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SUMMARY

The class of ARCH/GARCH models is arguably the most frequently used family for modelling
conditional second moments, and has proved particularly valuable in modelling highly volatile time
series. These include financial data, which can be particularly heavy tailed. Hall & Yao (2003)
showed that, for ARCH/GARCH models with heavy-tailed errors, the conventional maximum
quasilikelihood estimator suffers from complex limit distributions and slow convergence rates. In
this paper three types of absolute deviations estimator have been examined, and the one based
on logarithmic transformation turns out to be particularly appealing. We have shown that this
estimator is asymptotically normal and unbiased. Furthermore it enjoys the standard convergence
rate of n!/2 regardless of whether the errors are heavy-tailed or not. Simulation lends further

support to our theoretical results.
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1. INTRODUCTION

With the motivation of explaining and forecasting risk in financial time series, ARCH and
GARCH models were proposed for modelling explicitly the conditional second moments; see En-
gle (1982), Bollerslev (1986) and Taylor (1986). Early successful applications of ARCH/GARCH
models were confined to the case of normal errors. On the other hand, empirical evidence suggests
that financial data may have heavy tails (Mittnik et al. 1988; Mittnik & Rachev, 2000) and models
with heavy-tailed errors have also been adopted in practice. Excellent surveys of ARCH/GARCH
modelling for financial data are available in Shephard (1996) and Rydberg (2000). For their
theoretical properties, we refer to §4.2 of Fan & Yao (2003).

When the errors in GARCH models are normal, an explicit conditional likelihood function is
readily available to facilitate parameter estimation. In practice, the error distribution is typically
unknown. Nevertheless, conditional Gaussian likelihood still motivates parameter estimators,
which may be called maximum quasilikelihood estimators. The asymptotic properties of maximum
quasilikelihood estimators were established for ARCH(p) models by Weiss (1986), for GARCH(1,1)
models by Lee & Hansen (1994) and Lumsdaine (1996), and for general GARCH(p, ¢) models by
Hall & Yao (2003). In fact Hall & Yao (2003) showed that when the error distribution is heavy-
tailed with an infinite fourth moment, the estimators may not be asymptotically normal, the
range of possible limit distributions is extraordinarily large, and the convergence rate is slower

/2 Complex asymptotic properties were also observed from a Whittle

than the standard rate of n
estimator (Giraitis & Robinson, 2001) for heavy tailed GARCH(1,1) models in an unpublished
University of Copenhagen report by T. Mikosch and D. Straumann.

Note that quasi-maximum likelihood estimation based on a Gaussian likelihood may be viewed
as an extended version of least squares estimation, which is known to be sensitive to heavy tails.
In contrast, a least absolute deviations method would be more robust; see, for example, Davis et
al. (1992), Adler et al. (1997) and the references within. In this paper, we explore in §2 three
types of least absolute deviations estimator for ARCH and GARCH models and advocate the one
based on logarithmic transformation. Our theoretical result in §4 shows that this estimator is

2 convergence rate regardless

asymptotically normal and unbiased. Furthermore, it enjoys the n!/
of the tail-weight of error distributions; see Remark 3 in §4 below. This is in marked contrast

to the conventional Gaussian maximum likelihood estimator. The simulation results in §3 lend



further support to our theoretical results.

2. MODELS AND ESTIMATORS

A generalised autoregressive conditional heteroscedastic, GARCH, model with orders p > 1

and ¢ > 0 is defined as
P q
X; = oy, and ol =04(0)? =c+ Z bi X2, + Z ajaf_j, (1)

where ¢ > 0, b; > 0 and a; > 0 are unknown parameters, 6 = (c,by, -+ ,bp, a1, ,aq)7, {&:} isa
sequence of independent and identically distributed random variables with mean (0 and variance
1, and ¢; is independent of {X;_i,k > 1} for all &. When ¢ = 0, (1) reduces to an autoregressive
conditional heteroscedastic, ARCH, model. The necessary and sufficient condition for (1) to define

a unique strictly stationary process {X;, t = 0,+1,42,--- } with EX? < oo is that

p q
Zbi-l-Zaj(l. (2)
i=1 j=1

Furthermore, for such a stationary solution, EX; = 0 and var(X;) = ¢/(1 — >37_; b — >20_; a);
see Giraitis et al. (2000), and also Theorem 4.4 of Fan & Yao (2003).

The maximum quasilikelihood estimation method can be motivated by temporarily assuming
that ¢, ~ N(0,1). Given {(Xy,07),1 < k < v} with v > max(p,q), the conditional density
function of X, 11,---, X, is then proportional to

(I ) e (-2 3 20, 3)

t=v+1 t=v+1

—1/2

Under condition (2), 07 = 04(#)? may be expressed as

Ut(0)2 1-S9 4. + Z bi Xt it Z bi Z Z Z Gjy *» 'aijtQ—i—jl—-"—]'k’ (4)

JlJ i=1 i=1  k=lj1=1  jp=1

where the multiple sum vanishes if ¢ = 0; see Hall & Yao (2003). This leads to the following

approximation for o? based on X1,--- , X:
min(p,t—1) p x© q q
00 = ;T -+ Z BXE D B> Y Y aj ey, (5)
] 14 i=1  k=1j1=1  jp=1



Maximising (3) with o replaced by 52, we obtain the quasi-maximum likelihood estimator
n

. 2

where the minimisation is taken over all the nonnegative values of the parameters. The asymptotic
properties of the estimator é\ml were derived in Hall & Yao (2003). In particular, when the
distribution of &; is heavy-tailed in the sense that E(|e;|?) = oo for some 2 < d < 4, the convergence
rate of §m1 is slower than the standard rate of n'/2.

Now we reparameterise the model (1) in such a way that the median of €2, instead of the
variance of ¢, is equal to 1 while Fe; = 0 unchanged. Under this new parameterisation the
parameters ¢ and by, - ,b, differ from those in the old setting by a common positive constant
factor while the parameters a1, - , a4 remain unchanged. Furthermore, the form of expansion (4)
is also unchanged. Write

X?/ou(0)” =1+ e, (7)

where e;; = (7 — 1) which has median 0. This leads to an absolute deviations estimator

n
0, = i X2/5,(0)% — 1
) argmamt_all 2/3,(0)% — 1, (8)

which is an L estimator based on regression relationship (7). Although the idea behind the above
estimation is simple, the estimator §1 is, unfortunately, biased; see Remark 4 in §4 below. To
overcome this shortcoming, we define a modified form of least absolute deviations estimator as

follows:

n
02 = arg min > llog(X7) —log{5:(6)*}], (9)
t=v+1

which is motivated by the regression relationship
log(X7) = log{01(0)*} + ez, (10)

where e;2 = log(e7). Note that median of e;o is equal to log{median(e?)}, which is 0 under
the reparameterisation. The distribution of X7? is confined to the nonnegative half axis and is
typically skewed. Intuitively the log-transform will make the distribution less skewed. Theorems
1 and 2 below show that the estimator 52 is in fact asymptotically normal and unbiased under
very mild conditions.

Our third estimator is motivated by the simple regression equation

X? =0l + e, (11)



where e; 3 = 07(e7 —1). Again under the new parameterisation, the median of e; 3 is 0. This leads
to the estimator

n

0 = i 2 _5,(0)?.

3 = arg min > X7 —54(0)”) (12)
t=v+1

Intuitively we prefer the estimator 52 to 53 since the error terms e; o in regression model (10) are
independent and identically distributed while the errors e;3 in model (11) are not independent.
Therefore, ideally the sum on the right-hand side of (12) should be replaced by a weighted sum
with weights reflecting the dependence, which is typically intractable. In fact the asymptotic
normality of 53 requires more conditions; see Remark 5 in §4.

The minimisation in (8), (9) and (12) should be taken over all ¢ > 0 and all nonnegative b;’s
and a;’s. For a pure ARCH process, i.e. ¢ = 0, it is easy to see from (5) that 5;(0)? = 04(6)? for

all ¢ > p. Thus we may let v = p in the definitions of the above estimators.

Remark 1. All our three least absolute deviations estimators were derived from relevant re-
gression relationships. Like least squares estimators, they make no use of distribution information.
For heavy-tailed data, a plausible pseudolikelihood approach may assume that e; has a Laplace

distribution. The resulting estimator will be derived from minimising
Z log{o:(0)} + Z | X+t /0:(0)].
t t

Unfortunately its asymptotic properties are as complex as those of é\ml defined in (6), and therefore

we do not pursue this direction.

3. NUMERICAL PROPERTIES

In this section, we compare numerically the three least absolute deviations estimators with
the conditional Gaussian maximum likelihood estimator for ARCH(2) and GARCH(1,1) models.
In both cases we took the errors e; to have either a standard normal distribution or a stan-
dardised Student’s t-distribution with d = 3 or d = 4 degrees of freedom. We standardised the
t-distributions to ensure that their first two moments are, respectively, 0 and 1. Note that, when
gr ~ t(d), Elgg|? = co. We used ¢ = 3, by = 0.5 and by = a; = 0.4 in the models. Setting
the sample size n = 300, we drew 500 samples respectively for each setting. We used v = 20
in the estimation for GARCH models. To ensure a fair comparison, we employed an exhaustive

search procedure to find estimates. Since the values of parameters ¢ and b; estimated by the
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least absolute deviations methods differ from the numerical values specified above by a common
factor, we define the average absolute error as (|/I;1 Jc—bi/c| + |?)\2 /¢ —ba/c|)/2 for ARCH(2) and
(|b1/ = b1 /c| + @1 — a1|)/2 for GARCH(1,1).

Figure 1 presents the boxplots for the average absolute errors. For models with heavy-tailed
errors, i.e. & ~ tg with d = 3,4, the least absolute deviation estimator 52 performed best.
Furthermore, the gain from using 52 was more pronounced when the tails were very heavy, i.e.
€t ~ t3. Note that, when ¢; ~ t4, the Gaussian maximum likelihood estimator é\ml was almost
as good as 52, and was better than both 51 and 53. However, when ¢; ~ t3, 5m1 was no longer
desirable. On the other hand, when the error €; was normal, é\ml was of course the best. In fact
the average absolute error of §m1 was larger when the tail of the error distribution was heavier,
which reflects the fact that, the heavier the tails are, the slower the convergence rate is; see Hall
& Yao (2003). However, this is not always the case for the least absolute deviations estimators as
they are more robust against heavy tails.

The above patterns were also observed in simulations with other models. In general, our
numerical results suggest that we should use the least absolute deviations estimator 52 when
g; has heavy and especially very heavy tails, e.g. E(|e;|*) = oo, while in general the Gaussian

maximum likelihood estimator é\ml is desirable as long as ¢; is not very heavy-tailed.

4. ASYMPTOTIC PROPERTIES

4-1. A central limit theorem

In this section, we show that asymptotically also 52 is a better estimator than 9\1 and 9\3. We
establish the asymptotic normality of 52. The properties of both 51 and 53 will be briefly stated.

Let 00 = (c,89,--- ,bg, ay,--- ,ag)T be the true value under which the median of €7 equals 1,

or equivalently the median of log(e?) equals 0. Define
1 1
021 -5’

1 00 q q )
Aui(0) = (0 (Xf_i +3 YD ay, "a/ijtQ_i_jl_..._jk), i=1,---,p,

k=1j1=1  jp=1

Ay (0) =

1 C P 2
At,p—l—](e) - Ut(9)2 { (1 — ?:1 aj)z + ; bZXt—'i—j

p [e9) q q
515 S(SHD SIS I PERE S NPT
=1 k=1 J1=1 Jr=1



Let U = Ut(0) = {Ato(a), s ,At7p+q(9)}T. Put ¥ = Eo{Ut(QO)Ut(OO)T}, a (1 +p+q) X (1 +p+q)

matrix, where Ey denotes expectation under = #°. Some regularity conditions are now in order.

Condition 1. There exists a unique strictly stationary solution {X;} of model (1) with Eq(X?) < oo.

0

Condition 2. All b(l], -«-, b2 are positive, and all a(l], e, ay

p are positive if ¢ > 1.

Condition 3. ¥ is nonsingular.

Condition 4. log(e?) has a median zero, and its density function f is continuous at zero.

Remark 2. Condition 1 holds if and only if the true parameters (before the reparameterisation)
satisfy inequality (2); see Theorem 4.4 of Fan & Yao (2003). The conditions which ensure the
existence of a strictly stationary solution for model (1) have been established by, among others,
Kesten (1973), Bougerol & Picard (1992), Chen & An (1998) and Giraitis et al. (2000). Note
that (2) is not a necessary condition since a strictly stationary process may have an infinite the
second moment. Conditions 1 — 3 were employed by Hall & Yao (2003).

For simplicity and clarity, we shall first consider the estimators defined with the complete
conditional variance function; i.e. we let v = p and employ o2, instead of 57, in the definitions of
the estimators 51, 52 and 9\3, so that, insofar as calculation of o7 (1 < ¢t < n) is concerned, we may
use values of X, for —oc < u < n. The estimators defined in terms of the truncated variance 52

will be dealt with in §4.2 below. There we show that our main result does not change when the

truncated approximation is employed as long as v — oo at a proper rate.

THEOREM 1. Under Conditions 1 — 4, there exists a local minimiser 9\2 within radius 1 of 6°
for which
n'/2(82 — %) = N[0, 271 /{4£(0)*}]

in distribution, as n — oo, where n > 0 is a sufficiently small but fized constant.

Remark 3. The above theorem indicates that the least absolute deviations estimator 52 is
asymptotically normal with convergence rate n'/2 under very mild conditions. In particular, the
tail-weight of the distribution of ¢; is irrelevant as we have imposed no condition on the moments
of &; beyond E(e?) < oo. In contrast, the asymptotic normality for the Gaussian maximum
likelihood estimator Oy is only possible if E(|leg|*~%) < oo for any § > 0, and furthermore the

convergence rate n'/? is only observable when E(e}) < oo; see Hall & Yao (2003).



Remark 4. Similarly to Theorem 1, \/n(@\l — 6°) is also asymptotically normal with mean

T
E{E%I(sf > 1) - E%I(E? < 1)}{E|011|’ Tt aE|0(1+p+Q)(1+p+q)|} ’

which is unlikely to be 0. This shows that 51 is often a biased estimator.
Remark 5. It may be shown that \/n(4/9\3—00) is also asymptotically normal under the additional
condition EX;1 < 00. The latter will also ensure that the maximum quasilikelihood estimator §m1

converges to normality in distribution at the standard rate n'/2.

4-2. A central limit theorem with truncated conditional variances

In practice we may only employ 7 rather than o?. For small ¢ the accuracy of this approxima-
tion is severely curtailed, suggesting that when conducting inference we should avoid early terms
in the series; that is, we require that the integer v = v(n) diverges with n but at a rate sufficiently
slow to ensure that v/n — 0 as n — co. Theorem 2 below shows that, for an appropriate choice

of v, Theorem 1 continues to hold.

THEOREM 2. Let v/logn — oo and v/n — 0 as n — oo. Then Theorem 1 holds with 0,

defined in (9).
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APPENDIX

Proofs

Proof of Theorem 1. Put Z;(0) = log X? — log o(0)2. For any v = (vg, -+ ,vp4q)T € RPTITL,
let

Su(v) = Y {IZe(6° +n7'20)| — | Zy(6°) |},
t=1+p

Spw) = > {1Z(6°) —n V2TUL%)| - | Z,(6°)]},
t=1+p



where Uy (0) = {Aw(0),- -+ , At p1q(0)}T is defined in §4.1. Tt holds that, for z # 0,

|z —y| — |2| = —ysgn(z) +2(y — 2){I(0 < z <y) — I(y < z < 0)}.

Hence,
n pt+q
Siw) = —n 2y {ZAtl(HO)Ul}sgn{Zt(Ho)}
t*l-i—p =
n p+q
+ 2 ) { ZAﬂ (6°)n — zt(eo)} 1{0 < Z,(6°) < ZAtl(HO)n_l/Qvl}
t=1+p I= 1=0
— 9 zn: {ZAtl (6°)n — Z,(6% } {ZAtl (0°)n Y20, < Z,(6°) < 0}.

t=p+1 =0

Write the three terms on the right-hand side of the above expression as I, I» and I3 respectively.

Let F; = o(es,s < t). Then [ 718 Ay (0°)visgn{Z;(6°)}, t > p + 1] is a martingale difference

sequence. It can be shown that Ey{A:(0)}* < oo for any w > 0, ¢ = 0,--- ,p + g and 6 within

radius 1 of §°, where 1 > 0 is a sufficiently small but fixed constant. Consequently, we may show
that [; —~N(0,vT Zv) in distribution. Let

p+q p+q

Wt = {ZAtl(eo)n_l/Z'ul — Zt(HO)} I{O < Zt(OO) < ZAtl(HO)n_l/QUl},
=0 prd

and let ' and G denote the distribution functions of log(e?) and B; = >>7* 7 Ay (6°)v,, respectively.

Then

en y
limsupnE(W;,) = limsup {n/ / (n~2y — 2)2 dF (2)dG(y)

caf [ o —z)ZdF(sz(y)}
< timsup [ / - / U2y — 22(£(0) + 6} dzdG(y)

+ n/ nly? dG(y )]
€n1/2

1/2

- o{nmsupn/O n =323 dG(y )}

n—oo

= O[eE{B{I(By > 0)}],
which converges to 0 as € — 0. We may show that

1 _
E(Wn|Fi-1) = 5n 'BYf(0)I(B; > 0),



see Davis and Dunsmuir (1997). Hence

t:zp;LlE(Wth_l)—)@E{BfI(Bl > 0)},

in probability. Since

n

var[ S (Wt —E(Wm|ft,1)}] = Y var{Wee — EWul Fi 1)} < Y EWZ =0,

t=p+1 t=p+1 t=p+1

we have that

zn: Wnt%@E{B%I(Bl > 0)},
t=p+1

in probability. Therefore we could show that I + I3— f(0) EB7, in probability. Thus
Sn(0)=f(0)v" Sv +vTE,

in distribution, uniformly on any compact set in R'*PT9 where £ ~ N(0,%). Now put D =

log o7(6). Then it is easy to see that D = -2:U;(#). Note that, for 1 < j,1 < g,

aaaaT 20T
d 1 2 P
—Aipri(0) = —Ap,(0)A 0 2) ;X2 . .
day taP‘i‘J( ) t:P-H( ) t,P-i—l( )+ at(ﬁ) {(1 _Z 10’]) + ZZ:; 1 —i—j—1
p oo
+ sz Z (k+2)(k+1) Z Z aj; "'a]'kXtQ—i—j—l—jl—---—jk}'
i=1 k=1 J1=1 jr=1

We may show that Conditions 1 & 2 imply that E{Xfiiijfl/at(G)Q} < oo and

1 o
B e Dby (k+2)(k+1) Z Z @y 05, X] oy} < 00

i=1 k=1 Ji=1  gx=1

fori =1,--+,pand j,l = 1,---,q. We therefore have E{a%lAt,pﬂ-(O)} < oo for any # within
radius 1 of #°. Similarly we could show that the expectation of every element in D is finite, i.e.

E(vTDv) < oo, for such a 6. As in Davis & Dunsmuir (1997), we further have that
Sn(v)=F(0)0TSv +0TE,

in distribution. Hence the required central limit theorem follows from Lemma 2.2 and Remark 1

of Davis et al. (1992). This completes the proof of Theorem 1.

Proof of Theorem 2. From the proof of Theorem 1 and the fact that v/n — 0 as n — oo, it

suffices to show that




where N denotes a sufficiently small, but fixed, open neighbourhood of the true parameter
value 6°. We therefore only need to show that
sup ZZbZZ Zah--- XP g I =i — g1 — o — g < 1) = 0,(1).
0N 4 170 =1 k=lji=1 je=1
This is true because v/logn — oo, E;I-:l aj <1, E(X?) < oo and the fact that for any § > 0
o g q

sup PT{ Z Z Z aj, -0 X7 g I —i— g1 — =Gy < 1) > 5}

1§1§P,t21+u k*ljl_l jk_l

o0 q
<5 Z Z Z%'“a x) = Bx) Y (L)
=v/a-pi=1  ge=l k=[v/q-p j=1

The proof is completed.
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Figure 1: Boxplots of the average absolute errors of the maximum likelihood estimates (MLE)
and the three least absolute deviations estimates: LADE1 — 01, LADE2 - 02 and LADE3 — 03
Labels t(3), t(4) and Norm indicate that error e; has, respectively, t-distributions with 3 and 4
degrees of freedom, and a normal distribution. (a) ARCH(2), (b) GARCH(1,1).
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