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Appendix: Technical proofs

A.1 Proof of Theorem 1
Note all X7 ; ! take binary values 0 or 1. Hence
P(X};=1)=PX); =1)P(X}; =1|X}; = 1) + P(X}; = 0)P(X}; = 1|X}; = 0)

(1—Bij)+ - g

= =T
Q4 + 61] Qg + 5i7j "

—mij(1 = Bij) + (1 — mi )i = a]o:ﬁ]
Thus £(X};) = L(X};). Since all X* are Erdés-Renyi, £(X') = £(X?). Condition (2.5) ensures
that {X;} is a homogeneous Markov chain. Hence £(X?) = £(X") for any ¢ > 1. This implies
the required stationarity.

As B(X{;) = P(X{; = 1), and Var(X};) = E(X};) — {E(Xf’j)}% (2.8) follows from the
stationarity, (2.6) and (2.7).

Since the networks are all Erdos-Renyi, (2.9) follows from the Yule-Walker equation (2.10)
immediately, noting p; j(k) = 7i,j(k)/7i,;(0) and p; ;(0) = 1. To prove (2.10), it follows from (2.1)
that for any k£ > 1,

E(X[TEX] ) = B(X[TFIXT ) P(efth = 0) + P(elF = 1)EX{,

= (1= iy — Bij E(XIIXT ) + of /(0 + Biyg).

Thus
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= — —|— 2 —
W MU iyt By iyt By
2

= (1— iy — By {E(XTXT ) - 51 =1 —aij—Bij)vik—1).

(az,g + Bz,y)

This completes the proof.

A.2 Proof of Theorem 2

We only prove (2.12), as (2.11) follows from (2.12) immediately. To prove (2.12), we only need to

show
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We Proceed by induction. It is easy to check that (A.1) holds for k = 1. Assuming it also holds
for k > 1, then

dij(k+1) = P(X!; =0, XM = 1) + P(X!; = 1, X[TF! = 0)
= P(X}; =0, X538 = 1, X5 = 1) 4+ P(X]; = 0, X05F = 0, X441 = 1)
+P(X] =1, XHE =0, X[ = 0) + P(X{; = 1, X[TF =1, X[+ = 0)
=P(X{; =0, Xf}Lk =1)(1-Biy) +{P(X;; =0)— P(X;,; = (),Xf’;r’f = 1)}y
+P(X}; =1, X = 0)(1 — aiy) +{P(X{; =1) = P(X]; =1, X!TF = 0)} 8

20 iBi.i
={P(X}; =0, XT* = 1)+ P(X}; = 1, X[F = 0)}(1 — cvij — Bij) + ﬁ
=dij(k)(1 - aij — Bij) + —L2L = S {1 — (1 — oy — Big)" )

ij+Biy  (cuj+ Bij)?

Hence (A.1) also holds for k£ 4 1. This completes the proof.

A.3 Proof of Theorem 3

Proof of Lemma 1

Proof. Note that for any nonempty elements A € .7:(’]“,3 € Fpi,, there exist Ag € ]:(]f*l and
By € Fi5 .. such that A = Ay x {0}, Ag x {1}, or Ag x {0,1}, and B = By x {0}, By x {1},
or By x {0,1}. We first consider the case where B = By x {x}} and A = Ay x {zps.} where

Zk, T+ = 0 or 1. Note that

P(Ao, X[ = xp, Bo, X1 = wpyr)
= P(Bo| X7 = wpir) PXE]T = @hoter, Ao, Xi5 = )
P(XIHT = wpr | XE, = ay)
P(Xf;-rf = Tjtr)
P(XFT = apyr, Xy = )

P(X[HT = wpyr) P(XE, = ay)

= P(Bo, X!T" = pir) P(Ag, X[y = m1) -

= P(Bo, X[I7 = wpyr)P(Ao, X[j = 1) -
On the other hand, note that

P(X{fjf = 1,X{fj =1)— P(X{ij = 1)P(X{fj =1) = pi(1);

P(XT =1,Xf; =0) - P(X}]T =1)P(X}; = 0)
= P(X/T=1)-P(XI"=1,X};=1) - P(X}{7 =1)[1 - P(X}; = 1)]

= —pij(7);



P(XIT=0,X};=1) - P(X}T=0)P(X}; = 1)
= P(X{fj =1) - P(X;fjf = 1,X;fj =1)—[1- P(X{ij = 1)}P(X{fj =1)

= —pi(7);

k+1 kE _ k+1 kE _
P(Xi’j = O,Xi,j =0)— P(Xi’j = O)P(XM =0)
_ k+1m __ k+1 __ k _ k+71 __ k _
= PO =0) — POXT=0,XE = 1) - PO =0)[t - PO, = 1)
= pij(7).

Consequently, we have

|P(Ao, X[} = mp, Bo, X[TT = apr) — P(Ag, X[ = w) P(Bo, X[ = wpir)|

P(X{T = apyr, Xf = a) X
)

P(XITT = apyr) P(XE, = 2y,

= |P(Ao, X[; = xx)P(Bo, X[ = wpyr)
< pij(7).

In the case where A = Ay x {0,1} and/or B = By x {0,1}, since A and B are nonempty,
there exist integers 0 < k; < k and/or kg > k + 1, and correspondingly A; € Fo' ™ x {xp,}
and/or B € Fpo. | X {%ky4r} with @g), 2, 4- = 0 or 1, such that P(AN B) — P(A)P(B) =
P(A1NBy)— P(A1)P(B;). Following similar arguments above we have P(ANB) — P(A)P(B) <
pij(T+ka—k1) < pij (7). We thus proved that ai(r) < pi,j(7). The lemma follows from Theorem
1. O

We introduce more technical lemmas first.

.. -1
Lemma 1. For any (i,j) € J, denote Y}, := Xij(l—XfJ ), and let Yy = (V!

i.j)1<ij<p be the pxp

matriz at time t. Under the assumptions of Theorem 1, we have {Y,t = 1,2...} is stationary

such that for any (i,7),(I,m) € J, and t,s > 1, t # s,

r__igBiy Var(Y},) = @i jBij(cij + Bij — aijBiy)
Y g+ By " (cj + Bij)? ’
i Big (1= =Bi )17t (i,5) =
- o o B - a])_(lam)v
pr., ([t = sl) = Corr(¥(;, Vi) = Pt

0 otherwise.

Proof. Note that Y'; = X} (1 - Xf;l) =(1- Xf;l)l(et =1). We thus have:

i7~j -
t—1 t—1 ;i Bij
E(Y;) = P(Xi; = 0)aig = (1= EXjj )ai; = gt
_ B ;i Bij B, (e B j—i i Bi )
Var(yvifj) - E(YZJ)[l B E(Yl-fj)] - ai,jikﬁij,j (1 - ai,j]‘hBi],j> — (a¢7j+617j)2 R



For k =1 we have E(Y;thltjl) E[(1- Xt 1)Xlt (1-X; )X’H'l] = 0. For any k£ > 2, using

the fact that E(Xt Xt+k) = Oj:é 2{5”( aij — Bij)* + aij}, we have
1] 7,]

E(YLYHR) = EBIX[;0 - X5 - XEEOIEEE = 1)
= i BIX (1 - X5H (A - X5
= i P(X[TF 1 =0X]; = 1)P(X]; =1|X;' =0)P(X[;' = 0)

2
ai,jﬂid

= W oy _p Xt+k b=11XY
o +ﬁ¢,j[ ( 1 Xi; =1)]
k_
_ohbu | BT
i+ Bij EX};
_ %P [1 Bl —aig = Big) T + am’]
aij+ Bij g+ Bij

af ;87,11 — (1 —azj — Biy)" ']
(aij + Bij)?

Therefore we have for any k > 1,

Cov (Y}, thjk) = (Ylthzt;rk) E}/;t]E}/;,t;_k
Bl - (1 agy - Big)F 1 B ai ;57
(aij + Big)? (qij + Big)?
_0%2,3' 123( - Q45— 51,])
(qij + Bij)?
Consequently, for any |t — s| = 1,2,..., the ACF of the process {Y;! ot =1,2...} is given as:
oy (t—s)) = of 0251 — aiy = Bt (cvig + Bij)?
" (cij + Bij)? @i jBij(ij + Bij — i jbBij)

i iBii(1— iy = Bl e
i+ Bij — B

O

Since the mixing property is hereditary, Yt is also a-mixing. From Lemma 1 and Theorem 1

of Merlevede et al. (2009), we obtain the following concentration inequalities:

Lemma 2. Let conditions (2.5) and C1 hold. There exist positive constants Cy and Cy such that

1
foralln24ande<m;

n
P ( nty Xi; - EX| > 8) < exp{-Cine}, (A.2)
t=1
n
P < nTtY Yl - B > 5) < exp{—Cyne?}. (A.3)
t=1




Now we are ready to prove Theorem 3.
Proof of Theorem 3
Let e = C k’% with C?Cy; > 2 and C?Cy > 2. Note that under condition (C2) we have

€= o(m). Consequently by Lemma 3, Theorem 1 and Lemma 2, we have
n
_ Qg log p
Pl|nt X — > 0y —=% | <exp{—C?C,logp}, A4
(b3t - | 02 <o ) ()
= i jBi [lo
P||n? ZYf] _ Gl | o, [ 08P < exp{—C*Cylogp}. (A.5)
P @i j + Bij n
Consequently, with probability greater than 1 — exp{—C?Cylog p} — exp{—C?Cslog p},
o B log p o i B, logp
Oéz',jj-i-/ﬂ’ij,j -C n ai,jj"l‘ﬁi]] +C
<a;; <
Bij + 1 +C logp ’ Bij 1 C logp
o iP5 n n o i+, n
Note that when n and logp are large enough such that, < C logp < 1/4, we have
iy o /logp 20@. - [logp 4 o, [logp
[e7) j+/81] ¥ n n < 3l IC logp
QG5 — Bis o logp Bi,j n
a4 T H + o i j+Bi,;
and
_@iiBig e logp 20 s /10gp_|_C 1ogp
Ch‘,j"l‘ﬁi] — o < i,J n < 61~ 10 logp
Bi,j _1_0 logp ’ Bi.j _ ! V n
a; B4 g +Big 2

Therefore we conclude that when when n and are large enough,

log P

P (\622-] ;| > 6171Cy lo gp) < exp{—C%C} log p} + exp{—C?Cy log p}. (A.6)

As a result, we have

1
P ((m)axj|a” ;i < 61710y —= 8P ) > 1 — p?exp{—C?Cylogp} — p? exp{—C%Cylogp} — 1.
1,])€

Consequently we have max; jye7 |@i; — aij] = Op <\/ bff’). Convergence of f3; ; can be proved

similarly.

A.4 Proof of Theorem 4

Note that the log-likelihood function for (o j, B ;) is
n
o, Bij) = log(a,; Z J =X +log(1—aiy) Y (11— X[ )1 - X[
t=1
n

n
+log(Big) Y (1= XI)XEG! +log(1 = i) Y- X1 X[

t=1 t=1



Our first observation is that, owing to the independent edge formation assumption, all the
(&iﬁj,@',j),(i,j) € J pairs are independent. For each pair («;j,f;;), the score equations of
the log-likelihood function are:

81(041‘7]’7 ﬂz,y o

8ai7j

Z (1-Xi;)+0(1),

7] t 1
(i, Bij) 1 O t - t yi—1
), ), — 1_X X X
9B, Bi t:l( XS 1 —52,] ; o
Yt (e )i@f %)
Bl,j —1 - /Bz,j 1- Bi,]
1 1 -
s Xi;+0(1
</817J 1 _ﬁi7j> tz: W 1 _Bz,J ;

1 1 1 1
Clearly, for any 0 < «;j, 8ij, i + Bij < 1, ( il - a”7ﬁ> and (m + 1_7%,—1_7%>
are linearly independent. On the other hand, from Lemma 1, Lemma 3 and classical central limit
theorems for weakly dependent sequences (Bradley, 2007; Durrett, 2019), we have ﬁ oy Y!
and ﬁ oy Xf’j are asymptotically normally distributed. Consequently, any nontrivial linear
combination of %%@’fm, (i,7) € J1 and %%ﬁm,(i,j) € Jy converges to a normal
distribution. By standard arguments for consistency of MLEs, we conclude that (y/n(&;; —

a;j), \/ﬁ(@] — fij)) converges to the normal distribution with mean 0 and covariance matrix

I 4, 51’,3‘)_17 where I(c; j, 3; ) is the Fisher information matrix given as:

Tim XE, 0-X5Y | B 0-XE)(A=X{Gh 0
7 . 1E a?yj (1_0‘1}]')2
(i, Bij) = Sr(-XE)XISY S, Xt X!
0 Bij R G

Note that

1 . t tl t tl @i, Bij
N N

9

—EZ )1 — Xt 1) - Bij by _ (1 —«;5)Bi
g+ Bij gt Bij @i+ Bij

B (1= Bij)
—E X't.Xyl:aw( “j)
n tz:; we aij + Bi



We thus have

Bij + Bi,j 0
o, Bis) = a; (o j+Bi) | (@i i+Bi,5)(1—a4,5)
1,79 M1,] 0 (2% 4 Qg g
L Bij(aij+Bi;) " (1=PBi ), j+Bi,5)
i Bij
— | aiglai;+Bi)(1—ai ;) 0
0 %y
L Bi,j (i j4Bi,5)(1—Bi 5)
Consequently, we have
~ ag (o 4B ) (1—ay ;)
V(@i j — aj) . N(O B : 0 )
) ’ i, (2, +B4,5)(1—Bi,j )
Vi(Bij = Bij) 0 Brslitn bt M=)

This together with the independence among the (&; j, B@j), (i,j) € J pairs proves the theorem.

A.5 Proof of Proposition 1

Denote N = diag{/s1,...,/54}. Note that

L = D;'°z0,2'D;"?+D,"’20,2" D,
— zD;'?o,D;?z" + zD,*Q,D; 72"
= Z(Q + Q)27
= (ZN"HNON(ZN-HT.

Note that the columns of ZN~! are orthonormal, we thus have rank(L) = ¢. Let QAQT = NON
be the eigen-decomposition of NN, we immediately have L = (ZN-HQAQT(ZN~HT. Again,
since the columns of ZN~! are orthonormal, we conclude that r, = ZN-'Q, and U = N~ 'Q.
On the other hand, note that U is invertible, we conclude that z; U = z; U and z;. = z;. are

equivalent.

A.6 Proof of Theorem 5

The key step is to establish an upper bound for the Frobenius norm |LL — LL||, and the
theorem can be proved by Weyl’s inequality and the Davis-Kahan theorem. We first introducing

some technical lemmas.

Lemma 3. Under the assumptions of Theorem 1, we have, there exists a constant C; > 0 such

that

n n n n
: —1y | ¢ -1\ _ naiiBij(aig — Bij)
Cov <Z Y (- X5 )) = —Cov (Z Vi D Xi ) BT
t=1 t=1 ’ K

t=1 t=1

with |C; ;| < Cy for any C; 5, (i,7) € J.



Proof. In the following we shall be using the fact that for any 0 <z < 1, Y ;— }xh 1 1=z _

11—z

L +o(1), and Y321 hat ! = 1%“(?&1;)?)1“_1 = O(1). In particular, when = = 1 — a;; — Bi;,

xT

under Condition C1, we have 2 < 1 — z < 1, the O(1) term in will become bounded uniformly
for any (i,7) € J. In what follows, with some abuse of notation, we shall use O;(1) to denote a
generic constant term with magnitude bounded by a large enough constant C; that depends on [

only.

Cov (Z ”,Z 1—Xf’ 1)-—007} (Z ”,2ng1>
t=1 t=1

— ZZ I: 1 o Xt l)Xt XS] 1 ai,jﬂi,j . ai,j :|
T i+ B g+ B

t=1 s=1
2
_ i j [ﬁ i — B ] g ;Bij }
;;{ (aij + Bij)? il =iy = Fig) Y1 (i + Big)?
D) ILEGDIRE
t=1 s=1
[t— s+1| n2a2 (1= B; .
- oy bl oy By sl 0) | (o 1yt
=1 =1 (aij +5w) (g + Big) g
+ Y EXGIXLX + ) B(XX X, (A7)
s<t s>t+1

For the first three terms on the right hand side of (A.7), we have

R |t—s+1] n2a2 (1 =B .
—ZZ CYZ]B’LJ — Q54 522,]) _ z,g( B’Lg) n <2n_ 1)E(Xf;1Xf])
=1 s=1 (i j + Bij) (g + Bi) J T
_ aijBiy [n—l— 2n(1 — aij — B, ])] na; (1= Bij)
(aij + 5i7j)2 @i+ Bij (aw + 5%])
Zna,j [ﬁi,j(l —aig — Big) + Oém‘]
(aij + Bij)?
3nav,;j Bi,; 2nai ;B 2na; ;B ; 2na? ;B nfai (1 Bij)

= ? ’ _ ’ > _ > P + . + Ol 1 .
(cij+ Bij)?  (aig+Big)®  cuj+Biy  (cay+Bif)? (aw + Bij)? W)

+

+ O;(1)




For the last two terms on the right hand side of (A.7), we have

YOBXGIXLX Y BN

s<t s>t+1
= Y P} =X =1)PX5 =1,X57 =1
s<t

+ Z P(X;7 =X, =1)P(X!; =1,X/5 =1)

s>t41
= (1-B8iy)> BX'XZH+ -8, > B(X5'X]))
s<t s>t+1
n—1
(1 - B@] Q4 5 h
= . R)[Bi(1 — iy — Bij)" + il
(Odz,j + 5@,] 2 hZ::l 7 ! ! ’
( ﬂz, az, - .
e +78 ] Z W)[Bi(1 — aij = Bi)" ™ + aig]
1,J Z?]
_ (n—1)%az;(1 —Bz’,j) n 2n(1 — Byj) 0 jBi +0,(1)
(ovij + Bij)? (aij + Big)?

Consequently, we have

Cov (Z ”,; 1- X! 1):—0()@ (Z ”,ZX )

2 o
Ina ;B ; 2na ;B ; 2na; ;35 . 2”0%,3'5@'71' na; (1= Bij)

(@i + 5ij)2 oy + By iy By (oig+Big)?  (aug o+ Big)?
+(” - 1)%aZ;(1 - Bi ) n 2n(1 — B j)a jBi j
(e + Bm) (cvij + 5@‘,]’)3
3noz,~7jﬁi7j QTLOJZ'JﬂZ‘J‘ B 2710@7]',6%‘7]' 2na§,jﬁi,j
(aij+Bi))? (g +Bij)3 aij+Bij  (aij+ Bij)?
2n(1 = Bij)ei B (1 — aij — Bi) + o)
(@ij + Big)®
__noigBiy _ 2noigB +0y(1).
(aij+Bij)?  (uj+ Big)?

+ 0;(1)

This proves the lemma.

Lemma 4. (Bias of &; ; and Bi,j) Under the assumptions of Theorem 1, we have

(1) RY
Eéi, —as; = aij(ij — Bij) Bijlaij —Big)  Biy

+Rz‘,j EBi— B = —
n(aivj + ﬂl,j)ﬂz,] n ’ 2v) 7,]

n(aij+ Bijlaij — n

where Rg’lj) and Rl(’) are constants such that when n is large enough we have 0 < rY R( )

©,J 7
for some constant R; and all (i,7) € J.

)

<R,



Proof. By expanding around 1%7%, we have

1
l-n-typ X1
-1 t—1
E” Do Xf,j(l - Xi,j )
- -1
oty (- Xf,j )

1 (N 3 XS =) & (Y X —mg)*
= —E D : ’
>t x| D DL IR

L —m; (1 —miy)? PR

(1) t—1 o (TR, X om )" Co
Write R/ := E > 1L, X (1 X)) ( D o e ) By Taylor series with Lagrange
1,3

remainder we have there exist random scalers 7} ; € [n DI Xf; , i ;] such that

n 71 Xt 1 — T 2
=BY xt(1- Xf;l) iz . 97 Lo
t=1 (1=} J)

On the other hand, note that [n=! >, Xt 'l < 1, we have

oo
(nIZXt 1_7T7,,]> Zm
t

k=2

—1 t—1
= n E X —mi| —
] »J _ o \3.
=1 (1 —mij)3mi;

| k

IN

Z |n_1 Zt 1Xt ! — T4

2 (1= 5)h+t

Therefore,

Ity X — gl

Ry < Z::(Z T )

1 1
< rl =Y X —
<\/ﬁ tzl ! ) (1 —m5)3mi
= — - Xtyl14+ 2 _ iy
(1- m‘j)gmjvar( i) |15 2 (n h)pj(h)]
g h=1
1 ij Bij h]
(L—mij)?miy  (cuj + Bij)? Z i~ Py)
1 ij Bij [ 2( — Bij) 1 ]
= . 1+ +O(n
(1 —=mij)3my  (aij + Bij)? v + ﬁm ()
_ 1 . 2 — i — PBij O(n_l).

(1 - 7T1’J)47T12’J (Oézj + Bl])

Again, since 0 < | < a5, B4, i j + Bi; < 1 holds for all (4,5) € J, we conclude that there exists

10



a constant R; such that R( ) < R;. Together with Lemma 4, we have

_ (1)
1 (', X —mg) | Ry

Ba,, — B- § =Xt : LI
O[z,] ) [1 — 7T7;7j + (1 — 7_[_1’])2 + n

aw(Zt Y YL X)) R
n?(1 —m; ;)? n

e B (1)
Qg (az,] - /Bz,g) + Rz,]
n(aij +Bij)Bi;  n

+

= it

= aij+

nfl t—1 T k
Similarly, write R =By X (1— Xf;l) ( Y ore, (T 2in Xy ) ) We have,

e
EB”
S XX
nty X‘t,;1
1 ¢ tyypt—1 | 1 ( Y 1Xt_ —mij) (T 1Xt_ — mi )"
- En; (1—X!)XxE - 2 +Z2 =
Cov(>_} , - X7 —|—X0 R
— Bi,j* (Zt 1 z] Zt 1 )+ 1, +O(Tl_2)
n27r2A n
1,J
»(2)
Bijlaij — Biy)  Bij 2
— . ), ), 9, 9, O . A,8
g n(aiy + Bijoag ™) (4.8)

Here in the second last step we have used the fact that En_l(ng = X7)(n DI Xt omy) =
O(n~?), and in the last step we have used the fact that

_2EZ j(L= XX - X))

= 0T XXX = D XTIXXT | e B(X)? - BOXX)]
t=1 t=1
- [ZP X!t = )P(XE = 1x%; = DP(X?, = 1)

n

~ ST P(XE = XL = DP(XE = x5 = )P(xbt = 1)} +Oon?)
= O(n™?

On one hand, similar to Rl( ]), we can show that EEQJ) ~ O(1). Here we use the notation A ~ O(B)
to denote the fact that there exist constants a,b > 0 such that a < |A/B| < b. By writing
Rg?j) = 13%(2]) + O(n?) in (A.8), we conclude that when n is large enough, there exists a R; such
that RE? < Ry for any (i,7) € J.

O]
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Lemma 5 implies that the bias of the MLEs is of order O(n~!). In addition, since Rg’lj) and
Rfj) are positive, the bias of @; ; is always positive with exact order O(n~1) when a;j— Bij >0,
and the bias of 3” is always positive with exact order O(n~!) when a;; — Bij < 0. The bound

Ry here also implies that the O(n™!) order of the bias holds uniformly for all (i, ) € J.

Lemma 5. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there ezists a large
enough constant C > 0 such that

P {nilil ~LiLfp > C ( 10%’”) +o ;) } <dp |(pm)” ") fexp(-Byp}| . (A9)
P {||132i2 — LoLo||p > C < 1og$n) n % + ;) } < 4p :(pn)_(HB) + exp{—B\/f)}: , (A.10)
P {HiliQ —LiLy|p > C ( logé;’”) + % + ;) } < 4p :(pn)_(1+B) + exp{—B\/[)}: , (A1)
P { Hf‘2f‘1 — LoLy||[p > C ( logéin) + % + ;) } <d4p [(pn)_(HB) + eXp{—B\/ﬁ}} . (A12)

Proof. We only prove (A.9) here as (A.10), (A.11) and (A.12) can be proved similarly. Denote
L := Ly — diag(Ly) = D] /2 [W; — diag(W);] D] /%,

and for any 1 < 4, j < p we denote the (i, j)th element of LiL;—L;L; as d;,j. Correspondingly, for

any £ =1,...,p, we define CTM :=dy1 — apy. We first evaluate the error introduced by removing

the diag(L1) term. With some abuse of notation, let &; j = «; j for 1 < i # j < p and &;; = 0 for

i=1,...,p. We have W — diag(W) = (& j)1<i j<p- Therefore,

Qi j Qg 2

< + < )
diin/diad;1  djin/diad;n — (p—1)%12

P - ~
10.4] = Z Q4 kO, j Z Ak Ok, j
i,jl = B
i e/ dindin T diay/dindn

Consequently, we have

|ILiL; — LiLi|% = [|(LiLy — LiLy) + (L1L; — LiLy)|%
< 2[ITiEy — i3 + Th Ty — TyLo I3
= 2||f41£1—f41i1||2p+ Z 5%
1<i,j<p
4p2

< 2Ll — Lk} + g
< 2|10y 1 1||F+(p—1)4l4

(A.13)

Next, we derive the asymptotic bound for ||LiL; — quq”%
For any 1 < i # j < p, we denote the (i, 7)th element of quq —LiL; as A; j. By definition

we have,
A — kO 5 Q kO 5
Ly z : ~ —~ /7. - ’
1<k<p \dp11\/di1d;1 di1y/diydjy
k#i.j
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where 6/1\571 =3P _ Jayranddyy => 0 _joup forl=1,...,p. Note that @ 1,...,@a;, are indepen-
dent. Denote O'Z-Z’k = Var(a;), and T2 = Z:l Uik. Similar to the proofs of Lemma 4 we can
show that, when n is large enough, their exists a constant C, > (2{)~! and ¢, := I(1—1) such that
coen P <02, < Con! for any (i,j) € J. Consequently, 72 ~ O(n~'p). On the other hand, from

Lemma 5 we know that there exists a large enough constant C, > 0 such that |[Eq; j — oy j| < %
|Edy1—dg.1| < |Edg,1 —dg1|
p = p

We next break our proofs into three steps:

for all (i,j) € J, and consequently,

1 _Ca ;1 _
+§<7+pforanylf1,...,p

Step 1. Concentration of p_lcig’l.

We establish the concentration by taking care of the bias and verifying the moment conditions
of the Bernstein’s inequality (Lin and Bai, 2011).

From the proof of Theorem 3, similar to (A.6), we have when n is large enough such that

1 1
n SOV TRE U4,

1
P<| i — Edg;| > (617 + C)Cy/ Og”>

. N _ 1
< P <|% — Edyj| > 6l 10 28, )
~ _ logn C,
< P (Iam — ;] > 6171CY 88 L 22 \Bay, - ae,jl)
n n
< exp{—C?Cylogn} + exp{—C*Cylogn}

< 2exp{—C?Cslogn},

where constants C, C, Cy are defined as in Theorem 3 and C3 = min{C7, Cy}.
For any integer k > 2, we denote the event {|6¢g] Edy | < (6171 + Cy)y/ klog"} as Ay, and

denote its complement as A7. When k < 1%?5)2"”, we have /5 klog" < 1/4. Consequently,

E|ag; — Eag,|*

F2I{ Ay} + Elag; — Eagj|F1{AS}
k—2

= FElag; —Eag]| | — Ed

logn

an

< a?’jk% (61" + Ca) + 2exp{—klogn}.

Note that when k& > 4, from Stirling’s approximation we have k'3 < Pk /(V21k3/?) < eF2K1/3.
For k = 3,4, we can directly verify that e < e¥=2k!/3. On the other hand, note that n=! =
0 < 105"). When n is large enough, we have

1
2exp{—klogn} = 2n=F < n7lc, k! [6(6l1 + Ca)\/@
Csn

13
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Consequently, we have, when n is large enough,

1
Elay; — Edg;|* < of k! [e<6l_l + C“)\@

Next we consider the case where k > 1%22;71' Denote a = e(6171 + C,) lg%:. Clearly when n is

k—2

/2.

large enough, we have ka > €2 hold for any k > 1%3)2;71 > 3. By Stirling’s approximation, we have
kKlab=2/2 > 2k 2 ek ab 22 > (ka)" 2 > 1.
Consequently, we have
E|dy; — Edy ;" < Elag; — Eag;|* < of jkla"? /2.

Therefore, we conclude that, when n is large enough, the following inequality holds for all integer

k> 2:
E|ay; — Edy;|" < of ;kla" 2 /2.

This verifies the conditions of the Bernstein’s inequality (Bennett, 1962; Lin and Bai, 2011), from

which we obtain, for any constant Cy > 0:

dy1— E(d 1 Co 1 |BE(d)—d
- (| = Blen)| |, flogen) | Co 1 |E(e) m)
p np nop p
< p(lda=Bll . [log(pn)
p np

IA

2 exp {_ \/]50371*1 log(pn) }
2(/pCs /1 + aCqy/log(pn)/n)
exh 4 VPC3n~log(pn) } A14
2P { 2(\/pCo /1 + Cae(61=1 + Cy)y/logn/(Csn)\/log(pn) /n) | (A.14)
When /pCy/n > Cae(6171 +Cy)y/logn/(Csn)+/log(pn)/n), for any constant B > 0, by choosing

Cyq > 2/(B+1)Cy, (A.14) reduces to

dy1—d 1 L1
P<|é,1 “'Z(Jd Og(pn)+0+>

p np n p

Cin~'1
< 2exp {— VP 4%0 ji(pn) } < 2(pn)~ B+, (A.15)



When /pC,/n < Cae(617! 4+ Co)+/logn/(Csn)\/log(pn)/n, by choosing Cy = 4Be(61~! +
Cu)/V/C3, (A.14) reduces to

dp1—d 1 L1
P<| —dul o og(pn>+c+>

p np n p
BRI SR SR
- 4Cqe(6171 + Cy)+/logn/(Csn)+/log(pn)/n
< 2exp{—-B./p}. (A.16)

From (A.14), (A.15) and (A.16) we conclude that for any B > 0, by choosing Cy to be large

enough, we have,
ey —d 1 Co 1
I=1,....p D np n p
< 2p [(pn)*(HB) + eXp{—B\/ﬁ}] . (A.17)
Step 2. Concentration of A; ;.
Using the fact that ag, =0 for £ =1,...,p, we have,

p

o 2 : QG kO 5 QG kO 5 + j : ( 2 N-189 %1 2 N-189 %1 )
Z"] - _~ -~ ~ - . . . . - . . ’
k=1 dk71 di,ld i1 dk,l \% d%ldjal 1<k<p dk,l Vv d’t,ld],l dk,l vV dz,ld],l

=

A

We next bound the two terms on the right hand side of the above inequality. For the first term,
denote ey, := ((fkl — di,1)/p. From (A.17) we have there exists a large enough constant C'g such
that

P {kmax lex] < Cpr < log(pn) + % + ;) } >1—-2p {(pn)_(HB) + exp{—B+/p}| -

=1,...,p np

Denote the event {maxk:h_,’p lex| < Cp < % + % + ;) } as £€g. Under £p, we have, when

n and p are large enough, \/p~1di1 + e = \/p~ 1 di1 + ex/(27/p~dk,1) + O(e}), and hence there

exists a large enough constant Cj g > 0 such that for any 1 <4,5 < p,

kO 5 kO 5

Goarfdad,  Bav/diandin
‘pildmm — (P~ iy +ex)/ (P dig + ) (p~ T + €j)‘

p?(p~tdp 1 + ek)\/(p’ldm +e)(p~tdj1 + ej)p~tdp /P diip~id;n
= O(p*(lei] + lej| + lex))

C 1 11
Lp ( og(pn) 1 ) ‘
p npnop

)

15



Consequently, we have, under &g,

zp: 0 Ol . 0 Ol < Ci.B ( log(pn) N 1 N 1) (A18)
k=1 &\k,l (2;71(3}71 dk,l\/m p np nop

For the second term, from the proof of (A.6), we have, there exists a constant Dp > 0 such

n

that, when n and —*—
log(pn)

are large enough,

1
P ( max |ai,j — ai,j| < Dpg 0g(pn)) >1-— 2p2(pn)—(2+B) >1— 2p(pn)_(1+B).
1<i,j<p n

Denote the event {maxlgmgp | ; — i j| < Dpy/ % } as Ap. Under Ap, we have, there

exists a large enough constant D; p > 0 such that when n and p are large enough,

> Ciklky _ CikOk Max1<i,j<p | Vi kk,j — QikQh,j|
1<k<p dea/diadin  diay/dinda (p—1)2
ki,
p no ‘
From (A.18) and (A.19) we conclude that, when n and p are large enough,
C D 1 1 1
P{ max |A; ;| > ,B+ DB ( og(pn) N +>}
1<4,5<p p np n P
< P(€p) + P(A3)
< 2p [(pn)—(l—i-B) + exp{—B\/f)}} + 2p(pn)~1+B)
< 4p ()P + exp{-B B} - (A.20)

Step 3. Proof of (A.9).

Note that Hilfdl — f-‘lf-llHF = 1/21§i’]§p A%’j < pmaxi<; j<p ‘Al7]| Choose C > Cl,B + DZ,B‘
From (A.13) and (A.20) we immediately have that when n and p are large enough,

~ ~ lo 1 1
P {||L1L1 —Lilh|[r > C ( grfgn) ot p> } <dp [(Im)f(HB) +exp{—By/p}| -

This proves (A.9).
O

Lemma 6. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there exists a large
enough constant C' > 0 such that

P {”ii _LL||p > 4C ( bg?fi”) + % + ;) } < 16p [(pn)%HB) +exp{—Byp}H|. (A.21)
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Proof. Note that from the triangle inequality we have

|ILL — LL||»
= (L1 +Lo)(Ly + Ly) — (Ly + Lo)(Ly + Lo)|
= H(fd1£1 —LiLy) + (£1IA12 —LiLs) + (izfq —LoLy) + (iziz — LoLo)||p

~

< |LiLy — LiLy||p 4 | LiLy — LiLo||p 4 || LoLy — LoLy || 7 + || LoLy — LoLo|| .

Together with Lemma 6 we immediately conclude that (A.21) hold.

Proof of Theorem 5

From Weyls inequality and Lemma 7, we have,

N == ~ log(pn 1 1
max 2~ 3| < |LL - LL|J; < |EL - LL|# = O, ( AN ) .
1=1,...,p np n p

(3.8) is a direct result of the Davis-Kahan theorem (Rohe et al., 2011; Yu et al., 2015) theorem

and Lemma 7.

A.7 Proof of Theorem 6

Recall that I'j = ZU where U is defined as in the proof of Proposition 1. For any 1 <i# j <n
such that z; # z;, we need to show that ||z;UO, — z;U,Oy||2 = ||z;U — 2;U]|, is large enough,
so that the perturbed version (i.e. the rows of f‘q) is not changing the clustering structure.

Denote the ith row of I';O, and fq as «,; and 7,, respectively, for i« = 1,...,p. Notice that
from the proof of Proposition 1, we have UUT = N"IQQ'N~! = N2 = diag{sfl, ey 5q_1 .
Consequently, for any z; # z;, we have:

2

17i = jll2 = [127UOg = 2;U4Oql2 = [|2,U — 2;Ul|> > (A.22)

max

~

We first show that z; # z; implies ¢; # ¢;. Notice that I';O, € M, ,. Denote C =

(€1,---,¢€,) . By the definition of C we have
1740, — Clf < |ITy — Clf + Ty = T,0 % < 2|y ~ T, 0% (A.23)
Suppose there exist i,j € {1,...,p} such that z; # z; but ¢; = ¢;. We have
[Tq0q — 6”%«“ > [|z;U00, — 61”% + [1z;UO, — 6]”% > [|z;UOQg — ZjUOqH% (A.24)

Combining (A.22), (3.8), (A.23) and (A.24), we have:

2 ~ ~ 1 1 1
\/—— <|T,0, - Cllr < V2|T, — T,0,||r < 4V2),%C ( oglpn) | 1 ) .

Smax np nop

17



We have reach a contradictory with (3.9). Therefore we conclude that ¢; # c;.

Next we show that if z; = z; we must have ¢; = C;. Assume that there exist 1 < i # j <p
such that z; = z; and ¢; # ¢;. Notice that from the previous conclusion (i.e., that different z;
implies different ¢;), since there are ¢ distinct rows in Z, there are correspondingly ¢ different rows
in C. Consequently for any z; = z;, if ¢; # ¢; there must exist a k # ¢, j such that z; = z; # z;

and €; = Cj. Let C* be C with the jth row replaced by ¢;. We have
ITq = C*|f% = Iy - C|I%
= |7 -3~ 117, — <3

= 7=+ — Gl - 17 =5+ — e + 7k — Cll3

< 7=+ -Gl + 17, = + 7k —Ckll3 = llvi — 7l
~ ~ 2
< |[Tg = T4Oq|% + T4Oq — Clff: —
max
2
1 1 1 2
< 3{4Aq20< Og(pn)++>} -
np n p Smax
< 0.

Again, we reach a contradiction and so we conclude that if z; = z; we must have ¢; = c;.

A.8 Proof of Theorem 8

Note that from Theorem 6, we have the memberships can be recovered with probability tending
to 1, i,e, P(V # v) — 0. On the other hand, given 7 = v, we have, the log likelihood function of

OresMie), 1 <k <l<gq,is

({Oemekiv) = D > {Xit,j(l — X7 log O+ (1= X} ))(1 = X7 log(1 — 610)
(4,4) €Sk, t=1

(1= XE )X og s + X1, X{5 og(1 = ms) -

Using the same arguments as in the proof of Theorem 4, we can conclude that when v = v,
1 ~ ~ ~

\/ﬁNi Jz(lI’KlyKQ — \I’;Q’;Q) — N(O, EIC1JC2)- Let Y ~ N(O, 2;C17;C2). For any Y C Rm1+m2’ let

®()) := P(Y €)), we have:

|P(VANZ, e, (Wi, e, — T, k,) € V) — B(V))|
< P #v)+ |[P(VaNE, o, (B, i, — By icy) € VD =v) — @(D)]
= o(1).

This proves the theorem.
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A.9 Proof of Theorem 9

Without loss of generality, we consider the case where 7 € [ng, 79], as the convergence rate for

T € |10, —ng] can be similarly derived. The idea is to break the time interval [n —ng, 79| into two

log(np) log(np)
n + np?

large enough x > 0. Here |-] denotes the least integer function. We shall show that when 7 € [n—
nQ,Tn,p) [Mn (T) -
M, (7) holds in
probability. On the other hand, when 7 € [7,,,70], we shall see that the membership maps

consecutive parts: [ng, 7, p] and [7, p, 70], where 7, ,, = LT() — HHAEP[ H for some

T0+1,n

N0, Tn,p, in which 771" might be inconsistent in estimating v , we have sup_.¢|

M, (70)] < 0 in probability. Hence argmax cp,, -, Mn(T) = argmax ¢, o
can be consistently recovered, and hence the convergence rate can be obtained using classical
probabilistic arguments. For simplicity, we consider the case where v = p™0TL7 = 1 first, and

modification of the proofs for the case where v £ p70+1L will be provided subsequently.

A.9.1 Change point estimation with 170 = p7ot+ln =,

We first consider the case where the membership structures remain unchanged, while the con-
nectivity matrices before/after the change point are different. Specifically, we assume that
vh1o = pothn = 3 for some v, and (01 k0, M ke) # (G240, m2ke) for some 1 < k <1 < q.
For brevity, we shall be using the notations Si;, sk, Smin and ny ¢ defined as in Section 3, and

introduce some new notations as follows:

Define
To—7 01,k,eM k0 4+ n=m0 02 k.62, k¢ T0—7 01,k,eM k0 n—7y 92,k,eM2,k.¢
or . — T 01,k,04+M1 k0 n—T 62k o420 r _ n—T 01 ket ke n—7 62 ke+tn2 k0
2kl T mo—7 _ Nike 4= TRkl 0 M2k = To—7 Ok n—7o __ Y2,k
n=T 01 ket k0 n=7 02 k012,10 n—7 01,k,0+71,k,¢ n—7 02 1 e+M2,k¢

Clearly when 7 = 79 we have 9;?,“4 =0y 10 and n;?w = 12,40

Correspondingly, we denote the MLEs as

0= > Z 1—X“/Z Z1—Xt1

(Z:J)Gssz - (i 7-7)6517ké -
_ t t—1 t—1
YD Zl—X x> ZXH ,
(Z:J)Essz - (i J)ESlTk Z -
~ 1 1
CEED YU W NV S S RES
(-9) €87 0 =71 ()80 =7
n
_ t—1 t—1
Bee= D, > O-XHXG/ Y >
(i.5)€85 ., 1= H1 (i,§)€Sg ), =71

where §1TH and §2TH are defined in a similar way to S\k’g (cf. Section 3.2.3), based on the

estimated memberships 717 and D7Th", respectively.
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Denote

My (1) := 10T o M e }s O57) + UEO5 40s o g }s D7T0),

M(7) := El({01 0, me};v57) + EU{05 4 g3 o b v TH").

We first evaluate several terms in (i)-(v), and all these results will be combined to obtain the
error bound in (vi). In particular, (vi) states that as a direct result of (v), we can focus on the
small neighborhood of [7;, ,, To] when searching for the estimator 7. Further, the inequality (A.43)
transforms the error bound for 79 — 7 into the error bounds of the terms that we derived in (i)-(iv).
(i) Evaluating M(7) — M(7).

Note that 79 = argmaxy <r<n—n, M(7), and for any 7 € [ng, 70|,

M(7) = M(r0) = BU({00pesmpesv™™) + BULOG oo goedi v )
—Bl({01 5,0 mpebs V™) = Bl({O2p0, 2057
— El({eg,k,ﬁv ng,k,éh yT—l—l,To) — El({el,k,b nl,k,é}; VT—H,TO)

B0 koo M3k o3 ™) = BU{ 020 12001V,

Recall that

{Oremeeliv) = > > > {Xz’t,j(l — X[")1og b1

1§k‘§f§q (’i,j)ESk’l t=1

+(1 = X[ (1= X[ log(1 = 61) + (1 — X[ ;) X[ log e + X[ ;X! log(1 — W)}.

By Taylor expansion and the fact that the partial derivative of the expected likelihood evaluated
at the true values equals zero we have, there exist sz € 01,50 057,67[], n:l € Mk s 775,“], 1<k<

£ < g, such that

EI({03 4 0 m5 p0}i v T0) — EU{01 g oy mpe ;v 0T)

Orkomue (92k0—0keN2 (1 —01k0)mue (9550 — O1k0\2
= — Z Skyg(T()—T) ( ) +

\<kt<q 01k, + M et 0.0 01k, + M e 1—0;,
n 01 k01 ke 0 (Ug,k,e - nl,kl)? n (1 =11 k,0)01 k0 (775,1@,@ - Ul,k,€)2
O1 k.0 + 1Mk e et 01,0+ M ke L=,
< —Ci(ro—7) Y. skel(Orre — O200)” + (Mo — M2k)’]
1<k<(<q

< —Ci(ro—7)[|[Wi1 — War|[F + [[Wi2 — Wapll7],

for some constant C; > 0. Here in the first step we have used the fact that for any (i, j) € Sk and
t <7, EX};1- X7 =EX[J'(1-X})) = bl f() X ) (1 - X5 = Ca R OLINYY

T 01 ketmke’ 01 k6N k¢
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t yit—1 _ Q=mre)ike Qi : T ]
and EX;  X;"" = T Similarly, there exist QM € [ngkyg,eg’k’e],nk’g € [772,k,£777§,k,4]7 1<

k < ¢ < q, such that

El1({031.0m5 1030 ™) = BU({O2,0,m2gee 3 v ")

B O kom2ne (O2k0 = O02k0\2 (1= Oapo)2ke (9550 — O2k,0\2
= - Z Sk:,é(n —70) ¥ + T
02 k.0 + N2,k,0 0, , 02 k.0 + N2,k0 1-90],

1<k<(<q

n 02,102, k.0 (775,19,2 - 772,k,€>2 n (1 —m2k,0)02,1.0 (ng,k,é - 772,1676)2}

02 k0 + 12,k 0 77;1 ' 02,10 + M2k, 1— 7711 '

Cé(” 71)) § il ( ) [(61 k.0 62k€) (771 k.0 772]66) ]
(n 7_)2 vy vy vy vy
1<k<t<q
CQ(;O ;)

n—rT

IN

IA

[[[W11— WailF + Wiz — Wapsll7],

for some constants C%,Cy > 0. Consequently, we conclude that there exists a constant Cs > 0

such that for any ng < 7 < 79, we have
M(7) = M(0) < —Cs(10 — 7)[[[W1,1 = War ||} + [Wio — Wap|F]. (A.25)

(if) Evaluating sup,c(,, - P(¥(7) # v).
Let ©(7) be either 75" or 71", Note that the membership maps of the networks before/after
7 remain to be v. From Theorems 5 and 6, we have, under Conditions C2-C4, for any constant

B > 0, there exists a large enough constant Cp such that

sup  P(0(7) # v) < Co(7o = Tap)pl(pn) " PHY + exp{~B/p}].

T€[Tn,p,70]

Note that by choosing B to be large enough, we have p(Toanyp)(pn)_(B—H) =0 ( MW) .

2.2
7S min

On the other hand, the assumption that % — 0 in Condition C4 implies pn

(T0=Tn.p)Smin _
log(np)

o(exp{B,/p}) for some large enough constant B. Consequently, we have (70 —7,p)pexp{—B/p} =
(r0—7np) log(np) ) _

(T0="Tn,p) log(np)
2 n2s

o
n?s

) , and hence we conclude that sup ¢, -1 P(V(7) # v) =0

min min
~

(iii) Evaluating sup.¢|,, - [My(7) — M(7)] when ¥(7) = v.
From (ii) we have with probability greater than 1 — o ( W’W), v(r) =vforall 7€
[Tnp, T0]. For simplicity, in this part we assume that §1Tk = §27 w0 = Sk (or equivalently 717 =
p7Hn = 1) holds for all 1 < k < ¢ < ¢ and Tnp < T < 79 without indicating that this holds in
probability.
Denote
-
9150 mm) = > { X101 = X171 log
t=1

+(1— X )1 — X[ log(1—60) + (1 — X[ ;) X! logn + X ;X! log(1 — n)},
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and

n

3 {Xt (1— X" log0
t=7+1

92,i,5(0,m;T) =

(1 - XE)(1 - X5 log(1— 0) + (1 — X! ,)XL5 110g77+Xf7ijJllog(1—17)}.

When 7 = v, we have,
My (1) — M(7)

_ ar ST
= > Y 91O i

1<k<l<q (i,) €Sk ¢

—F Z Z gu,; 91 k0T k0T

1<k<€<q (4,§)ESk,¢

= Y D 9O s T) +

1<k<l<q (i,j)ESk,¢

D

1<k<l<q (i,j)ESk,¢

+ Z Z 91,5 (01 k0 M s T) +

1<k<l<q (i,j)ESk,¢

-E Z Z 91,0, (01 k0, M ks T

1<k<l<q (i,§)ESk,¢

>

1<k<l<q (i,j)ESk,¢

> grigOrrempsT) -

(A.26)

S Y 92005k g7

1<k<l<q (i,5) €Sk ¢

T .
Z Z 92’7’7] 2 k,@’ 772,]6‘,[7 T)

1<k<l<q (4,§)ESk,¢

Z 92,i,j(9§,k,e, 775,1@,23 7)

Z Z 92,5 (0% 1,0s M2 105 T)

1<k<l<q (i,j)ESk,¢

YooY 920505k

1<k<l<q (i,j)ESk,¢

-F Z Z 92,5 (05 k0> M3 k.05 T)

1<k<l<q (1,5)€Sk,e

Note that {GIk o ﬁle e} is the maximizer of 21<k<z<q Z(i,j €S0 ILig (0,0, M0 7). Applying Tay-
lor’s expansion we have, there exist random scalers ng € [91 ks 01 k0] UPYS 7 ko T, ke such

that

Z Z 91,i5( 1k£a771k:€a

1<k<L<q (i,j)€Sk,e

S

1<k<t<q

Z Z 91,1, (01 k0, M k03 T)

1<k<f<q (i,j)ESk s
01,50 — 07 o\ 2 01,50 — 07 N2 Mkt = ] oo\ 2 Nk = ] g\ 2
SWT{( _ 1,k,£) i ( _1,k,z> n ( _ 1,k,£> i ( _1,k,1z) '
ek,f 1- Qk,é M0 L=,

On the other hand, when U = v, similar to Theorem 3 and Theorem 7, we can show that for any

B > 0, there exists a large enough constant C~ such that max)<p<i<qrefr, o] \/9\1,9 Vi 01 k0| <

o log(np) log(np

; and max) < <r<qrefrm pmo) 171 k0 — Mgl =C~ ) hold with probability greater

min min

than 1 — O((np)~?). Consequently, we have, when U = v, there exits a large enough constant

C4 > 0 such that

Y 91Ol igsT)

1<k<€<q (4,5) €Sk,
log(np
< C4T Z Skl (2 )
1<k<l<q min
Cytp? log(np)

— 2
NS min

Z Z 91,15 (011,00 M keyt3 T)

1<k<l<q (4,5) €Sk ¢

(A.27)
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Similarly, we have there exists a large enough constant C5 > 0 such that with probability greater
than 1 — O((np)~5),

T .
Z Z 92,i,5( zuaﬁzua Z Z 92,i,5(02 k0 M3, 4e,05 )

1<k<t<q (i,5)ESk ¢ 1<k<t<q (i,j)ESk,¢

Cs(n — 7)p? log(np) .

— 2
NS min

(A.28)

On the other hand, similar to Lemma 3, there exists a constant Cg > 0 such that with probability

greater than 1 — O((np)~5)

)

Y D> giiukemest)—E D> > g1ii(OrkemesT)

1<k<t<q (4,j) €Sk ¢ 1<k<t<q (4,j)ESk,e
|
< Cetp’ Og(zp), (A.29)
vy
and
Y DY @i mrsm)—E D D 92050550k T)
1<k</<q (i,j)ESk.¢ 1<k<(<q (i,j)ESk ¢
log(np)

Combining (A.26), (A.27), (A.28), (A.29) and (A.30) we conclude that when v = v, there exists
a large enough constant Cy > 0 such that with probability greater than 1 — O((np)~5),

sup M, (1) — M(7)| < Conp? {log(an) + log(r;p) } =0 (np2 log(an)>. (A.31)

TE[Tn,p,T0] NS min np NS min

(iv) Evaluating ESUPTG[Tn,p,m] IMl, (1) — M(7) — M, (70) + M(70)].

Notice that when v = v,

M, (7) — M(7) — M, (70) + M(70)

= Z Z gl,z’,j(gik,efﬁ(f,k,zﬁ)‘i‘ Z Z g2,i,j(§§,k,e;"71r,k,zﬁ)

1<k<t<q (i,7)ESk.e 1<k<l<q (4,) €Sk ¢
T .
—-E Z Z 91,15 (01 k05 M k03 T Z Z 92,5 (05 105 3,105 T)
1<k<l<q (i,j)ESk.¢ 1<k<€<q (i,j)E€Sk,e
Z Z 91,5 ( 1k€7771k£’7—0 Z Z 92,0, ( 2kz7772k2770)
1<k<t<q (i,j)ESk ¢ 1<k<f=q (i.5)€Sk,e
+E > Y giiOueemes) +E DY > 024502k m2.k670)
1<k<l<q (i,§)E€Sk e 1<k<f<q (i,)€Sk,e
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Note that

915,507 oo M o5 T) — 91,05 (01 % 00 110 03 T0) — E[91,0,5 (01,80, 111,65 T) — 91,4,5(01 6,5 M1 15 70)]

T o7 1-67

= E:{Xt (1— X5 log =25 + (1= X[))(1 = X! log ——~
9 ) sJ 1 _97’0

t=1 1,k.0 1,k.0

+(1 Xt Xt 1 1 ?7171437[ Xt Xt—l 1 1 - 77{7]?7( ¢ Xt 1 Xt 1 1 9
+(1 - Xi;) ﬁ;ou + A4, 108 oA, [ Z (= )log 677 4
vy vy t:7'+1

+(1 - Xf,j)(l - Xt 1) log(1 — 91 ke) (1 Xt )Xt ! 1Og7/7\‘1r?k7é + Xit,ij,;l log(1 — ﬁ;?k,g)}

+E Z { (1= X[ log by ke + (1= X[ ) (1 — X[ 51 log(1 — 61 x.0)
t=7+1

(1= XL)XE log e + XL X1 log(1 = )}

When sum over all (4,5) € Sp, and 1 < k < £ < ¢, the last two terms in the above inequality
can be bounded similar to (A.27) and (A.29), with 7 replaced by 79 — 7. For the first term, with

some calculations we have there exists a constant ¢; > 0 such that with probability larger than

1- O(?’Lp)_B),
. ~ [T — 7 [log(np
sup ‘9{7“ - 91-?1@,@) <c 5 ), (A.32)
1<k<t<q 70 NShin

N 70— 7 [log(np)
T T0
sup ‘771,1@@ 771“‘ < c1y/ — .
1<k<t<q 70 nsmin

Brief derivations of (A.32) are provided in Section A.9.3. Consequently, similar to (A.31), we

have there exists a large enough constant cs > 0 such that

Z Z [glw 91“,?71“, T)— gl,i,j(eﬁg,z?ﬁﬁk,g;TO)]

1<k<t<q (i 7])€Sk’e

-E > ) {911,3 01,0, M1 1,63 T) — gl,i,j(el,k,éynl,k,ESTO)}‘

1<k<t<q (3,j)ESk.¢

< 62172\/ (0 - 73 log(np) (A.33)

Smin

Here in the last step we have used the fact that 7 ~ O(n), 4 / Loe(np) log(np) , and (ro—7) log(np) _

min min
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o< W‘T%w). Similarly, note that,

Smin

92,503 10 o 05 ) = 92,5 (03 4 Mg 43 70) = (92,15 (03 .00 M3 1,05 T) = 92,15 (028,05 M2,k,05 70)]

= zn: Xt - x5 1og92“ log 2kt 1_792“
o 02,10 1— 67
2kl s 2kl

(LX) —-x5Y.- llog

t=10+1
1_02k£ M3k 05, k.0 1_%1%
—log —— =5 | + X! (1= XI5 | log =27 —log —== | + X[, X2 | log — "
B 02,10 i ) Mok 0 N2,k BT 1 — % s
L =3 4
—log T, ?7271;4 +192,i,5 (03 k.0 12103 70) — 92,i,5 (02,105 M2,k,05 T0)]

70

—E192,i,5(03 k0 121,05 70) — 92,i,5 (02,105 M2,k,05 T0)] + Z {Xt (1- X775 1) log 05 el
t=7+1

+(1— X7 ;)1 - Xf,}l) log(1 — é\;,k,f) +(1-X; )Xt "log N3 ke + Xf,ij,;l log(1 — ﬁg,k,é)}

By (X100 X108 050+ (1= XE)(1 = X151 log(1 — 63,.0)
t=7+1

(1= X! )X og g g + XY X 17 0g(1 = 15 )}
= [+ II—IIT+1IV—V. (A.34)

For IT — 111, from Lemma 3 and the fact that ’95’,“@ — 027;%@‘ < %, and ‘ng’k’e — 7727k’g) <

% for some large enough constant c3, we have there exists a large enough constant ¢4 > 0

such that with probability greater than 1 — O((np)~?),

> Y -1 < e =T 1°g(”2p) :0<p2\/(7-0_7-2)10g(np)>. (A.35)

-7 T 5.
1<k<l<q (i,) €Sk ¢ op min

When sum over all (i,5) € Sy and 1 < k < ¢ < g, the IV — V term can be bounded similar to

(A.27) and (A.29), with 7 replaced by 79 — 7, i.e., there exist a constant ¢; > 0 such that with
probability greater than 1 — O((np)~5),

0 — 7) log(n lo
SO avev) < Cspzlm Dloglnn) | s g]f >]

1<k<t<q (i,j)€Sk.¢ min

Lastly, similar to (A.32), we can show that there exists a constant cg > 0 such that with probability
larger than 1 — O(np)~5),

95 k¢ 9;019 ¢ To—T log np
sup |log ——= —log (A.37)
1<k<t<q| 0340 ® O Smin
Mk 0 ﬁgokﬁ [To —T log np
sup |log —= —log
1<k<t<q 7’2 k.l 772 k,l mln

25



A Drief proof of (A.37) is provided in Section A.9.3. Consequently, we can show that there exists
a constant c; > 0 such that with probability larger than 1 — O(np)~?),

Z Z [92 i, ‘92 N2 772 ke T T) — 92,i,j(65?k7z7 ﬁ;?k,b TO)]

1<k<l<q (i,j)ESk,¢

-E Y [gzm 2k,e,77§,k,e;7)—gz,z‘,j(92,k,£ﬂ72,k,e;To)}

1<k<t<q (3,j)ESk¢

—7)l
< et [0 io8n)

(A.38)

Now combining (A.33) and (A.38) and the probability for 7 # v in (ii), we conclude that there

exists a constant Cy > 0 such that

E  sup  [My(r) — M(1) — My(70) + M(70)]
TE[Tn,p,70]
< Conp2 (10 — T?;pg log(np) 1o (10 — Tr; p2) log(np)
n Smln n Smln

(10 — Tnp) log(np) '

< 2Cop” S (A.39)
Snin
(v) Evaluating UD€ 10,7.] M, (1) — M, (710)]-
In this part we consider the case when 7 € [n — ng, 75,5]. We shall see that sup ¢, -, 1[Mn(7) —

M, (70)] < 0 in probability and hence argmax ¢y, -, Mn(7) = argmax ¢, 1My (7) holds in

probability. Note that for any 7 € [n — ng, 7y,

M, (7) — M, (10) = M, (1) — M(7) — M, (19) + M(70) — (A.40)

Given D7 and 771", we define an intermediate term

* . — — . ol * * . ST+H1Ln
Mn(T) i l({97'7k7e7 n77k7£}7 v ) + l({efr,k,fﬂ nT,k,f}’ 14 )
where
S O1,0() v ()M, (3) () ) O1,0(i) (@) Mv () ()
g- - TS ke @ T v) - (6.9)ES ke O1w@)w() Fw () v ()
Tkl Z o M1,v(i),v(4) v ke = Z 01,0(),0(5)
(I EST ke 01,060 () TM,0 ()0 () (1.3)ES; k0 OLoyw() FTw()w()
and

3 |:(TO_T)Gl,u(i),u(j)nl,u(i),u(j)
GNESTL o | Owtw@ T w()

(n_TO)GQ,u(i),u(j)772,u(i),u(j):|
02,0(i),v(5) T112,0(3) . (5)

Tk, = N { (T0=T)M1,0(8) v () (n=70)02,,(5),v(5) } ’
(%}J')ES;%Z 01 v (TN e,  92,06),06)TN2,06),00()
5 |:(TO_T)el,u(i),u(j)nl,u(i),u(j) i (n_TO)QQ,u(i),u(j)n2,u(i),u(j)i|
% CNES s | Twwm) T O2,0(1),0 () T112,0(i) v (5)
Mkt = > R [ (10—7)01,(3),v(5) (n=70)02 1(i),v(5) }
(i,9)€S 010 (@) TN w@),wG)  92,06),06) TN2,006),00)
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We have
M, (1) = M(7) = M,,(7) — EM (1) + EM, (1) — M(7).

Note that the expected log-likelihood EZl<z<j<p g1,ij(01j, B, T) is maximized at oy ;; =
91 w()w() 051 g = M) () and F/ Zlgigjgp gZ,i,j( 2,5 ﬁ?,’i,ja 7') is maximized at Q5 = 977V(i),y(j),

B2.ij = Nrw(i)u(j), We have
EMG, (1) = M(7) < 0.

On the other hand, notice that given v, {67 ,, 7 ,} is the maximizer of E1({0k¢, nkc}; v17) and

{67 k0o m7 1o} 1s the maximizer of EL({0,¢, nke}; p7HLm) - Similar to (A 31), there exists a large

enough constant C7 > 0 such that with probability greater than 1 — O((np)~?)

>
1 1
sup (M () — BME(7)] < Omﬁ{ N }
TE[NO,Tn,p)

Consequently we have, with probability greater than 1 — O((np)~5),

sup  [M(r) — M()] < Crnp? {lgffp) b2 } - (A1)

2
TEMO,Tn,p) np

We remark that since the membership structure o7+

can be very different from the original v,
the Spyin in (A.31) is simply replaced by the lower bound 1, and hence the upper bound in (A.41)
is independent of D17 and D7Th"?,
Combining (A.40), (A.41), (A.25), (A.31) (with 7 = 79), and choosing k > 0 to be large
enough, we have with probability greater than 1 — O((np)~5),
sup [MH(T) — I\\/Jln(To)]

TE[nO7Tn,p]

< Comp? {log<np> 4y loEtr) } o {1og<2np> by [oE) }
n np? ns.. np
—C3(10 = Top) [[W11 — Wa || + [[W12 — Wa| ]
< 0.

Consequently we have,
P | argmax [My(7) — My (70)] = argmax [My(7) — My (70)] | =1 — O((np)~8).  (A.42)
TE€[ng,70] TE[Tn,p,70]
(vi) Error bound for 7y — 7.
One of the key steps in the proof of (v) is to compare M, (7), the estimated log-likelihood

evaluated under the MLEs at a searching time point 7, with M (7), the maximized expected log-

likelihood at time 7. The error between M,(7) and M(7), which is of order O | np? (bg(Tnp) +
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%) reflects the noise level. On the other hand, the signal is captured by M (7o) — M (1) =

O(|mo — T|p?AZ), i.e., the difference between the maximized expected log-likelihood evaluated at

the true change-point 79 and the maximized expected log-likelihood evaluated at the searching

time point 7. Consequently, when |7y — T\pQA% > /i[an(logilnp ) + loig;p ))] for some large
enough constant £ > 0, we are able to claim that |79 — 7| < |19 — 7| = O, (nAIQZ [% +
log(np)

P D By further deriving the estimation errors for any 7 in the neighborhood of 7 with
P

radius O(A [mg(np ) 4 loig;p)]), we obtained a better bound based on Markov’s inequality
(see (A.43) below).

From (A.42) we have for any 0 < € < 19 — 7y,

Pln-7>0<P( s M)~ Malm) 2 0) + Ol(an) )

TE[Tn,p,T0—€]

Note that from (i) and (iv) we have

TE[Tn,p,To—€]

(i)
p( sup Mo (1) — Min(0) > 0> (A.43)
(

< P [ sup M, (1) — M(1) — M, (70) + M(70)) — (M(79) — M(T))] > O)
TE|Tn,p,T0— e
< P< sup |ML, (7) — M(7) — M, (70) + M(70)| > C’gepQA%)
TE[Tn,p,T0—€]
< E SupTG[Tnyp,To—E] }Mn(T) - M(T) - MH(TO) + M(TO)|
- Csep? A,
2Cop? || DT o)
< min
o Cg€p2A%
We thus conclude that 7p—7 = O,, <AF21 /(m“g”‘)g(”m) . By the definition of 7,, , and Condition
C5 we have,
—1/2
_o [(10 = Tup)log(np) 70 — Tnp |log(np) | log(np) log(np)
AF 2 - O 2 + .
s2. Ap ns. n np?

Consequently, we conclude that

AFsmin

min {1, (n~1p? log(np))7 }
70 —7 =0, | (To — Thp)min< 1,

A.9.2 Change point estimation with p!7 #£ p7o+ln,

We modify steps (i)-(v) to the case where v170 £ pyTotln,
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With some abuse of notations, we put Wi 1 = (a1,,j)pxp With a1, j = 917,,1,70( ) w170 (5) Wi =
(1 - 61,7:7j)71><7) Wlth [317,‘] — 7]171,177'[)( ) I/l 7'()( ) WQ 1 = <a277:aj>7)><[) Wlth Q/Q’/L’Lj — 91‘VT()+1,TL(7I').VT()+1,71(7‘)./

and Wao = (1 — fo; j)pxp With fo; ; = TH,pm0+1m (3),um0+Lom (5) - Similar to previous proofs we define

Mn(T) = Z glyﬁj(aﬂlr,i,jvﬁii,j’ + Z 92717] g,i,j’ﬂg,i,jvT)v

1<i<j<p 1<i<j<p
C— .. .. . . .o . T T
M(T) =F g gl,l,] (al,z,‘]?ﬂlﬂ,]? T) + E : : 927173 (a27i»j7 /827i7j7 T)7
1<i<j<p lsisj<p
where
To—T 01,1581, n—7y _Q2,i,jB82,,
r _ n—Toa1;j+B1; n—T o2 +82,i,;
X2 T oor  Bray —ro_ Prij
0—T 1,4,5 n—mo 2,4,5
n—7 01,4, +P1,,5 n—7 a2 ;+0B82,i;
To—T 11,5811, n—1o ©2,i,jB2,i,j
BT = n—7 a1, ;+B1,i,; n—7 oz ;+02,i,5
24, 7 To—=T __ Qi n—rg__ %245
n—T ai1,4,;+01,i,5 n—7 g i+B2,,j
and
~r  _ 7T P
Alig = Olprr@y oGy Plig = Mpre )01 (j):

jan
3

ar. . = B =2
2,i,j = V2, pm+ln () prHln(s) 2,4, — nT7’V\T+1,n(i)7’V\7+1,n(]‘)-

Note that the definition of M (7) here is now slightly different from the previous definition in

that the a;m and ,6’572-73- will generally be different from 9;’VTO+1,n(Z-)7VTO+1,n(j) and ng V0L (i) oL ()

unless v170 = p70+Ln  We first of all point out the main difference we are facing in the case where

vb7o £ p7othn - Consider a detection time 7 € [7,,,70]. In the case where D17 = p7Hbn = p,

we have a; ; = 07, for all (4,7) € Sky, and we have @g’k’e 2k2| = Op( lzgs(np)) for all

min

1 <k < (< g, or equivalently, |a§7m. —9§7V(i),y(j)| = Op( h;i(%m) forall 1 <i < j < p. However,

when D17 = pb70 prHln = protlhn pyt 1o £ y7o+ln the order of the estimation error becomes
Op( 128;(%17) + %) Here ™=T is a bias terms brought by the fact that 1" # 27 +1", The main

issue is that the the following terms from the definition of 95 et
0
DR DEHIEEGUNNED SIS DTS )
(,)€83 ., =7 HL (i,§)€Sg =T HL

are no longer unbiased estimators (subject to a normalization) of the following corresponding

terms in the definition of 65, ,:

01, k,0M1 ke 0 01 k.0,
, .
Otke +Mke  O1ke+Nke

The proof of (i) does not involve any parameter estimators and hence can be established

similarly.
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For (ii), note that |a7,; ; — a2

< |@3,; — 03,1+ O(™T) holds for all 1 < i < j < p,

where the O(TO_T) is independent of 4, j. This implies that when estimating the ag; j, we have
introduced a bias term O(TO T) by including the 79 — 7 samples before the change point. From
the proofs of Lemma 6, and Condition C4, we conclude that (ii) hold for D71,

For (iii), replacing the order of the error bound for 6+k ¢and o+ Lk from \/ log("p to \/ log(np) —|—

T0—

, we have there exists a large enough constant Cy > 0 such that

sup M, (1) — Mi(7)]

TE[Tn,p,70]

IN

Conp? {log(np) N log(np) N (10 — Tmp)Z}

2 2 2
ns; i, np n

log(n To — Top)?
O<np2{ o5(r0) | (0= 7u) })

For (iv), the error bounds related to g1, ;(-,-;-) remain unchanged. Note that the decom-

position (A.34) still holds with 67, ,,nJ, , replaced be aii’j,ﬁgﬂ-?]‘ and /HEM,%M replaced be
aG ;s 327” The bound for (A.35) still holds owing to the fact that [af; ; — a9, | = O (%) and

183,55 — Basijl = (70 T) The bound for (A.36) would become O( \/ (TO_Z%:;g(np) + m’ﬂ?‘pﬁ).

Notice that similar to (A.37), we have with probability larger than 1 — O((np)~?),

AT AT()
Ayt TO—T lognp 7'0—7'
sup |log ——* — log
1<i<j<p 2 KN 0127k7g ( Smin )
sup |log Blij log Boe | /To -7 log np L T0oT
1<i<j<p| D B2,k ¢ Stuin

Consequently, we have

E sup  |My(r) — M(7) — My (o) + M(m0)| < Cop? {\/ (0 — T”g’) log(np) (10 — Tn,p>} .

TE[Tn,pyTO] Smin

By noticing that {1, 81,15, 45 ; ;, 55 ; ;} is the maximizer of M(7), we conclude that (v) also
holds. Consequently, for (vi), we have

Cop?, | To=np)log(np) | Cop*(10 — Tnp)

Smin

Csep? A2,

P( sup M, (1) — M, (m9) > O) <

TE[Tn,p,T0—€]

Consequently, we conclude that

AFSInin * F%

min {1, (n"'p? log(np)) 1} 4
70—7=0p | (o — Tnyp)min ¢ 1,
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A.9.3 Proofs of (A.32) and (A.37) when v =v
For (A.32), note that

-1 t—1
o > ‘Z () GSMZt 1 X (l_XfJ ) Z(J GSkeZt 1 X (l_X )

_pn _ ij
1,k,0 1,M -1 -1
() ESh.0 2t 1(1 - Xi;) 2 (i.7)ESks thl(l - X))

Similar to Lemma 3, we can show that for any constant B > 0, there exists a large enough

constant B; such that with probability larger than 1 — O((np)~(B+2)),

(A.44)

1
D Z (1- x50 - M1k 0 < B og(np)

(i.) €Sk 1=1 Or e + ke | .y

1
> S -XG) - | < gy [lsen

™ A < o
R (i.3)ES 0 t=1 Lt 7110 "y

TNy

and

1
T(10 — T)”M

[ > ZX (1-X 1)“ i(l—Xf;l)}

(4,)ESk,e t=1 (4,§)ESk,e t=T+1

12 e xe-xp|[ X Sa-xg

(4,§)ESk, ¢ t=T+1 (4,5)€Sy,0 t=1

< g | log(np)
! (7’0 — T)n]@g ’

Plug these into (A.44) we have with probability larger than 1 — O((np)~(B+2)),

~ o coT (10 — T)ni,g log(np) co/10 — T [log(np)
Lo — 0 < < :
™ Lkt = ToTnig (10— 7T)nge — 70 Ng.g

for some constant ¢y > 0. Since 79 ~ O(n), and nye > smm, we conclude that there exists a

constant ¢; > 0 such that with probability larger than 1 — O(np)~ %),

TO—T log
sup ‘01k8_91k£‘<01\/
1<k<t<q mln

For (A.37)7 note that

1 2 k.l 1 gg?k,é
o, 9; k.t °8 02 k.l

1 t t—1 1
— log ng,e(n—7) Z( 1,)ESk,e 2= —r+1 X, (1 — X ) log Z( 13)E€Sk.e 2= =70+1 Xm( Xt )

T0—7 01,k,eM k0 4 D=To M2kAM2k
n—T7 01 ko1 ke n—T7 02k ¢+1M2,k,¢

T2k, 0T2 k.0

nk,e(n - TO) " O ket ke

1 n _ yt—1 n t—1
1 nk’g(nfT) Z(Z',j)esk,g Zt:T-i-l(]' X’L,] ) 1 Z(’i,j)esk’g Zt:To+1(1 - XZ,] )
—08 T s 4 =m0 T2k + log nge(n — 7o) - 2,k ¢ :
n—7 01,k 0411,k ¢ n—7 O ke +M2 k0 k.t [ T
It suffices to establish a bound for
t—1 n t t—1
A =) 2 (if)esie oimri1 Xig (L= X050 Cpes, tmr Xi (1= X757
TO,T * T 9 - 12,k,£712,k,£ :
T0—T7 Y1,k,0M1,k,0 n—7o "2,k M2,k n n — T L el 12,RE
n—r 91,k,2+771,k,l + n—rt 92,]@,@+’I72’k’5 k,f( 0) 02,k,£+772,k,€

31



Note that for any B > 0, there exists a large enough constant Bs such that with probability
greater than 1 — O((r,w)*(BJrZ))7

1 70 t oyt—1y 01 kem ke
A < ng,e(n—r) Z(z’,j)esw Zt:T—i-l |:Xi,j(1 Xi,j ) 7917k,£+7717k’£}
Tt = T0—7 01,k,0M k¢ n—my "2,k,£N2,k,0
n—7 01 k,e+1m1,k,e n—T7 02 g e+12,k,¢
1 1 n
ng,e(n—T) _ mke(n—mo) Z Z Xt(1— XY
T0—7 01,k.0M1 k0 4+ DT M2k ke "12,k,£712, k¢ ] g
n—=7 01,k,e+M1 k,¢ n—7 02k o+12 k0 O2,k,e+M2,k | (i,§)ESk o t=T0+1
AN AN, ]
02 k0 + 12,k 0
TO— T log(np TO— T log(n
< B, (np) By g(np)
n—1\ (10— T)nge n—1\ (n—"70)nke

(A.37) then follows by noticing that == log(np)  _ (TO_T log (11p) )

(n—1o)nge A\ n—7V\ (to—T)nke
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