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Summary

Using locally polynomial regression, we develop nonparametric estimators for the conditional
density function and its square root, and their partial derivatives. Two measures of sensitivity
to initial conditions in nonlinear stochastic dynamic systems are proposed, one of which relates
Fisher information with initial-value sensitivity in dynamical systems. We propose estimators for
these, and show asymptotic normality for one of them. We further propose a simple method for
choosing the bandwidth. The methods are illustrated by simulation of two well-known models in

dynamical systems.
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1 Introduction

Nonlinear dynamical systems which exhibit chaos are characterized by the phenomenon that a
small perturbation in the initial condition can lead to a considerable divergence of the states of the
system in the short or medium term. In a deterministic dynamical system, this phenomenon has
been very well documented and is usually analysed by the well-known Lyapunov exponents (cf.
Eckmann and Ruelle 1985). However, for a stochastic, i.e. noisy system, further understanding is

required. The issue of initial-value sensitivity in a stochastic dynamical system is at the heart of



a proper understanding of chaos in a random environment (see, e.g., Yao and Tong, 1994b) and
has in addition important implications for the theory and practice of nonlinear prediction (see,
e.g., Yao and Tong 1994a). Tong (1995) and the discussion therein has summarized the various
recent approaches to date, including those proposed by Crutchfield et al. (1982), Kifer (1986),
Wolff (1992) and Yao and Tong (1994a, b).

The goal of this paper is two-fold. First, we note the increasing recent use of nonparametric
density estimation to provide diagnostic tools for nonlinear time series modelling. Thus Robinson
(1991) used the Kullback-Leibler information criterion for testing nested hypotheses. Skaug and
Tjgstheim (1993, unpublished) applied several different distance measures for density functions
in testing serial independence. See also Tjgstheim (1994) and the references therein. In all the
above work, the standard kernel estimator of a density function was used as the basic building
block, and the conditional density function was typically estimated indirectly. We aim to develop
a direct estimation method, with good sampling properties. In this paper, the conditional density
functions and their square roots, and their partial derivatives, are estimated directly using locally
polynomial regression. For more details of the latter method, see, e.g., Fan (1992), Fan et al.
(1993, unpublished), and Ruppert and Wand (1994). The proposed estimators have been applied
to construct predictive distributions of nonlinear time series (cf. Yao and Tong 1995), and to test
for independence, as will be reported in a forthcoming paper.

Secondly, we set out to develop some suitable statistical tools to aid understanding of initial-
value sensitivity in a stochastic dynamical system. Following Yao and Tong (1994b), we adopt
the Kullback-Leibler mutual information and a simple L2-distance to measure the initial-value
sensitivity of the conditional distribution of the state variables in a nonlinear dynamical system.
Since both measures are the functionals of the conditional density function, we estimate them
using our proposed estimators of the conditional density and its partial derivatives.

The plan of the paper is as follows. In Section 2, we concentrate on the estimators of condi-
tional density functions and the derivatives using, respectively, locally linear and locally quadratic
regression. In Section 3, we discuss two sensitivity measures for a stochastic dynamical system
and their estimators. In both sections, the asymptotic normality of the estimators are stated,
some methods for bandwidth selection are also suggested, and two simulated examples are used

as illustration. All technical proofs are briefly outlined in the appendix.



2 Estimation of conditional density and its derivative

2.1 Estimators

We assume that {(Y;, X;)} is a strictly stationary process having the same marginal distribution as
(Y, X), where Y is a scalar and X is a d-dimensional vector. Let g(y|z) be the conditional density
of Y given X, assumed smooth in both z and y. We use ¢(y|z) to denote the partial derivative of
g(y|z) with respect to z. Of interest is the estimation of the functions g(y|z) and ¢(y|z) based on
a sequence of observations (Y1, X1),---, (Yy, Xy).

Estimating the conditional density and its derivatives can be regarded as a nonparametric

regression problem. To make this connection, note that
E{Kp,(Y —y)|X =z} = g(y|z), ashy—0, (2.1)

where K is a nonnegative density function and K}(z) denotes K(z/h)/h. The left hand side of
(2.1) can be regarded as the regression of Kp,(Y; —y) on {X;}. Recent nonparametric regression
theory (see Fan 1992, and Ruppert and Wand 1994) suggests that we may use a locally polynomial
regression to estimate g(y|z) and g(y|z). For the conditional density, a locally linear fit should be
employed, while for its first derivative, locally quadratic fitting is preferable (see Fan and Gijbels,
1995). We treat here the locally quadratic fit more thoroughly, since it is more involved. By

Taylor’s expansion about z = (z1,...,z4)7 € RY, we have
E{Kn,(Y —y)[X =2} = g(yl2)

~ gylz) +g(ylz)" (z — z) + %(Z - 2)"§(ylz)(z - )

Bo + Bl (z = z) + B3 vee{(z — 2)(2 — )"},

where §(y|z) is the Hessian matrix of g(y|z) with respect to z, vec(A) := (a11, a22, ... ,a4,4d, 012, - -,

ai,d, 23, - - - ,ad_l,d)T € RUAHD/2 for any d x d symmetric matrix A = (aij), and

T
By i g(ylz) Pglylz)  glylz) O*glylz)  g(ylz) Fg(ylz) 0%g(ylz)
2 2022 7 20z3 77777 2032 7 011019’ 021034 " 02013 O1q—1074

This suggests the following least squares problem: let Bo and Bl and Bg minimize

(K, (¥ — ) — o — BT (Xi — 2) — B vee{ (Xi — 2)(X; — )")] Wi, (Xi ), (22)
i=1



where W is a nonnegative kernel function, and h; is the bandwidth. We can estimate

§(ylz) = Bo and §(y|z) = 1.

Here
B= (B, )" = (XTWx) L xTwy, (2.3)

where X is the design-matrix of the least-squares problem (2.2), W = diag(Wp,, (X1 — z),- - -,
Wiy (Xn — 2)), and Y = (Kp, (Y1 —y), -+, Kny (Yo —9)) "

If we use locally constant fitting, setting $; and B2 to 0 in (2.2), the least-squares approach
will lead to the conventional kernel estimator for the conditional density function (cf. Rosenblatt
1969). For a locally linear fit, we set 82 = 0 in (2.2).

For simplicity of presentation, in the rest of this section we treat only univariate z, i.e. d = 1.

We have

. A~ (Xi—x .
ﬂj(xay) = hl ! ZW] ( Zhl ) Khz(yri _y)a J = Oala
=1

where

WHt) == 7] Sy ' (1, hat, Bit*) T x W (2),

with 7; the unit vector with (j + 1) element 1, and

Sn,0 Sn,1  Sn,2
Sn=1| Sn1i Smz Sms |» Sni= 2 (Xi— )W (X; - z). (2.4)

Sn,2 Sn,3 Snd

2.2 Selection of bandwidths

In this section, we propose a simple and intuitively appealling method for choosing the smooth-
ing parameters. For given bandwidth he, (2.2) is a standard nonparametric problem of regressing
Zi(y) = Kp,(Y;i —y) on X;. A simple and appealling bandwidth selection rule is the Residual
Squares Criterion proposed in Fan and Gijbels (1995), which translates into our specific case as
follows. Let Z;(y) be the fitted value for the regression problem (2.2), and define the normalized
weighted residual sum of squares by

1 n
tr(W — Sp'Ty) ;

~ 2
52(z,y;hy) = {Ziw) - Ziw)} W (X — @),
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where S, = XTWX and T,, = XTW?2X. Let
RSC(z,y; h1) = 0*(z,y; h1){1 + 3Vu(z; h1)}, (2.5)

where V;,(z;h1) is the first diagonal element of the matrix S, 7,5, . This estimates the mean
squared error at the point z.

For given hy and y, the proposed bandwidth h; for estimating g(y|z) using (2.2) is
hi(y) = adj x argminh/RSC(a:,y; h)dz, (2.6)

where the integration is over the region for z where the curve has to be estimated. Here, the
constant adj, depending on the kernel function W, is used to adjust the selected bandwidth
so that it converges to the theoretically optimal one. From Table 1 of Fan and Gijbels (1995),
adj = 0.7643 for the Epanechnikov kernel W (z) = 0.75(1—z?), and adj = 0.8403 for the Gaussian
kernel W (z) = (27)~ /2 exp(—22/2). A similar discussion can be made for the locally linear fit.

The proposed bandwidth (2.6) depends on y. If a constant suffices, we could select
hi = adj x argminh//RSC(a:,y; h)dzdy, (2.7)

where the integration is over the region of z and ¥ of interest.
Now consider hy. For simplicity, we use the normal referencing rule (p.45 of Silverman, 1986),

yielding

9= ) (2.8)

1/5

> 87T1/2 IKZ(.'E)dCC s n71/5
3{[ 22K (z)dz}? y

where sy is the sample standard deviation of ). When K is the Gaussian kernel, hy = 1.063yn_1/ 5

for the Epanechnikov kernel, hy = 2.343yn_1/ 5,

2.3 Examples

We illustrate the methods via two simulated models. We choose both kernels X and W to be
Gaussian.

Example 1. We begin with a simple quadratic model
Xt = O23Xt,1(16 - thl) + O.4€t (t > 1), (29)

where ¢, t > 1, are independent random variables with the same distribution as the sum of 48

independent random variables each uniformly distributed on [-0.25, 0.25]. According to the central



limit theorem, ¢; can be treated as nearly a standard normal variable. However, it has bounded
support [-12, 12]. Bounded support is necessary for stationarity (Chan and Tong, 1994). A sample
of 1000 was generated from (2.9). We consider three cases: Y; = Xy, for m = 1,2,3. We
obtained hy = 0.98 from (2.8). Using (2.7), the selected values for iy are 0.62 for m = 1, 0.70 for
m = 2, and 0.71 for m = 3. The estimated conditional density functions g, (y|z) = Bo(x,y) are
displayed in Figure 1, which shows that, given X; = z, the density of X;,,, is around f(™)(z),
where f(z) = 0.23z(16 — z), and f{™) denotes the m-th fold composition of f (m = 1,2,3).

(Figures 1 is about here.)

Example 2. Consider the cosine model

X
X = 20cos (7 16 1) + €, (2.10)

where ¢, t > 1, are independent standard normal random variables. A sample of 1000 was
generated from the above model. ;From (2.8), we obtain hy = 3.65. Using (2.7) again, the
selected values for h; are 1.12 for m = 1, 1.32 for m = 2, and 1.51 for m = 3. The estimated

conditional density functions j, (y|z) = fo(z,y) are displayed in Figure 2.

(Figure 2 is about here.)

2.4 Sampling properties

Let F¥ be the o-algebra of events generated by the random variables {X ;Y1 <j <k} and

Ls(FF) the collection of all FF-measurable square integrable random variables. Let

|cov (U, V)|
p(k) := sup (2.11)

UeLy(F° ), VEL(F) varl/2(U)varl/2(V)
denote the p-mixing coefficient (Kolmogorov and Rozanov, 1960). We first impose some regularity
conditions:

(C1) The kernel functions W and K are symmetric and bounded with bounded supports.

(C2) The process {X;,Y;} is p-mixing with >J p(¢) < oo. Further, there exists a sequence of

positive integers s, — oo such that s, = o{(nh1ho)/?} and {n/(h1h2)}*/?p(s,) — 0.

(C3) The function g(y|z) has bounded continuous third order derivatives with respect to z at

(z,y), and p(z) is continuous at z.



(C4) The joint density of the distinct elements of (X, Yy, Xy, Yz) (£ > 0) is bounded by a constant

independent of £.

e bandwidths h; and hg converge to zero 1n such a way that n 9 — OO.
(C5) The bandwidths h; and h g in such a way that nh3h

Condition (C1) is imposed for brevity of proofs, and could be removed. In particular, the
Gaussian kernel is allowed. The assumption on the convergence rate of p(¢) in (C2) is also for
technical convenience, and not the weakest possible.

Theorem 1. Under Conditions (C1) — (C5), for x € {z : p(z) > 0}, the two random
variables (nhiho)'?{G(y|z) — g(y|z) — In1} and (nh3ha)'?{G(y|z) — §(y|z) — Ina2} are jointly

asymptotically normal with means values 0, variance o%(z,y) and o3(z,y), and covariance 0,
where
1 9%(yle) gylz)vovi pive — 2upave + su3vs
In1 = —px—=o"Lh2+o(h3+h2), o>(z,y) = 2
n, 2# N 2 (hy 3) i ( ) p(z) (1a —H%)Q ?
3 3
pa glylz) o 1 0 g(ylz), o TN gylz)vi vovs
= M TIWT) oy 2 T IUT) pa 52 4 R2), y) = JWIVK Yob2
n,2 6112 913 1 2:u‘K 8:683/2 2 0( 1 2) 02($ y) p(ib') u%

and px = [PK)dt, v = [{K(#)}2dt, p; = [HW()dt, v; = [H{W(t)}2dt (> 0).
Remark. If our interest is to estimate the conditional density, then locally linear, rather
than locally quadratic, regression suffices. In that case, the asymptotic normality admits a more

symmetric form:

Rug 8%g(ylz)  hiux 0%g(y|z) (ylz)
12 | . _ _ Np2 0°g\y|x) ik 0 gl\y L g\y
(nhiho) {g<y|x> gl) - = g Ty gy £ N0, v p() f

under the assumptions (C1) — (C4) and nhihy — oo. Our results and proofs can be readily
extended to higher order polynomial regression.
3 Initial-value sensitivity of a stochastic dynamical system
3.1 Sensitivity measures

A discrete-time stochastic dynamical system can be described by the equation

Xt = F(Xt_l, et), (31)



for ¢t > 1, where X; denotes a state vector in R, F(.) is a real vector-valued function, and {e;}
is a noise process satisfying E(e;| Xy s for s > 1) = 0. The additive dynamic noise model,
X; = F(X;_1) + ey, is a special case. The nonlinear autoregressive model can also be regarded
as a special case of model (3.1). Suppose that {Y;, —o00 < ¢t < oo} is a one-dimensional strictly
stationary time series, which is d-dependent (d > 1) in the sense that, given {Y;, i < t}, the
conditional distribution of Y;, 1 depends on {Y;, i < ¢} only through X; := (Y3, Y; 1,...,Y;_q11)".

Let f(z) = E(Y1|Xo = z). Then Y; can be expressed as
Vi = f(Xi1) + e, (3.2)

where ¢, = Y; — f(X;_1). Define F(X;_1) = (f(X4-1),Ys-1,---,Yi—as1)T, e = (€,0,...,0)T.
Then equation (3.1) holds with additive noise.

For a stochastic system with additive noise, several recent attempts have been made to extend
the notion of a Lyapunov exponent from a deterministic system to a stochastic system. However,
the problem of measuring the sensitivity of a stochastic dynamical system is still open. For
example, Crutchfield et al.(1982) and Kifer (1986) suggested the use of a probability average
in the conventional definition of the Lyapunov exponent, initially designed for a deterministic
system. However, this seems to lose its intuitive appeal. Wolff (1992) proposed a local Lyapunov
exponent, which replaces the above probability average by a local average. Yao and Tong (1994a)
considered the divergence of the conditional expectation with respect to a small disturbance in
initial values. Wolff’s and Yao and Tong’s approaches appear to be closely related to each other,
in that both concentrate on the divergence of the average orbit and both are designed to capture
only the short- to medium-term divergence. The measures proposed by Yao and Tong (1994a)
were directly motivated by the pointwise prediction problem.

An alternative and more informative way is to consider the global divergence of the conditional
distribution of X, given Xj. Similar to Wolff (1992) and Yao and Tong (1994a), we only consider
the case that m is finite, because due to the accumulation of noise through the time evolution, the
system seems unlikely to have a strong memory of its initial value after a long time. Let g, (y|z)
denote the conditional density of X, given Xy = z. Several measures for the discrepancy of two

densities are available. See, for example, Blyth (1994). In this paper, we adopt the following two



indices. Let z and z 4+ § € R% be two nearby initial values. The Lo-distance is simply defined as

Din(@;6) = [{gm(yle +5) — gm(yle)}dy.

We also consider the mutual information based on the Kullback-Leibler information, which may

be expressed as follows

K (z;0) = /{gm(ylw +6) — gm(yl|z) } log{gm (y|z + 6)/gm (y|z) }dy.

We assume that g,,(y|z) is smooth in both z and y, and partial differentiation with respect to
z and integration with respect to y of the function g,,(y|z) are interchangeable where required.
We also assume that integrations in (3.3) and (3.5) below exist and are finite. It follows from the
Taylor expansion that

Dy (;6) = 67 I ()8 + 0(|9]]2),

where
Lin(@) = [ g (ko) (w2, (33)

Also for small §, K,,(z;d) has the approximation
Ko(w;0) = 6" o, ()8 + o(||6]1%), (3.4)

where

Ian(®) = [ 4 (912)3812) 9 (o). (35)
(cf. §2.6 of Kullback 1967). If we treat the initial value z as a parameter vector of the distribution,
I () is the Fisher information matrix, which represents the information on the initial value
Xo = z contained in X,;,. Roughly speaking, (3.4) may be interpreted as saying that the more
information X, contains about the parameter, the more sensitively the distribution depends on
the initial condition.

The measures defined above are more informative than those which only focus on the divergence
of some characteristics, e.g. the mean, of the conditional distribution (cf. §2.2 of Yao and Tong
1995). For example, the measure I, (z) is directly useful in assessing the initial-value sensitivity
of predictive intervals (cf. Proposition 2 of Yao and Tong 1995). Further, by Theorem 4.1 of Blyth
(1994), we have the following inequality when the system is one-dimensional:

A (@)

o7(T)’

IQ,m(x) >

(3.6)



where o2, () := var(X,;,|Xo = z), and A\, (7) := d{E(X,,| Xy = z)}/dz measures the sensitivity
of the conditional expectation (cf. Yao and Tong 1994a). Relation (3.6) suggests that, when the
conditional variance is large, the sensitivity measure would be small, in agreement with intuition;
also see Figures 3 and 4 below. Inequality (3.6) generalises to multivariate cases. As for other
measures for the divergence in short or medium term, the actual numerical values of Iy ,,,(z) and
I ;m(x) are not informative, so much as their relative magnitudes. For example, the maximizer
of Iy () is the location in the the state space from which the system diverges the most after m
steps of time evolution.

3.2 Estimating sensitivity measures

It is of both practical and technical interest to consider the divergence in one particular component,
e.g. the first component, of system (3.1); see also the time series model (3.2). Thus, given data

(Y1,X1),---,(Yy, Xp) as in §2.1, of interest is estimation of the functionals

1) = [ §ulo)g" i)y,

and
1) = [ §(ul0)g" o)/ g(yla)dy

For clarity, we assume henceforth that d = 1.
Using the estimators of g(y|z) and ¢(y|z) derived in §2.1 leads to the following estimator for
I (z):

[ Bty
%fim(

=17

SYwr (220) [ K- 0K - .

Assume that the kernel K (-) is symmetric. Then,

[ Knae = )Y = )y = KG, (¥ = Yy),

where K* = K % K is the convolution of the kernel function K with itself. Thus, the proposed

estimator can be expressed as

1>
1 hQZZW{l<
1 j=1

=1

)W1 (Xm )Khz(Y Y;). (3.7)
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Estimation of a quadratic functional of the form 6 = [ £ (y)2dy, with f(y) a density, has
been extensively studied in the literature. See for example, Hall and Marron (1987), Fan (1991)
and Hall and Wolff (1995b) and the references therein. Hall and Marron (1987) propose to reduce
the bias by leaving diagonal terms out, similar to the terms with ¢ = j in I (z); while Jones and
Sheather (1991) argue in favour of leaving them. When estimating 6y, under mild conditions both
versions have bias of order o(n~1/2) for a large range of bandwidths. For estimating I; (), since the
derivative is taken with respect to z, its behaviour is analogous, and hence the difference between
the “diagonal-in” and “diagonal-out” estimators is negligible under mild conditions.

For Iy(z), an intuitive estimator is

bo) = [ B(a,u)/Bla. )y, (33

with the usual convention 0/0 = 0. The integral is typically finite. However, (3.8) cannot easily

be simplified. We thus propose an alternative. Let ¢(z,%) denote {g(y|z)}'/2. Then

(o) = 4 [ {d(z, )} dy.
For given bandwidths hy and hg, define, for 1 < i < n,
C(XZaY;) = #{(Xtay;ﬁ)a 1 S t S n |Xt - X’L| S hl a‘nd|th - Y;| S h?}a

C(XZ) = #{Xt,l S t S n, : |Xt — Xz‘ S hl}
Then

Z; == [O(Xy, Y3) [{C(Xs) ha}]H/?

is a natural estimate of ¢(z,y) at (z,y) = (X3,Y:). Using locally quadratic regression, we may
estimate ¢(z,y) and its first and second order partial derivatives with respect to z, ¢(z,y) and

i(z,y), by 4(z,y) = a, ¢(z,y) = b, and q(z,y) = & where (a, b, ¢) minimises of the function

{2~ a - b(X; ) - e~ /2R T TEY),
=t h’l h2

H being a probability density function on R?. Then, we estimate I5(x) by

Iy(w) =4 [ {i(z, )} dy. (3.9)

11



3.3 Selecting bandwidths for I;(z) and [»(z)

We propose a simple and intuitively appealling method for choosing the smoothing parameters
hi1 and hg for estimating I (z) and Iz(z) (using (3.7) and (3.8)). For estimator (3.9), we have not
found a systematic way to choose hy and hs.

For estimating the first derivative, the optimal bandwidth of h; is of the order O(n'/7) under
the assumption that the third derivative with respect to = exists. For that choice of hy, there are
about N = O(n%/7) data points in the neighborhood of z = h;. The choice of bandwidth ks is not
very crucial to I;(z) and I»(z), owing to the integration over y (Fan 1991, and Hall and Marron
1991). The choice of order O(N~7/30) = O(n~'/%) would be sufficient. To make this order of

magnitude meaningful in terms of the scale of y and that of K, we suggest using

: 8r/2 [ K2(z)de]"®
2::O‘l3{ fxz’fK(xgdi}J] sy~ /", (3.10)

where a € [0.5,1) is a specified constant, which makes ho smaller than hs in (2.8). This is natural,
since the integration over y in the definitions of I;(x) and I5(z) reduces the noise level of the
estimators, and allows us to use a smaller bandwidth to reduce bias. The above choice of hy is
also supported by Theorem 2 below: see Remark in §3.5.

Once hy is selected, the choice of the bandwidth A; is determined by (2.7), which minimizes
the average mean squared errors for the derivative curve estimation, as explained above.

We do not claim that any one of the bandwidths (2.6) — (2.8) and (3.10) would be the best
choice for all statistical problems. They are quick and simple selection procedures which take
the structure and the scale of the data into account, and give us an initial idea as to how much
smoothing should be done.

3.4 Examples (continued)

Example 1. The skeleton of (2.9) is a transformed logistic map with coefficient 3.68 (=16x0.23),
which is deterministically chaotic. For further relevant discussion of the logistic map, we refer to
Hall and Wolff (1995a). With the same sample as used before (n = 1000), we estimate Iy ,(z)
and Iy, () for m = 1,2, and 3. Using hy = 0.8hg, we estimate I () using (3.7). The estimated
curves are plotted in Figure 3(a). The sensitivity does vary with the initial value. For example,

for m = 1, I1(z) attains its minimal value at z = 8, monotonically increasing as z moves away

12



from 8 in either directions. Similar but more complicated conclusions can be drawn for the cases
m = 2,3. See also Section 4.1 of Yao and Tong (1994b), and Example 1 of Yao and Tong (1994a).
Figures 3(b)- 3(d) show the estimated curves of I ,,(x) using both (3.8) and (3.9). We expect
the curves obtained using (3.8) to be somewhat wiggly, owing to the estimator Go(z,y) in the
denominator. The curves estimated by (3.9) are smoother. However, it remains open how to
choose the smoothing parameters using (3.9). For this example, we manually chose bandwidths
(h1,h2) = (0.34,0.68), (0.41,0.89), and (0.46, 0.85) for m = 1,2, and 3 respectively. Although the

magnitudes of the functions I1 ,,(z) and I, (x) are different, their profiles are similar.
(Figure 3 is about here.)

Example 2. For model (2.10), the skeleton of this model has a limit point z = 20. With
n = 1000, we estimate I ,,(z) and Iy, (z) for m = 1,2, and 3 again using hy = 0.8hy. The resulting
estimates are depicted in Figure 4(a). Figures 4(b)-4(d) report the estimated curves of Iy, (z).
As in Example 1, the curves obtained using (3.8) are wiggly, while those estimated by (3.9) are
smoother. In applying (3.9), we use bandwidths (hi, he) = (0.89,1.88), (0.94,2.00), (1.48,2.14)
for m = 1,2, and 3 respectively. The sensitivity measures drop sharply as m increases. Further,
for fixed m, the sensitivity varies with the initial value although, owing to the accumulation of
considerable random noise, the variation becomes less pronounced when m increases (cf. (3.6)).
This example shows that initial-value sensitivity should be taken into account for a nonlinear

stochastic system even when it has a non-chaotic skeleton.

(Figure 4 is about here.)

3.5 An asymptotic result

Theorem 2. Under Conditions (C1) — (C5) given in §2.2, if nhihi — oo, for x € {z :
p(z) > 0}, (nh3)Y2{I,(z) — I,(z) — V,} is asymptotically normal with mean value 0 and variance

o2, where

_ o pa [ [ 9g(ylz) BPglylz) / 9g(yl=) Bg(ylz) 2 2
In = hl:mg/{ i ol EURLT 9n ozoyr | W o+ k),

o = ugpy(Qx) V{aggﬁx)rg(ylm)dy— {/ aggx)g(y\m)dy}2].

13




Remark. The choice of hy for estimating I;(x) is not as sensitive as that for estimating the
conditional density. In fact, for hy in the range (nh3)~'/* >> hy >> (nh3)~!/2, the asymptotic
bias and variance of I1(z) remain approximately the same; i.e. the term O(h32) in ¥, becomes

negligible. Thus, the optimal choice of bandwidth is b1 = en~Y7 and n= Y7 >> hy >> n=2/7,
glig

_ [ 2u80? ( 0989l |\
€= 4p2 oz 9z8 Y
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Appendix — Proofs
Proof of Theorem 1. Let m(z,y) := E{K,(Y; — y)|X; = z}, H := diag(1, h1, h?), and
B = (mol, ), o), ) 1= (o), o), o))
=MoL, Y), ML, Y), M2\T,Y = mxayaawm xay72a$2m T,y :
It follows from (2.3) that

H(B—B)=HX"WX)'X"W(Y - XB) = 5 H{(tn0: tn,1,tn2)" + (Yn,0:Yn,1,7m2)" }5 (A1)

where

tn,j = %i (XZ — :E)] Wh1 (Xz - ‘T) {Kh2(y; - y) - m(XZ,y)}a

s = 2 (T ) W (i = 2)m(X) = m9) = e 9) (s =) = ) 5
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and Sy is a 3 x 3 matrix with the (i, j)-element s}, ; 5. Let S and ¥ be 3 x 3 matrices with (4, j)-
elements (1,42, and v;4;_o respectively, and y := (u3, 14, 15)7 . The basic idea is to establish

(a) S} converges to p(z)S in mean square.
() 1y (Yn0s Yn1, Tn2) T converges to 6~ 1p(z)y0%g(y|z)/0x® in mean square.
(c) (nh1h2)/?(tn0,tn1,tn 2) is asymptotically normal with mean 0 and variance g(y|z)p(z)vov =

Combining these with (A.1), we have

- —1)~1/2
r [(nh1h2)1/2 {g(yLT)VO;gE?’ Iys 1} {H(B —,8) _ _h383a(y3|$) g1 } < (L’] - (I)((L'),

(A.2)
where ®(.) denotes the standard normal distribution function. It follows from the Taylor expansion

that

Pglylr) 1,5 7 2g(y|w)
e = g ¥ K g,

+ o(h3).

Using this expansion and considering the marginal distribution of (A.2), we obtain the result.
Conclusions (a) and (b) can be proved by computing the means and the variances of sj, ; and

Tn,j by using the stationarity and mixing conditions.

To prove (c), we consider arbitrary linear combinations of ¢, ; with constant coefficients 7;

(j =0,1,2). Let

Qn = (nh1h2)1/2(770tn,0 + Nitn1 + N2tn2)

S - A Rl ) A

where D(u) = (1o + mu + n2u?)W (u). Write Q, = n="/3(Zno + ... + Znn_1). Note that Q,, is

the sum of a stationary mixing sequence. Asymptotic normality follows from standard small-block

and large-block arguments. Details can be founded in Fan, Yao and Tong (1993, unpublished).
Proof of Theorem 2. We adopt the notation introduced in the proof of Theorem 1. Let

énj(z,y) = (tn,j + Yn;)/h1. To prove Theorem 2, we need the following asymptotic results:

(d) E [{&u1(z,y)}?dy = O{ht + (nh3hy) ™'} = o{h? + (nh})~V/2},

() (nh3)YV2{[ &y (w,y)m (w,y)dy — LaB@) [ 20lz) 89Gl2) g2 | o(p2)} L5 N(0,02),

where 0§ = vop(z) [[{§(y|z)}2g(y|z)dy — {[ §(y|z)g(y|z)dy}?].

15



By (A.1), we have that 81 (z,y) — mi(z,y) = (0, 1,08 Y(&n0s€n1r€n2)T. Tt follows from (a)
that
—/{m1(m,y)}2dy
= [{Buto,) - mae,0)Pdy +2 [, 0){r(ey) — o)}y

_ 1 2 T
a {pz(w)u%/gn’l( ’y)dy+p(x)u

— [ a@ympd Lo (A

Since [{mi(z,y)}2dy = Ii(z) + h3uxk [{0g(y|z)/0z}{03g(y|z)/0x0y?}dy + o(h?), Theorem 5.2
follows immediately from (d), (e), and (A.4).

The proof of (d) is similar to that of (a) and is omitted here. To prove (e), we define
Uw1,yi52,y) = hy(21—2) Wy (21 —2){ Kny (y1—y) —m(w, y) —ma (2, y) (21 —2) —ma(z, y) (21 —2)? /2}

and V(z1,y1) :== [U(z1,y1;2,y)m1(x,y)dy. Then, [ & 1(z,y)mi(z,y)dy =n YV (X1, Y1) +...+

V(Xn,Ys)}. It can be shown via a Taylor expansion that

0 Foa
BV (X,,v) = 2O [ OWE) TIWE) g, 12 4 o)

and that
BU* (X, Yi;2,y)U* (X1, Yi; 2,y + hoz) = hi 3hy Tg(yla)p VQ/K K(u+ 2)du{l + o(1)},
where U*(z1,y1;2,y) = hT2(x1 — )Wh, (z1 — 2)Kp, (y1 — y). Thus,

var{V(X1,Y1)} = EV*(X1,Y1)+ O(h9)
- hZ//EU*(Xl,Yl;av,y)U*(Xl,Yl;av,y+hgz)m1(x,y)m1(x;y—|—h2z)dydz
=B [ h?(X0 — )W, (X1 = 9)m(Xa,y)ma (o, 9)dg} {1+ o(1)}

= K@)l [ miw,w)g(yla)dy — { [ ma(z,glyle)dy)? 1+ o(1))

Now, using big-small block arguments, we establish (e).
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Figure Captions

Figure 1 The estimated g, (y|z): the conditional density function of Y1, given Y; = z for the

logistic model (2.9). (a) m =1; (b) m = 2; (¢) m = 3.

Figure 2 The estimated g, (y|z): the conditional density function of Y;;,, given Y; = x for the

cosine model (2.10). (a) m = 1; (b) m =2; (c) m = 3.
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Figure 3 The estimated sensitivity measures for the logistic model (2.9). (a) Estimated curve
I ;(z) with m = 1 (solid curve), m = 2 (dashed curve) and m = 3 (long dashed curve);
(b)-(d) Estimated sensitive measure I ,,(z) for m = 1,2,3. Solid curve: estimated by (3.8);

dashed curve: estimated by (3.9).

Figure 4 The estimated sensitivity measures for the cosine model (2.9). See the caption of Figure

3 for details.
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