs as in Theorem 3). Therefore, we

state here the result that

T 1/2(M 2S2M
T
2 )

−1/2D2
D−→ N(0, Im),

where S2 is defined in Theorem 3, and M2 =
[
(H20 −H10)

T (H20 −H10)
]−1

(H20 − H10)
T . By As-
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sumption R5, we conclude that all the eigenvalues of S2 are of order N b. Hence by (7.20),

λmax(M 2S2M
T
2 ) ≤ λmax(S2)λmax(

[
(H20 −H10)

T (H20 −H10)
]−1

)

≤ λmax(S2)

σ2
M(p+1)(H20 −H10)

= O(N−1−a+b),

which can also be derived as the order for the lower bound of λmin(M 2S2M
T
2 ). Hence we have ‖D2‖1 =

Op(T
−1/2N−(1+a−b)/2).

Finally, by Assumption R7 and the result of Theorem 5,

‖δ̂ − δ‖1 = OP (
∥∥D1

∥∥
1
+
∥∥D2

∥∥
1
) = OP (λT ·N1/2+a+1/2w) +OP (T

−1/2N−(1+a−b)/2)

= OP (λT ·N−1/2+1/2w).

At the same time, using the result above,

‖β̂ − β‖1 = Op(λTN
−1/2+1/2w + ‖δ − δ̂‖1) = Op(λTN

−1/2+1/2w). �

Proof of Theorem 2.

It has been shown that β̂ − β =
∑5

i=0 Ii in the proof of Theorem 1. From the rate of ‖δ̂ − δ‖1 and

Assumption R7, it is clear that

‖δ̂ − δ‖1 = OP (λTN
−1/2+1/2w) = oP (T

−1/2N−(1−b)/2).

Therefore, if we can prove that I1 is T 1/2N (1−b)/2-convergent, then I1 dominates I2 to I5, while
∥∥I0
∥∥
1
=

OP (λT

∥∥β̂ − β
∥∥
1
) = oP (

∥∥β̂ − β
∥∥
1
).

We now prove that for α ∈ R
K such that

∥∥α
∥∥ = 1, αT I1 is T 1/2N (1−b)/2-convergent by proving its

asymptotic normality. Recall that

I1 = (E(XT
t Bt)E(B

T
t Xt))

−1T−2XTBvBvT ǫv

= (E(XT
t Bt)E(B

T
t Xt))

−1(T−1XTBv − E(XT
t Bt))T

−1BvT ǫv

+ (E(XT
t Bt)E(B

T
t Xt))

−1
E(XT

t Bt)T
−1BvT ǫv.

It is easy to show that the second term above dominates the first. Therefore, if we can prove that

∑

t≥0

‖P 0(α
TM1B

T
t ǫt)‖ < ∞, (7.31)

where M1 = (E(XT
t Bt)E(B

T
t Xt))

−1
E(XT

t Bt), by Theorem 3(ii) of Wu (2011), we then have

T 1/2(αT
Σ1α)−1/2αT I1

D−→ N(0, 1),

where Σ1 = M1

∑
τ∈Z

E(BT
t ǫtǫ

T
t+τBt+τ )M

T
1 .
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To determine the rate of the eigenvalues in Σ1, consider the (k, k) element of
∑

τ E(B
T
t ǫtǫ

T
t+τBt+τ ),

∑

τ

E(BT
t,kǫtǫ

T
t+τBt+τ,k) =

∑

τ

tr(E(Bt+τ,kB
T
t,k)E(ǫt+τǫ

T
t ))

=
∑

τ

tr(cov(Bt+τ,kBt,k)cov(ǫt+τǫt)) +
∑

τ

tr(µb,kµ
T
b,kcov(ǫt+τǫt)).

By Assumptions R5, the first term is N1+b-convergent exactly and the second term’s rate is

∑

τ

µT
b,kcov(ǫt+τǫt)µb,k ≤ λmax(

∑

τ

cov(ǫt+τǫt))‖µb,k‖2 = O(‖µb,k‖2) = O(N).

Since K is finite, the order of the eigenvalues of
∑

τ E(B
T
t ǫtǫ

T
t+τBt+τ ) is exactly N1+b. Also, for i =

1, . . . ,K,

λmin(M 1M
T
1 )λmin(

∑

τ

E(BT
t ǫtǫ

T
t+τBt+τ ))

≤ λi(Σ1) ≤ λmax(M1M
T
1 )λmax(

∑

τ

E(BT
t ǫtǫ

T
t+τBt+τ )).

Since the order of the eigenvalues of M1M
T
1 is N−2, the order of all the eigenvalues of Σ1 is exactly

N−1+b. It means also that αT I1 is indeed T 1/2N (1−b)/2-convergent, and so I1 is T 1/2N (1−b)/2-convergent

in particular since K is finite. With the asymptotic normality for αT I1, we can then use the multivariate

version of Theorem 3(ii) of Wu (2011) to conclude that

T 1/2
Σ

−1/2
1 I1

D−→ N (0, IK),

where we replaced α by IK .

It remains to prove (7.31). We decompose

P 0(α
TM1B

T
t ǫt) = αTM1P 0(B

T
t )E0(ǫt) +αTM1E−1(B

T
t )P 0(ǫt),

so that we have ‖P 0(α
TM 1B

T
t ǫt)‖ ≤ C1,t + C2,t, where

C2
1,t = E(αTM1P 0(B

T
t )E0(ǫt)E0(ǫ

T
t )P 0(Bt)M

T
1 α)

≤ αTM 1E(P 0(B
T
t )P 0(Bt))M 1αE(λmax(E0(ǫt)E0(ǫ

T
t )))

≤
∥∥αTM 1

∥∥2λmax(E(P 0(B
T
t )P 0(Bt)))E(E0(ǫ

T
t )E0(ǫt))

= O(N−1 max
1≤k≤K

E(P 0(B
T
t,k)P 0(Bt,k))E(N

−1
E0(ǫ

T
t )E0(ǫt)))

= O( max
1≤k≤K

max
1≤s≤N

‖P 0(Bt,sk)‖2 max
1≤j≤N

E(E2
0(ǫt,j)))

= O( max
1≤k≤K

max
1≤s≤N

‖P 0(Bt,sk)‖2σ2
max), (7.32)

so that
∑

t≥0 C1,t < ∞ by our assumption
∑

t≥0 max1≤k≤K max1≤s≤N ‖P b
0(Bt,sk)‖ < ∞.
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Similarly, we have

C2
2,t = E(αTM 1E−1(B

T
t )P 0(ǫt)P 0(ǫ

T
t )E−1(Bt)M

T
1 α)

≤ αTM1E(E−1(B
T
t )E−1(Bt))M

T
1 αE(λmax(P 0(ǫt)P 0(ǫ

T
t )))

≤
∥∥αTM1

∥∥2λmax(E(E−1(B
T
t )E−1(Bt)))E(P 0(ǫ

T
t )P 0(ǫt))

= O( max
1≤k≤K

max
1≤s≤N

E(E2
−1(Bt,sk)) max

1≤j≤N
‖P 0(ǫt,j)‖2)

= O((σ2
max +max

s,k
µ2
b,sk) max

1≤j≤N
‖P 0(ǫt,j)‖2)

= O( max
1≤j≤N

‖P ǫ
0(ǫt,j)‖2), (7.33)

so that
∑

t≥0 C2,t < ∞ by our assumption of
∑

t≥0 max1≤j≤N ‖P ǫ
0(ǫt,j)‖ < ∞. Hence (7.31) is established,

and the proof of the theorem is completed. �

Proof of Theorem 3.

To prove the asymptotic normality of δ̂, we need to apply the same method we used for the proof of

Theorem 2. Recall that from the proof of Theorem 1,

δ̂ − δ =
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )T
[
Kǫv −BT ǫ

]
,

δ̂ − δ = D1 +D2, where

D1 =
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )TKǫv,

D2 = −
[
(H −BTZV )T (H −BTZV )

]−1

(H −BTZV )TBT ǫ.

Moreover, we further decompose D1 as in the proof of Theorem 1 such that D1 = F1 + F2 + F3, where

F1 =
[
(H20 −H10)

T (H20 −H10)
]−1

[
(H20 −H10)

T (H20 −H10)− T−1Na(H −BTZV )T (H −BTZV )
]
D1,

F2 =
[
(H20 −H10)

T (H20 −H10)
]−1

(T−1/2Na/2H −H20 − T−1/2Na/2BTZV +H10)
T · T−1/2Na/2Kǫv,

F3 =
[
(H20 −H10)

T (H20 −H10)
]−1

(H20 −H10)
T · T−1/2Na/2Kǫv. (7.34)

From the proof of Theorem 1, it is clear that F3 dominates all other terms in the decomposition of D1. As

for D2, we can apply similar decomposition, and the term

F4 = −
[
(H20 −H10)

T (H20 −H10)
]−1

(H20 −H10)
TT−1/2Na/2BT ǫ (7.35)

dominates in the decomposition of D2. Hence to show the asymptotic normality of δ̂− δ, we only consider

F3 + F4 = T−1/2Na/2M2(Kǫv −BT ǫ)

= T−1
T∑

t=1

M 2(MBT
t ǫt − vec(Btγǫ

T
t ))(1 + oP (1)),

where M2 =
[
(H20 −H10)

T (H20 −H10)
]−1

(H20 −H10)
T . In view of the above and Theorem 3(ii) of
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Wu (2011), to prove the asymptotic normality of αT (δ̂ − δ) where α ∈ R
M(p+1), if we can show that

∑

t≥0

∥∥P 0(α
TM2(MBT

t ǫt − vec(Btγǫ
T
t )))

∥∥ < ∞, (7.36)

then we can conclude by Theorem 3(ii) of Wu (2011) that

T 1/2(αT
Σ2α)−1/2αT (δ̂ − δ)

D−→ N(0, 1), (7.37)

where

Σ2 =
∑

τ∈Z

M 2cov(MBT
t ǫt − vec(Btγǫ

T
t ),MBT

t+τǫt+τ − vec(Bt+τγǫ
T
t+τ ))M

T
2

= M2(S1 + S2 − S3 − S
T
3 )M

T
2 ,

with S1, S2 and S3 as defined in the statement of the theorem. A generalization to Theorem 3(ii) of Wu

(2011) then gives us the asymptotic normality result after replacing α by IM(p+1).

It remains to show (7.36). Consider

∥∥αTM2M
∥∥2 ≤ λmax(M2M

T
2 )λmax(MMT ) = O(N−1−a) ·O(N−2) · λmax(E(Xt ⊗Btγ)E(X

T
t ⊗ γTBT

t ))

= O(N−3−a) ·
∥∥E(Xt ⊗Btγ)

∥∥
1

∥∥E(XT
t ⊗ γTBT

t )
∥∥
1

= O(N−3−a) ·O(N1+a) · O(1) = O(N−2),

where the last line follows from Assumption R4. Then similar to showing (7.32), by the above, we have

∥∥P 0(α
TM2MBT

t ǫt)
∥∥ = O( max

1≤k≤K
max

1≤s≤N

∥∥P 0(Bt,sk)
∥∥), (7.38)

so that
∑

t≥0

∥∥P0(α
TM2MBT

t ǫt)
∥∥ < ∞ by the assumptions of the theorem. At the same time,

P 0(α
TM2vec(Btγǫ

T
t )) = P 0(α

TM 2(ǫt ⊗Btγ))

= αTM2

(
E0(ǫt)⊗ E0(Btγ)− E−1(ǫt)⊗ E−1(Btγ)

)

= αTM2P 0(ǫt)⊗ E0(Btγ) +αTM 2E−1(ǫt)⊗ P 0(Btγ).
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Hence denote by bTt,j the jth row of Bt,

∥∥P 0(α
TM 2ǫt ⊗Btγ)

∥∥

≤
{
2αTM2E(P 0(ǫt)P 0(ǫt)

T)⊗ E
(
E0(Btγ)E0(γ

TBT
t )
)
MT

2 α
}1/2

+
{
2αTM2E(E−1(ǫt)E−1(ǫt)

T)⊗ E
(
P 0(Btγ)P 0(γ

TBT
t )
)
MT

2 α
}1/2

≤ 21/2
∥∥α
∥∥
1

∥∥M2

∥∥
∞

max
1≤j≤N

∥∥P 0(ǫtj)
∥∥ · max

1≤j≤N
var1/2(bTt,jγ)

+ 21/2
∥∥α
∥∥
1

∥∥M2

∥∥
∞

· σmax · max
1≤j≤N

∥∥P 0(b
T
t,jγ)

∥∥

≤ 21/2
∥∥α
∥∥
1

∥∥M2

∥∥
∞

max
1≤j≤N

∥∥P 0(ǫtj)
∥∥ · σmax

∥∥γ
∥∥
1

+ 21/2
∥∥α
∥∥
1

∥∥M2

∥∥
∞

· σmax · max
1≤j≤N
1≤k≤K

∥∥P 0(Bt,jk)
∥∥∥∥γ

∥∥
1

= O( max
1≤j≤N

∥∥P 0(ǫtj)
∥∥+ max

1≤j≤N
1≤k≤K

∥∥P 0(Bt,jk)
∥∥),

where the second inequality used the decomposition

var(·) = var(Ei(·)) + E(vari(·)) ≥ var(Ei(·)),

and the third inequality used Assumption R2, while the last equality used
∥∥γ
∥∥
1
= 1 and

∥∥M2

∥∥
∞

= O(1).

Hence
∑

t≥0

∥∥P 0(α
TM 2vec(Btγǫ

T
t )
∥∥ < ∞, and together with (7.38), (7.36) is established. This completes

the proof of the theorem. �

Proof of Theorem 4.

By the KKT condition, there exists a solution δ̃ to (2.7) if and only if there exists a subgradient

h = ∂(uT|δ̃|) =
{
h ∈ R

M(p+1) :

{
hi = uisign(δ̃i), δ̃i 6= 0;

|hi| ≤ ui, otherwise.

}
,

such that differentiating the expression on the right hand side of (2.7) with respect to δ, we get

T−1(H −BTZV )T (H −BTZV )δ̃ − T−1(BTZV −H)T (BT
y− g) = −γTh.

We use a single index i = 1, . . . ,M(p+1) to denote an element of δ for easier notation in this proof. Since

we have BT
y = BTZV δ +BTXβvec(IN ) +BT ǫ, the above equation can be rewritten as

T−1(H −BTZV )T (H −BTZV )(δ̃ − δ) + T−1(H −BTZV )T (BTXβvec(IN ) +Hδ − g)

+ T−1(H −BTZV )TBT ǫ = −γTh.

We can show easily that −BTXβ(δ)vec(IN ) = Hδ − g, and hence there exists a sign consistent solution
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δ̃ if and only if





T−1(HH −BTZV H)T (HH −BTZV H)(δ̃H − δH) + T−1(HH −BTZV H)T (BTXβ−β(δ)vec(IN ))

+T−1(HH −BTZV H)TBT ǫ = −γThH ,

|T−1(HHc −BTZV Hc)TBTXβ−β(δ)vec(IN ) + T−1(HHc −BTZV Hc)TBT ǫ| ≤ −γThHc ,

(7.39)

where H = {j : δj 6= 0}.

From the first equation in (7.39), we decompose δ̃H − δH = I0 + I1 + I2 + I3, where

I0 = −(N−a(H20 −H10)
T
H(H20 −H10)H)−1(T−1(HH −BTZV H)T (HH −BTZV H)

−N−a(H20 −H10)
T
H(H20 −H10)H)(δ̃H − δH),

I1 = (N−a(H20 −H10)
T
H(H20 −H10)H)−1T−1(HH −BTZV H)TKǫv,

I2 = −(N−a(H20 −H10)
T
H(H20 −H10)H)−1γTh,

I3 = −(N−a(H20 −H10)
T
H(H20 −H10)H)−1T−1(HH −BTZV H)TBT ǫ.

The term I1 has its form because of the identity BTXβ(δ)−βvec(IN ) = Kǫv. Similar to bounding
∥∥F1

∥∥
1

to
∥∥F3

∥∥
1
in (7.22) to (7.24) in the proof of Theorem 1, we can show that

‖I0‖max = op(λTN
1−a‖δ̃H − δH‖max), ‖I2‖max = O(λTN

−1).

We can show easily that

I1 = [(H20 −H10)
T
H(H20 −H10)H ]−1

(
T−1/2Na/2(HH −BTZV H)T

)
(T−1/2Na/2Kǫv)

= [(H20 −H10)
T
H(H20 −H10)H ]−1(H20 −H10)

T
H(T−1/2Na/2Kǫv)(1 + oP (1)),

I3 = −[(H20 −H10)
T
H(H20 −H10)H ]−1

(
T−1/2Na/2(HH −BTZV H)T

)
(T−1/2Na/2BT ǫ)

= −[(H20 −H10)
T
H(H20 −H10)H ]−1(H20 −H10)

T
H(T−1/2Na/2BT ǫ)(1 + oP (1)).

Hence I1 is similar to F3 in (7.34) and I3 is similar to F4 in (7.35) in the proof of Theorem 3, except that

H20−H10 is now restricted to those columns with indices in H only. Using exactly the same lines of proof

as in Theorem 3, we can conclude that

T 1/2
Σ

−1/2
3 (I1 + I3)

D−→ N(0, I |H|), (7.40)

where Σ3 = M3(S1 + S2 − S3 − S
T
3 )M

T
3 , with M3 = [(H20 −H10)

T
H(H20 −H10)H ]−1(H20 −H10)

T
H .

By Assumptions R4 and R5, we can show that then I1 + I3 is exactly T 1/2N (1+a−b)/2-convergent. Since

0 < a, b < 1, it is not difficult to see that I2 is dominated by I1 + I3 then. Also, Assumption R7 ensures∥∥I0
∥∥
max

= oP (
∥∥δ̃ − δ

∥∥
max

). All these imply that

T 1/2
Σ

−1/2
3 (δ̃H − δH)

D−→ N(0, I |H|),

which is the asymptotic normality result we need, if we can also show that the second inequality in (7.39)

is true.
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From the above, since
∥∥I0
∥∥
max

,
∥∥I1
∥∥
max

,
∥∥I2
∥∥
max

and
∥∥I3
∥∥
max

are all oP (1), we have sign(δ̃H) = sign(δH).

It remains to show the second inequality in (7.39).

To this end, we can show from previous results that

‖T−1(HHc
−BTZV Hc

)TBTXβ−β(δ)vec(IN ) + T−1(HHc
−BTZV Hc

)TBT ǫ‖max = Op(T
−1/2N (1+b−a)/2),

while the right hand side of the second inequality has a minimum value of

γT

‖δ̃Hc
‖max

≥ γT

‖δ̃Hc
− δHc

‖max

.

Hence, it is sufficient to prove

(T−1/2N (1+b−a)/2)(‖δ̃ − δ‖max) = op(λT ).

But the left hand side above has rate T−1N b−a = o(λT ) by Assumption R7. This completes the proof of

the theorem. �
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