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Abstract

We investigate the classical stepwise forward and backward search methods for selecting
sparse models in the context of linear regression with the number of candidate variables p
greater than the number of observations n. In the noiseless case, we give definite upper
bounds for the number of forward search steps to recover all relevant variables, if each step
of the forward search is approximately optimal in reduction of residual sum of squares, up to
a fraction. These upper bounds for the number of steps are of the same order as the size of
a true sparse model under mild conditions. In the presence of noise, traditional information
criteria such as BIC and AIC are designed for p < n and may fail spectacularly when p is
greater than n. To overcome this difficulty, two information criteria BICP and BICC are
proposed to serve as the stopping rules in the stepwise searches. The forward search with
noise is proved to be approximately optimal with high probability, compared with the optimal
forward search without noise, so that the upper bounds for the number of steps still apply.
The proposed BICP is proved to stop the forward search as soon as it recovers all relevant
variables and remove all extra variables in the backward deletion. This leads to the selection
consistency of the estimated models. The proposed methods are illustrated in a simulation
study which indicates that the new methods outperform a counterpart LASSO selector with

a penalty parameter set at a fixed value.
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1 Introduction

Modern statistical applications often encounter the situation when a regression model is fitted
with the number of candidate variables (i.e. regressors) p greater or far greater than the number of
available observations n. Examples where such a scenario arises include radiology and biomedical
imaging, gene expression studies, signal processing and even nonparametric estimation for curve
or surface based on finite number of noisy observations. Without any assumptions on the structure
of such a regression model, it is impossible to fit any practically useful models. One frequently
used assumption is the so-called sparsity condition which assumes that the effective contribution
to a dependent variable rests on a much small number of regressors than n. The challenge then
is to find those ‘true’ regressors from a much larger number of candidate variables. This leads to
a surging interest in new methods and theory for regression model selection with p > n.

In this paper we revisit the classical forward and backward stepwise regression methods for
model selection and adapt them to the cases with p > n or p > n. Forward stepwise regression
is also know as matching pursuit (Mallat and Zhang, 1993) or greedy search. An and Gu (1985,
1987) showed that a forward addition followed by a backward deletion with the stopping rules
defined by, for example, the Bayesian information criterion (BIC) leads to a consistent model
selection when p is fixed. However the criteria such as BIC are designed for p < n. They may fail
spectacularly when p is greater than or even close to n, leading to excessively overfitted models.
We propose two new information criteria BICP and BICC in this paper. The BICP increases
the penalty to overcome overfitting; see (5) below. The BICC controls the residuals in the sense
that it will stop the search before the residuals diminish to 0 as the number of selected variables
increases to n (Remark 1(i) in section 2.2 below). A simulation study shows that both methods
work very well even when p is as ten times large as n.

Any attempt to develop the asymptotic theory in the setting of p > n has to deal with
the difficulties caused by the fact that the number of the candidate models also diverges to
infinity. This unfortunately makes the approach of An and Gu (1985, 1987) inapplicable. We



take a radically different road by first considering approximately optimal forward search in the
noiseless case which attains within a fraction the optimal reduction of the sum of residual squares.
Under mild conditions on the design variables and the regression coeflicients, we provide an upper
bound for approximately optimal forward search steps to recover all nonzero coefficients. The
upper bound is of the optimal order of the number of nonzero coefficients when the average
and minimum of the squares of the nonzero coefficients are of the same order, and is no more
than the square of the optimal order in general. We then prove that the cardinality of such
approximate forward search strategies for the first k steps is of much smaller order than the
conventional upper bound (i) In the presence of noise, this entropy calculation leads to much
smaller Bonferroni adjustments for the noise level, so that the forward search path lie within those
deterministic collections of approximately optimal rules with high probability. Furthermore, we
show that with high probability, the BICP criteria stops the forward addition search as soon
as it recovers all nonzero regression coefficients and then ensures the removal of all variables
with zero regression coefficients in backward deletion. Although we only deal with the stepwise
search methods coupled with the BICP in this paper, our proofs also provide building blocks for
investigating the theoretical properties of the other search procedures such as the f5 boosting
(Biithlmann, 2006).

Regression with p > n is a vibrant research area in statistics at present. Recent significant
developments in the estimation of regression coefficients and prediction include Greenshtein and
Ritov (2004), Candés and Tao (2007), Bunea, Tsybakov and Wegkamp (2007), van de Geer (2008),
Zhang and Huang (2008), Meinshausen and Yu (2009), Bickel, Ritov and Tsybakov (2009), and
Zhang (2009a). Important advances have also been made in selection consistency. The sign-
consistency of the LASSO (Tibshirani, 1996; Chen and Donoho, 1994) was proved by Meinshausen
and Buhlmann (2006), Tropp (2006), Zhao and Yu (2006) and Wainwright (2009a). However,
due to the interference of the estimation bias, these results are obtained under quite strong
conditions on the feature matrix and the minimum magnitude of the unknown nonzero regression
coefficients. A number of approaches have been taken to achieve selection consistency by reducing
the estimation bias, including concave penalized least squares (Frank and Friedman, 1993; Fan

and Li, 2001; Fan and Peng, 2004; Zhang, 2008, 2010), adaptive LASSO (Zou, 2006; Huang,



Ma and Zhang, 2008), and correlation screening (SIS; Fan and Lv, 2008). Stepwise regression,
widely used for feature selection, also aims nearly unbiased selection. In this direction, Zhang
(2009b) provided sufficient conditions for the selection consistency of his FoBa stepwise search
algorithm. Meanwhile, Bunea (2008), Wainwright (2009b) and Zhang (2007) proved that the
minimum nonzero coefficients should be in the order of \/W in order to achieve the variable
selection consistency in linear regression.

For penalization approaches, including LASSO, SCAD (Fan and Li 2001) and MCP (Zhang,
2008), selecting new variables were effectively carried out by a series of z-tests. Therefore one has
to overcome the difficulties caused by the unknown variance of the error term in the regression
model. In contrast, we employ a BIC-based approach which penalizes the logarithmic SSR, select-
ing new variables effectively by F-tests; see (32) below. Hence we do not require the knowledge
of the variance of the error term or a computationally intensive method to choose the penalty
parameter.

The asymptotic properties of a different extended BIC criterion for selecting sparse models
have been investigated by Chen and Chen (2008). Under the assumption that the number of true
regressors remains fixed while logp = O(logn), they shows that with probability converging to
1 all the models with j regressors have the extended BIC values greater than that of the true
model, where j > 0 is any finite integer (Theorem 1, Chen and Chen, 2008). Our approaches do
not require the number of the regressors to be fixed, and can handle much larger p than O(nc)
for a fixed constant ¢ > 0.

The rest of the paper is organized as follows. The new methods and the associated algorithm
are presented in section 2. It also contains a heuristic approach for the consistency of the stepwise
forward addition. The numerical results are presented in section 3. A formal investigation into

the consistency is presented in section 4. All the proofs are collected in the Appendix.



2 Methodology

2.1 Model

Consider linear regression model

y=XB+e, (1)
where y = (y1,---,yn) is an n-vector of random responses, X = (z;;) = (x1, - ,Xp) iSan n X p
design matrix, 3 is a p-vector of regression coefficients, € = (1, ,e,)" ~ N(0,021,), where

0% > 0 is an unknown but fixed constant and I, denotes the n x n identity matrix. We use

X1, -+ ,Xp to denote the column vectors of X. In the above model, we assume the regression
coefficient vector 8 = B,, = (B, ,Bnp) varies with n, and furthermore, the number of
coefficients p goes to infinity together with n. In fact p may be greater, or much greater than n.
For such a highly under-determined regression model, it is necessary to impose some regularity
condition, such as the sparsity, on 3. We assume that the contribution to the response y is from

merely a much smaller number (than p) of x;. Let

and d = d,, = |Z,|, denoting the number of elements in Z,,. We assume that d is smaller or much
smaller than p, although we allow d — oo together with n and p (at a much slower rate; see (20)

below).

2.2 Algorithm

We introduce some notation first. For any subset J C {1,---,p}, let X7 denote the n x |J|
matrix consisting of the columns of X corresponding to the indices in 7, and B the |J|-vector

consisting of the components 3 corresponding to the indices in J. Put
Ps;=X7(X,X7)" Xy, P5=1,-Pg, Lyv(J) =uPsv, uveR", (3)

i.e. Py is the projection matrix onto the linear space spanned by the columns of X 7, and Ly (J)
is the sum of the squared residuals resulted from the least squares fitting y = X JB 7=Pgy.
The algorithm concerned is based on a combined use of the standard stepwise addition and

deletion with some adjusted information criteria. The adjustment is necessary in order to ensure



that the algorithm works even when p is (much) greater than n. The searching consists of two
stages: First we start with the optimal regression set with only one regressor 7;. By adding one
variable each time, we obtain an optimum regression set [J, with k regressors for k = 2,3,---.
The newly added variable is selected such that the decrease in the sum of the squared residuals is
maximized. Note that Ji is not necessarily the optimal regression set with k regressors. We adopt
this stepwise addition searching for its computational efficiency. The forward search continues

as long as the adjusted BIC value decreases. When the forward search stops at step E, we set

in,1 = j»]; as an initial estimator for Z,. The second stage starts with ‘71: = Aml. We delete
one variable each time; obtaining an optimum regression set J;* for k = k— 1, k— 2, ---. The

variable deleted at each step is specified such that the increase in the sum of the squared residuals
is minimized. The backward deletion continues as long as the adjusted BIC decreases. When
the backward deletion stops at E, we set fmz = jE* as the final estimator for Z,,. Note that the
searching in Stage II is among k (instead of p) variables only, and k < n with probability 1 even
when p >> n. In practice it is often the case that k is much smaller than n. The computation
involved is a standard stepwise regression problem which can be implemented in an efficient

manner using the standard elimination algorithms; see Remark 1(ii) below.

Stage I — Forward addition:
1. Let J1 = {j1}, where

v =arg min Ly ({i}). (4)

Put
BICP; = log{Lyy(J1)/n} + 2logp/n.

2. Continue with k = 2,3, -, provided BICP; < BICPj_1, where
2k
BICPy, = log{Ly y(Jx)/n} + o log p. (5)

In the above expression, Jx = Jr—1 U {jr}, and

Ji = arg max [Lyy (Jk1) = Lyy (T U{i})] (6)
= arg max Ly (Ti-1)/Lioxi (Te-1):



3. For BICP, > BICP,_y, let k= k — 1, and Z, 1 = J;.

Stage II — Backward deletion:

4. Let BICP: = BICP; and J* = T,,1.

5. Continue with k = k — 1, k — 2,-- -, provided BICP} < BICP}_ ,, where
. X 2k
BICP}, = log{Ly (J;)/n} + o log p. (7)
In the above expression, J;' = J;' | \ {jx}, and

Jk = arg l-emjifl [Lyy (T \{i}) = Ly y (Tiy)]-

k+1

6. For BICP} > BICP},, let k = k+1, and 7,5 = J7.

Remark 1. (i) In the above algorithm, the criterion BICP (abbreviating for BIC modified for the
cases with large p) is used, which replaces the penalty logn/n in the standard BIC by 2logp/n
and is designed for the cases p &~ n or p > n. One alternative is to use the BICC (abbreviating

for BIC with an added constant) defined as follows:
k
BICCy, = log{Ly y(Jx)/n) + co} + - logn, (8)

where ¢y > 0 is a constant. Note that BICC uses exactly the same penalty term log n/n as in the
standard BIC. The only difference is to insert a positive constant ¢y in the logarithmic function.
This modification is necessary when p is greater than n. Note that for k sufficiently close to n,

Ly (Jx) is very close to 0. Therefore

log{Ly y(Jk—1)} —log{Lyy(Tk)} ~ {Lyy(Tk-1) — Ly y(Tr)}/Ly,y (Tk)

may be very large even when the decrease in residual Ly y(Jx—1) — Ly y(Jk) is negligible. Inserting
co overcomes this problem. In practical implementation, we may simply set ¢y equal to 0.2 times
of the sample variance of y. Although the theoretical properties of the BICC for p > n are
unknown, our stimulation study shows that it outperforms the BICP. We also note that when p
is fixed (as n — 00), the asymptotic properties of BIC established by An and Gu (1985, 1987)
also apply to the BICC.



(ii) The stepwise addition and deletion may be implemented in terms of the so-called sweep
operation. For the stepwise addition in Stage I, we set L' = (X, y)'(X,y) = (6%) which is a
(p+1) x (p+ 1) matrix. Adding one variable, say, x;, in the k-th step corresponds to transfer
| (Ek D to LF = (6"5 ) by the sweep operation:

1/£§,;1a ffm = 5;?’ L gk Lk 1/52;1 for j # i and m # i,

,m g

= 5T and k= =TT for j £

Then
Lyy(Ji-1) = Lyy (G U{i}) = (5 1) /0570 i g Tier

For the stepwise deletion in Stage II, the same sweep operation applies with the initial matrix

L0 = LF obtained in Stage 1. For k =k— 1, k— 2,0,

Ly (T \i}) = Lyy (Ti) = (6552 e A1 e 7.

(i) It always holds that rank(X 7. ) = k. As Ly, x,(Jz—1) = 0 for any x; in the linear space
spanned by the columns of X7 ,, adding such an x; to J;—1 will not reduce the sum of the
squared residuals and, therefore, will only increase the BICP (or BICC) value. Hence the new
entry to Jj, for k < %, must not be in the linear space spanned by the columns of X, .
Furthermore, k < n with probability 1

(iv) In the forward search, if it happens that Ly y(Jk—1) — Lyy(Jr—1 U {i}) is practically 0
for some i € Ji_1, X; should be excluded from the further search. This is more likely to happen
when p >> n, and then the elimination would improve the computation efficiency.

(v) When p > n, the true mean p = Xz, 87, = X3 may be represented as linear combinations
of any full-ranked n x n submatrix of X. There is a possibility in theory, although unlikely in
practice, that our forward stepwise addition estimator fwl misses the majority of the members
in Z,,. In practice, we may start the forward search based on the subset of j regressors with the
optimal fit, where j > 1 is a small integer. This should further reduce the small probability of

the event that fml ends as a non-sparse set.



2.3 Performance of the forward search: heuristics

Before presenting the formal asymptotic results in section 4 below, we first study the performance
of the forward search.

Given J,_1, the objective of the k-th step of the forward search is to find an index j = ji
with large p;, = HPJk,lu{j}Pﬁk_lHH' Theorem 1 below states that the forward search finds all j
with 38; # 0 within k] A k3 steps, if 1, » is within a v fraction of the maximum pj = max; uj, r,
where v € [0,1) is a constant, and k} and k3 are positive integers satisfying

ki
dy log (- C';“”B*) +1+10g VA [0m) £ (1-9)° 3 e, (9)

and

. 2 dn(dy + 1)
mm{(1 HI;)LTLB%’ } Zdﬁg 1- (10)

In the above expressions, u = X3, d,, = |Z,,| (see (2 )), By = mln{j €Ln: |Bl}, 0 < e < Yprnrg—1,

Omin(J) denotes the minimum eigenvalue of X', X 7 /n, and
T™>T
Y = min{¢min(JT UZL,) : |T| < k}. (11)

Theorem 1 Let Jj, = Jip—1 U {ji} be a sequence of models satisfying pj, > (1 —y)uj. Then,
Tk 2 I, for a certain k < k* = ki N E3.

If %, does not vanish too fast, Theorem 1 asserts the upper bound k* = O(d,,) when ||p||? <
d,nB? and k* = O(d2) in the worst case. In sparse recovery where y = u, the forward search
attains the optimal p; in each step, so that v = 0 in Theorem 1. For € # 0, Theorem 1 allows
sub-optimal choices up to an error of yu;. To this end, the essential difficulty is to deal with
the fact that the number of candidate models goes to infinity. Our idea is to find a series of
collections % of deterministic models such that (i) the cardinality |%)| diverges not too fast, and
(ii) the forward search selects models in these collections, Ji € %%, with high probability. Note
that the identification of those collections of deterministic models is purely for the purpose of our
theoretical investigation, which is not required in the implementation of our stepwise search.

The natural choice of the %) based on Theorem 1 is

Go={{n o dnd g = (=) > 0f, k=1, (12)

9



where ik = P, e 3P, eyl and p = max;j<p .. Since

s Jk—1

*

1-— P{Jk € 6, Vi, > 0} < l;nlp{jkl € Cr—1, Mjk < (1— 7)#2}7 (13)

the probability calculation with step k only involves |6%_1|(p — k + 1) combinations of {Jx_1, jx }
This could be much smaller that the cardinality (Z)/{:! for the collection of all possible realizations

of jk

3 Numerical properties

We illustrate the proposed methods by two simulated examples. For BICC, we set ¢y = 0.253,
where 55 denotes the sample variance of y. For the comparison purpose, we also include three
other model selection methods: a version of LASSO, the extended BIC (EBIC) of Chen and Chen
(2008), and the greedy forward-backward search (FoBa) of Zhang (2009b).
A LASSO estimator is defined as the minimizer of the function
1 2 e
5y = XBIF+ A 160l (14)
j=1
To make it comparable with our BICP stepwise selector, we set A = a\/m and standardize
the data such that ||x;|| = /n for all j, where o2 is the true value of Var(e;), and is only known
in simulation. It can be seen from (31) and Lemma 3 below, the BICP adds a new variable by
performing an F ,,__; test at the threshold (n — & —1){e?198P/" — 1} ~ 2log p, while the LASSO
selects a new variable x; by performing approximately a z-test x7 > n%\?/{||x;||?¢?} = 2logp.
As F1 4~ X3 for large ¢, the two methods are approximately comparable.
The EBIC proposed by Chen and Chen (2008) represents an alternative extension of the
classical BIC. Instead of BICP and BICC defined in (5) and (8) respectively, it uses the information
criterion

EBIC;, = log{Ly y(Jk)/n} + klogn/n + 2klogp/n,

which adds an additional penalty term 2logp/n in dealing with the case p > n.
Different from the method of forward addition followed by backward deletion, the FoBa ad-

vocated by Zhang (2009b) performs (as many as possible) backward deletions after each forward

10



Table 1: Simulation results for Example 1 with n = 200 and ¢; ~ N(0,1): Means and standard
deviations of |d — d| and the relative error rate 7.

|d — d| T
P d Method Mean STD | Mean STD
1000 10 BICC 0.0750  0.2641 | 0.0034 0.0120
BICP 0.5700  1.5417 | 0.0210 0.0428
EBIC 0.1350 0.8368 | 0.0048 0.0230

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0900  0.3039 | 0.0041 0.0136
FoBa+EBIC | 0.0250  0.1565 | 0.0011 0.0071

FoBa 0.1000  0.3170 | 0.0056 0.0181

LASSO 4.5900  2.8181 | 0.1462 0.0600

1000 25 BICC 0.1900  0.4527 | 0.0036 0.0086
BICP 1.3750  2.6646 | 0.0252 0.0623

EBIC 8.4550  9.1839 | 0.9933 1.9555

FoBa+BICC | 0.0150  0.1578 | 0.0003 0.0034
FoBa+BICP | 0.5000  1.6442 | 0.0138 0.0922
FoBa+EBIC | 9.1600  9.3020 | 1.0680 1.9751

FoBa 0.8350  1.1810 | 0.0186 0.0274

LASSO 26.3350  8.5044 | 0.2510 0.0394

2000 10 BICC 0.1800  0.4456 | 0.0080 0.0195
BICP 0.6750  1.7506 | 0.0244 0.0467

EBIC 0.1550  0.8273 | 0.0057 0.0248

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0300  0.1710 | 0.0014 0.0078
FoBa+EBIC | 0.0050  0.0707 | 0.0002 0.0032

FoBa 0.1500  0.3717 | 0.0084 0.0210

LASSO 7.0500  3.4185 | 0.1955 0.0583

2000 25 BICC 0.4300  0.7668 | 0.0080 0.0139
BICP 2.4500  4.1283 | 0.1313 0.8888

EBIC 14.5050  8.7293 | 2.1914 2.7699

FoBa+BICC | 0.0100  0.0997 | 0.0002 0.0021
FoBa+BICP | 1.0350  3.4530 | 0.1071 0.8903
FoBa+EBIC | 15.3800  8.4619 | 2.3482 2.8333
FoBa 0.9150  1.2021 | 0.0206 0.0286
LASSO 45.5750 11.8459 | 0.3211 0.0334

addition, and stops when no more variables can be added or deleted. More precisely, the FoBa
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Table 2: Simulation results for Example 1 with n = 800 and ¢; ~ N(0,1): Means and standard
deviations of |d — d| and the relative error rate 7.

|d — d| T
P d Method Mean STD | Mean STD
10000 25 BICC 0.0850  0.2796 | 0.0016 0.0054
BICP 0.2200  0.4719 | 0.0042 0.0089
EBIC 0.0100  0.0997 | 0.0002 0.0019

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0050  0.0707 | 0.0001 0.0016
FoBa+EBIC | 0.0000  0.0000 | 0.0000 0.0000

FoBa 0.1150  0.3639 | 0.0024 0.0077

LASSO 6.3750  3.0596 | 0.0980 0.0374

10000 40 BICC 0.0900  0.2869 | 0.0011 0.0035
BICP 0.4050  0.9673 | 0.0048 0.0107

EBIC 0.0200  0.1404 | 0.0002 0.0017

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0600  0.2583 | 0.0007 0.0031
FoBa+EBIC | 0.0100  0.0997 | 0.0004 0.0012

FoBa 0.2400  0.5037 | 0.0031 0.0066

LASSO 20.0800  6.8350 | 0.1630 0.0366

20000 25 BICC 0.1000  0.3170 | 0.0019 0.0061
BICP 0.2300  0.5083 | 0.0044 0.0096

EBIC 0.0150  0.1219 | 0.0003 0.0023

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0100  0.0997 | 0.0002 0.0019
FoBa+EBIC | 0.0000  0.0000 | 0.0000 0.0000

FoBa 0.0900  0.3039 | 0.0019 0.0064

LASSO 9.9350  4.8205 | 0.1360 0.0460

20000 40 BICC 0.1950  0.4335 | 0.0024 0.0053
BICP 0.4950  0.9873 | 0.0058 0.0112

EBIC 0.0150  0.1219 | 0.0002 0.0015

FoBa+BICC | 0.0000  0.0000 | 0.0000 0.0000
FoBa+BICP | 0.0200 0.1404 | 0.0002 0.0017
FoBa+EBIC | 0.0000  0.0000 | 0.0000 0.0000
FoBa 0.1900  0.4299 | 0.0024 0.0056
LASSO 32.8850 10.9816 | 0.2199 0.0385

adds a new variable to the selected model 7 if

r@%{?{ {Ly,y(j) —Lyy(JU {Z}>} > € (15)
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Table 3: Simulation results for Example 1 with ¢; ~ N(0,0?): Means and standard deviations of
|d — d| and the relative error rate, where n = 800, p = 10000 and d = 25.

|d — d| 2
o? Method Mean STD | Mean STD
4 BICC 0.2800 0.5596 | 0.0063 0.0133
BICP 0.2900 0.5266 | 0.0067 0.0123
EBIC 0.4150 0.6893 | 0.0088 0.0150
FoBa+BICC 0.1500 0.4103 | 0.0032 0.0087
FoBa+BICC.1 | 0.6750 0.8620 | 0.0146 0.0192
FoBa+BICC.2 | 2.1850 1.4286 | 0.0501 0.0358
FoBa+BICP 0.1050 0.3530 | 0.0022 0.0075
FoBa+EBIC 0.4150 0.6966 | 0.0089 0.0152
FoBa 0.3550 0.6566 | 0.0076 0.0143
LASSO 5.2300 2.6328 | 0.0909 0.0348
9 BICC 1.4850 1.4283 | 0.0569 0.0370
BICP 1.7850 1.3520 | 0.0485 0.0358
EBIC 3.5600 1.9430 | 0.0884 0.0553
FoBa+BICC 1.4400 1.2345 | 0.0331 0.0294
FoBa+BICC.1 | 2.4700 1.4245 | 0.0571 0.0363
FoBa+BICC.2 | 4.2000 1.8045 | 0.1056 0.0543
FoBa+BICP 1.9500 1.3846 | 0.0445 0.0341
FoBa+EBIC 3.5850 1.9524 | 0.0888 0.0561
FoBa 0.8950 0.8471 | 0.0272 0.0236
LASSO 3.3850 2.2963 | 0.1262 0.0448
16 BICC 4.7800 3.6508 | 0.1648 0.0616
BICP 4.8000 2.2551 | 0.1383 0.0753
EBIC 7.7000 2.6581 | 0.2421 0.1272
FoBa+BICC 3.5450 1.8343 | 0.0893 0.0526
FoBa+BICC.1 | 4.7950 1.9780 | 0.1253 0.0633
FoBa+BICC.2 | 6.5700 2.0728 | 0.1872 0.0813
FoBa+BICP 5.1050 2.2268 | 0.1367 0.0766
FoBa+EBIC 7.7500 2.6764 | 0.2440 0.1282
FoBa 8.3100 3.2133 | 0.1564 0.0403
LASSO 2.4900 1.9231 | 0.1887 0.0588
25 BICC 10.7500 6.0623 | 0.2811 0.0687
BICP 8.0650 2.6939 | 0.2691 0.1269
EBIC 11.3100 2.8574 | 0.4569 0.2153
FoBa+BICC 6.1250 2.2054 | 0.1775 0.0839
FoBa+BICC.1 | 7.5050 2.2751 | 0.2277 0.0988
FoBa+BICC.2 | 8.9500 2.3782 | 0.2967 0.1238
FoBa+BICP 8.3100 2.5389 | 0.2677 0.1266
FoBa+EBIC | 11.3700 2.8555 | 0.4611 0.2192
FoBa 29.0550 6.1220 | 0.2998 0.0310
LASSO 4.3400 2.7718 | 0.2734  0.0851




where € > 0 is a prescribed constant. After adding j = argmax;g7{Ly y(J) — Ly y(J U {i})} to
model J, the FoBa deletes a variable if

i Loy (T = Lyy (77)
eJ* Ly,y(j) - Ly,y(j*)

where J* = J U {j}, and v € (0,1) is a prescribed constant. In our implementation below, we

< v, (16)

set € = 9.766 log(2p)/n and v = 0.5.

While the idea of deleting all the redundant variables after each addition is appealing and may
improve the search, it is computationally more time-consuming than the algorithm presented in
section 2.2 with one-way forward search followed by one-way backward deletion, although the
difference is less substantial when p is large or very large, as then the computation of the initial
matrix LO (see Remark 1(ii)) contributes a major part of the computing time for those greedy

algorithms.

Example 1. First we consider model (1) with all z;; and ¢; independent N(0,1). We let sample
size n = 200 or 800. For n = 200, we set the number of regression variables p = 1000 or 2000,
and the number of non-zero coefficients d = 10 or 25. For n = 800, we set p = 10000 or 20000,
and d = 25 or 40. The non-zero regression coefficients are of the form (—1)“(b + |v|), where
b = 2.5\/2logp/n, u is a Bernoulli random variable with P(u = 1) = P(u = 0) = 0.5, and
v ~ N(0,1). For each setting, we replicate the simulation 200 times.

The simulation results are reported in Figure 1 which plots the selected numbers of regression
variables from the 200 replications in the ascending order. For BICP, BICC and EBIC, both J,
the number of variables selected by the forward search, and cf, the number of variables selected by
the backward search, are plotted together. By the definitions, it holds that d > (f, though d=d
in most the replications. Note both LASSO and FoBa only produce one estimated model.

Figure 1 indicates that the algorithm with the BICP works well in the sense that d = d in most
replications, especially when n = 800. Both BICC and FoBa provide better performance in every
settings. When n = 200 and d = 25, EBIC tends to select too fewer covariates due to the heavier
penalty (than BICP) when the sample size n = 200. But for large samples with n = 800, BICC,
EBIC and FoBa perform about equally well. However the version of LASSO employed turned out
not competitive with the other four methods, although it has the advantage for knowing o which

is not required by the other methods.
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To have a fair comparisons on the different stopping rules used in the greedy searches, Figure
1 also includes the results from the using the FoBa algorithm but with both the stopping rules
(15) and (16) replaced by BICP, BICC or EBIC. Now the FoBa coupled with BICC seems to
further improve the performance. It is also clear that EBIC does not work as well as the other
stopping rules for small sample size n = 200.

Tables 1 and 2 present the means and the standard deviations of the absolute difference |c? —d|
in the 200 replications for the different estimation methods with n = 200 and 800 respectively.
Also listed are the means and the standard deviations of a relative error of a fitted model defined

as

7 = (number of selected wrong variables

+ number of unselected true variables) /(2 d).

Similar to the pattern in Figure 1, BICP, BICC and FoBa provided comparable performances
while BICC is slightly better than FoBa, and BICP is slightly worse than FoBa. EBIC did not
performed well when n = 200. The improvement from using BICC as the stopping rule instead of
(15) and (16) in FoBa is also noticeable. However it is more striking that the LASSO estimation
so defined is not competitive in comparison with all the other greedy search methods, in spite of
its computational efficiency. Note that using A = a\/w in (14) leads to poorer estimates.

To examine the robustness with respect to the signal-to-noise ratio, we repeated the simulation
with 02 = Var(g;) = 4,9, 16 and 25. To save the space, we only report the results from the setting
(n,p,d) = (800, 10000, 25); see Figure 2 and Table 3. As we would expect, the methods penalizing
log(RSS) such as BICP and EBIC are robust against the increase of o2. The methods penalizing
RSS directly such as FoBa are less so. The version of LASSO method appeared to work well.
This is an artifact as we used A = a\/m in (14) in the simulation with o2 being the true
value of Var(g;). It is noticeable that BICC is less robust that BICP, as the choice of ¢y should

depend on o?; see (8).

Example 2. We use the same setting as in Example 1 with the added dependence structure as

follows: for any 1 <k <nand 1<i+#j<d,
Corr(Xgi, Xij) = (=1)"1(0.5) 7, Corr(Xpi, Xpiya) = (—1)"p,
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Corr(invXk,i+2d) — (_1)u3(1 o 02)1/2,

where p is drawn from the uniform distribution on the interval [0.2, 0.8], and wuj, us and us
are independent and are of the same distribution as u in Example 1. All zg;, for i > 3d, are
independent. We assume that the first d regression variables have the non-zero coefficients. The
simulation results are depicted in Figure 3 which shows the similar pattern to that of Figure 1,

although the performance is hampered slightly by the dependence among the regressors.

4 Main theoretical result

Theorem 2 below shows that with probability converging to 1, the estimator fml from the forward
addition alone contains the true model Z,, and with a backward deletion following the forward
addition, fng is a consistent estimator for Z,,.

We introduce some notation first. Let ¢min(J) and ¢max(J) denote, respectively, the minimum

and the maximum eigenvalues of X’;X 7/n. Let ¢4, be as in (11) and define

(bk = |?|1:nk (bmin(j), ¢z = |I}1|3;)2 ¢max(u7)7 (17)
my = inf {m : dpoyy, /m < (1 — ’7)2¢k—1¢k}- (18)

We will prove in the Appendix that the cardinality of the collection %% in (12) is bounded by
|6k| < H?zl(mk —1). Let ||x;|[? =n for all 1 < j < pand {Z,, u,dn, B, cx,7, ki, k3 } be as in (9)

and (10) with a fixed ¢, > 0. Some regularity conditions are now in order.
C1 (Conditions on d,, p, fx and k* = k A k3)
B. > Moo/2(logp)/n, 34—y logmy, < 1 logp, (19)
with Mo > (VT4 m + /m1)/(csy) and 71 > 0, and
dn, < Min/(2logp), k*(logp)/n = 0O(1), (k* +logp)/n — 0, (20)

with ¢, MgMy < (cxMo — /m1)%/(1 4 mo) — 1.
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C2 (Adjustment for BICP) The estimators ilm and fgyn are defined as in section 2.2 but with
BICPy, adjusted by a factor (14 ng) to

BICPy, = log{Ly y(Jk)/n} + 2k(1 + no)(log p) /n, (21)
and BICPj adjusted in the same manner.
C3 (Additional condition on k* for backward deletion.)
log(k*1) < mplogp with n1 + 2 < min{1 + 1o, c.(Mo/2)%}. (22)
Theorem 2 Suppose conditions C1 and C2 hold with ng > n1. Then,
P{fml ST, k<K, [Ga1 — o] < e} 51V e>0, (23)
where 3%”1 = HP%MYHQ/(TL - |fn,1\) If in addition condition C3 hold, then
P{img - In} S (24)

and the efficient estimation of p, B and o? is attained with

- |1, — Pz )yl
A=P; .y, B=(Xz X; )Xz )y, = S, (25)
, ", , n, n— |In’2|

Remark 2. (i) The sparse Riesz condition (Zhang and Huang, 2008) asserts
¢ < ¢y < g < (26)

with fixed 0 < ¢. < ¢ < o0 and d; — oo, which weakens the restricted isometry condition
(Candés and Tao 2005) by allowing ¢* — 1 # 1 — ¢,. Such conditions are often used in the ‘large
p and and small n’ literature. Random matrix theory provides (26) with @ log(p/d}) = agn for
fixed {c,c*} and certain small ag, allowing p > n. Under (26), k* =k} < d, in (9) for the vector
3 when

R L < —
dnlog<c* T 3)—{—1—|—log\/dn/(27r) cx(dy —dp)
and for k* +d,, < d,
mg < dnc*/{(l — 7)203} + 1.
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Thus, (26) can be viewed as a crude sufficient condition to guarantee manageable growth of
kE* and |%%| in conditions CI and C3, with maxy<g+ mr = O(d,) and k* = O(d,,) in the case
of |u||?> = O(d,nB2). Under such scenarios, the main sparsity requirement of Theorem 2 is
dy logd, = O(logp).

(ii) Condition C1 requires that the non-zero regression coefficient in model (1) be at least of the
order O({(logp)/ n}t/ ?), the smallest order possible for consistent variable selection (Wainwright,
2009b; Zhang, 2007).

(iii) To prove the consistency in (23) and (24), we need to increase the penalty level in the
BICP by a fraction 79 as in condition C2. Meanwhile, conservative Bonferroni estimates of
multiple testing errors are used in all stages of the proofs of our theorems. For highly sparse 3,
we prove in Theorem 3 that the conclusions of Theorem 2 holds for the simple BICP (5). Thus, it
is reasonable to use the slightly more aggressive (5) for both the forward and backward stopping
rules. Our simulation results, not reported here, also conforms with this recommendation.

Theorem 2 is proved in the appendix by showing that with high probability, (a) the forward
search stays within Jj, € €, before it finds all variables with 3; # 0, (b) BICP stops the forward
search as soon as all the variables with 3; # 0 are found, and (c) the backward deletion deletes
exactly all falsely discovered variables in the forward addition. The fact (b) is of independent
interest, although it is not a consequence of Theorem 2.

For highly sparse 3 satisfying d,, logd,, < (loglogp)/2, a modification of Theorem‘2 provides
the selection consistency of the simpler and more explicit BICP in (5). We state this result in the
theorem below. Note that when d,, is bounded, the conditions C1, C8 and (27) below are easily
fulfilled.

Theorem 3 Suppose condition C1 holds with ng =0 and
k*
> [6:] < Viogs. (21)
k=1

Then, (23) holds for the BICPy, in (5). If in addition condition C3 holds, then (24) and (25) hold
for the BICPy in (5).

Although we focus in this paper on the BICP criterion, the methods developed for the proofs

18



can be used for investigating a number of related forward search procedures and also, for example,

the /- boosting of Biithlmann (2006).

5 Appendix

Here we prove Theorems 1, 2 and 3. We introduce technical lemmas and their proofs as needed.
The proof of Theorem 1 uses the following lemma to derive lower bounds for the reduction of

residual sum of squares in an approximate forward search.

Lemma 1 Let vy, be as in (11), By in (9), pjr = [|P g, _ 1U{]}ij M| with a certain Jy—1 of size
|Tk—1| = k =1, and p;, = max; u;p. Then,

IZo \ Tl (17)? > V1P pll® > 020D ez g Bi- (28)
In particular, for T, \ Ty # 0, it > G 1v/nBs.

PROOF OF LEMMA 1. Let A =7, U Jix_1 and B =7, \ Jkx—1- By (11), ¢min(A) > ¥p_1. Since
pik =0 for j € Jp—1 and |Pg_,x]? < n,
j ,U|2
Bl > el X npl,
jeEB
This gives (28) since P% g is in the column space of X 4 and |[P% _ pl|* > ¢r_1n[|8g|* as in
Lemma 1 of Zhang and Huang (2008). U
PROOF OF THEOREM 1. Let ky, = min{k : |7xNZ,| = m}, By, = L\ Tk,, and &m = |18, 12/ |Bml-
Since kg, < kj iff ||de*u|| = 0, we assume ||P‘J§d*u|| > 0. Since ||P‘7kij_1uH > (1 —v)pg,

Lemma 1 implies

kgz 2 < kjnks ||ij s 1HHQ |P 7, Ak*PJk .UH (29
k=1 = E —3 < —
k=kj_1+1 k=k;j_1+1 (1 ) né-j—l (1 ) n€]_1

Since &—1 > A7 and [Py, Py pl® < [X5, .85, 1> < némax(Zo) 185, I
g kj_1 j i

Ka, Nk

- I#l? dmax(Zo)dn d +1)
kzl ¢z—1<m1n{(1_7)2n527 201 — ) } Zd’k L
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The inequality is strict due to HPéd* p|| > 0. This gives kg, < k3. For kT,

ka, Ak} kjAk:

— 1 1 2
Z Yr—1 < Z Z ( ‘]+1)||P*7kPg7kf1l2”H
k=1

J=1 k=k;j_1Aki+1 max{||ij 1u||2,nc*ﬁ*}

dn pPL W 2 .

- l Ths_ynks P (m — j+1)dx

= 2
, L 2 max{x, nc.S
=1 JIPG, ol {z, e}
i/IIPJk*MIIQ da

== —2.
: pL > max{z, nc,[2}
=1l T;n IMII ’ *

Since HPl HHQ (dn, — j)ncy B2 and d,,! > din T2 e=dn /o by Stirling,

ka,, Ak}

[lal? dx
Y1 <
; k—1 Z/d

n—J)cxn B2 maX{w,nC*ﬁf}

— dylog ( ”“g ) +1—log((dn — 1))

2
< dnlog( C|l|u||ﬂ2>+1+log\/ ./ 2m).

This gives kq, < kT by (9). O
The proof of Theorem 2 requires two lemmas. Lemma 2 provides upper bounds for the

cardinality of the collection of models in (12), while Lemma 3 gives a sharp large deviation bound

for the tail of the ¢-distribution.

Lemma 2 For the {6, my} in (12) and (18), |6x| < Hﬁz:l(mk -1).

PrOOF OF LEMMA 2. It suffices to prove #{j : pjr > (1 —vy)ui} < my — 1 for all k. For a fixed
Je_1, let v = ij M X5 PL _,xj and s; = sgn(x}v). For any A C {j Dy > (1 — fy)u};},
(28) gives

T > AL = i/ V1) = AN =)Vt T\ T
jeA

On the other hand, for |A| < my, the upper bound in (17) gives

SJX -V

YR =[Sl < (0 S 8) = ol
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Since puj 1 = \x;v|/||xj|| < [x}v|/V/¢rn, the above two inequalities yield

Gy | I \ Ti—1 —m
(1- 7)2¢k1/1k—1

in view of the definition of my, in (18). This gives #{j : ujr > (1 —y)up} < my. O

Al <mp = Al <

Lemma 3 Let T, have the t-distribution with m degrees of freedom, or equivalently T2 ~ F .

Then, there exists €, — 0 such that for all t >0

P{Tg1 > m(62t2/(m*1) — 1)} < 1\—}6;” et (30)
PROOF OF LEMMA 3. Let & = v/m(e2/(m=1) —1). Since T, has the t-distribution,
P T% S g2l = w > 1+ uiz 7(m+1)/2du
or) - ) o,
= xFém(/(Z)\/i)/m m 2\ 1372
=TT (m/2)mr(m — 1) (1+) :
Since x > t\/2m/(m — 1),
V2L ((m +1)/2) e~ et
P12 > 2%} < Tn/2) VT t\ﬁ (1+em)tﬁ
where €, = v2['((m +1)/2)/{T(m/2)y/m — 1} — 1 — 0 as m — oc. O

PROOF OF THEOREM 2. We prove P{ﬂ;’:lﬂj} — 1 in five steps, where

2 = {J € GV P ull >0}, Q= {|PFpul=0k>Fk},
Q3 = {HP‘LT;CH’H > Oak < E}a Q4 = {|0n,1 —O'| < 6}, Q5 = {I = An,Q}_

In ﬁ?zlﬁj, the forward search finds all variables with 8; # 0 reasonably quickly by Theorem 1, the
stopping rule k does not stop the forward search too early, k stops the forward search immediately
after finding all 3; # 0, the estimation error for ¢ is no greater than €, and the backward deletion
removes all extra variables. Let ®(¢) be the standard normal distribution function.

Step 1. We prove P{Q2{} — 0. This does not involve the stopping rule for the forward search.
Let zj, = [Py, P, el and ji = argmax; ;5. Since [Py P7vl1* = L3 4 (T)/La 2, (),
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(6) implies pij; — pj ke < 2jr k + max; zj. Since HPJU{]-}Péé'H/O' ~ |N(0,1)| for deterministic
{J,7} and pp > Yp_1v/nbi > cu/nPs > ciMoo/2log p by Lemma 1 and (19),

P{jk & Gty > 0, Tp—1 € Cr1}
< P{Zj;,k + max z; > vyesMoon/2logp, Ji_1 € (gkfl}
J
< 2p|G-1|®(— V(1 +m)2logp) + 2|Ch—1|®( — Vm2logp),

due to ye. My > /1 + n1++/m1- Thus, since | 61| < Hf;ll (mg—1) by Lemma 2 and Z::l log my, <

m logp by (19), (13) gives

k*

P{Qf} < ZQ\%k_ﬂ{p(I)( -1+ 7]1)21ng) + (I>( - \/7]12logp)}
k=1
< em l"gp{pfb( —V/(1+m)2logp) + (- \/n12logp)} — 0.
Step 2. We prove P{Q; NQS} — 0. Let a, = e2(HHm)(ogp)/n _ 1 By (21)
BICP), < BICP;_1 < |P P75 y[*/IP% _ ¥II> > an/(1 + an). (31)

Let g > 0 be small and Ay, = J;, UZ,. Consider events

Qx = {IP5PS_ Yl = i — v/ logp >0,
[Pa el < conv/m. |(o%n) He]* = 1 < o}

It follows from Lemma 1 that in the event s,

L 1 1
Py yI* = IPa_ Py yI*+IPs4 el
L L
< P, ul? +2(Pg pll x [P, el +le]?

< (1+ e0)dn(pi)? /-1 + (1 + 20)0”n.

Since py > cxMpo+/2logp as in Step 1 with c, My > /71, we have in (g,

L 2 .
IPaPs ¥ (1, — o2 log p)?
IPL ylI2 T (I+eo)dn(puf)?/tr—1+ (14 2€0)02n
Tk—1

(21og p) (e Mo — /71)?
(14 €0)dn(cxMo)?(2logp)/cx + (1 + 2€0)n”

22



Since logp = o(n) by (20), an/(1+an) < (14+€0)(1+n0)(2logp)/n for k < k* and large n. Thus,

for sufficiently small €y > 0 and in Qg ,

IPaPs 1P (o= P AL+ m)(1+0)
IPL ¥IPan/(T+ an) = (L+ o) MFRdnlogp)/n+ (1+ 260)

due to ¢, Mg (2dy, log p)/n < ex MZM; < (cxMo—/M1)*/(14m0) — 1 by (20). Thus, Q2 O NE_, Qo x

and as in the probability calculation in Step 1,
P{Q1 N5t — P{|(o*n) el® — 1] < e}

ZP{llPJk i P7_El > ov/2mlogp, Tioy € Cin}
L

+ > P{IPa, el > coo/n, Ti1 € Gon )

k=1

*

< 316l (2~ V2nlosp) + P{xd iy > i)

k=1

< p1e(— V2mlogp) +o(1) = o(1),

since P{\/x2 > Vd+t} < ®(—t) and eg\/n — /d, + k* > /211 log p.
Step 3. We prove P{Q; N Q2N Q5} — 0. It follows from (31) that

IN

BICP}, < BICP;_; & [P PL  y|?/IPLy|? > an, (32)

which is an F ,,_j, test for the random model Jj, against J,_;. Since k(logp)/n < k*(logp)/n =
O(1), by Lemma 3 the threshold (n—k)a,, gives an Fy ,,_j-test of size O(1)p~ =m0+ k+1/n / flogp <
p~t7™/\/logp. Since ny > 1y in (19),

k*
P{uNnQnQst < Y P{u; =0,BICP; < BICP,_1, Ji—1 € G1}

k=1
k*
(p—k+1)|Ck| p™
S = = o(1). (33
g pttmoy/logp pmy/logp :

Step 4. We prove P{1 N Q5} — 0. Consider a fixed € > 0. In Q; N Qyy, k=k implies
Pz, el = |Pa,_ el < eoyn and [(o?n)~e||* — 1] < e. Since |In71| < k* = o(n) and
HPIn y? = lle]l* =[Pz, ,&|?, for sufficiently small €, (0 —€)* < [Pz, , L yl[2/(n—k) < (c+¢)2.
Thus, P{O1 N Qg} < > pcpe P{O1 N Q5 } — 0 by Step 2.
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Step 5. We prove P{2; N QN Q3 NQE} — 0. Let

r = { k[P PG ell*/o < (o +m)2log
mas [P P 1/ [Pl < a0, T S T . (34)
In the event J;* D Z,,, minjez, ||P‘7]:P\J-7;\{j}u|| > Biy/Cx > Mooy/c.2(log p)/n. Since (c,Mo/2)* >
11 + n2 and P\;y = Pée for J 2 I,, in the event Q5 ,

: L _ Pt
PP JeTNE PPyl

> Bey/cx — 204/ (m +n2)2logp > 0,

so that the backward deletion does not delete the elements of Z,, for k > d,,. Moreover, since
the forward addition and backward deletion are based on the same tests, by (32) and the second
inequality in €25, the backward deletion does not stop in for k > d,,. Thus,
P{Ql NN Q3 ﬂQg}
k*

< P =Tnk<di}+ > P{inQnQsn0g,}.
k=dn+1

In Q1NN A3, k=k implies Z,, C fml = Jr and J} € €, so that the backward deletion involves
at most N}, combinations of {j, 7}, where N} = (k*!/k!) 2221 |6%| < p™t™ /K. Since the
inequalities in (34) involve x? and F p— variables in random models,

k*
> P{unQnQ3n Qg (35)
k=dn+1
pW1+772

< 2 Gy (PO > 20m +m2)logp} + PPy > (n = Kjan}) = 0.

Since 11 + 12 < 14 19, the bound here for the tail of F ,_j is identical to that of Step 3. The
proof of P{jjn = In,E < dn} — 0 is simpler than Step 2 and omitted. This completes the step.
O

PROOF OF THEOREM 3. For the BICP} in (5), a, = ¢?19¢P)/™ _ 1. Since k*(logp)/n = O(1),
the size of the test Fy,_x > (n — k)a, is O(p~'(logp)~'/?) by Lemma 3 uniformly for k& < k*.
Since the condition 79 > n; is used only in (33), the proof of Theorem 2 is still valid when

S %] < Viogp. 0

24



References

[1] AN, H. AND Gu, L. (1985). On the selection of regression variables. ACTA Mathematicae
Applicatae Sinica, 2, 27-36.

[2] AN, H. AND Gu, L. (1987). Fast stepwise procedures of selection of variables by using AIC
and BIC criteria. ACTA Mathematicae Applicatae Sinica, 5, 60-67.

[3] BickeL, P., RiTtov Y. and TsyBakov, A. (2009). Simultaneous analysis of Lasso and
Dantzig selector. Ann. Statist. 37 1705-1732.

[4] BUHLMANN, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34 559-583.

[5] BUNEA, F. (2008). Honest variable selection in linear and logistic regression models via ¢;
and /1 + ¢ penalization. Electronic Journal of Statistics, 2 11531194.

[6] BuNEA, F., TsyBAKOv, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the
lasso. Electron. J. Statist. 1 169-194 (electronic).

[7] CanDES, E. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inform.
Theory 51 4203-4215.

[8] CANDES, E. and TAo, T. (2007). The Dantzig selector: statistical estimation when p is much
larger than n (with discussion). Ann. Statist. 35 2313-2404.

[9] CHEN, J. and CHEN, Z. (2008). Extended Bayesian information criteria for model selection
with large model spaces. Biometrika, 95, 759-771.

[10] FAaN, J. and L1, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. J. Amer. Statist. Assoc. 96 13481360.

[11] FAN, J. and Lv, J. (2008). Sure independence screening for ultra-high dimensional feature
space. J. Roy. Stats. Soc. B, 70, 849-911.

[12] FAN, J. and PENG, H. (2004). On non-concave penalized likelihood with diverging number
of parameters. Ann. Stats. 32 928-961.

[13] GREENSHTEIN E. and RiTOvV Y. (2004). Persistence in high-dimensional linear predictor
selection and the virtue of overparametrization. Bernoulli 10 971-988.

[14] HuANG, J., MA, S. and ZHANG, C.-H. (2008). Adaptive LASSO for sparse high-dimensional
regression models. Statistica Sinica 18 1603-1618.

[15] KNiGHT, K. AND Fu, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28
1356-1378.

[16] MaLLows, C.L. (1973). Some comments on C). Technometrics 12 661-675.

[17] MALLAT, S. and ZHANG, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEFE Transa. Signal Processing 41 3397-3415.

25



[18] MEINSHAUSEN, N. and BUHLMANN, P. (2006) High dimensional graphs and variable selection
with the Lasso. Ann. Statist. 34 1436-1462.

[19] MEINSHAUSEN, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for
high-dimensional data. Ann. Statist. 37 246-270.

[20] ScuwARz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.

[21] TiBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist.
Soc. Ser. B 58 267-288.

[22] TropPP, J.A. (2006). Just relax: convex programming methods for identifying sparse signals
in noise. IEEE Trans. Inform. Theory 52 1030-1051.

[23] VAN DE GEER, S. (2008). High-dimensional generalized linear models and the Lasso. Ann.
Statist. 36 614-645.

[24] WAINWRIGHT, M.J. (2009a). Sharp thresholds for noisy and high-dimensional recovery of
sparsity using ¢;-constrained quadratic programming (Lasso). IEEE Trans. Info. Theory 55
2183-2202.

[25] WAINWRIGHT, M.J. (2009b). Information-theoretic limitations on sparsity recovery in the
high-dimensional and noisy setting. IEEE Trans. Info. Theory 55 5728-5741.

[26] Zunang, C.-H. (2007). Information-theoretic optimality of variable selection with concave
penalty. Technical Report 2007-008, Department of Statistics and Biostatistics, Rutgers Uni-
versity.

[27] ZHANG, C.-H. (2008). Discussion: One-step sparse estimates in nonconcave penalized likeli-
hood models. Ann. Statist. 36 1553-1560.

[28] ZuANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty.
Ann. Statist. 38 894-942.

[29] Zuang, C.-H. and HuaNg, J. (2008). The sparsity and bias of the LASSO selection in
high-dimensional regression. Ann. Statist. 36 1567-1594.

[30] ZHANG, T. (2009a). Some sharp performance bounds for least squares regression with L;
regularization. Ann. Statist. 37 2109-2144.

[31] ZHANG, T. (2009b). Adaptive forward-backward greedy algorithm for sparse learning with
linear models. In NIPS 2008, Koller, Schuurmans, Bengio and Bottou, Eds. pages 1921-1928.

[32] ZuAo, P.and YU, B. (2006). On model selection consistency of LASSO. J. Machine Learning
Research T 2541-2567.

[33] Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101
1418-1429.

26



0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 20 40 60 80
L Il Il Il 1 L Il Il Il 1 Il Il Il 1 Il Il Il 1
o A I o - 0 S 0 © A 1
a ' a ' a ' a '
' ' ' '
a ' a ' a ' i ' %
' ' [ '
I i I i = ] = i (@]
a a a - a o
S 4 S " S * =] [
i | ° i |\ i " 1=
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 20 40 60 80
1 | | | | 1 | | | | | | | | | | | |
o T o T o =-3<-< o A =
@ ! a ! a X @ !
S ' [SH ' S ! S |
_ ' _ ' _ 'I i ' @
» v R [ (@]
= 4 = " = = ] T
a o a - ' a o 1
g | g L . g \ g
' ] v i ta
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 20 40 60 80
L Il Il Il 1 L Il Il Il 1 Il Il Il 1 Il Il Il 1
o T o T o o
g - ! g - ! g4 g
fl
. ! . ! 47 u == g
' ' ' =
= ' = ' = - [ ' (e}
3 ] ' 8 ] ' 8 ] T 3 "
i ! i v i N 4 -
0 20 40 60 80 0 20 40 60 80 20 40 60 80 20 40 60 80
L Il Il Il 1 L Il Il Il 1 Il Il Il 1 Il Il Il 1
o T o T o 0 o =
' 1 1 ' I
o o o o o
S ' S ' S ' S ' ©
1 1 U ! 1
7 ' 7 ' T ' 1 ' $
= ] = ] = 1 (= ' —
a a a a - \ o
o ' =3 ' S ' S
. | - | _ I n | (@)
0 20 40 60 80 0 20 40 60 80 20 40 60 80 20 40 60 80
1 | 1 | | 1 | 1 | | | | | | | | | |
o T o T o -3-- o 4 ===
1 ! m
a | ! a | ! a | ' a | 1 o
o ' <] ' <] , S . ©
i, 1 _ 1 _ ] f L
. | : | @
= | = | = = =z
& ] ! & ] ! 3 ] ¢ g ! Q
_ . | N i . | . T
0 20 40 60 80 0 20 40 60 80 20 40 60 80 20 40 60 80
L Il Il Il 1 L Il Il Il 1 Il Il Il 1 Il Il Il 1
o T o T o o
1 m
a | ! a | ! a |, a | o
S ' <) ' <] \ S w
1 1 N N L
7 ' 7 | I N el +
m
g 1 ' g 1 ' g9 |-, g | e
' ' =
- ! - ' - o - L. o
0 20 40 60 80 0 20 40 60 80 20 40 60 80 20 40 60 80
L Il Il Il 1 L Il Il Il 1 Il Il Il 1 Il Il Il 1
o 0 o < o o ~ o 0
' ' - .
g | g | g4 | g4 |
' 1 ! ' m
. . - ' u l =]
| ! ' | @
= 1 = l = f = D
a a a - a o l
o ' =} ! =} f <] \
- ! - ! - ' u -
0 20 40 60 80 0 20 40 60 80 20 40 60 80 20 40 60 80
1 | | | | 1 | | | | | | | | | | | |
© . ° A RS ° T-a ° S
N . s .
a | N a | a | . a -
S N =] *I o .I S “ 5
- 1 - - - N i N "
= P " = ' P N @
o s a - N a . a 1 o
S N =3 N =3 N S .

(n,p)=(800,20000)

(n,p)=(800,10000)

(n,P)=(200,2000)

(n,p)=(200,1000)

Figure 1: Simulation results for Example 1 with ¢; ~ N(0,1). Plots of the numbers of selected
regression variables by the forward search and backward search in 200 replications. T'wo upper
rows with n = 200: d = 10 (solid lines), and d = 25 (dashed lines). Two lower rows with n = 800:

d = 25 (solid lines), and d = 40 (dashed lines).
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Figure 2: Simulation results for Example 1 with ¢, ~ N(0,0?%): Plots of the numbers of selected
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Figure 3: Simulation results for Example 2: Plots of the numbers of selected regression variables
by the forward search and backward search in 200 replications. Ten upper panels: n = 200,
d = 10 (solid lines), and d = 25 (dashed lines). Ten lower panels: n = 800, d = 25 (solid lines),

and d = 40 (dashed lines).
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