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Appendix: Technical proofs

A.1 Proof of Theorem 1

Note all Xt
i,j take binary values 0 or 1. Hence

P (X1
i,j = 1) = P (X0

i,j = 1)P (X1
i,j = 1|X0

i,j = 1) + P (X0
i,j = 0)P (X1

i,j = 1|X0
i,j = 0)

=πi,j(1− βi,j) + (1− πi,j)αi,j =
αi,j

αi,j + βi,j
(1− βi,j) +

βi,j
αi,j + βi,j

αi,j =
αi,j

αi,j + βi,j
= πi,j .

Thus L(X1
i,j) = L(X0

i,j). Since all Xt are Erdós-Renyi, L(X1) = L(X0). Condition (2.5) ensures

that {Xt} is a homogeneous Markov chain. Hence L(Xt) = L(X0) for any t ≥ 1. This implies

the required stationarity.

As E(Xt
i,j) = P (Xt

i,j = 1), and Var(Xt
i,j) = E(Xt

i,j) − {E(Xt
i,j)}2, (2.8) follows from the

stationarity, (2.6) and (2.7).

Since the networks are all Erdös-Renyi, (2.9) follows from the Yule-Walker equation (2.10)

immediately, noting ρi,j(k) = γi,j(k)/γi,j(0) and ρi,j(0) = 1. To prove (2.10), it follows from (2.1)

that for any k ≥ 1,

E(Xt+k
i,j Xt

i,j) = E(Xt+k−1
i,j Xt

i,j)P (εt+ki,j = 0) + P (εt+ki,j = 1)EXt
i,j

= (1− αi,j − βi,j)E(Xt+k−1
i,j Xt

i,j) + α2
i,j/(αi,j + βi,j).

Thus

γi,j(k) = E(Xt+k
i,j Xt

i,j)− (EXt
i,j)

2 = E(Xt+k
i,j Xt

i,j)−
α2
i,j

(αi,j + βi,j)2

= (1− αi,j − βi,j)E(Xt+k−1
i,j Xt

i,j) +
α2
i,j

αi,j + βi,j
(1− 1

αi,j + βi,j
)

= (1− αi,j − βi,j){E(Xt+k−1
i,j Xt

i,j)−
α2
i,j

(αi,j + βi,j)2
} = (1− αi,j − βi,j)γi,j(k − 1).

This completes the proof.

A.2 Proof of Theorem 2

We only prove (2.12), as (2.11) follows from (2.12) immediately. To prove (2.12), we only need to

show

di,j(k) ≡ P (Xt
i,j 6= Xt+k

i,j ) =
2αi,jβi,j

(αi,j + βi,j)2
{1− (1− αi,j − βi,j)k}, k = 1, 2, · · · . (A.1)
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We Proceed by induction. It is easy to check that (A.1) holds for k = 1. Assuming it also holds

for k ≥ 1, then

di,j(k + 1) = P (Xt
i,j = 0, Xt+k+1

i,j = 1) + P (Xt
i,j = 1, Xt+k+1

i,j = 0)

=P (Xt
i,j = 0, Xt+k

i,j = 1, Xt+k+1
i,j = 1) + P (Xt

i,j = 0, Xt+k
i,j = 0, Xt+k+1

i,j = 1)

+ P (Xt
i,j = 1, Xt+k

i,j = 0, Xt+k+1
i,j = 0) + P (Xt

i,j = 1, Xt+k
i,j = 1, Xt+k+1

i,j = 0)

=P (Xt
i,j = 0, Xt+k

i,j = 1)(1− βi,j) + {P (Xt
i,j = 0)− P (Xt

i,j = 0, Xt+k
i,j = 1)}αi,j

+ P (Xt
i,j = 1, Xt+k

i,j = 0)(1− αi,j) + {P (Xt
i,j = 1)− P (Xt

i,j = 1, Xt+k
i,j = 0)}βi,j

= {P (Xt
i,j = 0, Xt+k

i,j = 1) + P (Xt
i,j = 1, Xt+k

i,j = 0)}(1− αi,j − βi,j) +
2αi,jβi,j
αi,j + βi,j

= di,j(k)(1− αi,j − βi,j) +
2αi,jβi,j
αi,j + βi,j

=
2αi,jβi,j

(αi,j + βi,j)2
{1− (1− αi,j − βi,j)k+1}.

Hence (A.1) also holds for k + 1. This completes the proof.

A.3 Proof of Theorem 3

Proof of Lemma 1

Proof. Note that for any nonempty elements A ∈ Fk0 , B ∈ F∞k+τ , there exist A0 ∈ Fk−10 and

B0 ∈ F∞k+τ+1 such that A = A0 × {0}, A0 × {1}, or A0 × {0, 1}, and B = B0 × {0}, B0 × {1},

or B0 × {0, 1}. We first consider the case where B = B0 × {xk} and A = A0 × {xk+τ} where

xk, xk+τ = 0 or 1. Note that

P (A0, X
k
i,j = xk, B0, X

k+τ
i,j = xk+τ )

= P (B0|Xk+τ
i,j = xk+τ )P (Xk+τ

i,j = xk+τ , A0, X
k
i,j = xk)

= P (B0, X
k+τ
i,j = xk+τ )P (A0, X

k
i,j = xk) ·

P (Xk+τ
i,j = xk+τ |Xk

i,j = xk)

P (Xk+τ
i,j = xk+τ )

= P (B0, X
k+τ
i,j = xk+τ )P (A0, X

k
i,j = xk) ·

P (Xk+τ
i,j = xk+τ , X

k
i,j = xk)

P (Xk+τ
i,j = xk+τ )P (Xk

i,j = xk)

On the other hand, note that

P (Xk+τ
i,j = 1, Xk

i,j = 1)− P (Xk+τ
i,j = 1)P (Xk

i,j = 1) = ρi,j(τ);

P (Xk+τ
i,j = 1, Xk

i,j = 0)− P (Xk+τ
i,j = 1)P (Xk

i,j = 0)

= P (Xk+τ
i,j = 1)− P (Xk+τ

i,j = 1, Xk
i,j = 1)− P (Xk+τ

i,j = 1)[1− P (Xk
i,j = 1)]

= −ρi,j(τ);
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P (Xk+τ
i,j = 0, Xk

i,j = 1)− P (Xk+τ
i,j = 0)P (Xk

i,j = 1)

= P (Xk
i,j = 1)− P (Xk+τ

i,j = 1, Xk
i,j = 1)− [1− P (Xk+τ

i,j = 1)]P (Xk
i,j = 1)

= −ρi,j(τ);

P (Xk+τ
i,j = 0, Xk

i,j = 0)− P (Xk+τ
i,j = 0)P (Xk

i,j = 0)

= P (Xk+τ
i,j = 0)− P (Xk+τ

i,j = 0, Xk
i,j = 1)− P (Xk+τ

i,j = 0)[1− P (Xk
i,j = 1)]

= ρi,j(τ).

Consequently, we have

|P (A0, X
k
i,j = xk, B0, X

k+τ
i,j = xk+τ )− P (A0, X

k
i,j = xk)P (B0, X

k+τ
i,j = xk+τ )|

=

∣∣∣∣∣P (A0, X
k
i,j = xk)P (B0, X

k+τ
i,j = xk+τ )

[
P (Xk+τ

i,j = xk+τ , X
k
i,j = xk)

P (Xk+τ
i,j = xk+τ )P (Xk

i,j = xk)
− 1

]∣∣∣∣∣
≤ ρi,j(τ).

In the case where A = A0 × {0, 1} and/or B = B0 × {0, 1}, since A and B are nonempty,

there exist integers 0 < k1 < k and/or k2 > k + 1, and correspondingly A1 ∈ Fk1−10 × {xk1}

and/or B ∈ F∞k2+τ+1 × {xk2+τ} with xk1 , xk2+τ = 0 or 1, such that P (A ∩ B) − P (A)P (B) =

P (A1 ∩B1)−P (A1)P (B1). Following similar arguments above we have P (A∩B)−P (A)P (B) ≤

ρi,j(τ+k2−k1) < ρij(τ). We thus proved that αi,j(τ) ≤ ρi,j(τ). The lemma follows from Theorem

1.

We introduce more technical lemmas first.

Lemma 1. For any (i, j) ∈ J , denote Y t
i,j := Xt

i,j(1−X
t−1
i,j ), and let Yt = (Y t

i,j)1≤i,j≤p be the p×p

matrix at time t. Under the assumptions of Theorem 1, we have {Yt, t = 1, 2 . . .} is stationary

such that for any (i, j), (l,m) ∈ J , and t, s ≥ 1, t 6= s,

EY t
i,j =

αi,jβi,j
αi,j + βi,j

, Var(Y t
i,j) =

αi,jβi,j(αi,j + βi,j − αi,jβi,j)
(αi,j + βi,j)2

,

ρYi,j (|t− s|) ≡ Corr(Y t
i,j , Y

s
lm) =

−
αi,jβi,j(1−αi,j−βi,j)|t−s|−1

αi,j+βi,j−αi,jβi,j if (i, j) = (l,m),

0 otherwise.

Proof. Note that Y t
i,j = Xt

i,j(1−X
t−1
i,j ) = (1−Xt−1

i,j )I(εti,j = 1). We thus have:

E(Y t
i,j) = P (Xt−1

i,j = 0)αi,j = (1− EXt−1
i,j )αi,j =

αi,jβi,j
αi,j+βi,j

.

Var(Y t
i,j) = E(Y t

i,j)[1− E(Y t
i,j)] =

αi,jβi,j
αi,j+βi,j

(
1− αi,jβi,j

αi,j+βi,j

)
=

αi,jβi,j(αi,j+βi,j−αi,jβi,j)
(αi,j+βi,j)2

.
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For k = 1 we have E(Y t
i,jY

t+1
i,j ) = E[(1−Xt−1

i,j )Xt
i,j(1−Xt

i,j)X
t+1
i,j ] = 0. For any k ≥ 2, using

the fact that E(Xt
ijX

t+k
ij ) =

αij
(αij+βij)2

{βij(1− αij − βij)k + αij}, we have

E(Y t
i,jY

t+k
i,j ) = E[Xt

i,j(1−Xt−1
i,j )(1−Xt+k−1

i,j )I(εt+ki,j = 1)]

= αi,jE[Xt
i,j(1−Xt−1

i,j )(1−Xt+k−1
i,j )]

= αi,jP (Xt+k−1
i,j = 0|Xt

i,j = 1)P (Xt
i,j = 1|Xt−1

i,j = 0)P (Xt−1
i,j = 0)

=
α2
i,jβi,j

αi,j + βi,j
[1− P (Xt+k−1

i,j = 1|Xt
i,j = 1)]

=
α2
i,jβi,j

αi,j + βi,j

[
1−

E(Xt+k−1
i,j Xt

i,j)

EXt
i,j

]

=
α2
i,jβi,j

αi,j + βi,j

[
1− βi,j(1− αi,j − βi,j)k−1 + αi,j

αi,j + βi,j

]
=

α2
i,jβ

2
i,j [1− (1− αi,j − βi,j)k−1]

(αi,j + βi,j)2
.

Therefore we have for any k ≥ 1,

Cov(Y t
i,j , Y

t+k
i,j ) = E(Y t

i,jY
t+k
i,j )− EY t

i,jEY
t+k
i,j

=
α2
i,jβ

2
i,j [1− (1− αi,j − βi,j)k−1]

(αi,j + βi,j)2
−

α2
i,jβ

2
i,j

(αi,j + βi,j)2

= −
α2
i,jβ

2
i,j(1− αi,j − βi,j)k−1

(αi,j + βi,j)2
.

Consequently, for any |t− s| = 1, 2, . . ., the ACF of the process {Y t
i,j , t = 1, 2 . . .} is given as:

ρYi,j (|t− s|) = −
α2
i,jβ

2
i,j(1− αi,j − βi,j)|t−s|−1

(αi,j + βi,j)2
· (αi,j + βi,j)

2

αi,jβi,j(αi,j + βi,j − αi,jβi,j)

= −αi,jβi,j(1− αi,j − βi,j)
|t−s|−1

αi,j + βi,j − αi,jβi,j
.

Since the mixing property is hereditary, Y t
i,j is also α-mixing. From Lemma 1 and Theorem 1

of Merlevède et al. (2009), we obtain the following concentration inequalities:

Lemma 2. Let conditions (2.5) and C1 hold. There exist positive constants C1 and C2 such that

for all n ≥ 4 and ε < 1
(logn)(log logn) ,

P

(∣∣∣∣∣n−1
n∑
t=1

Xt
i,j − EXt

i,j

∣∣∣∣∣ > ε

)
≤ exp{−C1nε

2}, (A.2)

P

(∣∣∣∣∣n−1
n∑
t=1

Y t
i,j − EY t

i,j

∣∣∣∣∣ > ε

)
≤ exp{−C2nε

2}. (A.3)
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Now we are ready to prove Theorem 3.

Proof of Theorem 3

Let ε = C
√

log p
n with C2C1 > 2 and C2C2 > 2. Note that under condition (C2) we have

ε = o
(

1
(logn)(log logn)

)
. Consequently by Lemma 3, Theorem 1 and Lemma 2, we have

P

(∣∣∣∣∣n−1
n∑
t=1

Xt
i,j −

αi,j
αi,j + βi,j

∣∣∣∣∣ > C

√
log p

n

)
≤ exp{−C2C1 log p}, (A.4)

P

(∣∣∣∣∣n−1
n∑
t=1

Y t
i,j −

αi,jβi,j
αi,j + βi,j

∣∣∣∣∣ > C

√
log p

n

)
≤ exp{−C2C2 log p}. (A.5)

Consequently, with probability greater than 1− exp{−C2C1 log p} − exp{−C2C2 log p},
αi,jβi,j
αi,j+βi,j

− C
√

log p
n

βi,j
αi,j+βi,j

+ 1
n + C

√
log p
n

≤ α̂i,j ≤
αi,jβi,j
αi,j+βi,j

+ C
√

log p
n

βi,j
αi,j+βi,j

− 1
n − C

√
log p
n

.

Note that when n and n
log p are large enough such that, 1

n ≤ C
√

log p
n ≤ l/4, we have

αi,j −
αi,jβi,j
αi,j+βi,j

− C
√

log p
n

βi,j
αi,j+βi,j

+ 1
n + C

√
log p
n

≤
2Cαi,j

√
log p
n + C

√
log p
n

βi,j
αi,j+βi,j

≤ 3l−1C

√
log p

n
,

and
αi,jβi,j
αi,j+βi,j

+ C
√

log p
n

βi,j
αi,j+βi,j

− 1
n − C

√
log p
n

− αi,j ≤
2Cαi,j

√
log p
n + C

√
log p
n

βi,j
αi,j+βi,j

− l
2

≤ 6l−1C

√
log p

n
,

Therefore we conclude that when when n and n
log p are large enough,

P

(
|α̂i,j − αi,j | ≥ 6l−1C

√
log p

n

)
≤ exp{−C2C1 log p}+ exp{−C2C2 log p}. (A.6)

As a result, we have

P

(
max

(i,j)∈J
|α̂i,j − αi,j | < 6l−1C

√
log p

n

)
≥ 1− p2 exp{−C2C1 log p} − p2 exp{−C2C2 log p} → 1.

Consequently we have max(i,j)∈J |α̂i,j − αi,j | = Op

(√
log p
n

)
. Convergence of β̂i,j can be proved

similarly.

A.4 Proof of Theorem 4

Note that the log-likelihood function for (αi,j , βi,j) is:

l(αi,j , βi,j) = log(αi,j)

n∑
t=1

Xt
i,j(1−Xt−1

i,j ) + log(1− αi,j)
n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j )

+ log(βi,j)
n∑
t=1

(1−Xt
i,j)X

t−1
i,j + log(1− βi,j)

n∑
t=1

Xt
i,jX

t−1
i,j .
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Our first observation is that, owing to the independent edge formation assumption, all the

(α̂i,j , β̂i,j), (i, j) ∈ J pairs are independent. For each pair (αi,j , βi,j), the score equations of

the log-likelihood function are:

∂l(αi,j , βi,j)

∂αi,j
=

1

αi,j

n∑
t=1

Xt
i,j(1−Xt−1

i,j )− 1

1− αi,j

n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j ),

=

(
1

αi,j
+

1

1− αi,j

) n∑
t=1

Y t
i,j −

1

1− αi,j

n∑
t=1

(1−Xt
i,j) +O(1),

∂l(αi,j , βi,j)

∂βi,j
=

1

βi,j

n∑
t=1

(1−Xt
i,j)X

t−1
i,j −

1

1− βi,j

n∑
t=1

Xt
i,jX

t−1
i,j

=
1

βi,j

n∑
t=1

Xt−1
i,j +

(
1

βi,j
+

1

1− βi,j

) n∑
t=1

(Y t
i,j −Xt

i,j)

=

(
1

βi,j
+

1

1− βi,j

) n∑
t=1

Y t
i,j −

1

1− βi,j

n∑
t=1

Xt
i,j +O(1).

Clearly, for any 0 < αi,j , βi,j , αi,j + βi,j ≤ 1,
(

1
αi,j

+ 1
1−αi,j ,

1
1−αi,j

)
and

(
1
βi,j

+ 1
1−βi,j ,−

1
1−βi,j

)
are linearly independent. On the other hand, from Lemma 1, Lemma 3 and classical central limit

theorems for weakly dependent sequences (Bradley, 2007; Durrett, 2019), we have 1√
n

∑n
t=1 Y

t
i,j

and 1√
n

∑n
t=1X

t
i,j are asymptotically normally distributed. Consequently, any nontrivial linear

combination of 1√
n

∂l(αi,j ,βi,j)
∂αi,j

, (i, j) ∈ J1 and 1√
n

∂l(αi,j ,βi,j)
∂βi,j

, (i, j) ∈ J2 converges to a normal

distribution. By standard arguments for consistency of MLEs, we conclude that (
√
n(α̂i,j −

αi,j),
√
n(β̂i,j − βi,j))′ converges to the normal distribution with mean 0 and covariance matrix

I(αi,j , βi,j)
−1, where I(αi,j , βi,j) is the Fisher information matrix given as:

I(αi,j , βi,j) =
1

n
E


∑n
t=1X

t
i,j(1−X

t−1
i,j )

α2
i,j

+
∑n
t=1(1−Xt

i,j)(1−X
t−1
i,j )

(1−αi,j)2 0

0
∑n
t=1(1−Xt

i,j)X
t−1
i,j

β2
i,j

+
∑n
t=1X

t
i,jX

t−1
i,j

(1−βi,j)2

 .
Note that

1

n
E

n∑
t=1

Xt
i,j(1−Xt−1

i,j ) =
1

n
E

n∑
t=1

(1−Xt
i,j)X

t−1
i,j =

αi,jβi,j
αi,j + βi,j

,

1

n
E

n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j ) =
βi,j

αi,j + βi,j
− αi,jβi,j
αi,j + βi,j

=
(1− αi,j)βi,j
αi,j + βi,j

,

1

n
E

n∑
t=1

Xt
i,jX

t−1
i,j =

αi,j(1− βi,j)
αi,j + βi,j

.
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We thus have

I(αi,j , βi,j) =

 βi,j
αi,j(αi,j+βi,j)

+
βi,j

(αi,j+βi,j)(1−αi,j) 0

0
αi,j

βi,j(αi,j+βi,j)
+

αi,j
(1−βi,j)(αi,j+βi,j)


=

 βi,j
αi,j(αi,j+βi,j)(1−αi,j) 0

0
αi,j

βi,j(αi,j+βi,j)(1−βi,j)

 .
Consequently, we have√n(α̂i,j − αi,j)

√
n(β̂i,j − βi,j)

→ N

(
0,

αi,j(αi,j+βi,j)(1−αi,j)βi,j
0

0
βi,j(αi,j+βi,j)(1−βi,j)

αi,j

).
This together with the independence among the (α̂i,j , β̂i,j), (i, j) ∈ J pairs proves the theorem.

A.5 Proof of Proposition 1

Denote N = diag{√s1, . . . ,
√
sq}. Note that

L = D
−1/2
1 ZΩ1Z

>D
−1/2
1 + D

−1/2
2 ZΩ2Z

>D
−1/2
2

= ZD
−1/2
1 Ω1D

−1/2
1 Z> + ZD

−1/2
2 Ω2D

−1/2
2 Z>

= Z(Ω̃1 + Ω̃2)Z
>

= (ZN−1)NΩ̃N(ZN−1)>.

Note that the columns of ZN−1 are orthonormal, we thus have rank(L) = q. Let QΛQ> = NΩ̃N

be the eigen-decomposition of NΩ̃N, we immediately have L = (ZN−1)QΛQ>(ZN−1)>. Again,

since the columns of ZN−1 are orthonormal, we conclude that Γq = ZN−1Q, and U = N−1Q.

On the other hand, note that U is invertible, we conclude that zi,·U = zj,·U and zi,· = zj,· are

equivalent.

A.6 Proof of Theorem 5

The key step is to establish an upper bound for the Frobenius norm ‖L̂L̂ − LL‖F , and the

theorem can be proved by Weyl’s inequality and the Davis-Kahan theorem. We first introducing

some technical lemmas.

Lemma 3. Under the assumptions of Theorem 1, we have, there exists a constant Cl > 0 such

that

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)
=
nαi,jβi,j(αi,j − βi,j)

(αi,j + βi,j)3
+ Ci,j ,

with |Ci,j | ≤ Cl for any Ci,j , (i, j) ∈ J .
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Proof. In the following we shall be using the fact that for any 0 ≤ x < 1,
∑n−1

h=1 x
h−1 = 1−xn

1−x =

1
1−x + o(1), and

∑n−1
h=1 hx

h−1 = 1−xn−n(1−x)xn−1

(1−x)2 = O(1). In particular, when x = 1 − αi,j − βi,j ,

under Condition C1, we have 2l ≤ 1 − x < 1, the O(1) term in will become bounded uniformly

for any (i, j) ∈ J . In what follows, with some abuse of notation, we shall use Ol(1) to denote a

generic constant term with magnitude bounded by a large enough constant Cl that depends on l

only.

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)

= −
n∑
t=1

n∑
s=1

[
E(1−Xt−1

i,j )Xt
i,jX

s−1
i,j −

αi,jβi,j
αi,j + βi,j

· αi,j
αi,j + βi,j

]

= −
n∑
t=1

n∑
s=1

{
αi,j

(αi,j + βi,j)2

[
βi,j(1− αi,j − βi,j)|t−s+1| + αi,j

]
−

α2
i,jβi,j

(αi,j + βi,j)2

}

+
n∑
t=1

n∑
s=1

E(Xt−1
i,j X

t
i,jX

s−1
i,j )

= −
n∑
t=1

n∑
s=1

αi,jβi,j(1− αi,j − βi,j)|t−s+1|

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+ (2n− 1)E(Xt−1
i,j X

t
i,j)

+
∑
s<t

E(Xt−1
i,j X

t
i,jX

s−1
i,j ) +

∑
s>t+1

E(Xt−1
i,j X

t
i,jX

s−1
i,j ). (A.7)

For the first three terms on the right hand side of (A.7), we have

−
n∑
t=1

n∑
s=1

αi,jβi,j(1− αi,j − βi,j)|t−s+1|

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+ (2n− 1)E(Xt−1
i,j X

t
i,j)

= − αi,jβi,j
(αi,j + βi,j)2

[
n+

2n(1− αi,j − βi,j)
αi,j + βi,j

]
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2nαi,j

[
βi,j(1− αi,j − βi,j) + αi,j

]
(αi,j + βi,j)2

+Ol(1)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,jβi,j

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+Ol(1).
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For the last two terms on the right hand side of (A.7), we have∑
s<t

E(Xt−1
i,j X

t
i,jX

s−1
i,j ) +

∑
s>t+1

E(Xt−1
i,j X

t
i,jX

s−1
i,j )

=
∑
s<t

P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1, Xs−1

i,j = 1)

+
∑
s>t+1

P (Xs−1
i,j = 1|Xt

i,j = 1)P (Xt
i,j = 1, Xt−1

i,j = 1)

= (1− βi,j)
∑
s<t

E(Xt−1
i,j X

s−1
i,j ) + (1− βi,j)

∑
s>t+1

E(Xs−1
i,j Xt

i,j)

=
(1− βi,j)αi,j
(αi,j + βi,j)2

n−1∑
h=1

(n− h)[βi,j(1− αi,j − βi,j)h + αi,j ]

+
(1− βi,j)αi,j
(αi,j + βi,j)2

n−1∑
h=2

(n− h)[βi,j(1− αi,j − βi,j)h−1 + αi,j ]

=
(n− 1)2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j

(αi,j + βi,j)3
+Ol(1).

Consequently, we have

Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

(1−Xt−1
i,j )

)
= −Cov

(
n∑
t=1

Y t
i,j ,

n∑
t=1

Xt−1
i,j

)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,jβi,j

(αi,j + βi,j)2
−
n2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
(n− 1)2α2

i,j(1− βi,j)
(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j

(αi,j + βi,j)3
+Ol(1)

=
3nαi,jβi,j

(αi,j + βi,j)2
− 2nαi,jβi,j

(αi,j + βi,j)3
− 2nαi,jβi,j
αi,j + βi,j

+
2nα2

i,jβi,j

(αi,j + βi,j)2

+
2n(1− βi,j)αi,jβi,j(1− αi,j − βi,j)

(αi,j + βi,j)3
+Ol(1)

=
nαi,jβi,j

(αi,j + βi,j)2
−

2nαi,jβ
2
i,j

(αi,j + βi,j)3
+Ol(1).

This proves the lemma.

Lemma 4. (Bias of α̂i,j and β̂i,j) Under the assumptions of Theorem 1, we have

Eα̂i,j − αi,j =
αi,j(αi,j − βi,j)
n(αi,j + βi,j)βi,j

+
R

(1)
i,j

n
, Eβ̂i,j − βi,j = − βi,j(αi,j − βi,j)

n(αi,j + βi,j)αi,j
+
R

(2)
i,j

n
,

where R
(1)
i,j and R

(2)
i,j are constants such that when n is large enough we have 0 ≤ R

(1)
i,j , R

(2)
i,j ≤ Rl

for some constant Rl and all (i, j) ∈ J .
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Proof. By expanding 1
1−n−1

∑n
t=1X

t−1
i,j

around 1
1−πi,j , we have

Eα̂i,j

= E
n−1

∑n
t=1X

t
i,j(1−X

t−1
i,j )

n−1
∑n

t=1(1−X
t−1
i,j )

=
1

n
E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

[
1

1− πi,j
+

(n−1
∑n

t=1X
t−1
i,j − πi,j)

(1− πi,j)2
+
∞∑
k=2

(n−1
∑n

t=1X
t−1
i,j − πi,j)k

(1− πi,j)k+1

]
.

Write R
(1)
i,j := E

∑n
t=1X

t
i,j(1−X

t−1
i,j )

(∑∞
k=2

(n−1
∑n
t=1X

t−1
i,j −πi,j)

k

(1−πi,j)k+1

)
. By Taylor series with Lagrange

remainder we have there exist random scalers rti,j ∈ [n−1
∑n

t=1X
t−1
i,j , πi,j ] such that

R
(1)
i,j = E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

(
(n−1

∑n
t=1X

t−1
i,j − πi,j)2

(1− rti,j)3

)
> 0.

On the other hand, note that |n−1
∑n

t=1X
t−1
i,j − πi,j | < 1, we have

∞∑
k=2

|n−1
∑n

t=1X
t−1
i,j − πi,j |k

(1− πi,j)k+1
≤

(
n−1

n∑
t=1

Xt−1
i,j − πi,j

)2 ∞∑
k=2

1

(1− πi,j)k+1

=

(
n−1

n∑
t=1

Xt−1
i,j − πi,j

)2
1

(1− πi,j)3πi,j
.

Therefore,

R
(1)
i,j ≤ E

n∑
t=1

( ∞∑
k=2

|n−1
∑n

t=1X
t−1
i,j − πi,j |k

(1− πi,j)k+1

)
≤ V ar

(
1√
n

n∑
t=1

Xt−1
ij

)
1

(1− πi,j)3πi,j

=
1

(1− πi,j)3πi,j
V ar(Xt

ij)

[
1 +

2

n

n−1∑
h=1

(n− h)ρij(h)

]

=
1

(1− πi,j)3πi,j
· αijβij

(αij + βij)2

[
1 +

2

n

n−1∑
h=1

(n− h)(1− αij − βij)h
]

=
1

(1− πi,j)3πi,j
· αijβij

(αij + βij)2

[
1 +

2(1− αij − βij)
αij + βij

+O(n−1)

]
=

1

(1− πi,j)4π2i,j
· 2− αij − βij

(αij + βij)
+O(n−1).

Again, since 0 < l ≤ αi,j , βi,j , αi,j + βi,j ≤ 1 holds for all (i, j) ∈ J , we conclude that there exists
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a constant Rl such that R
(1)
i,j ≤ Rl. Together with Lemma 4, we have

Eα̂i,j = E
1

n

n∑
t=1

Xt
i,j(1−Xt−1

i,j )

[
1

1− πi,j
+

(n−1
∑n

t=1X
t−1
i,j − πi,j)

(1− πi,j)2

]
+
R

(1)
i,j

n

= αi,j +
Cov(

∑n
t=1 Y

t
i,j ,
∑n

t=1X
t
i,j)

n2(1− πi,j)2
+
R

(1)
i,j

n

= αi,j +
αi,j(αi,j − βi,j)
n(αi,j + βi,j)βi,j

+
R

(1)
i,j

n
.

Similarly, write R̃
(2)
i,j := E

∑n
t=1X

t
i,j(1−X

t−1
i,j )

(∑∞
k=2

(n−1
∑n
t=1X

t−1
i,j −πi,j)

k

(−1)kπk+1
i,j

)
. We have,

Eβ̂i,j

= E
n−1

∑n
t=1(1−Xt

i,j)X
t−1
i,j

n−1
∑n

t=1X
t−1
i,j

= E
1

n

n∑
t=1

(1−Xt
i,j)X

t−1
i,j

[
1

πi,j
−

(n−1
∑n

t=1X
t−1
i,j − πi,j)

π2i,j
+
∞∑
k=2

(n−1
∑n

t=1X
t−1
i,j − πi,j)k

(−1)kπk+1
i,j

]

= βi,j −
Cov(

∑n
t=1 Y

t
i,j ,
∑n

t=1X
t
i,j −Xn

i,j +X0
i,j)

n2π2i,j
+
R̃

(2)
i,j

n
+O(n−2)

= βi,j −
βi,j(αi,j − βi,j)
n(αi,j + βi,j)αi,j

+
R̃

(2)
i,j

n
+O(n−2). (A.8)

Here in the second last step we have used the fact that En−1(X0
i,j−Xn

i,j)(n
−1∑n

t=1X
t−1
i,j −πi,j) =

O(n−2), and in the last step we have used the fact that

n−2E

n∑
t=1

Xt
i,j(1−Xt−1

i,j )(Xn
i,j −X0

i,j)

= n−2E

[
n∑
t=1

Xt−1
i,j X

t
i,jX

0
i,j −

n∑
t=1

Xt−1
i,j X

t
i,jX

n
i,j

]
+ n−2[E(Xn

i,j)
2 − E(Xn

i,jX
0
i,j)]

= n−2
[ n∑
t=1

P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1|X0

i,j = 1)P (X0
i,j = 1)

−
n∑
t=1

P (Xn
i,j = 1|Xt

i,j = 1)P (Xt
i,j = 1|Xt−1

i,j = 1)P (Xt−1
i,j = 1)

]
+O(n−2)

= O(n−2)

On one hand, similar to R
(1)
i,j , we can show that R̃

(2)
i,j ' O(1). Here we use the notation A ' O(B)

to denote the fact that there exist constants a, b > 0 such that a ≤ |A/B| ≤ b. By writing

R
(2)
i,j = R̃

(2)
i,j + O(n−2) in (A.8), we conclude that when n is large enough, there exists a Rl such

that R
(2)
i,j ≤ Rl for any (i, j) ∈ J .
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Lemma 5 implies that the bias of the MLEs is of order O(n−1). In addition, since R
(1)
i,j and

R
(2)
i,j are positive, the bias of α̂i,j is always positive with exact order O(n−1) when αi,j − βi,j > 0,

and the bias of β̂i,j is always positive with exact order O(n−1) when αi,j − βi,j < 0. The bound

Rl here also implies that the O(n−1) order of the bias holds uniformly for all (i, j) ∈ J .

Lemma 5. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there exists a large

enough constant C > 0 such that

P

{
‖L̂1L̂1 − L1L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 4p

[
(pn)−(1+B) + exp{−B√p}

]
, (A.9)

P

{
‖L̂2L̂2 − L2L2‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 4p

[
(pn)−(1+B) + exp{−B√p}

]
, (A.10)

P

{
‖L̂1L̂2 − L1L2‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 4p

[
(pn)−(1+B) + exp{−B√p}

]
, (A.11)

P

{
‖L̂2L̂1 − L2L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 4p

[
(pn)−(1+B) + exp{−B√p}

]
. (A.12)

Proof. We only prove (A.9) here as (A.10), (A.11) and (A.12) can be proved similarly. Denote

L̃1 := L1 − diag(L1) = D
−1/2
1 [W1 − diag(W)1] D

−1/2
1 ,

and for any 1 ≤ i, j ≤ p we denote the (i, j)th element of L̃1L̃1−L1L1 as δi,j . Correspondingly, for

any ` = 1, . . . , p, we define d̃`,1 := d`,1 − α`,`. We first evaluate the error introduced by removing

the diag(L1) term. With some abuse of notation, let α̃i,j = αi,j for 1 ≤ i 6= j ≤ p and α̃i,i = 0 for

i = 1, . . . , p. We have W − diag(W) = (α̃i,j)1≤i,j≤p. Therefore,

|δi,j | =

∣∣∣∣∣
p∑

k=1

α̃i,kα̃k,j

dk,1
√
di,1dj,1

−
p∑

k=1

αi,kαk,j

dk,1
√
di,1dj,1

∣∣∣∣∣ ≤ αi,iαi,j

di,1
√
di,1dj,1

+
αi,jαj,j

dj,1
√
di,1dj,1

≤ 2

(p− 1)2l2
.

Consequently, we have

‖L̂1L̂1 − L1L1‖2F = ‖(L̂1L̂1 − L̃1L̃1) + (L̃1L̃1 − L1L1)‖2F

≤ 2
[
‖L̂1L̃1 − L̃1L̃1‖2F + ‖L̃1L̃1 − L1L1‖2F

]
= 2‖L̂1L̂1 − L̃1L̃1‖2F +

∑
1≤i,j≤p

δ2i,j

≤ 2‖L̂1L̂1 − L̃1L̃1‖2F +
4p2

(p− 1)4l4
. (A.13)

Next, we derive the asymptotic bound for ‖L̂1L̂1 − L̃1L̃1‖2F .

For any 1 ≤ i 6= j ≤ p, we denote the (i, j)th element of L̂1L̂1 − L̃1L̃1 as ∆i,j . By definition

we have,

∆i,j =
∑

1≤k≤p
k 6=i,j

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
αi,kαk,j

dk,1
√
di,1dj,1

 ,
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where d̂`,1 =
∑p

k=1 α̂`,k and d`,1 =
∑p

k=1 α`,k for l = 1, . . . , p. Note that α̂i,1, . . . , α̂i,p are indepen-

dent. Denote σ2i,k := V ar(α̂i,k), and τ2i :=
∑p

k=1 σ
2
i,k. Similar to the proofs of Lemma 4 we can

show that, when n is large enough, their exists a constant Cσ > (2l)−1 and cσ := l(1− l) such that

cσn
−1 ≤ σ2i,k ≤ Cσn−1 for any (i, j) ∈ J . Consequently, τ2i ' O(n−1p). On the other hand, from

Lemma 5 we know that there exists a large enough constant Cα > 0 such that |Eα̂i,j −αi,j | ≤ Cα
n

for all (i, j) ∈ J , and consequently,
|Ed̂`,1−d`,1|

p ≤ |Ed̂`,1−d̃`,1|
p + 1

p <
Cα
n + 1

p for any l = 1, . . . , p.

We next break our proofs into three steps:

Step 1. Concentration of p−1d̂`,1.

We establish the concentration by taking care of the bias and verifying the moment conditions

of the Bernstein’s inequality (Lin and Bai, 2011).

From the proof of Theorem 3, similar to (A.6), we have when n is large enough such that

1
n ≤ C

√
logn
n ≤ l/4,

P

(
|α̂`,j − Eα̂`,j | ≥ (6l−1 + Cα)C

√
log n

n

)

≤ P

(
|α̂`,j − Eα̂`,j | ≥ 6l−1C

√
log n

n
+
Cα
n

)

≤ P

(
|α̂`,j − α`,j | ≥ 6l−1C

√
log n

n
+
Cα
n
− |Eα̂`,j − α`,j |

)
≤ exp{−C2C1 log n}+ exp{−C2C2 log n}

≤ 2 exp{−C2C3 log n},

where constants C,C1, C2 are defined as in Theorem 3 and C3 = min{C1, C2}.

For any integer k > 2, we denote the event
{
|α̂`,j − Eα̂`,j | ≤ (6l−1 + Cα)

√
k logn
C3n

}
as Ak, and

denote its complement as Ack. When k < C3l2n
16 logn , we have

√
k logn
C3n

< l/4. Consequently,

E|α̂`,j − Eα̂`,j |k

= E|α̂`,j − Eα̂`,j |2|α̂`,j − Eα̂`,j |k−2I{Ak}+ E|α̂`,j − Eα̂`,j |kI{Ack}

≤ σ2`,jk
k−2
2

[
(6l−1 + Cα)

√
log n

C3n

]k−2
+ 2 exp{−k log n}.

Note that when k > 4, from Stirling’s approximation we have k
k−2
2 ≤ ekk!/(

√
2πk3/2) < ek−2k!/3.

For k = 3, 4, we can directly verify that k
k−2
2 < ek−2k!/3. On the other hand, note that n−1 =

o

(√
logn
n

)
. When n is large enough, we have

2 exp{−k log n} = 2n−k ≤ n−1cσk!

[
e(6l−1 + Cα)

√
log n

C3n

]k−2
/6.
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Consequently, we have, when n is large enough,

E|α̂`,j − Eα̂`,j |k ≤ σ2`,jk!

[
e(6l−1 + Cα)

√
log n

C3n

]k−2
/2.

Next we consider the case where k > C3l2n
16 logn . Denote a = e(6l−1 + Cα)

√
logn
C3n

. Clearly when n is

large enough, we have ka > e2 hold for any k > C3l2n
16 logn ≥ 3. By Stirling’s approximation, we have

k!ak−2/2 ≥
√

2πkk+
1
2 e−kak−2/2 > (ka)k−2 > 1.

Consequently, we have

E|α̂`,j − Eα̂`,j |k ≤ E|α̂`,j − Eα̂`,j |2 < σ2`,jk!ak−2/2.

Therefore, we conclude that, when n is large enough, the following inequality holds for all integer

k > 2:

E|α̂`,j − Eα̂`,j |k ≤ σ2`,jk!ak−2/2.

This verifies the conditions of the Bernstein’s inequality (Bennett, 1962; Lin and Bai, 2011), from

which we obtain, for any constant Cd > 0:

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ P

(
|d̂`,1 − E(d̂`,1)|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p
−
|E(d̂`,1)− d`,1|

p

)

≤ P

(
|d̂`,1 − E(d̂`,1)|

p
≥ Cd

√
log(pn)

np

)

≤ 2 exp

{
−

√
pC2

dn
−1 log(pn)

2(
√
pCσ/n+ aCd

√
log(pn)/n)

}

= 2 exp

{
−

√
pC2

dn
−1 log(pn)

2(
√
pCσ/n+ Cde(6l−1 + Cα)

√
log n/(C3n)

√
log(pn)/n)

}
. (A.14)

When
√
pCσ/n > Cde(6l

−1+Cα)
√

log n/(C3n)
√

log(pn)/n), for any constant B > 0, by choosing

Cd > 2
√

(B + 1)Cσ, (A.14) reduces to

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ 2 exp

{
−
√
pC2

dn
−1 log(pn)

4
√
pCσ/n

}
< 2(pn)−(B+1). (A.15)
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When
√
pCσ/n ≤ Cde(6l

−1 + Cα)
√

log n/(C3n)
√

log(pn)/n, by choosing Cd = 4Be(6l−1 +

Cα)/
√
C3, (A.14) reduces to

P

(
|d̂`,1 − d`,1|

p
≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)

≤ 2 exp

{
−

√
pC2

dn
−1 log(pn)

4Cde(6l−1 + Cα)
√

log n/(C3n)
√

log(pn)/n

}
≤ 2 exp {−B√p} . (A.16)

From (A.14), (A.15) and (A.16) we conclude that for any B > 0, by choosing Cd to be large

enough, we have,

P

(
max
l=1,...,p

|d̂`,1 − d`,1|
p

≥ Cd

√
log(pn)

np
+
Cα
n

+
1

p

)
≤ 2p

[
(pn)−(1+B) + exp{−B√p}

]
. (A.17)

Step 2. Concentration of ∆i,j .

Using the fact that α̂k,k = 0 for k = 1, . . . , p, we have,

∆i,j =

p∑
k=1

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

+
∑

1≤k≤p
k 6=i,j

(
α̂i,kα̂k,j

dk,1
√
di,1dj,1

−
αi,kαk,j

dk,1
√
di,1dj,1

)
.

We next bound the two terms on the right hand side of the above inequality. For the first term,

denote ek := (d̂k,1 − dk,1)/p. From (A.17) we have there exists a large enough constant CB such

that

P

{
max

k=1,...,p
|ek| ≤ CB

(√
log(pn)

np
+

1

n
+

1

p

)}
≥ 1− 2p

[
(pn)−(1+B) + exp{−B√p}

]
.

Denote the event

{
maxk=1,...,p |ek| ≤ CB

(√
log(pn)
np + 1

n + 1
p

)}
as EB. Under EB, we have, when

n and p are large enough,
√
p−1dk,1 + ek =

√
p−1dk,1 + ek/(2

√
p−1dk,1) +O(e2k), and hence there

exists a large enough constant Cl,B > 0 such that for any 1 ≤ i, j ≤ p,∣∣∣∣∣∣ α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

∣∣∣∣∣∣
≤

∣∣∣p−1dk,1√p−1di,1p−1dj,1 − (p−1dk,1 + ek)
√

(p−1di,1 + ei)(p−1dj,1 + ej)
∣∣∣

p2(p−1dk,1 + ek)
√

(p−1di,1 + ei)(p−1dj,1 + ej)p−1dk,1
√
p−1di,1p−1dj,1

= O(p−2(|ei|+ |ej |+ |ek|))

≤
Cl,B
p2

(√
log(pn)

np
+

1

n
+

1

p

)
.
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Consequently, we have, under EB,∣∣∣∣∣∣
p∑

k=1

 α̂i,kα̂k,j

d̂k,1

√
d̂i,1d̂j,1

−
α̂i,kα̂k,j

dk,1
√
di,1dj,1

∣∣∣∣∣∣ ≤ Cl,B
p

(√
log(pn)

np
+

1

n
+

1

p

)
. (A.18)

For the second term, from the proof of (A.6), we have, there exists a constant DB > 0 such

that, when n and n
log(pn) are large enough,

P

(
max

1≤i,j≤p
|α̂i,j − αi,j | ≤ DB

√
log(pn)

n

)
≥ 1− 2p2(pn)−(2+B) > 1− 2p(pn)−(1+B).

Denote the event

{
max1≤i,j≤p |α̂i,j − αi,j | ≤ DB

√
log(pn)
n

}
as AB. Under AB, we have, there

exists a large enough constant Dl,B > 0 such that when n and p are large enough,∣∣∣∣∣∣∣∣
∑

1≤k≤p
k 6=i,j

(
α̂i,kα̂k,j

dk,1
√
di,1dj,1

−
αi,kαk,j

dk,1
√
di,1dj,1

)∣∣∣∣∣∣∣∣ ≤
max1≤i,j≤p |α̂i,kα̂k,j − αi,kαk,j |

(p− 1)l2

≤
Dl,B

p

√
log(pn)

n
. (A.19)

From (A.18) and (A.19) we conclude that, when n and p are large enough,

P

{
max

1≤i,j≤p
|∆i,j | >

Cl,B +Dl,B

p

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ P (EcB) + P (AcB)

≤ 2p
[
(pn)−(1+B) + exp{−B√p}

]
+ 2p(pn)−(1+B)

< 4p
[
(pn)−(1+B) + exp{−B√p}

]
. (A.20)

Step 3. Proof of (A.9).

Note that ‖L̂1L̂1 − L̃1L̃1‖F =
√∑

1≤i,j≤p ∆2
i,j ≤ pmax1≤i,j≤p |∆i,j |. Choose C > Cl,B +Dl,B.

From (A.13) and (A.20) we immediately have that when n and p are large enough,

P

{
‖L̂1L̂1 − L1L1‖F ≥ C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 4p

[
(pn)−(1+B) + exp{−B√p}

]
.

This proves (A.9).

Lemma 6. Let conditions (2.5), C1 and C2 hold. For any constant B > 0, there exists a large

enough constant C > 0 such that

P

{
‖L̂L̂− LL‖F ≥ 4C

(√
log(pn)

np
+

1

n
+

1

p

)}
≤ 16p

[
(pn)−(1+B) + exp{−B√p}

]
. (A.21)
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Proof. Note that from the triangle inequality we have

‖L̂L̂− LL‖F

= ‖(L̂1 + L̂2)(L̂1 + L̂2)− (L1 + L2)(L1 + L2)‖F

= ‖(L̂1L̂1 − L1L1) + (L̂1L̂2 − L1L2) + (L̂2L̂1 − L2L1) + (L̂2L̂2 − L2L2)‖F

≤ ‖L̂1L̂1 − L1L1‖F + ‖L̂1L̂2 − L1L2‖F + ‖L̂2L̂1 − L2L1‖F + ‖L̂2L̂2 − L2L2‖F .

Together with Lemma 6 we immediately conclude that (A.21) hold.

Proof of Theorem 5

From Weyls inequality and Lemma 7, we have,

max
i=1,...,p

|λ2i − λ̂2i | ≤ ‖L̂L̂− LL‖2 ≤ ‖L̂L̂− LL‖F = Op

(√
log(pn)

np
+

1

n
+

1

p

)
.

(3.8) is a direct result of the Davis-Kahan theorem (Rohe et al., 2011; Yu et al., 2015) theorem

and Lemma 7.

A.7 Proof of Theorem 6

Recall that Γq = ZU where U is defined as in the proof of Proposition 1. For any 1 ≤ i 6= j ≤ n

such that zi 6= zj , we need to show that ‖ziUOq − zjUqOq‖2 = ‖ziU − zjU‖2 is large enough,

so that the perturbed version (i.e. the rows of Γ̂q) is not changing the clustering structure.

Denote the ith row of ΓqOq and Γ̂q as γi and γ̂i, respectively, for i = 1, . . . , p. Notice that

from the proof of Proposition 1, we have UU> = N−1QQ>N−1 = N−2 = diag{s−11 , . . . , s−1q }.

Consequently, for any zi 6= zj , we have:

‖γi − γj‖2 = ‖ziUOq − zjUqOq‖2 = ‖ziU− zjU‖2 ≥
√

2

smax
. (A.22)

We first show that zi 6= zj implies ĉi 6= ĉj . Notice that ΓqOq ∈ Mp,q. Denote Ĉ =

(ĉ1, · · · , ĉp)>. By the definition of Ĉ we have

‖ΓqOq − Ĉ‖2F ≤ ‖Γ̂q − Ĉ‖2F + ‖Γ̂q − ΓqOq‖2F ≤ 2‖Γ̂q − ΓqOq‖2F . (A.23)

Suppose there exist i, j ∈ {1, . . . , p} such that zi 6= zj but ĉi = ĉj . We have

‖ΓqOq − Ĉ‖2F ≥ ‖ziUOq − ĉi‖22 + ‖zjUOq − ĉj‖22 ≥ ‖ziUOq − zjUOq‖22. (A.24)

Combining (A.22), (3.8), (A.23) and (A.24), we have:√
2

smax
≤ ‖ΓqOq − Ĉ‖F ≤

√
2‖Γ̂q − ΓqOq‖F ≤ 4

√
2λ−2q C

(√
log(pn)

np
+

1

n
+

1

p

)
.
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We have reach a contradictory with (3.9). Therefore we conclude that ĉi 6= ĉj .

Next we show that if zi = zj we must have ĉi = ĉj . Assume that there exist 1 ≤ i 6= j ≤ p

such that zi = zj and ĉi 6= ĉj . Notice that from the previous conclusion (i.e., that different zi

implies different ĉi), since there are q distinct rows in Z, there are correspondingly q different rows

in Ĉ. Consequently for any zi = zj , if ĉi 6= ĉj there must exist a k 6= i, j such that zi = zj 6= zk

and ĉj = ĉk. Let Ĉ∗ be Ĉ with the jth row replaced by ĉi. We have

‖Γ̂q − Ĉ∗‖2F − ‖Γ̂q − Ĉ‖2F

= ‖γ̂j − ĉi‖22 − ‖γ̂j − ĉk‖22

= ‖γ̂j − γj + γi − ĉi‖22 − ‖γ̂j − γj + γi − γk + γk − ĉk‖22

≤ ‖γ̂j − γj + γi − ĉi‖22 + ‖γ̂j − γj + γk − ĉk‖22 − ‖γi − γk‖22

≤ ‖Γ̂q − ΓqOq‖2F + ‖ΓqOq − Ĉ‖2F −
2

smax

≤ 3

{
4λ−2q C

(√
log(pn)

np
+

1

n
+

1

p

)}2

− 2

smax

< 0.

Again, we reach a contradiction and so we conclude that if zi = zj we must have ĉi = ĉj .

A.8 Proof of Theorem 8

Note that from Theorem 6, we have the memberships can be recovered with probability tending

to 1, i,e, P (ν̂ 6= ν) → 0. On the other hand, given ν̂ = ν, we have, the log likelihood function of

(θk,`, ηk,`), 1 ≤ k ≤ ` ≤ q, is

l({θk,`, ηk,`}; ν) =
∑

(i,j)∈Sk,l

n∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θk,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θk,`)

+(1−Xt
i,j)X

t−1
i,j log ηk,` +Xt

i,jX
t−1
i,j log(1− ηk,`)

}
.

Using the same arguments as in the proof of Theorem 4, we can conclude that when ν̂ = ν,
√
nN

1
2
J1,J2

(Ψ̂K1,K2 −ΨK1,K2)→ N(0, Σ̃K1,K2). Let Y ∼ N(0, Σ̃K1,K2). For any Y ⊂ Rm1+m2 , let

Φ(Y) := P (Y ∈ Y), we have:

|P (
√
nN

1
2
K1,K2

(Ψ̂K1,K2 −ΨK1,K2) ∈ Y)−Φ(Y)|

≤ P (ν̂ 6= ν) + |P (
√
nN

1
2
K1,K2

(Ψ̂K1,K2 −ΨK1,K2) ∈ Y|ν̂ = ν)−Φ(Y)|

= o(1).

This proves the theorem.
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A.9 Proof of Theorem 9

Without loss of generality, we consider the case where τ ∈ [n0, τ0], as the convergence rate for

τ ∈ [τ0, n−n0] can be similarly derived. The idea is to break the time interval [n−n0, τ0] into two

consecutive parts: [n0, τn,p] and [τn,p, τ0], where τn,p =
⌊
τ0−κn∆−2F

[
log(np)
n +

√
log(np)
np2

]⌋
for some

large enough κ > 0. Here b·c denotes the least integer function. We shall show that when τ ∈ [n−

n0, τn,p], in which ν̂τ+1,n might be inconsistent in estimating ντ0+1,n, we have supτ∈[n0,τn,p][Mn(τ)−

Mn(τ0)] < 0 in probability. Hence arg maxτ∈[n0,τ0]Mn(τ) = arg maxτ∈[τn,p,τ0]Mn(τ) holds in

probability. On the other hand, when τ ∈ [τn,p, τ0], we shall see that the membership maps

can be consistently recovered, and hence the convergence rate can be obtained using classical

probabilistic arguments. For simplicity, we consider the case where ν1,τ0 = ντ0+1,n = ν first, and

modification of the proofs for the case where ν1,τ0 6= ντ0+1,n will be provided subsequently.

A.9.1 Change point estimation with ν1,τ0 = ντ0+1,n = ν.

We first consider the case where the membership structures remain unchanged, while the con-

nectivity matrices before/after the change point are different. Specifically, we assume that

ν1,τ0 = ντ0+1,n = ν for some ν, and (θ1,k,`, η1,k,`) 6= (θ2,k,`, η2,k,`) for some 1 ≤ k ≤ l ≤ q.

For brevity, we shall be using the notations Sk,l, sk, smin and nk,` defined as in Section 3, and

introduce some new notations as follows:

Define

θτ2,k,` =

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`η2,k,`
θ2,k,`+η2,k,`

τ0−τ
n−τ

η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`
θ2,k,`+η2,k,`

, ητ2,k,` =

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`η2,k,`
θ2,k,`+η2,k,`

τ0−τ
n−τ

θ1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

θ2,k,`
θ2,k,`+η2,k,`

.

Clearly when τ = τ0 we have θτ02,k,` = θ2,k,` and ητ02,k,` = η2,k,`.

Correspondingly, we denote the MLEs as

θ̂τ1,k,` =
∑

(i,j)∈Ŝτ1,k,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )
/ ∑
(i,j)∈Ŝτ1,k,`

τ∑
t=1

(1−Xt−1
i,j ),

η̂τ1,k,` =
∑

(i,j)∈Ŝτ1,k,`

τ∑
t=1

(1−Xt
i,j)X

t−1
i,j

/ ∑
(i,j)∈Ŝτ1,k,`

τ∑
t=1

Xt−1
i,j ,

θ̂τ2,k,` =
∑

(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

Xt
i,j(1−Xt−1

i,j )
/ ∑
(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

(1−Xt−1
i,j ),

η̂τ2,k,` =
∑

(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

(1−Xt
i,j)X

t−1
i,j

/ ∑
(i,j)∈Ŝτ2,k,`

n∑
t=τ+1

Xt−1
i,j ,

where Ŝτ1,k,` and Ŝτ2,k,` are defined in a similar way to Ŝk,` (cf. Section 3.2.3), based on the

estimated memberships ν̂1,τ and ν̂τ+1,n, respectively.
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Denote

Mn(τ) := l({θ̂τ1,k,`, η̂τ1,k,`}; ν̂1,τ ) + l({θ̂τ2,k,`, η̂τ2,k,`}; ν̂τ+1,n),

M(τ) := El({θ1,k,`, η1,k,`}; ν1,τ ) + El({θτ2,k,`, ητ2,k,`}; ντ+1,n).

We first evaluate several terms in (i)-(v), and all these results will be combined to obtain the

error bound in (vi). In particular, (vi) states that as a direct result of (v), we can focus on the

small neighborhood of [τn,p, τ0] when searching for the estimator τ̂ . Further, the inequality (A.43)

transforms the error bound for τ0− τ̂ into the error bounds of the terms that we derived in (i)-(iv).

(i) Evaluating M(τ)−M(τ0).

Note that τ0 = arg maxn0≤τ≤n−n0 M(τ), and for any τ ∈ [n0, τ0],

M(τ)−M(τ0) = El({θ1,k,`, η1,k,`}; ν1,τ ) + El({θτ2,k,`, ητ2,k,`}; ντ+1,n)

−El({θ1,k,`, η1,k,`}; ν1,τ0)− El({θ2,k,`, η2,k,`}; ντ0+1,n)

= El({θτ2,k,`, ητ2,k,`}; ντ+1,τ0)− El({θ1,k,`, η1,k,`}; ντ+1,τ0)

+El({θτ2,k,`, ητ2,k,`}; ντ0+1,n)− El({θ2,k,`, η2,k,`}; ντ0+1,n).

Recall that

l({θk,`, ηk,`}; ν) =
∑

1≤k≤`≤q

∑
(i,j)∈Sk,l

n∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θk,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θk,`) + (1−Xt
i,j)X

t−1
i,j log ηk,` +Xt

i,jX
t−1
i,j log(1− ηk,`)

}
.

By Taylor expansion and the fact that the partial derivative of the expected likelihood evaluated

at the true values equals zero we have, there exist θ∗k,` ∈ [θ1,k,`, θ
τ
2,k,`], η

∗
k,` ∈ [η1,k,`, η

τ
2,k,`], 1 ≤ k ≤

` ≤ q, such that

El({θτ2,k,`, ητ2,k,`}; ντ+1,τ0)− El({θ1,k,`, η1,k,`}; ντ+1,τ0)

= −
∑

1≤k≤`≤q
sk,`(τ0 − τ)

{
θ1,k,`η1,k,`
θ1,k,` + η1,k,`

(θτ2,k,` − θ1,k,`
θ∗k,`

)2
+

(1− θ1,k,`)η1,k,`
θ1,k,` + η1,k,`

(θτ2,k,` − θ1,k,`
1− θ∗k,`

)2
+

θ1,k,`η1,k,`
θ1,k,` + η1,k,`

(ητ2,k,` − η1,k,`
η∗k,`

)2
+

(1− η1,k,`)θ1,k,`
θ1,k,` + η1,k,`

(ητ2,k,` − η1,k,`
1− η∗k,`

)2}
≤ −C1(τ0 − τ)

∑
1≤k≤`≤q

sk,`[(θ1,k,` − θ2,k,`)2 + (η1,k,` − η2,k,`)2]

≤ −C1(τ0 − τ)
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
,

for some constant C1 > 0. Here in the first step we have used the fact that for any (i, j) ∈ Sk,` and

t ≤ τ0, EXt
i,j(1−X

t−1
i,j ) = EXt−1

i,j (1−Xt
i,j) =

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

, E(1−Xt
i,j)(1−X

t−1
i,j ) =

(1−θ1,k,`)η1,k,`
θ1,k,`+η1,k,`

,
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and EXt
i,jX

t−1
i,j =

(1−η1,k,`)θ1,k,`
θ1,k,`+η1,k,`

. Similarly, there exist θ†k,` ∈ [θ2,k,`, θ
τ
2,k,`], η

†
k,` ∈ [η2,k,`, η

τ
2,k,`], 1 ≤

k ≤ ` ≤ q, such that

El({θτ2,k,`, ητ2,k,`}; ντ0+1,n)− El({θ2,k,`, η2,k,`}; ντ0+1,n)

= −
∑

1≤k≤`≤q
sk,`(n− τ0)

{
θ2,k,`η2,k,`
θ2,k,` + η2,k,`

(θτ2,k,` − θ2,k,`
θ†k,`

)2
+

(1− θ2,k,`)η2,k,`
θ2,k,` + η2,k,`

(θτ2,k,` − θ2,k,`
1− θ†k,`

)2
+

θ2,k,`η2,k,`
θ2,k,` + η2,k,`

(ητ2,k,` − η2,k,`
η†k,`

)2
+

(1− η2,k,`)θ2,k,`
θ2,k,` + η2,k,`

(ητ2,k,` − η2,k,`
1− η†k,`

)2}

≤ −C ′2(n− τ0)
∑

1≤k≤`≤q

sk,`(τ0 − τ)2

(n− τ)2
[(θ1,k,` − θ2,k,`)2 + (η1,k,` − η2,k,`)2]

≤ −C2(τ0 − τ)2

n− τ
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
,

for some constants C ′2, C2 > 0. Consequently, we conclude that there exists a constant C3 > 0

such that for any n0 ≤ τ ≤ τ0, we have

M(τ)−M(τ0) ≤ −C3(τ0 − τ)
[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
. (A.25)

(ii) Evaluating supτ∈[τn,p,τ0] P (ν̂(τ) 6= ν).

Let ν̂(τ) be either ν̂1,τ or ν̂τ+1,n. Note that the membership maps of the networks before/after

τ remain to be ν. From Theorems 5 and 6, we have, under Conditions C2-C4, for any constant

B > 0, there exists a large enough constant CB such that

sup
τ∈[τn,p,τ0]

P (ν̂(τ) 6= ν) ≤ CB(τ0 − τn,p)p[(pn)−(B+1) + exp{−B√p}].

Note that by choosingB to be large enough, we have p(τ0−τn,p)(pn)−(B+1) = o

(√
(τ0−τn,p) log(np)

n2s2min

)
.

On the other hand, the assumption that log(np)√
p → 0 in Condition C4 implies pn

√
(τ0−τn,p)s2min

log(np) =

o(exp{B√p}) for some large enough constant B. Consequently, we have (τ0−τn,p)p exp{−B√p} =

o

(√
(τ0−τn,p) log(np)

n2s2min

)
, and hence we conclude that supτ∈[τn,p,τ0] P (ν̂(τ) 6= ν) = o

(√
(τ0−τn,p) log(np)

n2s2min

)
.

(iii) Evaluating supτ∈[τn,p,τ0][Mn(τ)−M(τ)] when ν̂(τ) = ν.

From (ii) we have with probability greater than 1 − o
(√

(τ0−τn,p) log(np)
n2s2min

)
, ν̂(τ) = ν for all τ ∈

[τn,p, τ0]. For simplicity, in this part we assume that Ŝτ1,k,` = Ŝτ2,k,` = Sk,l (or equivalently ν̂1,τ =

ν̂τ+1,n = ν) holds for all 1 ≤ k ≤ ` ≤ q and τn,p ≤ τ ≤ τ0 without indicating that this holds in

probability.

Denote

g1,i,j(θ, η; τ) =

τ∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log θ

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ) + (1−Xt
i,j)X

t−1
i,j log η +Xt

i,jX
t−1
i,j log(1− η)

}
,
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and

g2,i,j(θ, η; τ) =
n∑

t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ) + (1−Xt
i,j)X

t−1
i,j log η +Xt

i,jX
t−1
i,j log(1− η)

}
.

When ν̂ = ν, we have,

Mn(τ)−M(τ) (A.26)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)

−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

+
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ) +
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

Note that {θ̂τ1,k,`, η̂τ1,k,`} is the maximizer of
∑

1≤k≤`≤q
∑

(i,j)∈Sk,` g1,i,j(θk,`, ηk,`; τ). Applying Tay-

lor’s expansion we have, there exist random scalers θ−k,` ∈ [θ̂τ1,k,`, θ1,k,`], η
−
k,` ∈ [η̂τ1,k,`, η1,k,`] such

that ∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

≤
∑

1≤k≤`≤q
sk,`τ

{(θ1,k,` − θ̂τ1,k,`
θ−k,`

)2
+
(θ1,k,` − θ̂τ1,k,`

1− θ−k,`

)2
+
(η1,k,` − η̂τ1,k,`

η−k,`

)2
+
(η1,k,` − η̂τ1,k,`

1− η−k,`

)2}
.

On the other hand, when ν̂ = ν, similar to Theorem 3 and Theorem 7, we can show that for any

B > 0, there exists a large enough constant C− such that max1≤k≤`≤q,τ∈[τn,p,τ0] |θ̂τ1,k,` − θ1,k,`| ≤

C−
√

log(np)
ns2min

, and max1≤k≤`≤q,τ∈[τn,p,τ0] |η̂τ1,k,`− η1,k,`| = C−
√

log(np)
ns2min

hold with probability greater

than 1 − O((np)−B). Consequently, we have, when ν̂ = ν, there exits a large enough constant

C4 > 0 such that∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

≤ C4τ
∑

1≤k≤`≤q
sk,`

log(np)

ns2min

≤ C4τp
2 log(np)

ns2min

. (A.27)
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Similarly, we have there exists a large enough constant C5 > 0 such that with probability greater

than 1−O((np)−B),∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

≤ C5(n− τ)p2 log(np)

ns2min

. (A.28)

On the other hand, similar to Lemma 3, there exists a constant C6 > 0 such that with probability

greater than 1−O((np)−B),∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)

∣∣∣∣∣∣
≤ C6τp

2

√
log(np)

τp2
, (A.29)

and ∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)− E

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

∣∣∣∣∣∣
≤ C6(n− τ)p2

√
log(np)

(n− τ)p2
. (A.30)

Combining (A.26), (A.27), (A.28), (A.29) and (A.30) we conclude that when ν̂ = ν, there exists

a large enough constant C0 > 0 such that with probability greater than 1−O((np)−B),

sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)| ≤ C0np
2

{
log(np)

ns2min

+

√
log(np)

np2

}
= O

(
np2

√
log(np)

ns2min

)
. (A.31)

(iv) Evaluating E supτ∈[τn,p,τ0] |Mn(τ)−M(τ)−Mn(τ0) + M(τ0)|.

Notice that when ν̂ = ν,

Mn(τ)−M(τ)−Mn(τ0) + M(τ0)

=
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ) +

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ
2,k,`, η̂

τ
1,k,`; τ)

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ)− E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ)

−
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ̂
τ0
1,k,`, η̂

τ0
1,k,`; τ0)−

∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ̂
τ0
2,k,`, η̂

τ0
2,k,`; τ0)

+E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g1,i,j(θ1,k,`, η1,k,`; τ0) + E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

g2,i,j(θ2,k,`, η2,k,`; τ0)
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Note that

g1,i,j(θ̂
τ
1,k,`, η̂

τ
1,k,`; τ)− g1,i,j(θ̂τ01,k,`, η̂

τ0
1,k,`; τ0)− E[g1,i,j(θ1,k,`, η1,k,`; τ)− g1,i,j(θ1,k,`, η1,k,`; τ0)]

=

τ∑
t=1

{
Xt
i,j(1−Xt−1

i,j ) log
θ̂τ1,k,`

θ̂τ01,k,`
+ (1−Xt

i,j)(1−Xt−1
i,j ) log

1− θ̂τ1,k,`
1− θ̂τ01,k,`

+(1−Xt
i,j)X

t−1
i,j log

η̂τ1,k,`
η̂τ01,k,`

+Xt
i,jX

t−1
i,j log

1− η̂τ1,k,`
1− η̂τ01,k,`

}
−

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ̂τ01,k,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ̂τ01,k,`) + (1−Xt
i,j)X

t−1
i,j log η̂τ01,k,` +Xt

i,jX
t−1
i,j log(1− η̂τ01,k,`)

}

+E

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ1,k,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ1,k,`)

+(1−Xt
i,j)X

t−1
i,j log η1,k,` +Xt

i,jX
t−1
i,j log(1− η1,k,`)

}
.

When sum over all (i, j) ∈ Sk,` and 1 ≤ k ≤ ` ≤ q, the last two terms in the above inequality

can be bounded similar to (A.27) and (A.29), with τ replaced by τ0 − τ . For the first term, with

some calculations we have there exists a constant c1 > 0 such that with probability larger than

1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣θ̂τ1,k,` − θ̂τ01,k,`∣∣∣ ≤ c1√τ0 − τ
τ0

√
log(np)

ns2min

, (A.32)

sup
1≤k≤`≤q

∣∣∣η̂τ1,k,` − η̂τ01,k,`∣∣∣ ≤ c1√τ0 − τ
τ0

√
log(np)

ns2min

.

Brief derivations of (A.32) are provided in Section A.9.3. Consequently, similar to (A.31), we

have there exists a large enough constant c2 > 0 such that∣∣∣∣∣ ∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g1,i,j(θ̂

τ
1,k,`, η̂

τ
1,k,`; τ)− g1,i,j(θ̂τ01,k,`, η̂

τ0
1,k,`; τ0)

]

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g1,i,j(θ1,k,`, η1,k,`; τ)− g1,i,j(θ1,k,`, η1,k,`; τ0)

]∣∣∣∣∣
≤ c2p

2

√
(τ0 − τ) log(np)

s2min

. (A.33)

Here in the last step we have used the fact that τ0 ' O(n),
√

log(np)
p2

≤
√

log(np)
s2min

, and (τ0−τ) log(np)
ns2min

=
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o
(√

(τ0−τ) log(np)
s2min

)
. Similarly, note that,

g2,i,j(θ̂
τ
2,k,`, η̂

τ
2,k,`; τ)− g2,i,j(θ̂τ02,k,`, η̂

τ0
2,k,`; τ0)− E[g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ)− g2,i,j(θ2,k,`, η2,k,`; τ0)]

=

n∑
t=τ0+1

{
Xt
i,j(1−Xt−1

i,j )

[
log

θ̂τ2,k,`

θ̂τ02,k,`
− log

θτ2,k,`
θ2,k,`

]
+ (1−Xt

i,j)(1−Xt−1
i,j ) ·

[
log

1− θ̂τ2,k,`
1− θ̂τ02,k,`

− log
1− θτ2,k,`
1− θ2,k,`

]
+Xt

i,j(1−Xt−1
i,j )

[
log

η̂τ2,k,`
η̂τ02,k,`

− log
ητ2,k,`
η2,k,`

]
+Xt

i,jX
t−1
i,j

[
log

1− η̂τ2,k,`
1− η̂τ02,k,`

− log
1− ητ2,k,`
1− η2,k,`

]}
+ [g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ0)− g2,i,j(θ2,k,`, η2,k,`; τ0)]

−E[g2,i,j(θ
τ
2,k,`, η

τ
2,k,`; τ0)− g2,i,j(θ2,k,`, η2,k,`; τ0)] +

τ0∑
t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θ̂τ2,k,`

+(1−Xt
i,j)(1−Xt−1

i,j ) log(1− θ̂τ2,k,`) + (1−Xt
i,j)X

t−1
i,j log η̂τ2,k,` +Xt

i,jX
t−1
i,j log(1− η̂τ2,k,`)

}

−E
τ0∑

t=τ+1

{
Xt
i,j(1−Xt−1

i,j ) log θτ2,k,` + (1−Xt
i,j)(1−Xt−1

i,j ) log(1− θτ2,k,`)

+(1−Xt
i,j)X

t−1
i,j log ητ2,k,` +Xt

i,jX
t−1
i,j log(1− ητ2,k,`)

}
:= I + II − III + IV − V. (A.34)

For II−III, from Lemma 3 and the fact that
∣∣∣θτ2,k,` − θ2,k,`∣∣∣ ≤ c3(τ0−τ)

n−τ , and
∣∣∣ητ2,k,` − η2,k,`∣∣∣ ≤

c3(τ0−τ)
n−τ for some large enough constant c3, we have there exists a large enough constant c4 > 0

such that with probability greater than 1−O((np)−B),∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

(II − III)

∣∣∣∣∣∣ ≤ c4p2 τ0 − τn− τ

√
log(np)

τ0p2
= o

(
p2

√
(τ0 − τ) log(np)

s2min

)
. (A.35)

When sum over all (i, j) ∈ Sk,` and 1 ≤ k ≤ ` ≤ q, the IV − V term can be bounded similar to

(A.27) and (A.29), with τ replaced by τ0 − τ , i.e., there exist a constant c5 > 0 such that with

probability greater than 1−O((np)−B),∣∣∣∣∣∣
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

(IV − V )

∣∣∣∣∣∣ ≤ c5p
2

[
(τ0 − τ) log(np)

ns2min

+
√
τ0 − τ

√
log(np)

p2

]

= O

(
p2

√
(τ0 − τ) log(np)

s2min

)
. (A.36)

Lastly, similar to (A.32), we can show that there exists a constant c6 > 0 such that with probability

larger than 1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣∣∣log
θ̂τ2,k,`
θτ2,k,`

− log
θ̂τ02,k,`
θ2,k,`

∣∣∣∣∣ ≤ c6
√
τ0 − τ
n

√
log(np)

ns2min

, (A.37)

sup
1≤k≤`≤q

∣∣∣∣∣log
η̂τ2,k,`
ητ2,k,`

− log
η̂τ02,k,`
η2,k,`

∣∣∣∣∣ ≤ c6
√
τ0 − τ
n

√
log(np)

ns2min

.

25



A brief proof of (A.37) is provided in Section A.9.3. Consequently, we can show that there exists

a constant c7 > 0 such that with probability larger than 1−O(np)−B),∣∣∣∣∣ ∑
1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g2,i,j(θ̂

τ
2,k,`, η̂

τ
2,k,`; τ)− g2,i,j(θ̂τ02,k,`, η̂

τ0
2,k,`; τ0)

]

−E
∑

1≤k≤`≤q

∑
(i,j)∈Sk,`

[
g2,i,j(θ

τ
2,k,`, η

τ
2,k,`; τ)− g2,i,j(θ2,k,`, η2,k,`; τ0)

]∣∣∣∣∣
≤ c7p

2

√
(τ0 − τ) log(np)

s2min

. (A.38)

Now combining (A.33) and (A.38) and the probability for ν̂ 6= ν in (ii), we conclude that there

exists a constant C0 > 0 such that

E sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)|

≤ C0np
2

{√
(τ0 − τn,p) log(np)

n2s2min

+ o

(√
(τ0 − τn,p) log(np)

n2s2min

)}

≤ 2C0p
2

√
(τ0 − τn,p) log(np)

s2min

. (A.39)

(v) Evaluating supτ∈[n0,τn,p][Mn(τ)−Mn(τ0)].

In this part we consider the case when τ ∈ [n− n0, τn,p]. We shall see that supτ∈[n0,τn,p][Mn(τ)−

Mn(τ0)] < 0 in probability and hence arg maxτ∈[n0,τ0]Mn(τ) = arg maxτ∈[τn,p,τ0]Mn(τ) holds in

probability. Note that for any τ ∈ [n− n0, τn,p],

Mn(τ)−Mn(τ0) = Mn(τ)−M(τ)−Mn(τ0) + M(τ0)− [M(τ0)−M(τ)]. (A.40)

Given ν̂1,τ and ν̂τ+1,n, we define an intermediate term

M∗n(τ) := l({θ−τ,k,`, η
−
τ,k,`}; ν̂

1,τ ) + l({θ∗τ,k,`, η∗τ,k,`}; ν̂τ+1,n).

where

θ−τ,k,` =

∑
(i,j)∈Ŝ−τ,k,`

θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)∑

(i,j)∈Ŝ−τ,k,`
η1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)

, η−τ,k,` =

∑
(i,j)∈Ŝ−τ,k,`

θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)∑

(i,j)∈Ŝ−τ,k,`
θ1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)

,

and

θ∗τ,k,` =

∑
(i,j)∈Ŝ+

τ,k,`

[
(τ0−τ)θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)

+
(n−τ0)θ2,ν(i),ν(j)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

]
∑

(i,j)∈Ŝ+
τ,k,`

[
(τ0−τ)η1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)
+

(n−τ0)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

] ,

η∗τ,k,` =

∑
(i,j)∈Ŝ+

τ,k,`

[
(τ0−τ)θ1,ν(i),ν(j)η1,ν(i),ν(j)
θ1,ν(i),ν(j)+η1,ν(i),ν(j)

+
(n−τ0)θ2,ν(i),ν(j)η2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

]
∑

(i,j)∈Ŝ+
τ,k,`

[
(τ0−τ)θ1,ν(i),ν(j)

θ1,ν(i),ν(j)+η1,ν(i),ν(j)
+

(n−τ0)θ2,ν(i),ν(j)
θ2,ν(i),ν(j)+η2,ν(i),ν(j)

] .
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We have

Mn(τ)−M(τ) = Mn(τ)− EM∗n(τ) + EM∗n(τ)−M(τ).

Note that the expected log-likelihood E
∑

1≤i≤j≤p g1,i,j(α1,i,j , β1,i,j , τ) is maximized at α1,i,j =

θ1,ν(i),ν(j), β1,i,j = η1,ν(i),ν(j), and E
∑

1≤i≤j≤p g2,i,j(α2,i,j , β2,i,j , τ) is maximized at α2,i,j = θτ,ν(i),ν(j),

β2,i,j = ητ,ν(i),ν(j), we have

EM∗n(τ)−M(τ) ≤ 0.

On the other hand, notice that given ν̂, {θ−τ,k,`, η
−
τ,k,`} is the maximizer of El({θk,`, ηk,`}; ν̂1,τ ) and

{θ∗τ,k,`, η∗τ,k,`} is the maximizer of El({θk,`, ηk,`}; ν̂τ+1,n). Similar to (A.31), there exists a large

enough constant C7 > 0 such that with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

|Mn(τ)− EM∗n(τ)| ≤ C7np
2

{
log(np)

n
+

√
log(np)

np2

}
.

Consequently we have, with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

[
Mn(τ)−M(τ)

]
≤ C7np

2

{
log(np)

n
+

√
log(np)

np2

}
. (A.41)

We remark that since the membership structure ν̂τ+1,n can be very different from the original ν,

the smin in (A.31) is simply replaced by the lower bound 1, and hence the upper bound in (A.41)

is independent of ν̂1;τ and ν̂τ+1,n.

Combining (A.40), (A.41), (A.25), (A.31) (with τ = τ0), and choosing κ > 0 to be large

enough, we have with probability greater than 1−O((np)−B),

sup
τ∈[n0,τn,p]

[
Mn(τ)−Mn(τ0)

]
≤ C7np

2

{
log(np)

n
+

√
log(np)

np2

}
+ C0np

2

{
log(np)

ns2min

+

√
log(np)

np2

}
−C3(τ0 − τn,p)

[
‖W1,1 −W2,1‖2F + ‖W1,2 −W2,2‖2F

]
< 0.

Consequently we have,

P

(
arg max
τ∈[n0,τ0]

[
Mn(τ)−Mn(τ0)

]
= arg max

τ∈[τn,p,τ0]

[
Mn(τ)−Mn(τ0)

])
≥ 1−O((np)−B). (A.42)

(vi) Error bound for τ0 − τ̂ .

One of the key steps in the proof of (v) is to compare Mn(τ), the estimated log-likelihood

evaluated under the MLEs at a searching time point τ , with M(τ), the maximized expected log-

likelihood at time τ . The error between Mn(τ) and M(τ), which is of order O

(
np2
(
log(np)
n +
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√
log(np)
np2

))
reflects the noise level. On the other hand, the signal is captured by M(τ0)−M(τ) =

O(|τ0 − τ |p2∆2
F ), i.e., the difference between the maximized expected log-likelihood evaluated at

the true change-point τ0 and the maximized expected log-likelihood evaluated at the searching

time point τ . Consequently, when |τ0 − τ |p2∆2
F > κ

[
np2
(
log(np)
n +

√
log(np)
np2

)]
for some large

enough constant κ > 0, we are able to claim that |τ0 − τ̂ | ≤ |τ0 − τ | = Op

(
n∆−2F

[
log(np)
n +√

log(np)
np2

])
. By further deriving the estimation errors for any τ in the neighborhood of τ0 with

radius O
(

∆−2F

[
log(np)
n +

√
log(np)
np2

])
, we obtained a better bound based on Markov’s inequality

(see (A.43) below).

From (A.42) we have for any 0 < ε ≤ τ0 − τn,p,

P (τ0 − τ̂ > ε) ≤ P
(

sup
τ∈[τn,p,τ0−ε]

Mn(τ)−Mn(τ0) ≥ 0

)
+O((np)−B).

Note that from (i) and (iv) we have

P

(
sup

τ∈[τn,p,τ0−ε]
Mn(τ)−Mn(τ0) ≥ 0

)
(A.43)

≤ P

(
sup

τ∈[τn,p,τ0−ε]

[
(Mn(τ)−M(τ)−Mn(τ0) + M(τ0))− (M(τ0)−M(τ))

]
≥ 0

)
≤ P

(
sup

τ∈[τn,p,τ0−ε]
|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)| ≥ C3εp

2∆2
F

)
≤

E supτ∈[τn,p,τ0−ε]
∣∣Mn(τ)−M(τ)−Mn(τ0) + M(τ0)

∣∣
C3εp2∆2

F

≤
2C0p

2

√
(τ0−τn,p) log(np)

s2min

C3εp2∆2
F

.

We thus conclude that τ0−τ̂ = Op

(
∆−2F

√
(τ0−τn,p) log(np)

s2min

)
. By the definition of τn,p and Condition

C5 we have,

∆−2F

√
(τ0 − τn,p) log(np)

s2min

= O

(
τ0 − τn,p

∆F

√
log(np)

ns2min

[
log(np)

n
+

√
log(np)

np2

]−1/2)
.

Consequently, we conclude that

τ0 − τ̂ = Op

(τ0 − τn,p) min

{
1,

min
{

1, (n−1p2 log(np))
1
4

}
∆F smin

} .

A.9.2 Change point estimation with ν1,τ0 6= ντ0+1,n.

We modify steps (i)-(v) to the case where ν1,τ0 6= ντ0+1,n.
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With some abuse of notations, we put W1,1 = (α1,i,j)p×p with α1,i,j = θ1,ν1,τ0 (i),ν1,τ0 (j), W1,2 =

(1 − β1,i,j)p×p with β1,i,j = η1,ν1,τ0 (i),ν1,τ0 (j), W2,1 = (α2,i,j)p×p with α2,i,j = θ1,ντ0+1,n(i),ντ0+1,n(j),

and W2,2 = (1− β2,i,j)p×p with β2,i,j = η1,ντ0+1,n(i),ντ0+1,n(j). Similar to previous proofs we define

Mn(τ) :=
∑

1≤i≤j≤p
g1,i,j(α̂

τ
1,i,j , β̂

τ
1,i,j , τ) +

∑
1≤i≤j≤p

g2,i,j(α̂
τ
2,i,j , β̂

τ
2,i,j , τ),

M(τ) := E
∑

1≤i≤j≤p
g1,i,j(α1,i,j , β1,i,j , τ) + E

∑
1≤i≤j≤p

g2,i,j(α
τ
2,i,j , β

τ
2,i,j , τ),

where

ατ2,i,j =

τ0−τ
n−τ

α1,i,jβ1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

α2,i,jβ2,i,j
α2,i,j+β2,i,j

τ0−τ
n−τ

β1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

β2,i,j
α2,i,j+β2,i,j

,

βτ2,i,j =

τ0−τ
n−τ

α1,i,jβ1,i,j
α1,i,j+β1,i,j

+ n−τ0
n−τ

α2,i,jβ2,i,j
α2,i,j+β2,i,j

τ0−τ
n−τ

α1,i,j

α1,i,j+β1,i,j
+ n−τ0

n−τ
α2,i,j

α2,i,j+β2,i,j

,

and

α̂τ1,i,j = θ̂τ1,ν̂1,τ (i),ν̂1,τ (j), β̂τ1,i,j = η̂τ1,ν̂1,τ (i),ν̂1,τ (j),

α̂τ2,i,j = θ̂τ2,ν̂τ+1,n(i),ν̂τ+1,n(j), β̂τ2,i,j = η̂2τ,ν̂τ+1,n(i),ν̂τ+1,n(j).

Note that the definition of M(τ) here is now slightly different from the previous definition in

that the ατ2,i,j and βτ2,i,j will generally be different from θτ
2,ντ0+1,n(i),ντ0+1,n(j)

and ητ
2,ντ0+1,n(i),ντ0+1,n(j)

,

unless ν1,τ0 = ντ0+1,n. We first of all point out the main difference we are facing in the case where

ν1,τ0 6= ντ0+1,n. Consider a detection time τ ∈ [τn,p, τ0]. In the case where ν̂1,τ = ν̂τ+1,n = ν,

we have ατ2,i,j = θτ,k,` for all (i, j) ∈ Sk,`, and we have |θ̂τ2,k,` − θτ2,k,`| = Op

(√
log(np)
ns2min

)
for all

1 ≤ k ≤ ` ≤ q, or equivalently, |α̂τ2,i,j− θτ2,ν(i),ν(j)| = Op

(√
log(np)
ns2min

)
for all 1 ≤ i ≤ j ≤ p. However,

when ν̂1,τ = ν1,τ0 ν̂τ+1,n = ντ0+1,n but ν1,τ0 6= ντ0+1,n, the order of the estimation error becomes

Op

(√
log(np)
ns2min

+ τ0−τ
n

)
. Here τ0−τ

n is a bias terms brought by the fact that ν̂1,τ 6= ν̂τ+1,n. The main

issue is that the the following terms from the definition of θ̂τ2,k,`:

∑
(i,j)∈Ŝτ2,k,`

τ0∑
t=τ+1

Xt
i,j(1−Xt−1

i,j ),
∑

(i,j)∈Ŝτ2,k,`

τ0∑
t=τ+1

(1−Xt−1
i,j ),

are no longer unbiased estimators (subject to a normalization) of the following corresponding

terms in the definition of θτ2,k,`:

θ1,k,`η1,k,`
θ1,k,` + η1,k,`

,
θ1,k,`,

θ1,k,` + η1,k,`
.

The proof of (i) does not involve any parameter estimators and hence can be established

similarly.
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For (ii), note that |α̂τ2,i,j − α2,i,j | ≤ |α̂τ2,i,j − ατ2,i,j | + O
(
τ0−τ
n

)
holds for all 1 ≤ i < j ≤ p,

where the O
(
τ0−τ
n

)
is independent of i, j. This implies that when estimating the α2,i,j , we have

introduced a bias term O
(
τ0−τ
n

)
by including the τ0 − τ samples before the change point. From

the proofs of Lemma 6, and Condition C4, we conclude that (ii) hold for ν̂τ+1,n.

For (iii), replacing the order of the error bound for θ̂+τ,k,` and θ̂+τ,k,` from
√

log(np)
ns2min

to
√

log(np)
ns2min

+

τ0−τ
n , we have there exists a large enough constant C0 > 0 such that

sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)| ≤ C0np
2

{
log(np)

ns2min

+

√
log(np)

np2
+

(τ0 − τn,p)2

n2

}

= O

(
np2

{√
log(np)

ns2min

+
(τ0 − τn,p)2

n2

})
.

For (iv), the error bounds related to g1,i,j(·, ·; ·) remain unchanged. Note that the decom-

position (A.34) still holds with θτ2,k,`, η
τ
2,k,` replaced be ατ2,i,j , β

τ
2,i,j and θ̂τ2,k,`, η̂

τ
2,k,` replaced be

α̂τ2,i,j , β̂
τ
2,i,j . The bound for (A.35) still holds owing to the fact that |ατ2,i,j−α2,i,j | = O

(
τ0−τ
n

)
and

|βτ2,i,j−β2,i,j | = O
(
τ0−τ
n

)
. The bound for (A.36) would become O

(
p2
√

(τ0−τ) log(np)
s2min

+
(τ0−τn,p)2

n2

)
.

Notice that similar to (A.37), we have with probability larger than 1−O((np)−B),

sup
1≤i≤j≤p

∣∣∣∣∣log
α̂τ2,i,j
ατ2,i,j

− log
α̂τ02,k,`
α2,k,`

∣∣∣∣∣ = O

(√
τ0 − τ
n

√
log(np)

ns2min

+
τ0 − τ
n

)
,

sup
1≤i≤j≤p

∣∣∣∣∣log
β̂τ2,i,j
βτ2,i,j

− log
β̂τ02,k,`
β2, k, `

∣∣∣∣∣ = O

(√
τ0 − τ
n

√
log(np)

ns2min

+
τ0 − τ
n

)
.

Consequently, we have

E sup
τ∈[τn,p,τ0]

|Mn(τ)−M(τ)−Mn(τ0) + M(τ0)| ≤ C0p
2

{√
(τ0 − τn,p) log(np)

s2min

+ (τ0 − τn,p)

}
.

By noticing that {α1,i,j , β1,i,j , α
τ
2,i,j , β

τ
2,i,j} is the maximizer of M(τ), we conclude that (v) also

holds. Consequently, for (vi), we have

P

(
sup

τ∈[τn,p,τ0−ε]
Mn(τ)−Mn(τ0) ≥ 0

)
≤
C0p

2

√
(τ0−τn,p) log(np)

s2min
+ C0p

2(τ0 − τn,p)

C3εp2∆2
F

.

Consequently, we conclude that

τ0 − τ̂ = Op

(τ0 − τn,p) min

{
1,

min
{

1, (n−1p2 log(np))
1
4

}
∆F smin

+
1

∆2
F

} .
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A.9.3 Proofs of (A.32) and (A.37) when ν̂ = ν

For (A.32), note that∣∣∣θ̂τ1,k,` − θ̂τ01,k,`∣∣∣ =

∣∣∣∣∣
∑

(i,j)∈Sk,`
∑τ

t=1X
t
i,j(1−X

t−1
i,j )∑

(i,j)∈Sk,`
∑τ

t=1(1−X
t−1
i,j )

−
∑

(i,j)∈Sk,`
∑τ0

t=1X
t
i,j(1−X

t−1
i,j )∑

(i,j)∈Sk,`
∑τ0

t=1(1−X
t−1
i,j )

∣∣∣∣∣ (A.44)

Similar to Lemma 3, we can show that for any constant B > 0, there exists a large enough

constant B1 such that with probability larger than 1−O((np)−(B+2)),∣∣∣∣∣∣ 1

τnk,`

∑
(i,j)∈Sk,`

τ∑
t=1

(1−Xt−1
i,j )−

η1,k,`
θ1,k,` + η1,k,`

∣∣∣∣∣∣ ≤ B1

√
log(np)

τnk,`
,

∣∣∣∣∣∣ 1

τnk,`

∑
(i,j)∈Sk,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )−
η1,k,`

θ1,k,` + η1,k,`

∣∣∣∣∣∣ ≤ B1

√
log(np)

τnk,`
,

and

1

τ(τ0 − τ)n2k,`

∣∣∣∣∣
[ ∑
(i,j)∈Sk,`

τ∑
t=1

Xt
i,j(1−Xt−1

i,j )

][ ∑
(i,j)∈Sk,`

τ0∑
t=τ+1

(1−Xt−1
i,j )

]

−
[ ∑
(i,j)∈Sk,`

τ0∑
t=τ+1

Xt
i,j(1−Xt−1

i,j )

][ ∑
(i,j)∈Sk,`

τ∑
t=1

(1−Xt−1
i,j )

]∣∣∣∣∣ ≤ B1

√
log(np)

(τ0 − τ)nk,`
.

Plug these into (A.44) we have with probability larger than 1−O((np)−(B+2)),∣∣∣θ̂τ1,k,` − θ̂τ01,k,`∣∣∣ ≤ c0τ(τ0 − τ)n2k,`
τ0τn2k,`

√
log(np)

(τ0 − τ)nk,`
≤ c0

√
τ0 − τ
τ0

√
log(np)

nk,`
,

for some constant c0 > 0. Since τ0 ' O(n), and nk,` ≥ s2min, we conclude that there exists a

constant c1 > 0 such that with probability larger than 1−O(np)−B),

sup
1≤k≤`≤q

∣∣∣θ̂τ1,k,` − θ̂τ01,k,`∣∣∣ ≤ c1√τ0 − τ
τ0

√
log(np)

ns2min

.

For (A.37), note that

log
θ̂τ2,k,`
θτ2,k,`

− log
θ̂τ02,k,`
θ2,k,`

= log

1
nk,`(n−τ)

∑
(i,j)∈Sk,`

∑n
t=τ+1X

t
i,j(1−X

t−1
i,j )

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

− log

∑
(i,j)∈Sk,`

∑n
t=τ0+1X

t
i,j(1−X

t−1
i,j )

nk,`(n− τ0) ·
η2,k,`η2,k,`
θ2,k,`+η2,k,`

− log

1
nk,`(n−τ)

∑
(i,j)∈Sk,`

∑n
t=τ+1(1−X

t−1
i,j )

τ0−τ
n−τ

η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`
θ2,k,`+η2,k,`

+ log

∑
(i,j)∈Sk,`

∑n
t=τ0+1(1−X

t−1
i,j )

nk,`(n− τ0) ·
η2,k,`

θ2,k,`+η2,k,`

.

It suffices to establish a bound for

∆τ0,τ :=

1
nk,`(n−τ)

∑
(i,j)∈Sk,`

∑n
t=τ+1X

t
i,j(1−X

t−1
i,j )

τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

−
∑

(i,j)∈Sk,`
∑n

t=τ0+1X
t
i,j(1−X

t−1
i,j )

nk,`(n− τ0) ·
η2,k,`η2,k,`
θ2,k,`+η2,k,`

.
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Note that for any B > 0, there exists a large enough constant B2 such that with probability

greater than 1−O((np)−(B+2)),

|∆τ0,τ | ≤

∣∣∣∣∣
1

nk,`(n−τ)
∑

(i,j)∈Sk,`
∑τ0

t=τ+1

[
Xt
i,j(1−X

t−1
i,j )− θ1,k,`η1,k,`

θ1,k,`+η1,k,`

]
τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

∣∣∣∣∣
+

∣∣∣∣∣
 1

nk,`(n−τ)
τ0−τ
n−τ

θ1,k,`η1,k,`
θ1,k,`+η1,k,`

+ n−τ0
n−τ

η2,k,`η2,k,`
θ2,k,`+η2,k,`

−
1

nk,`(n−τ0)
η2,k,`η2,k,`
θ2,k,`+η2,k,`

 ∑
(i,j)∈Sk,`

n∑
t=τ0+1

[
Xt
i,j(1−Xt−1

i,j )

−
θ2,k,`η2,k,`
θ2,k,` + η2,k,`

]∣∣∣∣∣
≤ B2

τ0 − τ
n− τ

√
log(np)

(τ0 − τ)nk,`
+B2

τ0 − τ
n− τ

√
log(np)

(n− τ0)nk,`
.

(A.37) then follows by noticing that τ0−τ
n−τ

√
log(np)

(n−τ0)nk,` = o
(
τ0−τ
n−τ

√
log(np)

(τ0−τ)nk,`

)
.
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