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Abstract: Testing for white noise is a classical yet important problem in statistics, especially
for diagnostic checks in time series modeling. For vector time series where the dimension is
large compared to the sample size, this paper demonstrates that popular omnibus portman-
teau tests such as the multivariate Hosking and Li-McLeod tests become extremely conser-
vative, losing their size and power dramatically. There is thus an urgent need to develop new
tests for testing a high-dimensional white noise. Several new tests are proposed to fill in this
gap. One is a new portmanteau test with a scalar test statistic which encapsulates the serial
correlations within and across all components. Precisely, the statistic equals to the sum of
squares of the eigenvalues in a symmetrized sample auto-covariance matrix at a certain lag.
Other multiple-lags based tests are also proposed to complement the single-lag based one.
We develop adequate limiting distributions for these test statistics using tools from random
matrix theory. Asymptotic normality for the test statistics is derived under different asymp-
totic regimes when both the dimension p and the sample size T are diverging to infinity. We
prove that such high-dimensional limits are valid for a significant range of finite (p,T ) com-
binations, therefore ensuring a wide range of applications in practice. Extensive simulation
experiments confirm an excellent behavior of these high-dimensional tests in finite samples
with accurate size and satisfactory power. In particular, the new tests are consistently more
powerful than the Hosking and Li-McLeod tests even when the latter two have been size-
adjusted.
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1. Introduction

Testing for white noise is an important problem in statistics. It is indispensable in diagnostic
checking for linear regression and linear time series modeling in particular. The surge of recent
interests in modeling high-dimensional time series adds a further challenge: diagnostic checking
demands the testing for high-dimensional white noise in the sense that the dimension of the
concerned vector time series is comparable to or even larger than the sample size. One prominent
example showing the need for diagnostic checking in high-dimensional time series concerns
the vector autoregressive model, which has a large literature. When dimension is large, most
existing works regularize the fitted models by Lasso (Hsu et al., 2008; Haufe et al., 2009; Shojaie
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and Michailidis, 2010; Basu and Michailidis, 2015), Dantzig penalization (Han and Liu, 2013),
banded auto-covariances (Bickel and Gel, 2011), or banded auto-coefficient matrices (Guo et
al., 2016). However, none of them have developed any residual-based diagnostic tools. Another
popular approach is to represent high-dimensional time series by lower-dimensional factors. See
for example, Bai and Ng (2002), Forni et al. (2005), Lam and Yao (2012) and Chang et al. (2015).
Again, there is a pertinent need to develop appropriate tools for checking the validity of the fitted
factor models through careful examination of the residuals.

There are several well-established white noise tests for univariate time series (Li, 2004). Some
of them have been extended for testing vector time series (Hosking, 1980; Li et al., 1981;
Lütkepohl, 2005). However, those methods are designed for the cases where the dimension of
time series is small or relatively small compared to the sample size (i.e., the observed length of
the time series). For the purpose of model diagnostic checking, the so-called omnibus tests are
often adopted as the goal is to detect any forms of departure from white noise. The celebrated
Box-Pierce portmanteau test and its variations are the most popular omnibus tests. The fact that
the Box-Pierce test and its variations are asymptotically distribution-free and χ2-distributed under
the null hypothesis makes them particularly easy to use in practice. However, it is widely known
in the literature that the slow convergence to their asymptotic null distributions is particularly
pronounced in multivariate cases.

To understand better the challenge of testing for a high-dimensional white noise addressed
in this paper, let us consider an example where some multivariate volatility model is to be fit
to a portfolio containing p = 50 stocks using their daily returns over a period of one semester.
The length of the returns time series is then approximately T = 100. Table 1 shows that the
two variants of the multivariate portmanteau test, namely the Hosking and Li-McLeod tests, all
have actual sizes around 0.1%, instead of the nominal level of 5%. These omnibus tests are thus
extremely conservative and they will not be able to detect an eventual misfitting of the volatility
model.

The example above is just one more illustration of the following fact which is now better
understood in the statistical literature: many popular tools in multivariate statistics are severely
challenged by the emergence of high-dimensional data, and they need to be re-examined or cor-
rected. Recent advances in high-dimensional statistics demonstrate that random matrix theory
provides powerful inference tools via a precise spectral analysis of large sample covariance or
sample auto-covariance matrices. For a review on such progress, we refer to the review papers
Johnstone (2007), Paul and Aue (2014) and the recent monograph Yao et al. (2015). In par-
ticular, asymptotic results found in this context using random matrix theory have quite a fast
convergence rate, and hence provide satisfactory approximation for data analysis in finite sample
situations.

This paper proposes several new tests for testing high-dimensional white noise. One such test
is a scalar which encapsulates the serial correlations within and across all components. Precisely,
the statistic equals to the sum of squares of the eigenvalues in the symmetrized sample auto-
covariance matrix at a certain lag. Using random matrix theory, asymptotic normality for the test
statistic is derived under different asymptotic regimes when both p and T can be large. While
this proposed test is extremely powerful with very accurate size for a wide array of combinations
of (p,T ), it can only tests for one lag at a time. To complement this test, we propose other tests
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which can assimilate information from different lags in the time series. Extensive simulation
experiments confirm an excellent behavior of these high-dimensional tests in finite samples with
very accurate sizes and satisfactory powers. In particular, the new tests are consistently more
powerful than the Hosking and Li-McLeod tests even when the latter two have been adjusted in
a way such that their empirical sizes coincide with the nominal level; See Table 3.

The rest of the paper is organized as follows. Section 2 and 3 present the main contributions
of the paper. Our high-dimensional tests for white noise are introduced and their asymptotic nor-
mality established. The proofs of these results are postponed to Section 7. Section 4 reports on
extensive Monte-Carlo experiments which assess the finite sample behavior of the tests. When-
ever possible, comparison is made with the popular Hosking and Li-McLeod tests, with detailed
explanations in why these two multivariate tests fail when applied to high-dimensional data. In
Section 5, we provide an in-depth discussion on the extremely challenging situation for testing
a high-dimensional white noise when the covariance matrix of the noise is completely arbitrary.
Some open questions and a conjecture are also introduced. Section 6 concludes while Section 7
collects all the technical proofs of the paper.

2. Single-lag based tests

Let x1, · · · , xT be observations from a p-dimensional weakly stationary time series satisfying

xt = B1/2
∑
l≥0

Alzt−l, (2.1)

where {zt} is a sequence of independent p−dimensional random vectors with independent com-
ponents zt = (zit) satisfying Ezit = 0, E|zit|

2 = 1, E|zit|
4 < ∞. Hence {xt} has Ext = 0, and its lag-τ

auto-covariance matrix Στ = Cov(xt+τ, xt) depends on τ only. In particular, Σ0 = var(xt) denotes
the population covariance matrix of the series. The goal is to test whether xt is a white noise, and
for this purpose we test the hypothesis

H0 : Cov(xt+τ, xt) = 0, τ = 1, · · · , q, (2.2)

where q ≥ 1 is a prescribed constant integer.
Throughout the paper, the complex adjoint of a matrix (or vector) A is denoted by A∗. Let Σ̂τ

be the lag−τ sample auto-covariance matrix

Σ̂τ =
1
T

T∑
t=1

xtx∗t−τ, (2.3)

which is the sample counterpart of Στ. Here for convenience, we set xt = xT+t when t ≤ 0.
Since Σ̂τ is not symmetric, and in a high-dimensional setting where the dimension p is large,
its spectral property is better understood by considering the symmetrized lag−τ sample auto-
covariance matrix

M̃τ =
1
2

(̂
Στ + Σ̂∗τ

)
=

1
2T

T∑
t=1

(
xtx∗t−τ + xt−τx∗t

)
. (2.4)
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Under the null hypothesis, EM̃τ = 0 for 1 ≤ τ ≤ q, and a sensible test statistic is its squared
Frobenius norm

L̃τ =

p∑
j=1

λ2
j,τ = Tr(M̃∗

τ M̃τ), (2.5)

where {λ j,τ, j = 1, · · · , p} are the eigenvalues of M̃τ. Define the scaled statistic

φτ =
T
p

L̃τ −
p
2
. (2.6)

The null hypothesis will be rejected for large values of φτ, for some 1 ≤ τ ≤ q.

2.1. High dimensional asymptotics when Σ0 = Ip

First we consider high-dimensional situations where the dimension p is large compared to the
sample size T . Here we assume the so-called Marčenko-Pastur regime for asymptotic analysis,
which is cp = p/T → c > 0 when p,T → ∞. However, most of the results in this area concern
sample covariance matrices while our test statistic φτ is based on the sample auto-covariance
matrices, which are much less studied. Only a few related papers have appeared in the last few
years. See Johnstone (2007), Paul and Aue (2014) and the recent monograph Yao et al. (2015).

As a main contribution of the paper, we characterize the asymptotic distribution of φτ in this
high-dimensional setting.

Theorem 2.1. Let τ ≥ 1 be a fixed integer, and assume that

1. {zit, i = 1, · · · , p, t = 1, · · · ,T } are all independently distributed satisfying Ezit = 0, Ez2
it =

1, Ez4
it = ν4 < ∞;

2. (Marčenko-Pastur regime). The dimension p and the sample size T grow to infinity in a
related way such that cp := p/T → c > 0.

Then in the simplest setting when xt = zt, the limiting distribution of the test statistic L̃τ is

φτ
d
−→ N

(
1
2
, 1 +

3(ν4 − 1)
2

c
)
. (2.7)

The proof of this theorem is given in Sections 7.1 and 7.2.

Let Zα be the upper-α quantile of the standard normal distribution at level α. Based on Theo-
rem 2.1, we obtain a procedure for testing the null hypothesis in (2.2) as follows.

Single Lag-τ test: Reject H0 if φτ −
1
2
> Zα

(
1 +

3(ν4 − 1)
2

cp

)1/2

. (2.8)

As it will be demonstrated in Section 4.2, the test above is much more powerful compared
to some classical alternatives, especially in the high dimensional setting where p/T → c > 0.
The power of this test comes from gathering information from the eigenvalues in the definition
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of L̃τ, and is realized from the fact that the asymptotic mean of L̃τ is c(Tc + 1)/2 under the
high dimensional setting, which grows linearly with T (and p), while the asymptotic variance of
the statistic is c2

(
1 +

3(ν4−1)
2 c

)
which is just a constant. It means that when T is large, departure

from white noise in the τ-th lag of auto-covariance matrix will likely results in a very large
and different mean, which will be a lot of standard deviations away from c(Tc + 1)/2 since the
standard deviation is just a constant.

2.2. Low dimensional asymptotics when Σ0 = Ip

Formally, the Marčenko-Pastur regime from the previous section where p/T → c > 0, p,T →
∞ does not apply to the case of c = 0, that is, both p,T tend to infinity with p/T → 0. From
a practical point of view, such an asymptotic regime will be useful when the dimension p is
much smaller than the sample size T . Hereafter, this will be referred to as the low-dimensional
situation. The result below establishes the asymptotic distribution of the test statistic φτ in this
setting.

Theorem 2.2. Let τ ≥ 1 be a fixed integer, and assume that

1. {zit, i = 1, · · · , p, t = 1, · · · ,T } are all independently distributed satisfying Ezit = 0,
Ez2

it = 1, Ez4
it = ν4 < ∞;

2. Both the dimension p and the sample size T tend to infinity in a related way such that as
p,T → ∞, p/T → 0, p3/T = O(1).

Then in the simplest setting when xt = zt, the limiting distribution of the test statistic L̃τ is

φτ
d
−→ N

(
1
2
, 1

)
. (2.9)

This theorem is proved in Section 7.3. It is worth noting that technically, the proof under this
low-dimensional setting is very different from the proof of Theorem 2.1 under the Marčenko-
Pastur regime. Indeed, new results from random matrix theory are needed to establish this low-
dimensional asymptotics. The proof is also different from the classical large sample asymptotics
where the limiting results are derived by tending T to infinity while keeping the dimension p
fixed.

2.3. A unified test procedure when Σ0 = Ip

As mentioned earlier, the asymptotic distributions for the test statistic φτ are derived in The-
orem 2.1 and Theorem 2.2 under two different asymptotic regimes and using completely dif-
ferent technical tools. Yet it is striking to observe that these two asymptotic distributions are
self-consistent in the following sense. Recall that in Theorem 2.1 under the high-dimensional
scheme where p,T → ∞ and cp = p/T → c > 0, it has been found that

φτ
d
−→ N

(
1
2
, 1 +

3(ν4 − 1)
2

c
)
.
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In the whole derivation of this result, it is required that the limiting ratio c should be positive.
Indeed, the case with c = 0 corresponds to the low-dimensional limit which is derived in Theo-
rem 2.2 using quite a different technique. However, if we let c = 0 in the high-dimensional limit
above, we found easily that

φτ
d
−→ N

(
1
2
, 1

)
,

which is exactly the low-dimensional result derived in Theorem 2.2.
In other words, both theorems are compatible with each other and express the same type of

limiting distribution, a property we qualify as self-consistency. As a consequence, we can com-
bine them in a unified result as follows.

Theorem 2.3. Let τ ≥ 1 be a fixed integer, assume that

1. {zit, i = 1, · · · , p, t = 1, · · · ,T } are all independently distributed satisfying Ezit = 0, Ez2
it =

1, Ez4
it = ν4 < ∞;

2. Either “p,T → ∞, cp := p/T → c > 0”, or “p,T → ∞, p/T → 0, p3/T = O(1)”.

Then in the simplest setting when xt = zt, we have

φτ
d
−→ N

(
1
2
, 1 +

3(ν4 − 1)
2

c
)
.

This self-consistency has an important consequence in practice. In real data analysis, an an-
alyst knows only the values of p and T in a data set, say for example p = 50 and T = 500. Is
this a high-dimensional situation where p/T tends to a constant c = 0.1, and hence the analyst
can proceed with the limiting distribution in Theorem 2.1, or rather a low-dimensional situation
where the sample size T = 500 can be considered large enough so that p/T = 50/500 = 0.1
could be assimilated to zero, and thus the analysis can rely on the limiting distribution in Theo-
rem 2.2? Clearly, this is a very hard question to answer. Without the self-consistency established
in Theorem 2.3, one may be led to quite different decisions regarding the white noise test de-
pending on the chosen limiting regime. This consistency property releases the analyst from such
a dilemma: the unified result in Theorem 2.3 implies that the approximation

φτ ' N

(
1
2
, 1 +

3(ν̂4 − 1)
2

·
p
T

)
,

is most likely accurate enough for a wide range of dimension-sample size combinations (p,T ) in
applications. Meanwhile, when ν4 is unknown, which is usually the case in practice, we can use
its sample counterpart, i.e, ν̂4 = 1

pT

∑p
i=1

∑T
t=1 x4

it, to replace it.

Remark 2.1. When Σ0 = σ2Ip, the single lag test statistic L̃τ can also be adopted for white noise
test. Suppose {zit, i = 1, · · · , p, t = 1, · · · ,T } satisfies the conditions in Theorem 2.3. If xt = σ2zt,
then the limiting distribution of the test statistic L̃τ becomes

1
σ4 ·

T
p

L̃τ −
p
2

d
−→ N

(
1
2
, 1 +

3(ν4 − 1)
2

·
p
T

)
.
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Note that σ2 can be easily estimated from sample data, i.e. σ̂2 = 1
pT

∑T
t=1

∑p
i=1 x2

it. Since σ̂4 =

σ4 + O
(

1
√

pT

)
, substituting σ̂4 for σ4 will not effect the limiting distribution. Therefore, we reject

the null hypothesis for large values of
(

1
σ̂4 ·

T
p L̃τ −

p
2

)
.

2.4. Test procedure when Σ0 is diagonal

Previously in Theorems 2.1 and 2.2, and their combination Theorem 2.3, the asymptotic nor-
mality of the test statistic φτ uses a crucial assumption: the time series xt = zt has independent and
identically distributed components. We now consider the case xt = Σ

1/2
0 zt where the (unknown)

covariance matrix Σ0 is diagonal, say Σ0 = diag
(
σ2

1, · · · , σ
2
p

)
. We have

M̃τ,0 =
1

2T

T∑
t=1

(ztz∗t−τ + zt−τz∗t ) =
1

2T

T∑
t=1

Σ
−1/2
0 (xtx∗t−τ + xt−τx∗t )Σ−1/2

0 = Σ
−1/2
0 M̃τΣ

−1/2
0 .

This leads to the statistic

L̃τ,0 = Tr(M̃∗
τ,0M̃τ,0) = Tr(Σ−1/2

0 M̃∗
τΣ
−1
0 M̃τΣ

−1/2
0 ) = Tr(Σ−1

0 M̃τ)2,

which is equivalent to the statistic L̃τ defined in (2.5) for the previous case of Σ0 = Ip.
Since Σ0 is diagonal, xt has p independent coordinates. Therefore σ2

j can be estimated respec-
tively with the corresponding coordinates of xt, i.e.,

σ̂2
j =

1
T

T∑
t=1

x2
jt, Σ̂0 = diag

(
σ̂2

1, · · · , σ̂
2
p

)
.

Calculating the statistic φτ in (2.6) using the transformed data leads to the statistic

φ̂τ =
T
p

L̂τ,0 −
p
2
, where L̂τ,0 = Tr

(̂
Σ−1

0 M̃τ

)2
. (2.10)

The null hypothesis will be rejected if

φ̂τ >
1
2

+ Zα

(
1 +

3(ν4 − 1)
2

cp

)1/2

.

In other words, we can first standardize the original data xt coordinate-wise, and then apply the
previous procedures on the transformed data.

3. Multiple-lags based tests

The test statistic φτ from previous sections is based on a fixed single lag τ, which can only
detect serial dependence in a single lag each time. To capture a multi-lag dependence structure,
we propose in this section multi-lag based test statistics to complement the single-lag based one.
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Let q ≥ 1 be a fixed integer, define the p(q + 1) dimensional vector y j =


x j(q+1)−q

...
x j(q+1)

 , j =

1, · · · ,N, N =
[

T
q+1

]
. Since Ext = 0 and Στ = Cov(xt+τ, xt), we have

Cov(y j) =


Σ0 Σ1 · · · Σq

Σ1 Σ0
. . .

...
...

. . .
. . . Σ1

Σq · · · Σ1 Σ0


(q+1)p×(q+1)p

.

The null hypothesis H0 : Cov(xt+k, xt) = 0, k = 1, · · · , q becomes H0 : Σ1 = · · · = Σq = 0, a test
for a block diagonal covariance structure of the stacked sequence {y j}.

3.1. Test procedure when Σ0 = σ2Ip

When Σ0 = σ2Ip, the white noise test of {xt} reduces to a sphericity test of {y j}. The well
known John’s test statistic Uq can be adopted for this purpose. In our case, the corresponding
John’s test statistic Uq is defined as

Uq =

1
p(q+1)

∑p(q+1)
i=1

(
li,q − lq

)2

lq
2 ,

where {li,q, i = 1, · · · , p(q + 1)} are the eigenvalues of S q = 1
N

∑N
j=1 y jy∗j, the sample counterpart

of Cov(y j), and lq is the mean value of all li,q’s.
Actually, it has been proven in Li and Yao (2015) that the John’s test possesses the powerful

dimension-proof property, which keeps exactly the same limiting distribution under the null with
any (n, p)-asymptotics, even regardless of normality. Specifically, we have the following.

Theorem 3.1. Let q ≥ 1 be a fixed integer, assume that

1. {zit, i = 1, · · · , p, t = 1, · · · ,T } are all independently distributed satisfying Ezit = 0, Ez2
it =

1, Ez4
it = ν4;

2. p,T → ∞, cp := p/T → c ∈ [0,∞],

Then in the simplest setting when xt = zt, we have

NUq − p(q + 1)
d
−→ N(ν4 − 2, 4), (3.1)

where N =
[

T
q+1

]
, the integer part of fraction T

q+1 .

Notice however that the use of blocks above reduces the sample size T to the number of blocks
N =

[
T

q+1

]
. This may result in certain loss of power for the test based on (3.1). In order to limit

such loss of power, we adopt the Simes method for multiple hypothesis testing (Simes, 1986).
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Note that y j =
(
x′j(q+1)−q, · · · , x′j(q+1)

)′
, j = 1, · · · ,

[
T

q+1

]
. To make full use of the data, y j can

also be defined as

y j =


x j(q+1)−q+k

...
x j(q+1)+k

 ,
where k = 0, 1, · · · , q, j = 1, · · · ,

[
T−k
q+1

]
. Then the John’s test statistic Uq can be calculated based

on q + 1 different sets of y′js and thus results in q + 1 different test statistics U (k)
q .

Moreover, let Pk, 0 ≤ k ≤ q denotes the (asymptotic) P-value for the John’s test with the k−th
set of y′js, i.e,

Pk = 1 − Φ
(
(NU (k)

q − p(q + 1) − ν4 + 2)/2
)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. Let P(1) ≤

· · · ≤ P(q+1) be a permutation of P0, · · · , Pq. Then by the Simes method, we reject H0 if P(k) ≤
k

q+1α at least for one 1 ≤ k ≤ q + 1 for the nominal level α.

3.2. Test procedure with general Σ0

Previously, the white noise test of {xt} reduces to a sphericity test of {y j} when Σ0 = σ2Ip. Now
if Σ0 , σ2Ip, the white noise test becomes a test of block diagonal structure of the covariance
matrix of {y j}1≤ j≤N . Actually, Srivastava (2005) has derived the limiting distribution of the John’s
test statistic with a general population covariance matrix and normally distributed samples.

More specifically, if y1, · · · , yN are samples from Np(q+1)(µ,Σy), denote ai = 1
p(q+1)Tr(Σi

y) and
let

Ûq =

1
p(q+1)Tr

(
Ŝ 2

q

)
(

1
p(q+1)Tr

(
Ŝ q

))2 ,

where Ŝ q = 1
N−1

∑N
j=1(y j−y)(y j−y)∗, y = 1

N

∑N
j=1 y j. Then according to Theorem 3.1 in Srivastava

(2005), we have the following.

Proposition 3.1. Let q ≥ 1 be a fixed integer. Assume that

(1) As p→ ∞, ai → a0
i , 0 < a0

i < ∞, i = 1, · · · , 8;
(2) p, N → ∞, N = O(pδ), 0 < δ ≤ 1.

Then
(N − 1)3

(N − 2)(N + 1)
Ûq −

p(q + 1)(N − 1)2

(N − 2)(N + 1)
−

a2

a2
1

(N − 1)
d
−→ N

(
0, 4τ2

1

)
, (3.2)

where τ2
1 =

2N(a4a2
1−2a1a2a3+a3

2)
p(q+1)a6

1
+

a2
2

a4
1
.

Note first that if Σy = σ2Ip(q+1), then equation (3.2) is asymptotically equivalent to equation
(3.1) for normal samples (ν4 = 3).
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Moreover, under H0,

Σy = Cov(y j) =


Σ0 0 · · · 0

0 Σ0
. . .

...
...

. . .
. . . 0

0 · · · 0 Σ0


(q+1)p×(q+1)p

,

then the ai’s in (3.2) can be written as ai = 1
pTr(Σi

0), where Σ0 = Cov(xt), t = 1, · · · ,T . Since the
ai’s are usually unknown in practice, we can use their sample counterparts to derive consistent
estimators for them.

In particular, denote bi = 1
pTr(S i

x), where S x = 1
T

∑T
t=1 xtx∗t , and define the estimators (âi)1≤i≤4

as the solutions to the system in Lemma 2.16 in Yao et al. (2015), we then have

â1 = b1,
â2 = b2 − cpb2

1,
â3 = b3 − 3cpb1b2 + 2c2

pb3
1,

â4 = b4 − 4cpb1b3 − 2cpb2
2 + 10c2

pb2
1b2 − 5c3

pb4
1,

τ̂2
1 =

2N
(
â4â2

1 − 2â1â2â3 + â3
2

)
p(q + 1)â6

1

+
â2

2

â4
1

.

Here cp =
p
T . Substituting these estimators (âi) for their population counterparts (ai) will not

change the limiting distribution in Proposition 3.1. Therefore for a fixed integer q ≥ 1, when
xt ∼ Np(0,Σ0), we should reject H0 for large values of Ûq, i.e.,

Reject H0 if
(N − 1)3

(N − 2)(N + 1)
Ûq >

p(q + 1)(N − 1)2

(N − 2)(N + 1)
+

â2

â2
1

(N − 1) + 2τ̂1Zα.

Similarly the Simes’ method can also be adopted here to enhance the power of the test.

4. Simulation experiments

Most of the experiments of this section are designed in order to compare the test procedure in
(2.8) based on the statistic φτ, and the procedure based on the statistic Uq with the Simes method
implemented as described at the end of Section 3.1, with two well known classical white noise
tests, namely the Hosking test (Hosking, 1980) and the Li-McLeod test (Li et al., 1981). At the
end of the section, experiments are conducted to assess the performance of the test statistic φ̂τ in
(2.10) using standardized data when the population covariance matrix is diagonal.

To introduce the Hosking and Li-McLeod tests and using their notations, consider a p-dimensional
VARMA(u, v) process of the form

xt − Φ1xt−1 − · · · − Φuxt−u = at − Θ1at−1 − · · · − Θvat−v,

where at is a p−dimensional white noise with mean zero and variance Σ. Since xt is observed,
with an initial guess of u and v, by assuming at to be Gaussian, estimation of parameters {Φ, Θ}
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is conducted by the method of maximum likelihood. The initial estimates of u and v are further
refined at the diagnostic checking stage based on the auto-covariance matrices Ĉτ of the residuals
{ât}:

Ĉτ =
1
T

T∑
t=τ+1

âtâ∗t−τ, , τ = 0, 1, 2, . . . .

Hosking (1980) proposed the portmanteau statistic

Q̃q = T 2
q∑
τ=1

1
T − τ

Tr
(
Ĉ∗τĈ

−1
0 ĈτĈ−1

0

)
,

while Li et al. (1981) recommended the use of the statistic

Q∗q = T
q∑
τ=1

Tr
(
Ĉ∗τĈ

−1
0 ĈτĈ−1

0

)
+

p2q(q + 1)
2T

.

When {xt} follows a VARMA(u, v) model, both Q̃q and Q∗q converge to χ2(p2(q − u − v)) distri-
bution as T → ∞, while the dimension p remains fixed.

To compare with our Single Lag-τ test statistic φτ and multiple lags John’s test with Simes
method, we set u = v = 0. All tests use 5% significance level and the critical regions of the three
tests are as follows:

(i) Single lag-τ test:
{
φτ >

1
2 + Z0.95(1 +

3(ν4−1)
2 cp)1/2

}
;

(ii) Multi-lag-q test:
{
at least for one 1 ≤ k ≤ q + 1, P(k) ≤

k
q+10.05

}
;

(iii) Hosking’s test:
{

Q̃q > χ
2
0.95, qp2

}
;

(iv) Li-McLeod test:
{

Q∗q > χ
2
0.95, qp2

}
.

Here Z0.95 and χ2
0.95, m denote the 95 percentile of the standard normal distribution and the chi-

squared distribution with degrees of freedom m, respectively. Empirical statistics are obtained
using 5000 independent replicates.

4.1. Empirical sizes

The data is generated as xt = zt, with zt ∼ Np(0, Ip) being independent and identically dis-
tributed, t = 1, · · · ,T . Table 1 compares the sizes of the four tests for two different q. Cases when
p > T are not considered here since Q̃q and Q∗q are not applicable then.

The main information from Table 1 is that classical test procedures derived using large sample
scheme, namely by letting the sample size T → ∞ while the dimension p remains fixed, are
heavily biased when the dimension p is in fact not negligible with respect to the sample size. To
be more precise, these biases are clearly present when the dimension-to-sample ratio p/T is not
“small enough”, say greater than 0.1. Such high-dimensional traps for classical procedures have
already been reported in other testing problems, see for example Bai et al. (2009) and Wang and
Yao (2013). Here we observe that the empirical sizes of the Hosking’s and the Li-McLeod tests



Z. Li, J. Yao, C. Lam & Q. Yao/On testing a high-dimensional white noise 12

quickly degenerate to 0 as the ratio p/T increases from 0.1 to 0.5. In other words, the critical
values from their χ2

qp2 asymptotic limits are seemingly too large. On the other hand, the statistics
φτ and Uq have reasonable sizes when compared to the 5% nominal level across all the tested
(p,T ) combinations.

4.2. Empirical powers and adjusted powers

In this section, we compare the empirical powers of the tests by assuming that xt follows a
vector autoregressive process of order 1,

xt = Axt−1 + zt,

where A = αIp, zt ∼ Np(0, Ip) being independent of each other for t = 1, · · · ,T . Here we assign
α = 0.1 and apply the three test procedures to get the power values as in Table 2.

From Table 1 we know that the two classic tests become seriously biased when the dimension
p is larger compared to the sample size T . Their sizes approach zero when p/T becomes larger.
From Table 2, we see that due to the biased critical values used in Q̃q and Q∗q as shown in Table
1, their powers are driven downward. This is particularly severe when the ratio p/T is larger than
0.5.

In Table 3, we compare the intrinsic powers of the four procedures. Namely, we empirically
find the 95 percentiles of Q̃q and Q∗q and use these values as the corrected critical values for
the power comparison. It is interesting to observe that after such correction, both Q̃q and Q∗q
show very reasonable powers which all increase to 1 when the dimension and the sample size
increase. However, even with such empirically adjusted critical values, our single-lag based test
still dominates these two tests by displaying a generally much higher power in all the tested (p,T )
combinations. Table 4 demonstrates the feasibility of our test statistics when the dimension p is
larger than the sample size T where the other two tests are not even applicable. Comparison with
the Hosking’s and the Li-McLeod tests sheds new light on the superiority of our test statistics in
both low and high dimensional cases.

4.3. Why both the Hosking’s and the Li-Mcleod tests fail in high dimension?

The experiments here are designed to explore the reasons behind the failure of the Hosking’s
and the Li-McLeod tests in high dimension. For the test statistics Q̃q and Q∗q as well as our test
statistic φτ, we consider their empirical mean, variance and the 95% quantile, say θemp, with
their theoretical values predicted by their respective asymptotic distributions (denoted as θtheo).
Statistics for φτ are given in Table 5. We observe a very good agreement between the empirical
and theoretical values in all tested (p,T )-combinations. As for the two classical tests, we have
often observed very large discrepancy between these values so it is more convenient to report
the corresponding relative errors (θtheo − θemp)/θemp (in percentage). This is done in Table 6. It
clearly appears from this table that for both statistics Q̃q and Q∗q, the traditional asymptotic theory
severely overestimated their variances, that is their empirical means are close to the degree of
freedom p2(q − u − v) of the asymptotic chi-squared distribution while their empirical variances
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are much smaller than 2p2(q − u − v) as suggested by the same chi-squared limit. This leads to
an inflated 95th percentiles which, although in a lesser proportion, is enough to create a high
down-bias in the empirical sizes of these two classical tests with high-dimensional data; See
Table 1.

4.4. Case of a diagonal Σ0

Simulations have also been carried out to attest the finite-sample performance of the new test
statistic φ̂τ in (2.10). We fix {σ2

j , j = 1, · · · , p} to be an arithmetic sequence running from σ2
1 =

0.5 to σ2
p = 3. The zt’s are independent p-variate standard normal, zt ∼ Np(0, Ip), t = 1, · · · ,T .

The data is generated by letting xt = Σ
1/2
0 zt. First we check the characteristics of the test statistic

φ̂τ as opposed to those of φτ. Note that if Σ0 were known, the standardization Σ
−1/2
0 xt leads to

the statistic L̃τ,0 = Tr(Σ−1
0 M̃τ)2, which is equivalent to the test statistic φτ studied previously. This

procedure will be referred as the oracle procedure for comparison. Empirical means, variances
and 95th percentiles for φ̂τ (in fact a scaled version c−2

p φ̂τ) are given in Table 7 where the corre-
sponding benchmark values from φτ are given in bold for comparison. It can be seen from the
table that the empirical means of φ̂τ match very well to those of φτ while certain discrepancy
exists between the empirical variances, thus the empirical 95th percentiles of φ̂τ and their bench-
mark values. It is also observed that such discrepancy becomes more severe with large values of
the ratio cp = p/T . This will lead to biased empirical sizes and powers of the test based on φ̂τ as
shown in Table 8. Here for the evaluation of the power of the test, the sequence (zt) is chosen to
follow a vector autoregressive process of order 1,

zt = Azt−1 + εt,

where A = αIp, α = 0.1, εt ∼ Np(0, Ip) which is independent of each other for t = 1, · · · ,T .
Similarly, xt = Σ

1/2
0 zt for the simulated sequence. Multi-lag-q test procedure with general Σ0, i.e.

Ûq in Srivastava (2005) combined with Simes’ method, is also adopted here for comparison.
It is striking to observe that although the empirical sizes for the test based on φ̂τ with stan-

dardized data are clearly down biased, its empirical powers remain reasonably high in almost all
the tested (p,T ) combinations. In other words, the very conservative trend of the statistic φ̂τ in
term of test size has not annihilated all its power. Therefore, in the case of an unknown diagonal
cross-sectional covariance matrix, the white noise test based on φ̂τ remains recommendable with
satisfactory power and a low Type I error.

5. Case of a general covariance matrix Σ0

When the population covariance matrix Σ0 is general without any particular structure, the
testing problem becomes even more intricate in high dimensions. To fix the idea, assume again
the data vectors are of the form xt = Σ

1/2
0 zt where the zt’s have standardized i.i.d. components. So

what about the data standardization procedure advocated in Section 2.4 for diagonal Σ0’s, that is
by first finding an estimator Σ̂0 of Σ0, and then applying the theory developed previously when
Σ0 = Ip with the statistic φτ? Unfortunately enough, this “natural” approach ends up fruitless
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here due to the lack of an efficient estimator of Σ0 when the dimension is high. As far as we
know, no consistent estimator is available for a general high dimensional covariance matrix Σ0

without a particular structure such as diagonal, banded or being sparse. As a consequence, the
standardized observations yt = Σ̂

−1/2
0 xt will have a covariance matrix far away from the identity

matrix and applying the test statistic φτ will lead to dramatic errors.
Here for a general Σ0 we propose another test statistic, namely

Gq =

q∑
τ=1

Qτ, where Qτ = Tr
(
Σ̃(τ)Σ̃(τ)∗

)
with Σ̃(τ) =

1
T

T∑
t=1

xt−τx∗t , (5.1)

where xt = xT+t for t ≤ 0.
A conjecture about the asymptotic normality of Gq is formulated below under the high dimen-

sional setting p/T → c > 0 (Marčenko-Pastur). Although theoretical proof of the asymptotic
normality has not yet been fully established, simulation studies, on the other hand, lend full
support to the result as follows.

Conjecture 5.1. Let q ≥ 1 be a fixed integer. Then under the assumptions that the components
{zit, i = 1, . . . , p, t = 1, . . . ,T } of {zt} are all independently distributed satisfying Ezit = 0,Ez2

it =

1,Ez4
it = ν4 < ∞, we have when p,T → ∞ and p/T → c > 0,

Gq − qTc2
ps2

1
d
−→ N

(
0, 2qc2s2

2 + 4q2c3(ν4 − 3)s2
1sd,2 + 8q2c3s2

1s2

)
,

where s` = limp→∞
1
pTr(Σ`0), sd,` = limp→∞

1
pTr(diag`(Σ0)).

When Σ0 = Ip and the zit’s are normally distributed, we have s1 = s2 = sd,2 = 1 and ν4 = 3.
From this proposition, we can see that in general, when Σ0 , Ip, we need to estimate four more
quantities for carrying out the white noise test, namely, s1, s2, sd,2 and ν4.

Simulations are carried out to check the validity of the result in Conjecture 5.1. In these ex-
periments, the covariance matrix Σ0 is taken from the following three profiles:

1. Σ0 = 4Ip;
2. Σ0 = Ip + Q0DQ∗0, where Q0 is an orthogonal matrix generated randomly each time, and

D is diagonal with 10% of entries being randomly generated U(0, 2)p1/3, and the rest are
U(0, 1)p−1/2.

3. Σ0 = Q0DQ∗0, where Q0 is an orthogonal matrix generated randomly each time, and D is
diagonal with elements generated randomly as U(1, 6).

Once Σ0 is chosen, we consider two types of {zt} with either the zit’s being independent and
identically distributed (i.i.d.) standard normal, or being i.i.d. U(−2

√
3, 2
√

3), with ν4 = 1.8. Thus
in total six different scenarios for the data xt = Σ

1/2
0 zt are thus considered. For each scenario, we

calculate the statistic G5 and standardize it using the result from Conjecture 5.1. Again 5000
independent replications are used in these experiments where p = 500 and T = 600 have been
fixed. Results are shown in Figure 1. In all the six scenarios, the conjecture seems well confirmed.

Despite this empirical confirmation, the practical usage of it is still limited unfortunately. For
instance, if we have an estimator ŝ1 of s1, to utilize the result, we compute Gq − qTc2

p ŝ2
1 and hope
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that this is centered at 0 when the data is truly white noise. Consider

Gq − qTc2
p ŝ2

1 = (Gq − qTc2
ps2

1) + qTc2
p(s2

1 − ŝ2
1)

= (Gq − qTc2
ps2

1) + qTc2
p(s1 + ŝ1)(s1 − ŝ1).

Hence for the above to center at 0 asymptotically, we need s1 − ŝ1 = oP(T−1), so that the second
term on the right hand side above will be oP(1), while the first term goes to 0 by the result of
Conjecture 5.1. Unfortunately, we can only prove that s1 − ŝ1 = OP(T−1) if ŝ1 = p−1Tr(S ) where
S is the sample covariance matrix of the data. Even if Σ0 = σ2Ip does not help since a natural
estimator of σ2 is indeed the very same ŝ1, still having s1 − ŝ1 = OP(T−1) in this particular case.
This argument highlights the difficulty in high dimensional testing of white noise.

6. Concluding remarks

In this paper, two types of test statistics are proposed for testing a high dimensional white
noise, namely the single-lag-τ serial test statistics φτ, φ̂τ and the multi-lag-q serial test statistics
Uq, Ûq and Gq. In practice, different test statistics should be carefully chosen to fit in different
scenarios of observations. For example, the data xt can either come from a normal or non-normal
populations; the population covariance Σ0 of xt can either be spherical, diagonal or completely
arbitrary. A summary of these test statistics is given in the table below.

Summary of different test statistics
Single-lag-τ Multi-lag-q

Σ0 = σ2Ip φτ Uq

Diagonal Σ0 φ̂τ Ûq (normal population only); Gq

General Σ0 – Ûq (normal population only); Gq

It can be seen from the table that all these test statistics are applicable for general (non-normal)
populations except for Ûq. It is of interest to extend the asymptotic result of Ûq to cover general
non-normal populations. Alternatively, a rigorous proof of the conjecture for limiting distribution
of Gq would also provide a notable progress. On the other hand, given the extraordinarily pow-
erful performance of single-lag-τ test statistic φτ, its extension to the setting with a general Σ0 is
surely worth further investigation. Unfortunately, due to the complexity of the analysis needed,
these investigations are much beyond the scope of this paper. More efforts are still needed for
such further exploration.

7. Proofs

7.1. Preliminaries

For any n × n Hermitian matrix M with real eigenvalues λ1, · · · , λn, the empirical spectral
distribution (ESD for short) of M is defined by FM = n−1 ∑n

j=1 δλ j , where δa denotes the Dirac
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mass at a. The Stieltjes transform of any distribution G is defined as

mG(z) =

∫ 1
x − z

dG(x), I(z) > 0,

where I(z) stands for the imaginary part of z.
Consider the lag−τ sample auto-covariance matrix M̂τ, Jing et al. (2014) derived the limit of

the ESD of M̂τ with finite (2 + δ)-th moment restriction under p/T → c asymptotic. Bai and
Wang (2015) further consolidates the results by providing an alternative approach to derive the
limiting spectral distribution(LSD). Theorem 1.1 in Bai and Wang (2015) states as follows:

Theorem 7.1. Assume

(a) τ ≥ 1 is a fixed integer.
(b) xt =

(
x1t, · · · , xpt

)
, t = 1, · · · ,T is p dimensional vectors with independent components

with
sup

1≤i≤p,1≤t≤T
E|xit|

2+δ ≤ M < ∞,

for some δ ∈ (0, 2] and for any η > 0,

1
η2+δpT

p∑
i=1

T∑
t=1

E
(
|xit|

2+δI
(
|xit| ≥ ηT 1/(2+δ)

))
= o(1).

(c) p/T → c ∈ (0,∞) as p,T → ∞.
(d) M̂τ = 1

2T

∑T
t=1+τ

(
xtx∗t−τ + xt−τx∗t

)
.

Then as p,T → ∞, F M̂τ
d
−→ Fc a.s. and Fc has a density function given by

φc(x) =
1

2cπ

√√
y2

0

1 + y0
−

1 − c
|x|

+
1√

1 + y0

2

, |x| ≤ a,

where

a =


(1 − c)

√
1 + y1

y1 − 1
, c , 1,

2, c = 1,

y0 is the largest real root of equation: y3 −
(1−c)2−x2

x2 y2 − 4
x2 y − 4

x2 = 0 and y1 is the only real root
of the equation: ((1 − c)2 − 1)y3 + y2 + y − 1 = 0 such that y1 > 1 if c < 1 and y1 ∈ (0, 1) if
c > 1. Further, if c > 1, then Fc has a point mass 1 − 1/c at the origin. Meanwhile, the Stieltjes
transform m(z) of Fc satisfies

(1 − c2m2(z))(c + czm(z) − 1)2 = 1.

Bai and Silverstein (2004) and Zheng et al. (2015) studied the central limit theorem for lin-
ear spectral statistics of large-dimensional sample covariance matrices. By their notation, let



Z. Li, J. Yao, C. Lam & Q. Yao/On testing a high-dimensional white noise 17

Bn = (1/N)T 1/2
n XnX∗nT 1/2

n , where Xn = (Xi j) is n × N with i.i.d. complex standardized entries
having finite fourth moment, T 1/2

n is a Hermitian square root of the nonnegative definite Hermi-
tian matrix Tn. It has been proven that if for all n, i, j, Xn

i, j are independent, with probability 1,

FTn
d
−→ H, a proper cumulative distribution function(c.d.f.) and n/N → y > 0 as n → ∞, then

with probability 1, ESD of Bn, FBn converges in distribution to Fy,H, a non-random proper c.d.f.
If Bn = (1/N)X∗nTnXn, then its LSD Fy,H satisfies

Fy,H = (1 − y)I[0,∞) + yFy,H,

and its Stieltjes transform has inverse

z = −
1
m

+ y
∫

t
1 + tm

dH(t). (7.1)

Define
Gn(x) = n

[
FBn(x) − Fyn,Hn(x)

]
,

and f1, · · · , fk be functions on R analytic, assume E(Xi j) = 0, E(|Xi j|
2) = 1, E(|Xi j|

4) = ν4 < ∞,
then random vector (∫

f1(x) dGn(x), · · · ,
∫

fk(x) dGn(x)
)
, (7.2)

forms a tight sequence in n and (7.2) converges weakly to a Gaussian vector (X f1 , · · · , X fk) with
means

EX f = −
1

2πi

∮
f (z)

y
∫ m(z)3t2

(1+tm(z))3 dH(t)(
1 − y

∫ m(z)2t2

(1+tm(z))2 dH(t)
)2 dz −

ν4 − 3
2πi

∮
f (z)

y
∫ m(z)3t2

(1+tm(z))3 dH(t)

1 − y
∫ m(z)2t2

(1+tm(z))2 dH(t)
dz,

(7.3)
and covariance function

Cov(X f , Xg) = −
1

2π2

	 f (z1)g(z2)(
m(z1) − m(z2)

)2

d
dz1

m(z1)
d

dz2
m(z2) dz1 dz2 (7.4)

−
y(ν4 − 3)

4π2

	
f (z1)g(z2)

(∫
t

(tm(z1) + 1)2 ·
t

(tm(z2) + 1)2 dH(t)
)

dm(z1)dm(z2),

( f , g ∈ { f1, · · · , fk}). The contours in (7.3) and (7.4) (two in (7.4), which we may assume to be
non-overlapping) are closed and are taken in the positive direction in the complex plane, each
enclosing the support of Fy,H.

7.2. Proof for Theorem 2.1

Let N̂τ = 1
2p

∑T
t=1+τ

(
xtx∗t−τ + xt−τx∗t

)
= T

p M̂τ. To test H0, we let xt = zt and focus on test statistic

L̂τ =

p∑
j=1

l̂2
j,τ = Tr(N̂∗τ N̂τ),
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where {l̂ j,τ, 1 ≤ j ≤ p} are eigenvalues of N̂τ.
Note that

N̂τ =
1

2p

T∑
t=1+τ

(
xtx∗t−τ + xt−τx∗t

)

=
1
p

(x1, x2, · · · , xT )



0 · · · 1
2 · · · 0

...
. . . 0 1

2

...

1
2 0 . . . 0 1

2
... 1

2 0 . . .
...

0 · · · 1
2 · · · 0




x∗1
x∗2
...

x∗T


=

1
p

XTCT,τX∗T

where CT,τ is T × T matrix with two bands of 1
2 which are τ−distance from main diagonal.

According to results in Bai and Wang (2015),

Lemma 7.1. The T × T matrix CT,τ has τ − 1 zero eigenvalues and other T − τ + 1 eigenvalues
are

λk = cos
kπ

T − τ + 2
, k = 1, 2, · · · ,T − τ + 1.

As T → ∞, the empirical spectral distribution(ESD) of CT,τ tends to H with density function

H′(t) =
1

π
√

1 − t2
, t ∈ (−1, 1).

Following the theory in Bai and Silverstein (2004), let

Bn =
1
p

CT,τX∗T XT , Bn =
1
p

XTCT,τX∗T , f (x) = x2,
T
p
→

1
c

= y,

then ∫
f (x) dGn(x) =

∫
x2 dn

[
FBn(x) − Fyn,Hn(x)

]
= T

∫
x2 dF

1
p CT,τX∗T XT − T

∫
x2 dF

1
c ,CT,τ

=

p∑
j=1

l̂2
j,τ − T

∫
x2 dHn(x)

=

p∑
j=1

l̂2
j,τ −

T−τ+1∑
k=1

(
cos

kπ
T − τ + 2

)2

=

p∑
j=1

l̂2
j,τ −

1
2

(T − τ)
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where {l̂ j,τ, 1 ≤ j ≤ p} are eigenvalues of N̂τ = 1
p XTCT,τX∗T . The above equation holds because∫

x dH(x) =

∫ 1

−1

x

π
√

1 − x2
dx = 0,∫

x2 dH(x) =

∫ 1

−1

x2

π
√

1 − x2
dx =

1
2
.

According to (7.1), the Stieltjes transform of LSD of N̂τ = 1
p XTCT,τX∗T satisfies

z = −
1
m

+ y
∫

t
1 + tm

dH(t)

= −
1
m

+
1
c

∫ 1

−1

t
1 + tm

·
1

π
√

1 − t2
dt,

thus,

zm = −1 +
1
c
−

1
c

∫ 1

−1

1
1 + tm

·
1

π
√

1 − t2
dt

= −1 +
1
c
−

1

c
√

1 − m2
.

Taking derivative with respective to z on both side of equation (7.1), we have

dm
dz

=
m2

1 − y
∫ t2m2

(1+tm)2 dH(t)
,

by (7.3), we have, for the first term in EX f ,

−
1

2πi

∮
f (z)

y
∫ m(z)3t2

(1+tm(z))3 dH(t)(
1 − y

∫ m(z)2t2

(1+tm(z))2 dH(t)
)2 dz

= −
1

2πi

∮
z2

y
∫ m(z)t2

(1+tm(z))3 dH(t)

1 − y
∫ m(z)2t2

(1+tm(z))2 dH(t)
·

dm
dz

dz =
1

2πi

∮
z2

m(1+2m2)

2c
(√

1−m2
)5

1 − 1
c + 1

c ·
1−2m2(√

1−m2
)3

dm
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since z = 1
m

(
−1 + 1

c −
1

c
√

1−m2

)
, by residue theorem, the first term in EX f equals to

1
2πi

∮ (
1 − 1

c + 1
c
√

1−m2

)2

m2 ·
m(1 + 2m2)

2(c − 1)
( √

1 − m2
)5

+ 2(1 − 2m2)(1 − m2)
dm

=

(
1 − 1

c + 1
c
√

1−m2

)2

(1 + 2m2)

2(c − 1)
( √

1 − m2
)5

+ 2(1 − 2m2)(1 − m2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
m=0

=
1
2c
.

Similarly, for the second term in EX f ,

−
(ν4 − 3)

2πi

∮
f (z)

y
∫ m(z)3t2

(1+tm(z))3 dH(t)

1 − y
∫ m(z)2t2

(1+tm(z))2 dH(t)
dz

= −
(ν4 − 3)

2πi

∮
z2 ·

1
c

(∫
m(z)t2

(1 + tm(z))3 dH(t)
)
·

dm
dz

dz = 0.

Therefore, the mean term

EX f =
1
2c
.

By (7.4), we have, for the first term of Var
(
X f

)
,

−
1

2π2

	
z2

1z2
2(

m(z1) − m(z2)
)2 dm(z1)dm(z2)

= −
1

2π2

∮ (
1 − 1

c + 1
c
√

1−m2
2

)2

m2
2

dm2

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

(
m1 − m2

)2 dm1,

Similarly, by residue theorem,

1
2πi

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

(
m1 − m2

)2 dm1 =
1

2πi

∮
1

m2
1

·

(
1 + (c − 1)

√
1 − m2

1

)2

c2
(
m1 − m2

)2 (
1 − m2

1

) dm1

=


(
1 + (c − 1)

√
1 − m2

1

)2

c2
(
m1 − m2

)2 (
1 − m2

1

)


(1)
∣∣∣∣∣∣∣∣∣∣∣∣
m1=0

=
2

m3
2

,
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then, the first term of Var
(
X f

)
equals to

2 ·
1

2πi

∮ (
1 − 1

c + 1
c
√

1−m2
2

)2

m2
2

·
2

m3
2

dm2

= 4 ·
1
4!


1 − 1

c
+

1

c
√

1 − m2
2


2

(4)
∣∣∣∣∣∣∣∣∣∣∣
m2=0

=
1 + 3c

c2

As for the second term of Var
(
X f

)
, we have,

−
y(ν4 − 3)

4π2

	
f (z1)g(z2)

(∫
t

(tm(z1) + 1)2 ·
t

(tm(z2) + 1)2 dH(t)
)

dm(z1)dm(z2)

= −
(ν4 − 3)

4π2c

∮ (
1 − 1

c + 1
c
√

1−m2
2

)2

m2
2

dm2

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

(∫
t2

(tm1 + 1)2(tm2 + 1)2 dH(t)
)

dm1,

since ∫
t2

(tm(z1) + 1)2(tm(z2) + 1)2 dH(t) =

∫ 1

−1

t2

(tm1 + 1)2(tm2 + 1)2 ·
1

π
√

1 − t2
dt

=

[
m2m2

1

(
−1 + 2m2

2

) √
1 − m2

1 + m1

(√
1 − m2

1 −

(√
1 − m2

2

)3)
− m3

1

(√
1 − m2

1 − 2
(√

1 − m2
2

)3)
+ m2

(√
1 − m2

1 −

√
1 − m2

2

)
+m3

2

(
−2

√
1 − m2

1 +

√
1 − m2

2

)] / [(
m1 − m2

)3
(√

1 − m2
1

)3 (√
1 − m2

2

)3]
,
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1
2πi

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

(∫
t2

(tm1 + 1)2(tm2 + 1)2 dH(t)
)

dm1

=
1

2πi

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

·

m1

(√
1 − m2

1 −

(√
1 − m2

2

)3)
(
m1 − m2

)3
(√

1 − m2
1

)3 (√
1 − m2

2

)3 dm1

+
1

2πi

∮ (
1 − 1

c + 1
c
√

1−m2
1

)2

m2
1

·

√
1 − m2

1

(
m2 − 2m3

2

)
− m2

(√
1 − m2

2

)3

(
m1 − m2

)3
(√

1 − m2
1

)3 (√
1 − m2

2

)3 dm1,

=

(
1 − 1

c + 1
c
√

1−m2
1

)2 (√
1 − m2

1 −

(√
1 − m2

2

)3)
(
m1 − m2

)3
(√

1 − m2
1

)3 (√
1 − m2

2

)3

∣∣∣∣∣∣∣∣∣∣∣∣∣
m1=0

+


(
1 − 1

c + 1
c
√

1−m2
1

)2 (√
1 − m2

1

(
m2 − 2m3

2

)
− m2

(√
1 − m2

2

)3)
(
m1 − m2

)3
(√

1 − m2
1

)3 (√
1 − m2

2

)3


(1)∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1=0

=
4

m3
2

−
4

m3
2

(√
1 − m2

2

)3 +
6

m2

(√
1 − m2

2

)3 ,

then

ν4 − 3
c
·

1
2πi

∮ (
1 − 1

c + 1
c
√

1−m2
2

)2

m2
2

·

 4
m3

2

−
4

m3
2

(√
1 − m2

2

)3 +
6

m2

(√
1 − m2

2

)3

 dm2

=
ν4 − 3

c
·

4
4!
·


1 − 1

c
+

1

c
√

1 − m2
2


2
1 − 1(√

1 − m2
2

)3




(4)∣∣∣∣∣∣∣∣∣∣∣
m2=0

+
ν4 − 3

c
·

6
2!
·


1 − 1

c
+

1

c
√

1 − m2
2


2

·
1(√

1 − m2
2

)3


(2)∣∣∣∣∣∣∣∣∣∣∣

m2=0

=
3(ν4 − 3)

2c
.
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Hence,

Var
(
X f

)
=

1 + 3c
c2 +

3(ν4 − 3)
2c

=
1 +

3(ν4−1)
2 c

c2 .

therefore,

L̂τ −
T − τ

2
d
−→ N

 1
2c
,

1 +
3(ν4−1)

2 c
c2

 ,
thus the high dimensional asymptotic normality in Theorem 2.1 follows, i.e.

T
p

L̃τ −
p
2

d
−→ N

(
1
2
, 1 +

3(ν4 − 1)
2

c
)
.

7.3. Proof for Theorem 2.2

In the paper Li and Yao (2015), we consider the re-normalized sample covariance matrix

Ã =

√
1
n

 1√
tr(Σ2

p)
Z∗ΣpZ −

tr(Σp)√
tr(Σ2

p)
In

 , (7.5)

where Z = (zi j)p×n and zi j, i = 1, · · · , p, j = 1, · · · , n are i.i.d. real random variables with mean
zero and variance one, In is the identity matrix of order n, Σp is a sequence of p× p non-negative
definite matrices with bounded spectral norm. Assume the following limit exist,

(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ2

p),
(c) ω = limp→∞

1
p

∑p
i=1(Σii)2,

it can be proved that, under the ultra-dimensional setting (p/n→ ∞, p, n→ ∞), with probability
one, the ESD of matrix Ã, F Ã converges to the semicircle law F with density

F′(x) =


1

2π

√
4 − x2, if |x| ≤ 2,

0, if |x| > 2.

We denote the Stieltjes transform of the semicircle law F by m(z). Let S denote any open region
on the complex plane including [−2, 2], the support of F and M be the set of functions which
are analytic on S . For any f ∈M , denote

Gn( f ) , n
∫ +∞

−∞

f (x)d
(
F Ã(x) − F(x)

)
−

√
n3

p
Φ3( f )

where
Φk( f ) =

1
2π

∫ π

−π

f (2 cos(θ)) cos(kθ) dθ,

the central limit theorem (CLT) of linear functions of eigenvalues of the re-normalized sample
covariance matrix Ã when the dimension p is much larger than the sample size n is stated as
follows.
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Theorem 7.2. Suppose that

(1) Z = (zi j)p×n where {zi j : i = 1, · · · , p; j = 1, · · · , n} are i.i.d. real random variables with
Ezi j = 0, Ez2

i j = 1 and ν4 = Ez4
i j < ∞.

(2) Σp is a sequence of p × p non-negative definite matrices with bounded spectral norm.
Assume the following limit exist,

(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ2

p),

(c) ω = limp→∞
1
p

∑p
i=1(Σii)2,

(3) p/n→ ∞ as n→ ∞, n3/p = O(1).

Then, for any f1, · · · , fk ∈ M , the finite dimensional random vector (Gn( f1), · · · ,Gn( fk)) con-
verges weakly to a Gaussian vector (Y( f1), · · · ,Y( fk)) with mean function

EY( f ) =
1
4

( f (2) + f (−2)) −
1
2

Φ0( f ) +
ω

θ
(ν4 − 3)Φ2( f ),

and covariance function

cov (Y( f1),Y( f2)) =
ω

θ
(ν4 − 3)Φ1( f1)Φ1( f2) + 2

∞∑
k=1

kΦk( f1)Φk( f2) (7.6)

=
1

4π2

∫ 2

−2

∫ 2

−2
f ′1(x) f ′2(y)H(x, y) dx dy

where

Φk( f ) ,
1

2π

∫ π

−π

f (2 cos θ)eikθ dθ =
1

2π

∫ π

−π

f (2 cos θ) cos kθ dθ,

H(x, y) =
ω

θ
(ν4 − 3)

√
4 − x2

√
4 − y2 + 2 log

4 − xy +
√

(4 − x2)(4 − y2)

4 − xy −
√

(4 − x2)(4 − y2)

 .
Another useful lemma in Li and Yao (2015) derived from Theorem 7.2 is as follows:

Lemma 7.2. Let {̃λi, 1 ≤ i ≤ n} be eigenvalues of matrix Ã =

√
1
n

(
1√

tr(Σ2
p)

Z∗ΣpZ − tr(Σp)
√

tr(Σ2
p)

In

)
,

where Z, Σp satisfies the assumptions in Theorem 7.2, then ∑n
i=1 λ̃

2
i − n −

(
ω
θ
(ν4 − 3) + 1

)∑n
i=1 λ̃i

 d
−→ N

((
0
0

)
,

(
4 0
0 ω

θ
(ν4 − 3) + 2

))
as p/n→ ∞, n→ ∞, n3/p = O(1).

Note that
L̃τ = Tr(M̃∗

τ M̃τ),



Z. Li, J. Yao, C. Lam & Q. Yao/On testing a high-dimensional white noise 25

M̃τ =
1

2T

T∑
t=1

(
xtx∗t−τ + xt−τx∗t

)
,

=
1

2T
(x1, · · · , xT )

(
Dτ + D∗τ

)
(x1, · · · , xT )∗

=
1

2T
XT

(
Dτ + D∗τ

)
X∗T ,

where permutation matrix

D1 =



0 1 0 · · · 0

0 0 . . .
...

...
. . .

. . . 0
0 0 1
1 0 · · · 0 0


T×T

, Dτ = Dτ
1 =



0 · · · 1 · · · 0
... 0 . . .

...

1 . . . 1
...

. . . 0
...

0 · · · 1 · · · 0


T×T

satisfies
D1D∗1 = D∗1D1 = IT ,

then when xt = zt, Mq conforms to the quadratic form (7.5) and Lq can be seen as a linear
function of eigenvalues ofMq. Therefore results in Theorem 7.2 and Lemma 7.2 can be directly
applied to derive the low dimensional asymptotic of our single-lagged test statistic L̃τ. Specifi-

cally, (p,T ) corresponds to (n, p) in Ã =

√
1
n

(
1√

tr(Σ2
p)

Z∗ΣpZ − tr(Σp)
√

tr(Σ2
p)

In

)
and Σp = 1

2

(
Dτ + D∗τ

)
.

Henceforth,

γ = lim
p→∞

1
p

tr(Σp) = 0,

ω = lim
p→∞

1
p

p∑
i=1

(Σii)2 = 0,

θ = lim
p→∞

1
p

tr(Σ2
p) = lim

T→∞

1
T

tr
(
1
4

(
Dτ + D∗τ

)2
)

=
1
2
,

Ã =

√
1
n

 1√
tr(Σ2

p)
Z∗ΣpZ −

tr(Σp)√
tr(Σ2

p)
In

 =
1√
p · T

2

XT

(
1
2

(
Dτ + D∗τ

))
X∗T =

√
2T
p

M̃τ,

therefore, according to lemma 7.2,

n∑
i=1

λ̃2
i = tr

(
Ã Ã∗

)
=

2T
p

tr
(
M̃τM̃∗

τ

)
=

2T
p

L̃τ,
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since
n∑

i=1

λ̃2
i − n −

(
ω

θ
(ν4 − 3) + 1

)
d
−→ N(0, 4),

2T
p

L̃τ − p − 1
d
−→ N(0, 4),

i.e.
T
p

L̃τ −
p
2

d
−→ N

(
1
2
, 1

)
.
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Society.

Lam, C. (2015). Nonparametric Eigenvalue-Regularized Precision or Covariance Matrix Estima-
tor. Annals of Statistics, to appear.

Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: inference for the
number of factors. Annals of Statistics, 40, 694–726.

Li, W. K. (2004). Diagnostic Checks in Time Series. Chapman & Hall/CRC.
Li, W. K., & McLeod, A. I. (1981). Distribution of the residual autocorrelations in multivariate

ARMA time series models. Journal of the Royal Statistical Society. Series B, 43, 231-239.
Li, Z., and Yao, J. (2015). Testing the Sphericity of a covariance matrix when the dimension is

much larger than the sample size. arXiv preprint arXiv:1508.02498.
Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, Berlin.
Paul, D. and Aue, A. (2014). Random matrix theory in statistics: A review. Journal of Statistical

Planning and Inference, 150, 1-29.
Sarkar, S. K. and Chang, C. K. (1997). The Simes method for multiple hypothesis testing with

positively dependent test statistics. Journal of the American Statistical Association, 92(440),
1601-1608.

Shojaie, A. andMichailidis, G. (2010). Discovering graphical Granger causality using the trun-
cating LASSO penalty. Bioinformatics, 26, 517-523.

Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3), 751-754.

M.S. Srivastava(2005). Some tests concerning the covariance matrix in high-dimensional data,
Journal of The Japan Statistical Society, 35,251-272.

Wang, Q. and Yao, J.(2013). On the sphericity test with large-dimensional observations. Elec-
tronic Journalof Statistics 7,2164-2192.

Yao, J., Zheng, S. and Bai. Z. (2015). Large Sample Covariance Matrices and High-Dimensional
Data Analysis. Cambridge University Press, New York and London.

Zheng, S., Bai, Z., and Yao, J. (2015). Substitution principle for CLT of linear spectral statistics
of high-dimensional sample covariance matrices with applications to hypothesis testing. The
Annals of Statistics, 43(2), 546-591.



Z. Li, J. Yao, C. Lam & Q. Yao/On testing a high-dimensional white noise 28

Table 1
Empirical sizes for the four test statistics

φτ Uq Q̃q Q∗q
p T p/T τ = 1 q = 1 q = 3 q = 1 q = 3 q = 1 q = 3
5 1000 0.005 0.0756 0.0646 0.0548 0.0490 0.0478 0.0488 0.0476

10 2000 0.005 0.0696 0.0564 0.0438 0.0492 0.0440 0.0492 0.0436
25 5000 0.005 0.0604 0.0568 0.0500 0.0498 0.0528 0.0498 0.0528
40 8000 0.005 0.0568 0.0524 0.0450 0.0508 0.0520 0.0508 0.0520
10 1000 0.01 0.0640 0.0602 0.0536 0.0472 0.0468 0.0470 0.0464
20 2000 0.01 0.0620 0.0494 0.0438 0.0502 0.0530 0.0502 0.0530
50 5000 0.01 0.0512 0.0518 0.0480 0.0488 0.0498 0.0488 0.0498
80 8000 0.01 0.0552 0.0506 0.0450 0.0464 0.0406 0.0464 0.0404
50 1000 0.05 0.0588 0.0510 0.0430 0.0408 0.0466 0.0408 0.0466
100 2000 0.05 0.0560 0.0488 0.0514 0.0432 0.0414 0.0432 0.0414
250 5000 0.05 0.0542 0.0470 0.0406 0.0456 0.0436 0.0456 0.0434
400 8000 0.05 0.0512 0.0490 0.0406 0.0418 0.0410 0.0418 0.0410
10 100 0.1 0.0714 0.0582 0.0518 0.0300 0.0400 0.0280 0.0362
40 400 0.1 0.0574 0.0502 0.0480 0.0362 0.0342 0.0358 0.0338
60 600 0.1 0.0562 0.0486 0.0446 0.0340 0.0340 0.0340 0.0338
100 1000 0.1 0.0564 0.0474 0.0504 0.0370 0.0268 0.0366 0.0264
50 100 0.5 0.0510 0.0580 0.0562 0.0006 0.0018 0.0006 0.0018
200 400 0.5 0.0522 0.0498 0.0462 0.0010 0.0004 0.0010 0.0004
300 600 0.5 0.0520 0.0430 0.0410 0.0002 0.0008 0.0002 0.0008
500 1000 0.5 0.0514 0.0430 0.0438 0 0 0 0
90 100 0.9 0.0508 0.0472 0.0558 0 0 0 0
180 200 0.9 0.0516 0.0470 0.0416 0 0 0 0
540 600 0.9 0.0518 0.0494 0.0462 0 0 0 0
900 1000 0.9 0.0550 0.0454 0.0432 0 0 0 0
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Table 2
Power comparison for the three test statistics

φτ Q̃q Q∗q
p T p/T τ = 1 q = 1 q = 3 q = 1 q = 3

10 100 0.1 0.3022 0.0952 0.0952 0.0914 0.0926
20 200 0.1 0.6488 0.2392 0.1994 0.2362 0.1958
40 400 0.1 0.9828 0.6638 0.5410 0.6622 0.5380
60 600 0.1 1 0.9406 0.8452 0.9404 0.8448
100 1000 0.1 1 1 0.9982 1 0.9982
50 100 0.5 0.4094 0.0014 0.0060 0.0014 0.0052
100 200 0.5 0.8548 0.0036 0.0208 0.0030 0.0194
200 400 0.5 0.9998 0.0330 0.2022 0.0328 0.1994
300 600 0.5 1 0.1156 0.6348 0.1138 0.6306
500 1000 0.5 1 0.5816 0.9974 0.5806 0.9972
80 100 0.8 0.4798 0 0 0 0
160 200 0.8 0.9158 0 0 0 0
320 400 0.8 1 0 0 0 0
480 600 0.8 1 0 0 0 0
800 1000 0.8 1 0.0004 0.0038 0.0004 0.0032
90 100 0.9 0.4950 0 0 0 0
180 200 0.9 0.9344 0 0 0 0
360 400 0.9 1 0 0 0 0
540 600 0.9 1 0 0 0 0
900 1000 0.9 1 0 0 0 0
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Fig 1: Normal QQ-plot of the statistic G5 after standardization. Upper row: The zit’s are standard normal.
Lower row: The zit’s are U(−2

√
3, 2
√

3). Left panel: Profile 1. Middle panel: Profile 2. Right panel: Profile
3.
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Table 3
Adjusted powers of Q̃q and Q∗q compared to powers of φτ and Uq

φτ Uq Q̃q Q∗q
p T p/T τ = 1 q = 1 q = 3 q = 1 q = 3 q = 1 q = 3
5 1000 0.005 0.6634 0.8024 0.6364 0.4764 0.2672 0.4764 0.2680

10 2000 0.005 0.9824 0.9994 0.9878 0.9048 0.6344 0.9048 0.6350
25 5000 0.005 1 1 1 1 0.9996 1.0000 0.9996
40 8000 0.005 1 1 1 1 1 1 1
10 1000 0.01 0.6940 0.8338 0.6538 0.4606 0.2630 0.4606 0.2634
20 2000 0.01 0.9940 1 0.9918 0.9286 0.6314 0.9286 0.6314
50 5000 0.01 1 1 1 1 0.9996 1 0.9996
80 8000 0.01 1 1 1 1 1 1 1
50 1000 0.05 0.8166 0.8492 0.6638 0.4868 0.3010 0.4868 0.3012
100 2000 0.05 0.9992 1 0.9960 0.9326 0.6916 0.9326 0.6926
250 5000 0.05 1 1 1 1 1 1 1
400 8000 0.05 1 1 1 1 1 1 1
10 100 0.1 0.3154 0.0932 0.0848 0.1392 0.1218 0.1392 0.1214
40 400 0.1 0.9816 0.2910 0.1958 0.7082 0.5968 0.7082 0.5988
60 600 0.1 1 0.4948 0.3440 0.9598 0.8808 0.9598 0.8816
100 1000 0.1 1 0.8628 0.6662 1 0.9992 1 0.9992
200 2000 0.1 1 1 0.9944 1 1 1 1
50 100 0.5 0.4164 0.0914 0.0766 0.1004 0.1376 0.1004 0.1380
200 400 0.5 0.9998 0.2970 0.1942 0.4012 0.7708 0.4012 0.7708
300 600 0.5 1 0.5290 0.3388 0.6626 0.9746 0.6626 0.9748
500 1000 0.5 1 0.8812 0.6718 0.9666 1 0.9666 1

1000 2000 0.5 1 1 0.9948 1 1 1 1
90 100 0.9 0.4878 0.0858 0.0706 0.1384 0.0992 0.1384 0.1002
360 400 0.9 1 0.3116 0.2008 0.7138 0.5172 0.7138 0.5176
540 600 0.9 1 0.5304 0.3384 0.9496 0.8368 0.9496 0.8368
900 1000 0.9 1 0.9006 0.6600 0.9998 0.9966 0.9998 0.9966

1800 2000 0.9 1 1 0.9944 1 1 1 1
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Table 4
Size and power of φτ and John’s test with Simes method when c > 1

Size Power
p T p/T φτ (τ = 1) Uq(q = 1) Uq(q = 3) φτ (τ = 1) Uq(q = 1) Uq(q = 3)

150 100 1.5 0.0570 0.0544 0.0532 0.6084 0.0938 0.0798
600 400 1.5 0.0528 0.0512 0.0432 1 0.3250 0.1998
900 600 1.5 0.0518 0.0496 0.0470 1 0.5692 0.3476

1500 1000 1.5 0.0516 0.0498 0.0474 1 0.9206 0.6714
3000 2000 1.5 0.0526 0.0472 0.0398 1 1 0.9966
200 100 2 0.0580 0.0536 0.0544 0.7110 0.0944 0.0814
800 400 2 0.0504 0.0454 0.0464 1 0.3460 0.1918

1200 600 2 0.0526 0.0466 0.0382 1 0.5878 0.3282
2000 1000 2 0.0512 0.0428 0.0444 1 0.9276 0.6608
4000 2000 2 0.0474 0.0470 0.0476 1 1 0.9960
500 100 5 0.0552 0.0576 0.0572 0.9432 0.1112 0.0756

2000 400 5 0.0506 0.0502 0.0490 1 0.4328 0.1998
3000 600 5 0.0494 0.0442 0.0378 1 0.7284 0.3372
5000 1000 5 0.0482 0.0486 0.0432 1 0.9812 0.6670

10000 2000 5 0.0510 0.0466 0.0410 1 1 0.9946
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Table 5
Empirical mean, variance and 95 percentile of φτ = T

p L̃τ −
p
2

Mean Variance Quantile
p T p/T τ = 2 τ = 4 τ = 2 τ = 4 τ = 2 τ = 4
2 500 0.004 0.49 0.48 1.49 1.51 2.92 2.90
8 2000 0.004 0.48 0.50 1.09 1.17 2.37 2.39

20 5000 0.004 0.51 0.51 1.07 1.12 2.26 2.27
32 8000 0.004 0.52 0.53 1.06 1.08 2.27 2.24

(Theory for c = 0.004) 0.50 1.00 2.14

20 500 0.04 0.49 0.50 1.13 1.20 2.31 2.35
80 2000 0.04 0.54 0.48 1.14 1.15 2.31 2.27

200 5000 0.04 0.51 0.51 1.12 1.13 2.25 2.26
320 8000 0.04 0.50 0.50 1.14 1.10 2.26 2.23
(Theory for c = 0.04) 0.50 1.12 2.24

50 100 0.5 0.50 0.47 2.67 2.62 3.23 3.24
200 400 0.5 0.49 0.48 2.65 2.57 3.22 3.15
400 800 0.5 0.52 0.51 2.51 2.49 3.10 3.15
500 1000 0.5 0.52 0.49 2.47 2.51 3.09 3.15
(Theory for c = 0.5) 0.50 2.50 3.10

100 100 1 0.53 0.55 4.03 4.09 3.83 3.87
400 400 1 0.52 0.54 4.00 4.08 3.84 3.95
800 800 1 0.47 0.45 4.09 3.88 3.81 3.65
1000 1000 1 0.48 0.50 4.05 3.99 3.77 3.82

(Theory for c = 1) 0.50 4.00 3.79

200 100 2 0.53 0.49 7.42 7.10 5.05 4.96
800 400 2 0.53 0.55 7.21 7.19 4.89 5.03
1600 800 2 0.51 0.52 7.14 7.12 4.87 5.02
2000 1000 2 0.49 0.52 7.32 7.02 4.93 4.93

(Theory for c = 2) 0.50 7.00 4.85

500 100 5 0.45 0.45 15.59 15.60 7.02 7.12
2000 400 5 0.49 0.53 15.22 16.06 6.97 7.01
4000 800 5 0.50 0.50 15.64 15.76 6.94 7.05
5000 1000 5 0.49 0.53 16.38 16.06 7.18 7.15

(Theory for c = 5) 0.50 16.00 7.08
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Table 6
Relative errors for the mean, variance and 95 percentile for Hosking’s statistic Q̃q and Li-McLeod statistic Q∗q

(with q = 3)

Q̃q Q∗q
p T p/T Mean Variance 95%Quantile Mean Variance 95%Quantile

10 100 0.1 0.234% 19.976% 1.366% 0.234% 24.922% 1.547%
20 200 0.1 0.067% 30.862% 0.993% 0.067% 33.526% 1.049%
40 400 0.1 -0.015% 22.057% 0.253% -0.015% 23.286% 0.265%
60 600 0.1 0.000% 21.457% 0.162% 0.000% 22.269% 0.162%

100 1000 0.1 0.007% 20.666% 0.125% 0.007% 21.153% 0.125%
50 100 0.5 0.041% 267.179% 1.322% 0.041% 282.546% 1.354%

100 200 0.5 0.007% 284.025% 0.655% 0.007% 291.875% 0.662%
200 400 0.5 0.000% 289.080% 0.330% 0.000% 292.998% 0.330%
300 600 0.5 0.000% 297.059% 0.222% 0.000% 299.734% 0.222%
500 1000 0.5 0.000% 296.364% 0.134% 0.000% 297.941% 0.134%
80 100 0.8 0.010% 1742.257% 1.289% 0.005% 1820.096% 1.300%

160 200 0.8 0.000% 2020.024% 0.655% 0.000% 2063.959% 0.657%
320 400 0.8 0.000% 2214.386% 0.332% 0.000% 2237.811% 0.332%
480 600 0.8 0.001% 2266.151% 0.223% 0.001% 2282.093% 0.223%
800 1000 0.8 0.000% 2348.823% 0.137% 0.000% 2358.701% 0.137%
90 100 0.9 0.004% 5382.234% 1.292% 0.000% 5618.993% 1.297%

180 200 0.9 0.000% 6906.920% 0.657% 0.000% 7053.897% 0.658%
360 400 0.9 0.000% 8110.500% 0.332% 0.000% 8195.108% 0.332%
540 600 0.9 0.000% 8705.234% 0.222% 0.000% 8764.569% 0.222%
900 1000 0.9 0.000% 9170.563% 0.133% 0.000% 9208.205% 0.133%

Table 7
Empirical mean, variance and 95 percentile of the test statistic c−2

p φ̂τ using standardized data compared to the
benchmark values from c−2

p φτ (in bold)

Mean Variance 95% Quantile Mean Variance 95% Quantile
p T p/T τ = 1 τ = 1 τ = 1 p T p/T τ = 1 τ = 1 τ = 1

10 100 0.1 4.72 117.02 23.95 150 100 1.5 0.35 1.14 2.15
40 400 0.1 5.08 111.43 22.92 600 400 1.5 0.34 1.12 2.06
80 800 0.1 5.05 109.49 22.30 1200 800 1.5 0.33 1.13 2.10
100 1000 0.1 4.95 111.24 22.62 1500 1000 1.5 0.33 1.08 2.01
(Theory for c = 0.1) 5 130 23.75 (Theory for c = 1.5) 0.33 2.44 2.91

50 100 0.5 1.03 5.99 5.09 500 100 5 0.13 0.25 0.94
200 400 0.5 1.03 6.14 5.13 2000 400 5 0.10 0.24 0.93
400 800 0.5 1.07 5.96 5.02 4000 800 5 0.11 0.25 0.93
500 1000 0.5 1.01 6.02 5.13 5000 1000 5 0.11 0.23 0.91
(Theory for c = 0.5) 1 10 6 (Theory for c = 5) 0.1 0.64 1.42
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Table 8
Empirical size and power for φ̂τ(τ = 1) with standardized data and multi-lag-q test statistic Ûq with Simes’ method

Size Power
p T cp φ̂τ (τ = 1) Ûq(q = 1) Ûq(q = 3) φ̂τ (τ = 1) Ûq(q = 1) Ûq(q = 3)

10 100 0.1 0.052 0.054 0.057 0.272 0.077 0.072
20 200 0.1 0.044 0.052 0.048 0.657 0.115 0.109
40 400 0.1 0.040 0.047 0.046 0.990 0.214 0.186
60 600 0.1 0.040 0.052 0.044 1 0.354 0.297

100 1000 0.1 0.042 0.046 0.041 1 0.677 0.591
200 2000 0.1 0.037 0.049 0.042 1 0.995 0.986
50 100 0.5 0.017 0.050 0.054 0.390 0.078 0.072

100 200 0.5 0.016 0.047 0.045 0.908 0.136 0.102
200 400 0.5 0.022 0.049 0.042 1 0.265 0.195
300 600 0.5 0.017 0.045 0.042 1 0.473 0.330
500 1000 0.5 0.019 0.046 0.041 1 0.835 0.645
1000 2000 0.5 0.019 0.050 0.048 1 1 0.992
80 100 0.8 0.018 0.051 0.044 0.499 0.090 0.078

160 200 0.8 0.012 0.049 0.047 0.974 0.130 0.102
320 400 0.8 0.012 0.047 0.045 1 0.286 0.199
480 600 0.8 0.011 0.047 0.045 1 0.489 0.324
800 1000 0.8 0.011 0.047 0.040 1 0.864 0.643
1600 2000 0.8 0.010 0.040 0.040 1 1 0.994
90 100 0.9 0.014 0.049 0.049 0.538 0.083 0.070

180 200 0.9 0.013 0.052 0.049 0.988 0.136 0.105
360 400 0.9 0.015 0.047 0.045 1 0.286 0.186
540 600 0.9 0.011 0.048 0.042 1 0.488 0.328
900 1000 0.9 0.011 0.048 0.041 1 0.870 0.652
1800 2000 0.9 0.010 0.045 0.041 1 1 0.996
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