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Summary

We describe two different approaches to defining the notion of initial-value sensitivity in a
nonlinear stochastic system. The conditional distribution approach is directly relevant to the non-
linear prediction of time series. The kernel regression method based on a locally linear/quadratic
fit is adapted to construct, with illustrations, pointwise predictors, predictive intervals and predic-
tive distributions. We propose a bootstrap test for operationally deterministic versus stochastic

nonlinear modelling, which is based on a newly proposed data-driven bandwidth selector.

1 Introduction

The notion of initial-value sensitivity is well established in and central to the study of deter-
ministic chaos; it is a necessary but not sufficient condition for the generation of deterministic
(equivalently low-dimensional) randomness. By contrast, for a stochastic dynamical system, the
notion of initial-value sensitivity is not as well established although several different approaches
are now available, namely the identical noise realization approach, the local Lyapunov exponent
approach, the conditional mean approach and the conditional distribution approach. Their differ-
ent motivations and interpretations will be briefly discussed in this paper. Clearly the notion is
not necessary for the generation of stochastic (equivalently high-dimensional) randomness which
is usually taken care of by the stochastic driving noise. Therefore the central issue is what we

want the notion for. Our approach is partially motivated by its effects on prediction. We now



know that initial-value sensitivity is state-dependent; this fact has profound implications on the
practice of prediction. Tong (1995) has stressed that this state-dependency leads to windows
of opportunities which are open only to the nonlinear forecasters. Given the substantial recent
interests in constructing nonparametric estimates of the point and interval predictors as well as
the predictive distributions, we address the important problem of bandwidth selection and pro-
pose a practically useful method. We should point out that the importance of the bandwidth
parameter goes far beyond the construction of a good kernel estimate. As a matter of fact, it can
discriminate between operational determinism and stochastic randomness.

The paper is organized as follows. §2 provides a brief description of two different approaches of
the initial-value sensitivity in stochastic systems. Some open problems are mentioned. §3 presents
three types of predictors, namely a pointwise predictor, a predictive interval and a predictive
distribution. The sensitivity measures studied in §2.2 play an important role in monitoring the
performance of all the three types of predictors. In §4, a new data-driven bandwidth selector is
introduced. Further, a bootstrap test for operationally deterministic versus stochastic nonlinear

modelling is proposed based on the newly proposed data-driven bandwidth selector.

2 Initial-Value Sensitivity

From the studies in chaos, it has been learned that the sensitivity to initial conditions is
an interesting phenomenon in nonlinear systems. This phenomenon has profound implications
in nonlinear statistical analysis, especially in nonlinear prediction. Therefore, to define some
appropriate measures to quantify the initial-value sensitivity in a stochastic environment is of
importance in terms of both theoretical and practical interests. §2.1 and §2.2 present two different
approaches to measuring the sensitivity. §2.3 discusses the noise amplification which is a different

but relevant phenomenon in nonlinear stochastic systems.

2.1 Identical noise realizations

A discrete-time stochastic dynamical system with additive noise can be described by the
equation

Xy = F(Xi—1) +e, (2.1)

for t > 1, where X; denotes a state vector in R?, F is a real vector-valued function, and {e;}

is a noise process which satisfies the equality F(e¢|Xo,...,X;—1) = 0. As a start, it is perhaps



quite natural to borrow the concept of the Lyapunov exponent defined originally for deterministic
systems. Quite a few publications were devoted to this approach, for example Crutchfield et al.
(1982), Kifer (1986), Herzel et al. (1987), Nychka et al. (1992), and Lu (1994). The idea can be
described as follows. To see whether a stochastic dynamical system (2.1) is sensitive to its initial
values, conceptually we can imagine that the system starts at time ¢ = 0 from two nearby initial

values say = and = + J, and the two trajectories always receive the same realization of e; , for all

t=1,2,.... Then, the divergence of the two trajectories at time m can be approximated, in the
case d =1, by

| Xm(z + 0) — X (z)| = exp{mA}|d], (2.2)
where A\ = lim,,_, % log | TT0=4 F(X;(x))| is called the Lyapunov exponent, and F(z) = dl;(ww). Tt

is easy to see that if the system is ergodic, this limit exists and equals to E{log |F'(X1)|}. Similar
results for the case d > 1 can be found in Nychka et al. (1992), and Lu (1994).

The above approach has the following advantages: it is an obvious analogue to the sensitivity
measure in purely deterministic systems, and the asymptotic results are ready to enhance the
understanding of the derived measure. However, the asymptotic approximation (2.2) is too rough
to use in practice even for the cases with large m , because the RHS expression of (2.2) only
offers an approximation of the divergence along the trajectories which simply keep twisting whilst
diverging, thereby disqualifying the expression as an approximation for the distance between
Xm(z+ ) and X, (z). Furthermore, in many practical applications, for example prediction, it is
not always possible to justify the assumption of identical noise realization.

The estimation of A has been discussed by Dechert and Gencay (1990) and Nychka et al. (1992)
using the neural network model based method, and by Lu (1994) using the locally polynomial

regression method.

2.2 Conditional distribution approach

Partially motivated by the studies of nonlinear prediction, a different approach has been
adopted by Yao and Tong (1994a,b). They consider the sensitivity of the conditional distribution,
or one of its characteristics (e.g. the conditional mean), with respect to initial values. For model
(2.1), let F,,(xz) = E{X,,| X0 = =}, and g¢,,(.|z) denote the conditional distribution of X, given
Xy ==z.



It follows from Taylor’s expansion that

Fon(z + 8) — Fro () = Frn ()6 + o(][6]])- (2.3)

By the chain rule, )
Frn(z) = B{ [ F(X0)1 X0 = . (2.4)

1=0

Roughly speaking, assuming that all the factors on the RHS of the above expression are of
comparable size, it seems plausible that F,(z) grows (or decays) exponentially with m. Therefore,
it follows from (2.3) that the conditional means diverge (converge) exponentially with m.

The above observation has an important implication in pointwise prediction (cf. §3.1 below).
This conditional mean approach appears to be closely related to the approach of Wolff (1992).

For example, for the case d =1,
1 . 1 m—1 .
vn() =~ log|Fn(z)] = —_log [B{ [ #(X:)]Xo = )| (2.5)
i=0

would probably provide the same profile as Wolft’s m-step ahead local Lyapunov exponent.
A more informative way is to consider the global deviation of the conditional distribution of
X given Xy. We consider the mutual information based on the Kullback-Leibler information,

which may be expressed as follows.

Kon(@36) = [{gm(ulo + ) = gm(lo)} 0g{gm (412 + 5)/gm (y12) 1.

It is known that for small §, K, (z;0) has the approximation
Ko (38) = 071 (2)8 + o(][0]]?), (2.6)

where

Tin(®) = [ 4 (912)35012) g (). 27)
Therefore, if we treat the initial value z as a parameter vector of the distribution, I ,,(z) is
the Fisher’s information matrix, which represents the information on the initial value Xy = z
contained in X,,. Roughly speaking, (2.6) may be interpreted as saying that the more information
X, contains about the parameter, the more sensitively the distribution depends on the initial
condition. The converse is also true. It will be seen that Iy ,,(z) has a direct application in
interval prediction (see §3.3.1 below).

We also consider a simple Lo-distance defined as
Din(;8) = [{gm(vlo+5) = gm(ylo)}dy.
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It follows from the Taylor’s expansion that
Dy (238) = 6" Io,m(2)3 + o(|[8][),

where
Bm(@) = [ dm(lo)di o)y,

In §3.2.2 below, a direct estimator for I5,,(z) can be constructed.
To see that measures K, (.;.) and Dy,(.;.) are more informative than the measure derived

from the conditional mean approach, let us consider the following one-dimensional model
Yir1 = oYy + o(Yy)era,

where « is a real constant, o(.) is positive and differentiable function, and {e;} are i.i.d. standard
normal. Obviously, the conditional mean F,(z) = E{Y,,|Yy = =} = o™z. Therefore, by (2.5),
Vm = log|al, a constant, which indicates that when || < 1, the system is globally as well as
locally stable as far as the conditional mean is concerned. However, it is easy to see that K,,(.;.)

and D,,(.;.) are no longer constants. For example,

0'21.%) {a2 + 2[[7(3:)]2}’ Ii(z) = m {Oﬂ + g[a(m)]Q} .

Therefore, there is some variation in the sensitivity of the conditional distribution with respect to

11,1(56) =

the initial value z, which is due to the presence of the conditional heteroscedasticity in the model.

All the above measures are defined for fixed m. Intuitively, when m — oo, the conditional
expectation F,(z) will tend to the unconditional expectation, and both K, (z;d) and D, (x;d)
will converge to 0, because the system will eventually lose its memory on its initial state due to
the accumulation of random noise in time evolution. However, it will be interesting to see whether
the second term in an asymptotic expansion of K, (z;d), or Dp,(z; ), or even F,(z +6) — Fry(z)
will give us an indication of the sensitivity of the system. As far as we know, this still remains an
open problem. Also open is the existence of the limit of v,,(z) as m — co.

To end the discussion on sensitivity, we mention a trivial asymptotic result which indicates
that if in model (2.1) the noise is small, the conditional expectation approach will give about the
same measure as the Lyapunov exponent defined in §2.1. For simplicity of presentation, we state

the result in the case d = 1.



Proposition 1. Suppose that a one-dimensional random system is defined by
Yitim = f(Yem) + omery1, t=1,....m; m=1,2,...,

where f is bounded and has continuous second derivative, {¢;} are independent and with a common

density function on a bounded support. Then as m — oo,

m—1

log|E{Hf Yim)[Yom =2} = A
=0

provided o,,, = o(m ') and

,_.

m—

log |F{f®(z)} — A,

1
m 2o

where ) is a finite constant which may depend on z and f() denotes the i-fold composition of f.

The estimation of F},(z) will be discussed in §3.1 together with the context of the pointwise
prediction. The estimation of K,(z;d) and D,,(z;0) will be discussed in §3.2 together with the

estimation of predictive distributions.

2.3 Noise amplification

Another interesting feature of a nonlinear system is noise amplification. We can measure it
by comparing the conditional variance of the system variables {X;} (given the initial conditions
Xo) with the variance of the innovations {e;}. We will see that the amplification of noise varies
with the initial values, and is not necessarily monotonic in time evolution. In fact, the sensitive
dependence on the initial values and the noise amplification are related to each other, and both
of them are dictated by some functions of the derivatives of F'(.).

Assume that in model (2.1), F(.) has a bounded second derivative, and
Eet = E{6t|Xt_1, Xt_g, . } = O, Var(et) = Var{et|Xt_1, Xt_g, . } = 3.

We also assume that, for all ¢ > 1, ||e¢|| < ¢ almost surely, where ( is a small constant. It can be
proved that
m—1 m—1 T
Var{X,|Xo =2} =S+ Y 1‘[ MF®(2)} 3 23 [ MF® ()} 3 + 03,
=1 k=) k=j
where F(¥) denotes the k-fold composition of F, A(z) = 0F(z)/dz™, and O(¢?) stands for a d x d

matrix with all entries of the order (3. The special case of d = 1 was presented in Yao and Tong



(1994a), which has the simpler form: o2 (z) = Var(Y,,|Yo = z) = 03um(z){1 + o(1)}, where

03 = Var(e;), and

,Um(x) = 1+mz

=1

-1
Jj=

{wﬁlﬁ[ﬂ“(mn} . (28)

k=j

3 Prediction

Studies on pointwise prediction of nonlinear time series have revealed three distinguishing
features of nonlinear prediction: (i) the dependence of the prediction accuracy on the current
position in the state space; (ii) the sensitivity of the predictor to the current state; and (iii)
the non-monotonicity of the prediction accuracy in multi-step prediction. These results will be
reviewed briefly in §3.1. §3.2 discusses the estimation of predictive distributions. As a by-product,
the estimation of sensitivity measures derived in §2.2 will also be developed. It will be pointed
out in §3.3 that interval predictors constructed in terms of conditional percentiles are not always
appropriate for multi-step ahead prediction. Two alternatives will be suggested.

Suppose that {Y;, —oo < t < oo} is a one-dimensional strictly stationary time series, which
has the property that given {Y;, ¢ < t}, the conditional distribution of Y; 1 depends on {Y;, i <t}
only through X;, where X; = (¥;,Y;_1,...,Y;_4:1)%. Given the observations {Y;, —d+1 < t <
n}, we shall predict the random variables Yy, , for m = 1,2,.... In fact, the time series model can
be considered a special case of a stochastic dynamical system. To see this, let f(z) = E(Y1|Xo =
z). Then Y; can be expressed as

Y, = f(Xt_l) + €, (31)

where ¢, = Y; — f(X;-1). Define F(X;-1) = (f(Xi-1),Yi-1,--+,Yimar1)”s e = (,0,...,0)".
Then equation (2.1) holds.

Since we do not assume any specific form of the model, we choose as our technical tool the
nonparametric kernel regression method based on locally polynomial fit (cf. Fan 1992) for estima-
tion. In specific practical applications, parametric (nonlinear) models would be more appealing

provided that they could be properly justified. Our results can be easily extended to these cases.

3.1 Point predictors

To study the m-step prediction, we define f,,(z) = E(Y;u|Xo = z), for z € R and m > 1.

It is easy to see that the (theoretical) least squares predictor of Y,.,, based on {Y;,t < n} is



fm(Xn). In practice, we use fm(X,) as the predictor, where f,(.) is any reasonable estimator for

fm(.). In fact, it can be proved that if E{[fy,(z) — fm(z)]?|Xn} — 0 as.,
Jim B{[Yyim — fu(@)]’|Xn =2+ 8} = op(@+08) + {6 f(2)}* + R, as., (3.2)

where R, = o(||]|?) as ||d]] — 0, and 02,(z) = Var(Y;,|Xo = z) (cf. Yao and Tong 1994a).

It can be seen from (3.2) that the mean-squared error of the predictor fim at the initial value
x, which has a small shift from the true but unobservable value X,, = = + §, can be decomposed
into two parts: (a) the conditional variance; (b) the error due to the small shift at the initial value
which is related to fy,.

A few remarks are now in order.

2

~ (z) indicates that the accuracy of the prediction

(i) The variation of the conditional variance o.
depends on initial values.

(ii) When the value ||/ (z)|| is large (note fn,(z) could be considered the first row of the
matrix defined in (2.4) if we define F in the way stated below (3.1)), {67 f,(z)}? could be large.
In this sense, we say that the prediction depends on the initial value x sensitively.

(iii) The m-step ahead prediction is not necessarily more accurate that an (m + 1)-step ahead
prediction. For example, in the case that d = 1 and the stochastic noise in the model is small,
the conditional variance o2 () is described by the function p,(x) defined in (2.8). Note that
fimt1(x) < pm () i {F[f™ (2)]}? < 1=1/pm(z), which could imply that o2, 1 (z) < 02,(x). (See
Fig. 4(c) in Yao and Tong 1994a.)

(iv) In practice, 0 is unobservable. However, sometimes we could assume that ¢ is a random
variable independent of {Y;}, its density function has the form 0_159(5)’ where g(.) is a density
function on a bounded support in R, and [ g(u)du = 0 and [wuu"g(u)du = . Then, it can be

proved that
lim B{(Y; — f(@))1 X0 — 6 = 2} = B{o2(z + 0)} + 03 f7,(2) S fin(®) + Ren,

where R, = o(c3).

(v) Estimators for fm(z), fm(z) and others may be obtained by using the locally linear re-
gression and have been presented in Yao and Tong (1994a). Further discussion of (3.2) can be
found in Yao and Tong (1994a) and Tong (1995). Examples of applications of (3.2) were given in
Yao and Tong (1994a).



3.2 Predictive distributions

A more informative way is to estimate the predictive distribution. Let g, (.|z) be the distri-
bution of Y;, given Xy = 0. Fan, Yao and Tong (1993) proposed the following locally quadratic
regression method to estimate predictive distribution g,,, which also leads to estimates for the

sensitive measures derived in §2.2.

3.2.1 Estimation of g,,(.|z)
Let K(.) be a density function, and Kj(z) = K(z/h)/h. Note that

E (Kpy (Y — y)| Xo = 7) = gm(ylz), ashs — 0.

The LHS of the above expression can be regarded as the regression function of the data { Kp, (Y 4+—

y)} on {X;}. By Taylor’s expansion about z = (z1,...,74)” € R%, we have

E(Kp,(Ym —y)|Xo=2) = gm(ylz)
S gnluln) + gn(ul2) (2 — 2) + 3z — ) Gin(yle)(z — )

= fo+ B (z — 2) + Bvee{(z — 2)(z — @),

where g, (y|z) = ag#@m)’ dm(y|z) is the Hessian matrix of g, (y|z) with respect to z, vec(4) =
(@11,a92,---,84,d,012; - - -, Q14,023 - - - ,ad_l,d)T € RUAHD/2 for any d X d symmetric matrix A =

(aij), and

b <azgm<y|m) Pomlile)  Pomyl) Pomlls)

20x2 7 20-3 777 28:1:(21 " 011019
Pgm(ylz) Pgmlylz)  Pgmlylz)\’
Bxlﬁxd ’ 811728.’1,'3 L &Edfl 8xd ’

Considerations of this nature suggest the following least squares problem: let Bo and B; and S
minimize
n—m 9
> (K, (Yigem —y) — Bo — BT (X — z) — Byvec{(X; — z)(X; — 2)"})* Wh, (Xy —z),  (3.3)
t=1
where W is a nonnegative function, which serves as a kernel function, and hy is the bandwidth,

controlling the size of the local neighborhood. Then, clearly By and B; estimate g, (y|z) and

dm(y|z) respectively, namely,

gm(y|z) = Bo and g (y|z) = B1.



The least-square theory provides the solution:
B = (6o, B7,05) = (XTWX) ' X"WY, (3.4)

where X is the design-matrix of the least-square problem (3.3), W = diag(Wp, (X1 — z),- - -,
Wi, (Xpn—m —z)), and Y = (Kp,(Yi4m — y), -+, Kp,(Yn — y))”. Fan, Yao and Tong (1993) has
proved that the estimators g, (y|z) and g, (y|z) are asymptotically normal, and discussed the
issue of the selection of bandwidths h; and hs.

If we use locally constant fitting, i.e. let 51 and B2 be 0 in (3.3), the least squares approach
will lead to the conventional kernel estimator for the conditional density function (cf. Rosenblatt

1969).

3.2.2 Estimation of I ,,(z) and I, ()

For simplicity of presentation, from now on we treat only a univariate case, i.e. d = 1
and X; = Y;. However, both the theory and the method generalize in an obvious way to the
multivariate case but with more complicated notation. For the univariate case, the estimates in

(3.4) can be expressed as

. = (Y- .
ﬂj(xay) = hl Z W] hl Khz (YH-m - y)a J = Oa 17 (35)
t=1

where

W(t) = e] S, ' (1, hat, B3t%)T x W (t),

with e; being the unit vector with (j + 1) element 1 and

Sn,0 Sn,1  Sn,2
n—m
S0=| Su1 Snp sas |+ sni= Y (Vi —2) Wy (Vi —2).
t=1
Sn,2 Sn,3 Sn4
With the derivative of the conditional density estimated by (3.5), a natural estimator for

IQ,m(.'E) is
Iym(z) = / B (z,y)dy
] n—mn-—m Y, — Y, -
= h_% Z Z Wlﬂ( hy )Wl ( hy )/Khz ’L+m_y)Kh2(Yj+m_y)dy-

j
Assume that the kernel K (-) is symmetric. Then,

[ Kona (Vi = 9Ky (¥ — )y = K, (¥ = V),

10



where K* = K * K is a convolution of the kernel function K with itself. Thus, the proposed

estimator can be expressed as

houe) = 55 X X W (F0

1 =1 j=1

Dywr (B0) K, G~ Yiew): (39

The asymptotic normality for the above estimator has been established (cf Fan, Yao and Tong
1993).

Analogously, an estimator for Iy ,,(z) can be defined by

Lim(z /ﬁ1 z,)/Bo(z,y)dy, (3.7)

with the usual convention 0/0 = 0. The above integration is typically finite under some mild
conditions. However, the estimator (3.7) cannot be simplified easily.

An alternative estimator to I1 ,,(z) originates from the fact that

_4/{dm}

Il m
For given bandwidths hy and ho, define
C(Y:Lay;—}—m) :#{(Y?-faYH—m)al StSn_m : |Y?-5_Y’;| Shl a'nd|Y;f—|—m_ 'i—|—m| S hQ}a

CY) =#{Y;,1<t<n-m, : |V; Y| < hi},

for 1 <4 <n. Then

Zy = [C(Ye, Yiem) /{C (YY) h2}]1/2

is a natural estimate of ¢(z,y) = {gm(y|z)}'/? at (z,y) = (Y}, Yiym). Fitting it into the context
of locally quadratic regression, we may estimate ¢(z,y), and its first and second order partial
derivatives with respect to z which are denoted by ¢(z,y) and §(z,y) respectively, by using

q(z,y) = a, ¢(z,y) = b and g(z,y) = &, where (a, b, ¢) are the minimizers of the function

g Yi—z Yim —
> (2 —a - H(Y; —a) - olY; - /2R ((ZF, T =Y,
= h1 ho

H being a probability density function on R?. Consequently, we estimate I ,,,(z) by

fin(@) =4 [{i(a, )} dy.

11



3.3 Interval predictors

3.3.1 Sensitivity to initial values

For model (3.1), the conditional distribution of Y,,,, given {Y;, t < n} dependson {Y;, ¢t < n}
only through X,,. Given the distribution, we could construct a predictive interval for Y, ., based
on the past data X, only. Suppose that ,,(X,,) is such an interval with the coverage probability
1—q,ie.

P{Y,, € Qu(@)|Xo=2}=1—0. (3.8)

Inspired by the studies in pointwise prediction, a natural question is how sensitively the cover
probability depends on the initial value z. The following Proposition 2 indicates that the sensi-

tivity can be monitored by the measure Iy ,,(z) introduced in §2.2.

Proposition 2. Let g, (.|z) be the conditional density function of Y;, given Xy = z € R%, and all
the second partial derivatives of g, (y|z) respect to z are bounded. Then for any bounded €,,(.)

satisfying (3.8) and § € R,

|P{Y € Q(2)|Xo =2+ 6} — (1 — o)

< (1— Q)3 {§ Im(z)8}2 + O(lI6%)) < [18]1(1 — @) 2 [tr{T1m(2)}]2 + O(||6])),

where I} () is defined as in (2.7).

Proof. It follows from (3.8) that

P{Y € Qn(2)| Xo = z + 0} = /Q oy (8l +9)dy

= /Q ( ){gm(ylw) + 06" gm(ylz)}dy + O([6]]*) = 1 - @ Jr/Q ( )5Tgm(y|fv)dy +0(|0]).

By Cauchy-Schwarz inequality that

=

IN

T T 2 2
{/ gm (ylz)dy 04m{vlo)} dy}
Qm ()

07 g (y|z)dy
‘/Qm(x) gm(yl) gm(y|z)

{(1 = a)§" Iy ()5} 2.

VAN

12



3.3.2 Percentiles and expectiles

A natural way to construct a predictive interval is to estimate the conditional percentiles of Yy,
given Xy. Specifically, for a € [0, 1], the 100a-th conditional percentile of Yy, given X, = z € R¢
is defined as

€am(z) = arg min|a‘<Oo E{Ry(Ym —a) | Xo =1z},

where the loss function
(1 - Oé)|y| Yy S 07
Ru(y) = (3.9)
aly| y > 0.
In fact, the relation o = P{Y},, < {4 m(z)|Xo = z} holds. Therefore, given {Y;, t < n}, Y 1p will
be in the interval [{, /9 m(Xn); §1—a/2,m(Xn)] with probability 1 — a.

Similar to §3.2, we use the estimators £, () = @ and é%m(m) = b, by setting (a, b) as the

minimizer (with respect to a and b respectively) of the function

= Xi—x

> Ro{Vipm —a—b" (X — 2)}K ( t ) )
t=1 h

where K(.) is a probability density function on R%, and h is a bandwidth.

An alternative approach is to change the loss function (3.9) to a quadratic function

(1 - w)y2 ) S Oa
Qw(y) =
wy? y >0,

for w € [0,1], the 100 w-th conditional expectile of Y,, is defined as
Twm(2) = argming oo E{ Qu(Ym —a) | Xo =1},

(cf. Neway and Powell 1987). Note that 7, () reduces to E(Y;,|Xo = z) when w = % It can

be proved that
_ E{ Yo — mum(@)| Iy, <y (@)} | Xo =2}
E{ Y = tum(z)| | Xo =2} '

Now, 7, m(z) can also be used to construct a predictive interval: given {Y;, ¢t < n}, predict
Yin to lie in the interval [7,,/2.m (Xn), Ti—w/2,m(Xn)] with 100(1 — w)% ‘coverage’.
To estimate 7, 4, (.), we minimize in the usual way the function

n—m

QuAVism —a =1 (X, - )} K (272)),

t=1

and define the estimators 7, ,,(z) = @, '?rw,m(:v) = b.



~

It is easy to construct a fast iterative algorithm to compute {7, n(z), Ty m(z)} (cf. Yao
and Tong 1995a). Although a predictive interval based on conditional expectiles is convenient
to compute, it does not have the conventional probability interpretation in general. However,
[Tw/2,m(Xn)s Ti—wj2,m(Xn)] could be considered as a reasonable interval predictor extended from
the conditional expectation. Yao and Tong (1995a) has pointed out that, in a special case, the
above asymmetric least squares approach can be used to estimate conditional percentiles directly.

In practice, we use the following two kinds of intervals to predict Yy, 4y, from {Y;, ¢t < n},

[éa/Q,m(Xn)a él—a/Q,m(Xn)]a [%w/Q,m(Xn)’ 7A—l—w/2,m()(n)]'

The asymptotic normality of the estimators for &, n(z), f.a,m (), Twm(z), and 7y m(z) Were

presented in Yao and Tong (1994b).

3.3.3 Two alternative predictors

For m > 1, the m-step ahead predictive distribution g,,(.|z) is not always symmetric and
unimodal. When g,,(.|z) is asymmetric or multi-modal, the predictive intervals constructed in
§3.3.2 lose their appeal. To cope with such cases, we now give alternatives based on the predictive

distribution as follows.

Maximum density region: For a given z € R? and an o € (0, 1), the maximal density region

is defined as
Dy (z) = {ylgm(y|z) > I (2, )},

where [, (z, @) > 0 is determined by

/ o Imidy =10
Mode-based interval: If the density function g,,(.|z) has a unique mode 0,,,(z), i.e. g (0m(z)|z) >
gm (y|z) for all y # 0,,(z), then the mode based interval is defined as [0, (z) — b (2, @), O () +
b (z, )], where by, (z, ) > 0 is determined by

Om () +bm (z,0)
/0 gm(y|z)dy =1 — .

m () —bm (2,0)
Note that the maximum density region is no longer an interval if the density function g, (.|z)
is multi-modal. In practice, we estimate g,,(.|z) using the method described in §3.2.1 first and

then we estimate the above two ‘end points’ based on the estimated g, (.|z).
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4 Bandwidths

All our estimates discussed so far are based on the nonparametric kernel regression with
locally linear fit or locally quadratic fit. Of great importance in nonparametric kernel regression
is the bandwidth choice. In practice, a good automatically selected bandwidth is always a useful
starting point.

For independent observations, the most frequently used technique is to choose h automatically
by cross-validation. However, it has been well documented that if the observations are dependent,
especially if the errors of the model are dependent, the cross-validation will not always produce
good bandwidths (cf. for example, Altman 1990, Hart 1991, and Hart 1994). In order to cope
with the possible dependence among data, different modifications for cross-validation method have
been suggested. (See, for example, Hardle and Vieu 1992, Marron 1987, Chu and Marron 1991,
Hart 1994 and etc.) Yao and Tong (1995b) suggested a new method to modify the cross-validation
method to cope with the dependence in the data, which will be reported briefly in §4.1.

Moreover, based on the data-driven bandwidth selector, a bootstrap test can be constructed
to test whether in (2.1) the noise term e, is sufficiently small so that the model could be treated
as a deterministic system, or rather an operationally deterministic system (see §4.2 below).

To simplify the notation, we only consider the locally linear regression estimates for one-
dimensional models. However, the methods and the theory readily extend to other kernel re-
gression methods and to higher dimensional models. The model and the estimator which will be
discussed in this section can be described as follows.

Suppose that {X;, Y;} is a strictly stationary process, and both X; and Y; are scalar. Suppose

that our interest is to estimate the regression function f(z) = E{Y1|X; = z}. Write
Y = f(Xe) + e, (4.1)

where ¢, = Y; — E{Y;|X;}. In the case that X; = Y;_;, f(.) is the auto-regression function for
the time series {Y;} . Given the observations {(X;, Y;); 1 <t < n}, the locally linear regression
estimator of f(z) is fux(z) = &, where
. " X —x
(@:6) = argmingupese 0%~ a b0~ 2))*K (F55). (4.2)

where K (.) is a density function, and A is the bandwidth.
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4.1 A data-driven bandwidth selector

We shall omit all details of the assumptions on the mixing condition of the processes and the
other regularity conditions required to ensure the validity of the results discussed below. They
can be found in Yao and Tong (1995b).

It follows from Theorem 2 of Yao and Tong (1995b) that

A 4 .
Bfunle) = @Y ~ Lo @) + oot [ Ko

where 02 = [u?K (u)du, 0%(z) = Var(Y1|X; = z), and p(z) is the marginal density function of
X1. To minimize the above approximated MES, the bandwidth should be equal to
1 [(o?*(z) [ K%(u)du 15
hn(z) = 75 T )
n p(z)og{f(z)}?

The above bandwidth cannot be directly applied in practice because it depends on various un-

known functions. However, it does indicate that a reasonable bandwidth is of the order
1
hxn's, (4.3)

which will play an important role in the following proposed method for choosing h.

We split the sample into two pieces {(X:,Y:), 1 <t < mi1}, and {(X;,Y:), n1 <t < n} for
some n; < n. We estimate f(.) using the first n; observation. The estimator given by (4.2) is
denoted by fmh() We choose h such that fm,h(.) gives the best prediction for Y; for ny <t <n

in the sense that h,, minimizes

ECVy, (h) = Z {Ys — oy p(X0) Pw(Xy) (4.4)

L U

over h € H,,, where w(.) > 0 is a weight function, and
1 1
H, =[an~57%°, bp~51%0].

In the above expression, 0 < a < b < oo, and ¢ € (0, ﬁ) are some constants.

In the light of (4.3), for the estimator fn,h which is based on the whole sample, we propose

o = o ("1)1/5 . (4.5)

n

the bandwidth choice

The above approach could still be viewed as a generalization of cross-validation. In order to
overcome the drawbacks of the ordinary cross-validation for dependent data, we leave the last

n — nq observations out.
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Note that the best (pointwise) prediction for Y; based on X; is f(X;) = E{Y;|X;}. To justify
the above approach, we compare the il,n with the bandwidth which minimizes the average squared
errors of the fictitious post samples {(X,Y;), t=n+1,...,n2} (ng > n)

1
nog —n

S (Funl(Xe) - FX)Pu(Xy),

t=n+1

My (h)
If n/ny converges to a positive constant, Theorem 3 of Yao and Tong (1995b) shows that

M, () ~ hzag / (F(@)V2p(2)w(z)dz + % / o2 (2)w(z)dz / K2(u)du, (4.6)

uniformly for h € H,,. It is easy to see that the minimizer of the RHS of the above expression is

_«a I02($)w($)d$ }1/5 n
" ”1/5{f{f(w)}2p(w)w(w)dw ’ 9

where o > 0 is a constant which only depends on the kernel K(.). Yao and Tong (1995b) proved

that if nq/n converges to some positive constant,

o =ln P, (4.8)
by,

Some simulation studies on h, have been reported in Yao and Tong (1995b). Perhaps the
most obvious drawback of the method is that the data have not been used in the most efficient
way, comparing with the ordinary cross validation method. However, it preserves the dependence
on the data while selecting the bandwidth. Apparently, it saves considerable computational time
comparing to other cross validation methods, which will also be taken into account when we

construct a bootstrap test based on an automatic bandwidth selector.

4.2 Tests for operationally deterministic systems

To distinguish between deterministic chaos and nonlinear stochastic systems is always an
interesting and somehow intriguing challenge (cf. Farmer and Sidorowich 1987, Sugihara and May
1990, for example). Casdagli (1992) constructed an ingenious forecasting algorithm using the &
nearest neighbours, and he claimed that ‘a small value of k corresponds to a deterministic approach
to modelling. The largest value of k corresponds to fitting a stochastic linear autoregressive model.
Intermediate values of k correspond to fitting non-linear stochastic models’. Unfortunately, as
far as we know there is to-date no theoretical justification for his data-analytic technique. In
fact, similar features can be observed within the framework of kernel regression. Moreover, a

theoretical justification has been given by Yao and Tong (1995b), which we summarize below.
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Strictly speaking, our theorems do not apply to the purely deterministic system (i.e. ¢, = 0 a.s.
in (4.1)).
For model (4.1), an estimator fn,h(.) is derived as in (4.2). In the light of (4.6), the asymptotic

mean squared errors of the estimator f, n(.) is

4 .
MSE, (h) = hzag / (F (&) Vp(z)w(z)dz + % / o2 (z)w(z)dz / K2(u)du.

To minimize MSE,, (h), we consider three cases: (i) use h = h;, ~ 0 when the noise is small enough
(i.e. o2(z) is small enough) such that the second term of the RHS of the above expression can be
ignored; (ii) use h = hy, = co when the model is linear (i.e. f(z) = 0); (iii) use h = hy, € (0, 0)
when the model is nonlinear and stochastic, where h,, is given as in (4.7). However, in practice, we
always choose h in a properly specified interval [h;, hy] C (0,00). Based on the above observation,
we calibrate model (4.1) as operationally deterministic if MSE,, (h) is monotonically increasing as
a function of h over [hy, hy].

1/5

Suppose we use h = h,, given as in (4.5) in estimating (4.2), i.e., hy, = hy, (n1/n)'/%, where

~

hp, is the minimizer of ECV,,, (h) defined in (4.4). Similar to (4.6), it can be proved that
ECV,,, (h) - / o2 (z)w(z)dz ~ MSE,, (),

uniformly for h € H,,. Since h,, is a consistent estimate of h, (cf. (4.8)), a small value of h,, will
indicate that model (4.1) is operationally deterministic.

Of course, it remains to decide how small is small in this context, for the purpose of which
Yao and Tong (1995b) has suggested the following bootstrap test.

Bootstrap test:

1. For the given data {(X¢,Y:),1 <t < n}, choose H, = [alsnn_1/5,ausnn_1/5], where s, is
the sample standard deviation of {X;}, and 0 < a; < a, < oo are constant. Obtain the

estimate A, by (4.5) . Specify an interval [h;, h,] which contains h,, as an inner point.

2. Estimate f using (4.2) with h = hy, and calculate the residuals & = Y; — f, ; (X;) for

t=1,...,n.

3. Draw n samples {¢;,¢ = 1,...,n} from the residuals {€;} using the standard bootstrap

method, and form the bootstrap sample {(X;,Y;*), 1 <t < n} with
Yi-f* — An,iln (Xt) + 6:.
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4. Obtain an estimate h* from the sample {(X;,Y;*), 1 <t < n} using the same method as in

Step 1 with [h;, hy] instead of H,.

5. Repeat Steps 3 and 4 N times, and count the frequency of occurrence of the event that
iL:L < hyp. The relative frequency o (= frequency/N) is taken as the evidence for the model

(4.1) being operationally deterministic.

Remark 1. If il,n in Step 1 is very small (i.e. ﬁn = alsnn*1/5), the search for fAL;‘; around ﬁn in
Step 4 should be conducted on finer grids.

Remark 2. In the above test, values of o near to 1 provide evidence of the system being
operationally deterministic; values of « around 0.5 provide evidence of the system being nonlinear
and stochastic (i.e. f(x) Z0).

Remark 3. In the above test, small values of o may be taken to indicate that the model is linear,
or simply ‘white noise’ (i.e. f(z)=0).

Remark 4. In order to provide further evidence of the system being operationally deterministic,
it might be worth exploring the following alternative. In Step 5 above, we count instead the
frequency of occurrence of the event that i* is the smallest value in the interval [k, hy] without
incurring a computation overflow.

Remark 5. The above bootstrap test can be defined in terms of any reasonable data-driven
bandwidth selectors.

Remark 6. The above test was not formulated in the standard setup of testing statistical hy-

potheses. The a-value can not be regarded as either a significance level or the power of the test.

To illustrate the above test, we report simulation studies for two examples as follows. We
always set n = 500 for the sample size, n1 = 350 for the estimation of iAzn, N = 70 for the number
of bootstrap replications. We let a¢; = 0.003 and a, = 3, and search for izn among 50 grids in H,
defined in Step 1. We choose that h; = h/2 or h/3, and hy, = h + a in Step 4, where a > 0 is a
constant. For each model, we carry out 50 repetitions of Monte Carlo experiments. We always

choose K(.) being the Gaussian kernel, and w(.) the indicator function of the 90% inner samples.

Example 1. Let
Y; = 0.246Y;_1(16 — Y1) + o¢y, (4.9)
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Table 1. The bootstrap tests for model (4.9)

o a-value | Mean(h,) Variance(h,) | Mean(h*) Variance(h*)
0.07 0.618 0.1838 0.0022 0.1719 0.0013
0.04 0.640 0.1568 0.0010 0.1396 0.0007
0.01 0.622 0.0870 0.0000 0.0819 0.0001
0.005 | 0.962 0.0870 0.0000 0.0660 0.0001

Table 2. The bootstrap tests for the modelling of Y; = X;1,, on Xy,

where X; is determined by (4.10)

m | a-value | Mean(h,) Variance(h,) | Mean(h*) Variance(h)
1 1.000 0.1032 0.0000 0.0624 0.0000
3 1.000 0.1032 0.0000 0.0640 0.0000
5 0.938 0.1032 0.0000 0.0836 0.0002
7 0.171 1.4716 3.8387 1.7208 3.5506
9 0.353 3.1152 3.0196 3.4750 3.0845
11| 0.337 3.2297 3.1245 3.7506 3.4099

where ¢ > 0 is a constant, and ¢, t > 1, are independent random variables with the same
distribution as the random variable 0.57, and 7 is equal to the sum of 48 independent random
variables each uniformly distributed on [—0.5,0.5]. According to the central limit theorem, we
can treat € as almost standard normal. However, it has a bounded support [—12, 12]. The
simulation has been carried out for the cases with o equal to four different values between 0.07
and 0.005. The average a-values in 50 repetitions of Monte Carlo experiments are reported in
Table 1, which show that the bootstrap test has no difficulties in identifying the model being
nonlinear and stochastic when ¢ > 0.01. But when o = 0.005, the test shows that we could treat
(4.9) as a deterministic model. The means and variances of h, in the 50 repetitions of Monte
Carlo experiments, together with their bootstrap counterparts (in 3500 (= 50 x 70) replications),

are also included in the table.
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Example 2. For the transformed standard logistic model (with coefficient 4)
Xyi1 = 0.25X,(16 — X,), (4.10)

we apply the test to the model of V; = Xy, on Xy, for m = 1,3,...,11. The results are reported
in Table 2. We can see that the bootstrap test has no difficulties in confirming that we can model
Xi+m as a deterministic function of Xy for m < 5. However, for m > 7 the a-values are consider-
ably smaller than 0.5, which shows that now it will be difficult to model X;,, as a deterministic
function of X, with the given data. Further, a nonlinear stochastic model like (4.1) with f(z) # 0

is not suitable for those cases either (cf. Remarks 2,3).
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