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Abstract

We consider a multivariate time series model which represents a high dimensional vector

process as a sum of three terms: a linear regression of some observed regressors, a linear com-

bination of some latent and serially correlated factors, and a vector white noise. We investigate

the inference without imposing stationary conditions on the target multivariate time series, the

regressors and the underlying factors. Furthermore we deal with the the endogeneity that there

exist correlations between the observed regressors and the unobserved factors. We also consider

the model with nonlinear regression term which can be approximated by a linear regression

function with a large number of regressors. The convergence rates for the estimators of regres-

sion coefficients, the number of factors, factor loading space and factors are established under

the settings when the dimension of time series and the number of regressors may both tend to

infinity together with the sample size. The proposed method is illustrated with both simulated

and real data examples.
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1 Introduction

In this modern information age, the availability of large or vast time series data bring the oppor-

tunities with challenges to time series analysts. The demand of modelling and forecasting high-

dimensional time series arises from various practical problems such as panel study of economic,

social and natural (such as weather) phenomena, financial market analysis, communications engi-

neering. On the other hand, modelling multiple time series even with moderately large dimensions

is always a challenge. Although a substantial proportion of the methods and the theory for univari-

ate autoregressive and moving average (ARMA) models has found the multivariate counterparts,

the usefulness of unregularized multiple ARMA models suffers from the overparametrization and

the lack of the identification (Lütkepohl, 2006). Various methods have been developed to reduce

the number of parameters and to eliminate the non-identification issues. For example, Tiao and

Tsay (1989) proposed to represent a multiple series in terms of several scalar component mod-

els based on canonical correlation analysis, Jakeman et al. (1980) adopted a two stage regression

strategy based on instrumental variables to avoid using moving average explicitly. Another popular

approach is to represent multiple time series in terms of a few factors defined in various ways; see,

among others, Stock and Watson (2005), Bai and Ng (2002), Forni et al. (2005), Lam et al. (2011),

and Lam and Yao (2012). Davis et al. (2012) proposed a vector autoregressive (VAR) model with

sparse coefficient matrices based on partial spectral coherence. LASSO regularization has also been

applied in VAR modelling; see, for example, Shojaie and Michailidis (2010) and Song and Bickel

(2011).

This paper can be viewed as a further development of Lam et al. (2011) and Lam and Yao (2012)

which express a high-dimensional vector time series as a linear transformation of a low-dimensional

latent factor process plus a vector white noise. We extend their methodology and explore three

new features. We only deal with the cases when the dimension is large in relation to the sample

size. Hence all asymptotic theory is developed when both the sample size and the dimension of

time series tend to infinity together.

Firstly, we add a regression term to the factor model. This is a useful addition as in many

applications there exist some known factors which are among the driving forces for the dynamics

of most the component series. For example, temperature is an important factor in forecasting

household electricity consumptions. The price of a product plays a key role in its sales over

different regions. The capital asset pricing model (CAPM) theory implies that the market index

is a common factor for pricing different assets. When the regressor and the latent factor are

uncorrelated, we estimate the regression coefficients first by the least squares method. We then

estimate the number of factors and the factor loading space based on the residuals resulted from the

regression estimation. We show that the latter is asymptotically adaptive to the unknown regression

coefficients in the sense that the convergence rates for estimating the factor loading space and the

factor process are the same as if the regression coefficients were known. We also consider the models

with endogeneity in the sense that there exist correlations between the regressors and the latent
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factors. We show that the factor loading space can still be identified and estimated consistently

in the presence of the endogeneity. However relevant instrumental variables need to be employed

if the ‘original’ regression coefficients have to be estimated consistently. The exploration in this

direction has some overlap with Pesaran and Tosetti (2011), although the models, the inference

methods and the asymptotic results in the two papers are different.

Our second contribution lies in the fact that we do not impose stationarity conditions on

the regressors and the latent factor process throughout the paper. This enlarges the potential

application substantially, as many important factors in practical problems (such as temperature,

calendar effects) are not stationary. Different from the method of Pan and Yao (2008) which

can also handle nonstationary factors but is computationally expensive, our approach is a direct

extension of Lam et al. (2011) and Lam and Yao (2012) and, hence, is applicable to the cases when

the dimensions of time series is in the order of thousands with an ordinary personal computer.

Finally, we focus on the factor models with a nonlinear regression term. By expressing the

nonlinear regression function as a linear combination of some base functions, we turn the problem

into the model with a large number of linear regressors. Now the asymptotic theory is established

when the sample size, the dimension of time series and the number of regressors go to infinity

together.

The rest of the paper is organized as follows. Section 2 deals with linear regression models with

latent factors but without endogeneity. The models with the endogeneity are handled in Section 3.

Section 4 investigates the models with nonlinear regression term. Simulation results are reported

in Section 5. Illustration with some stock prices included in S&P500 is presented in Section 6. All

the technical proofs are relegated to the Appendix.

2 Regression with latent factors

2.1 Models

Consider the regression model

yt = Dzt +Axt + εt, (1)

where yt and zt are, respectively, observable p × 1 and m × 1 time series, xt is an r × 1 latent

factor process, εt ∼ WN(0,Σε) is a white noise with zero mean and covariance matrix Σε and εt

is uncorrelated with (zt,xt), D is an unknown regression coefficient matrix, and A is an unknown

factor loading matrix. The number of the latent factors r is an unknown (fixed) constant. With

the observations {(yt, zt) : t = 1, . . . , T}, the goal is to estimate D, A and r, and to recover the

factor process xt, when p is large in relation to the sample size T . As our inference will be based

on the serial dependence of each and across yt, zt and xt, we assume E(zt) = 0 and E(xt) = 0 for

simplicity.

In this section, we consider the simple case when zt and xt are uncorrelated. This condition
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ensures that the coefficient matrix D in (1) is identifiable. However the factor loading matrix A

and the factor xt are not uniquely determined by (1), as we may replace (A,xt) by (AH,H−1xt)

for any invertible matrix H. Nevertheless the linear space spanned by the columns of A, denoted

by M(A), is uniquely defined. M(A) is called the factor loading space. Hence there is no loss

of the generality in assuming that A is a half orthogonal matrix in the sense that ATA = Ir. In

this paper, we always adhere with this assumption. Once we have specified a particular A, xt is

uniquely defined accordingly. On the other hand, when cov(zt,xt) 6= 0, the endogeneity makes D

unidentifiable, which will be dealt with in Section 3 below.

2.2 Estimation

Formally the estimation for D may be treated as a standard least squares problem, since

yt = Dzt + ηt, ηt = Axt + εt, (2)

and cov(zt,ηt) = 0; see (1). Write D = (d1, . . . ,dp)
T. The least squares estimator for D can be

expressed as

D̂ = (d̂1, . . . , d̂p)
T, d̂i =

(
1

T

T∑

t=1

ztz
T

t

)−1( 1

T

T∑

t=1

yi,t zt

)
, (3)

where yi,t is the ith component of yt.

The estimation for M(A) is based on the residuals η̂t = yt − D̂zt, using the same idea as Lam

et al. (2011) and Lam and Yao (2012), though we do not assume that the processes concerned are

stationary. To this end, we introduce some notation first. Let

Σx(k) =
1

T − k

T−k∑

t=1

cov(xt+k,xt), Σxε(k) =
1

T − k

T−k∑

t=1

cov(xt+k, εt),

Ση(k) =
1

T − k

T−k∑

t=1

cov(ηt+k,ηt).

When, for example, xt is stationary, Σx(k) is the autocovariance matrix of xt at lag k. It follows

from the second equation in (2) that for any k 6= 0,

Ση(k) = AΣx(k)A
T +AΣxε(k). (4)

For a prescribed fixed positive integer k̄, define

M =

k̄∑

k=1

Ση(k)Ση(k)
T. (5)

We assume rank(M) = r. This is reasonable as it effectively assumes that the latent factor process

xt is genuinely r-dimensional. Since M is implicitly sandwiched by A and AT, Mb = 0 for any

b ⊥ M(A). Thus we may take the eigenvectors of M corresponding to non-zero eigenvalues as
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the columns of A, as the choice of A is almost arbitrary as long as M(A) does not change. Let

A = (a1, . . . ,ar), where a1, . . . ,ar be the r orthonormal eigenvectors of M corresponding to the

r largest eigenvalues λ1 ≥ · · · ≥ λr > 0. Then A is a half orthogonal matrix in the sense that

ATA = Ir. In the sequel, we always use A defined this way. When the r non-zero eigenvalues of

M are distinct, A is unique if we ignore the trivial replacements of aj by −aj.

Let η̂t = yt − D̂zt and

Σ̂η(k) =
1

T − k

T−k∑

t=1

(η̂t+k − η̄)(η̂t − η̄)T, η̄ =
1

T

T∑

t=1

η̂t.

The above discussion leads to a natural estimator ofA denoted by Â ≡ (â1, . . . , âr). Here â1, . . . , âr

are the orthonormal eigenvectors of M̂ corresponding to the r largest eigenvalues λ̂1 ≥ · · · ≥ λ̂r,

where

M̂ =

k̄∑

k=1

Σ̂η(k)Σ̂η(k)
T. (6)

Since Â is a half orthogonal matrix, we may extract the factor process by x̂t = ÂT(yt − D̂zt); see

(2).

All the arguments above are based on a known r which is actually unknown in practice. The

determination of r is a key step in our inference. In practice we may estimate it by the ratio

estimator

r̂ = argmin

{
λ̂j+1

λ̂j

: 1 ≤ j ≤ R

}
, (7)

where λ̂1 ≥ · · · ≥ λ̂p are the eigenvalues of M̂, and R is a constant which may be taken as R = p/2;

see Lam and Yao (2012) for further discussion on this estimation method.

2.3 Asymptotic properties

We present the asymptotic theory for the estimation methods described in Section 2.2 above when

T, p → ∞ while r is fixed. We also assume m fixed now; see Section 4 below for the results when

m → ∞ as well. We do not impose stationarity conditions on yt, zt and xt. Instead we assume

that they are mixing processes; see Condition 2.1 below. Hence our results in the special case when

zt ≡ 0 extend those in Lam et al. (2011) and Lam and Yao (2012) to nonstationary cases. Pan

and Yao (2008) dealt with a different method for nonstationary factor models.

We introduce some notation first. For any matrix H, we denote by ‖H‖F = {tr(HTH)}1/2

the Frobenius norm of H, and by ‖H‖2 = {λmax(H
TH)}1/2 the L2-norm, where tr(·) and λmax(·)

denote, respectively, the trace and the maximum eigenvalue of a square matrix. We also denote by

‖H‖min the square-root of the minimum nonzero eigenvalue of HTH. Note that when H = h is a

vector, ‖h‖F = ‖h‖2 = ‖h‖min = (hTh)1/2, i.e. the conventional Euclidean norm for vector h.
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Condition 2.1. The process {(yt, zt,xt)} is α-mixing with the mixing coefficients satisfying the

condition
∑∞

k=1 α(k)
1−2/γ < ∞ for some γ > 2, where

α(k) = sup
i

sup
A∈F i

−∞, B∈F∞
i+k

∣∣P (A ∩B)− P (A)P (B)
∣∣,

and F j
i is the σ-field generated by {(yt, zt,xt) : i ≤ t ≤ j}.

Condition 2.2. For any i = 1, . . . ,m, j = 1, . . . , p and t, E(|zi,t|
2γ) ≤ C1, E(|ζj,t|

2γ) ≤ C1 and

E(|εj,t|
2γ) ≤ C1, where C1 > 0 is a constant, γ is given in Condition 2.1, and zi,t is the ith element

of zt, ζj,t and εj,t are the jth element of, respectively, Axt and εt.

Condition 2.3. There exists a constant C2 > 0 such that λmin{E(ztz
T

t )} > C2 for all t.

Condition E(|ζj,t|
2γ) ≤ C1 in Condition 2.2 can be guaranteed by some suitable conditions

on each xi,t, as A is a half orthogonal matrix. For example, it holds if maxi,tE(|xi,t|
2γ) < ∞.

Proposition 2.1 below establishes the convergence rate of the estimator for the p × m coefficient

matrix D. Since p → ∞ together with the sample size T , the convergence rate depends on p.

Especially when p/T → 0, the least squares estimator D̂ is a consistent estimator for D. This

condition can be relaxed if we impose some sparse condition on D, and then apply appropriate

thresholding on D̂. We do not pursue this further here. When p is fixed, the convergence rate is

T 1/2 which is the optimal rate for the regression with the dimension fixed.

Proposition 2.1. Let Conditions 2.1-2.3 hold. As T → ∞ and p → ∞, it holds that

‖D̂−D‖F = Op

(
p1/2T−1/2

)
.

To state the results for estimating factor loadings, we introduce more conditions.

Condition 2.4. There exist positive constants Ci (i = 3, 4) and δ ∈ [0, 1] such that C3p
1−δ ≤

‖Σx(k)‖min ≤ ‖Σx(k)‖2 ≤ C4p
1−δ for all k = 1, . . . , k̄.

Condition 2.5. Matrix M admits r distinct positive eigenvalues λ1 > · · · > λr > 0.

The constant δ in Condition 2.4 controls the strength of the factors. When δ = 0, the factors

are strong. When δ > 0, the factors are weak. In fact the value of δ reflects the sparse level of the

factor loading matrix A, and a certain degree of sparsity is present when δ > 0. Therefore not all

components of yt−Dzt carry the information for all factor components. This causes difficulties in

recovering the factor process. This argument will be verified in Theorem 2.2. See also Remark 1 in

Lam and Yao (2012). Condition 2.5 implies that A defined as in Section 2.2 above is unique. This

simplifies the presentation significantly, as Theorem 2.1 below can present the convergence rates of

the estimator for A directly. Without Condition 2.5, the same convergence rates can be obtained

for the estimation of the linear space M(Â); see (9) below. Let

κ1 = min
1≤k≤k̄

‖Σxε(k)‖min and κ2 = max
1≤k≤k̄

‖Σxε(k)‖2.

Note that both κ1 and κ2 may diverge as p → ∞.
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Theorem 2.1. Let Conditions 2.1-2.5 hold. Suppose that r is known and fixed, then

‖Â−A‖2 =

{
Op(p

δT−1/2), if κ2 = o(p1−δ) and p2δT−1 = o(1);

Op(κ
−2
1 κ2pT

−1/2), if p1−δ = o(κ1) and κ−2
1 κ2pT

−1/2 = o(1).

The convergence rates in Theorem 2.1 above are exactly the same as Theorem 1 of Lam et

al. (2011) which deals with a pure factor model, i.e. model (2) with zt ≡ 0. In this sense, the

estimator Â is asymptotically adaptive to unknown D.

Theorem 2.2. Let Conditions 2.1-2.5 hold, and r be known and fixed. If ‖Σε‖2 is bounded as

p → ∞, then

p−1/2‖Âx̂t −Axt‖2 = Op(‖Â−A‖2 + p−1/2 + T−1/2).

Theorem 2.2 deals with the convergence of the extracted factor term. Combining it with

Theorem 2.1, we obtain

p−1/2‖Âx̂t −Axt‖2

=

{
Op(p

δT−1/2 + p−1/2), if κ2 = o(p1−δ) and p2δT−1 = o(1);

Op(κ
−2
1 κ2pT

−1/2 + p−1/2 + T−1/2), if p1−δ = o(κ1) and κ−2
1 κ2pT

−1/2 = o(1).

Thus when all the factors are strong (i.e. δ = 0) and κ2 = o(p), it holds that p−1/2‖Âx̂t−Axt‖2 =

Op(p
−1/2 + T−1/2), which is the optimal convergence rate specified in Theorem 3 of Bai (2003).

In general the choice of A in model (1) is not unique, we consider the error in estimating M(A)

instead of a particular A, as M(A) is uniquely defined by (1) and does not vary with different

choices of A. To this end, we adopt the discrepancy measure used by Pan and Yao (2008): for

two p × r half orthogonal matrices H1 and H2 satisfying the condition HT

1H1 = HT

2H2 = Ir, the

difference between the two linear spaces M(H1) and M(H2) is measured by

D(M(H1),M(H2)) =

√
1−

1

r
tr(H1H

T

1H2H
T

2 ). (8)

In fact D(M(H1),M(H2)) always takes values between 0 and 1. It is equal to 0 if and only if

M(H1) = M(H2), and to 1 if and only if M(H1) ⊥ M(H2).

Theorem 2.3. Let Conditions 2.4-2.5 hold. Suppose that r is known and fixed, then

{D(M(Â),M(A))}2 ≍ ‖(Â−A)T(Â−A)−AT(Â−A)(Â−A)TA‖2.

This theorem establishes the link between D(M(Â),M(A)) and Â − A when r is known.

Obviously, the RHS of the above expression can be bounded by 2‖Â − A‖22. This implies that

D(M(Â),M(A)) = Op(‖Â−A‖2). In fact, the convergence of D(M(Â),M(A)) does not depend

on Condition 2.5. Even when M admits multiple non-zero eigenvalues, and, therefore, A is not

7



uniquely defined, it can be shown based on the similar arguments as for Theorem 1 in Chang et al.

(2014) that

D(M(Â),M(A)) =

{
Op(p

δT−1/2), if κ2 = o(p1−δ) and p2δT−1 = o(1);

Op(κ
−2
1 κ2pT

−1/2), if p1−δ = o(κ1) and κ−2
1 κ2pT

−1/2 = o(1),
(9)

which is the same as that followed by Theorem 2.3 when Condition 2.5 holds.

Theorems 2.1-2.3 above present the asymptotic properties when the number of factors r is

assumed to be known. However, in practice we need to estimate r as well. Lam and Yao (2012)

showed that for the ratio estimator r̂ defined in (7), P (r̂ ≥ r) → 1. In spite of favorable finite

sample evidences reported in Lam and Yao (2012), it remains as a unsolved challenge to establish

the consistency r̂. Following the idea of Xia et al. (2013), we adjust the ratio estimator as follows

r̃ = argmin

{
λ̂j+1 + CT

λ̂j + CT

: 1 ≤ j ≤ R

}
, (10)

where CT = (p1−δ + κ2)pT
−1/2 log T . Theorem 2.4 shows that r̃ is a consistent estimator for r.

Theorem 2.4. Let Conditions 2.1-2.5 hold, and (p1−δ + κ2)pT
−1/2 log T = o(1). Then P (r̃ 6=

r) → 0.

With the estimator r̃, we may define an estimator for A as Ã = (â1, . . . , âr̃), where â1, . . . , âr̃

are the orthonormal eigenvectors of M̂, defined in (6), corresponding to the r̃ largest eigenvalues.

Then Ã = Â when r̃ = r. To measure the error in estimating the factor loading space, we use

D̃(M(Ã),M(A)) =

√
1−

1

max(r̃, r)
tr(ÃÃTAAT).

This is a modified version of (8). It takes into account the fact that the dimensions of M(Ã) and

M(A) may be different. Obviously D̃(M(Ã),M(A)) = D(M(Â),M(A)) if r̃ = r. We show

below that D̃(M(Ã),M(A)) → 0 in probability at the same rate as D(M(Â),M(A)). Hence

even without knowing r, M(Ã) is a consistent estimator for M(A). Let ρ = ρ(T, p) denote the

convergence rate of D(M(Â),M(A)), i.e. ρD(M(Â),M(A)) = Op(1), see Theorems 2.1 and 2.3.

For any ǫ > 0, there exists a positive constant Mǫ such that P{ρD(M(Â),M(A)) > Mǫ} < ǫ.

Then,

P{ρD̃(M(Ã),M(A)) > Mǫ}

≤ P{ρD(M(Â),M(A)) > Mǫ, r̃ = r}+ P{ρD̃(M(Ã),M(A)) > Mǫ, r̃ 6= r}

≤ P{ρD(M(Â),M(A)) > Mǫ}+ o(1)

≤ ǫ+ o(1) → ǫ

which implies ρD̃(M(Ã),M(A)) = Op(1). Hence, D̃(M(Ã),M(A)) → 0 shares the same conver-

gence rate of D(M(Â),M(A)) which means that M(Ã) has the oracle property in estimating the

factor loading space M(A).
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3 Models with endogeneity

In last section, the consistent estimation for the coefficient matrix D is used in identifying the latent

factor process. The consistency is guaranteed by the assumption that cov(zt,xt) = E(ztx
T

t ) = 0.

However when the endogeneity exists in model (1) in the sense that the regressor zt and the

latent factor xt are contemporaneously correlated with each other, D is no longer identifiable.

Nevertheless (1) can be written as

yt = [D+AE(xtz
T

t ){E(ztz
T

t )}
−1]zt +A[xt − E(xtz

T

t ){E(ztz
T

t )}
−1zt] + εt (11)

≡ D⋆zt +Ax⋆
t + εt,

where the latent factor x⋆
t = xt−E(xtz

T

t ){E(ztz
T

t )}
−1zt is uncorrelated with the regressor zt. Hence

if we apply the methods presented in Section 2 to model (1) in the presence of the endogeneity, D̂

defined in (3) is a consistent estimator for D⋆ = D+AE(xtz
T

t ){E(ztz
T

t )}
−1 instead of the original

regression coefficient D, provided that D⋆ so defined is a constant matrix independent of t. The

latter is guaranteed when both xt and zt are stationary. Furthermore, the recovered factor process

x̂t is an estimator for x⋆
t . Hence in the presence of the endogeneity and if D⋆ defined in (11) is a

constant matrix, the factor loading space M(A) can still be estimated consistently although the

ordinary least squares estimator for the regression coefficient matrix D is no longer consistent.

For some applications, the interest lies in estimating the ‘original’ D and xt; see, e.g., Angrist

and Krueger (1991). Then we may employ a set of instrument variables wt in the sense that wt is

correlated with zt but uncorrelated with both xt and εt. Usually, we require that wt is q × 1 with

q ≥ m. It follows from (1) that

ytw
T

t = Dztw
T

t + ε⋆t , ε⋆t = Axtw
T

t + εtw
T

t . (12)

Since E(xtw
T

t ) = 0 and E(εtw
T

t ) = 0, we may view the first equation in the above expression as

similar to a ‘normal equation’ in a least squares problem by ignoring ε⋆t . This leads to the following

estimator for D:

D̂ =

(
1

T

T∑

t=1

ytw
T

t R
T

)(
1

T

T∑

t=1

ztw
T

t R
T

)−1

. (13)

where R is any m × q constant matrix with rank(R) = m, to match the lengths of wt and zt.

When q = m, we can choose R = Im. This is the ‘instrument variables method’ widely used in

econometrics. We refer to Morimune (1983), Bound et al. (1996), Donald and Newey (2001), Hahn

and Hausman (2002) and Caner and Fan (2012) for further discussion on the choice of instrument

variables and the related issues. It follows from (12) and (13) that

D̂−D =

(
1

T

T∑

t=1

ε⋆tR
T

)(
1

T

T∑

t=1

ztw
T

t R
T

)−1

.

The proposition below shows that D̂ is a consistent estimator with the optimal convergence rate.

See also Proposition 2.1.
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Condition 3.1. For any i = 1, . . . , q and t, E(|wi,t|
2γ) ≤ C1 for γ > 2 and C1 > 0 specified in,

respectively, Conditions 2.1 and 2.2.

Condition 3.2. The smallest eigenvalue of {E(wtz
T

t )}
TRTR{E(wtz

T

t )} is uniformly bounded

away from zero for all t.

Condition 3.2 implies that all the components of the instrument variables wt are correlated

with the regressor zt. When q = m and R = Im, it reduces to the condition that all the singular

values of E(wtz
T

t ) are uniformly bounded away from zero for all t.

Proposition 3.1. Let Conditions 2.1-2.2 and 3.1-3.2 hold. As T → ∞ and p → ∞, it holds that

‖D̂−D‖F = Op(p
1/2T−1/2).

With the consistent estimator D̂ in (13), the factor loading space and the latent factor process

may be estimated in the same manner as in Section 2.2. The asymptotic properties presented in

Theorems 2.1-2.3 can be reproduced in the similar manner.

4 Models with nonlinear regression functions

Now we consider the model with nonlinear regression term:

yt = g(ut) +Axt + εt, (14)

where g(·) is an unknown nonlinear function, ut is an observed process with fixed dimension, and

other terms are the same as in model (1). One way to handle a nonlinear regression is to transform

it into a high-dimensional linear regression problem. To this end, let g = (g1, . . . , gp)
T, and

gi(u) =

∞∑

j=1

di,j lj(u), i = 1, 2, . . . ,

where {lj(·)} is a set of base functions. Suppose we use the approximation with the first m terms

only. Let zt = (l1(ut), . . . , lm(ut))
T, and D be the p ×m matrix with di,j as its (i, j)-th element,

then (14) can be expressed as

yt = Dzt +Axt + εt + et, (15)

where the additional error term et collects the residuals in approximating g(·) by the first m terms

only, i.e. the ith component of et is
∑

j>m di,j lj(ut). This makes (15) formally different from

model (1). Furthermore a fundamentally new feature in (15) is that m may be large in relation to

p or/and T . Hence the new asymptotic theory with all T, p,m → ∞ together will be established

in order to take into account those non-trivial changes. Due to (11), we may always assume that

cov(zt,xt) = 0. Condition 4.2 below ensures that et in (15) is asymptotically negligible. Hence

10



model (15) is as identifiable as (1) at least asymptotically when m → ∞. Consequently we may

estimate D using the ordinary least squares estimator:

D̂ =

(
1

T

T∑

t=1

ytz
T

t

)(
1

T

T∑

t=1

ztz
T

t

)−1

.

We introduce some regularity conditions first.

Condition 4.1. Supports of the process ut are subsets of U , where U is compact with nonempty

interior. Furthermore the density function of ut is uniformly bounded and bounded away from zero

for all t.

Condition 4.2. It holds for all large m that

sup
i

sup
u∈U

∣∣∣∣gi(u)−
m∑

j=1

di,jlj(u)

∣∣∣∣ = O(m−λ)

where λ > 1/2 is a constant.

Condition 4.3. The eigenvalues of E(ztz
T

t ), are uniformly bounded away from zero and infinity

for all t, where zt = (l1(ut), . . . , lm(ut))
T.

Condition 4.4. E(Axt|ut) = 0 and E(εt|ut) = 0 for all t.

Condition 4.5. For each j = 1, . . . ,m, E(|lj(ut)|
2γ) ≤ C1, where γ > 2 and C1 > 0 are specified

in, respectively, Conditions 2.1 and 2.2.

Condition 4.1 is often assumed in nonparametric estimation, it can be weakened at the cost of

lengthier proofs. Condition 4.2 quantifies the approximation error for regression function g(·). It

is fulfilled by commonly used sieve basis functions such as spline, wavelets, or the Fourier series,

provided that all components of g(·) are in the Hölder space. See Ai and Chen (2003) for further

detail on the sieve method.

Proposition 4.1. Let Conditions 2.1-2.2 and 4.2-4.5 hold, and mT−1/2 = o(1). Then

‖D̂−D‖F = Op(p
1/2m1/2T−1/2 + p1/2m1/2−λ).

Comparing this proposition with Propositions 2.1 and 3.1, m enters the convergence rates, and

the term Op(p
1/2m1/2−λ) is due to approximating g(ut) by Dzt. Based on the estimator D̂, we

can define an estimator for the nonlinear regression function

ĝ(u) = D̂(l1(u), . . . , lm(u))T.

The theorem below follows from Proposition 4.1. It gives the convergence rate for ĝ.

Theorem 4.1. Let Conditions 2.1-2.2 and 4.1-4.5 hold, and mT−1/2 = o(1). Then
∫

u∈U
‖ĝ(u)− g(u)‖22 du = Op(pmT−1 + pm−2λ).

11



It is easy to see from Theorem 4.1 that the best rate for ĝ(·) is attained if we choose m ≍

T 1/(2λ+1), which fulfills the condition mT−1/2 = o(1) as λ > 1/2. When g(·) is twice differentiable,

λ = 2 for some basis functions, the convergence rate is pT−4/5. This is the optimal rate for the

nonparametric regression of p functions (Stone, 1985). Hereafter, we always set m ≍ T 1/(2λ+1).

With the estimator D̂, we may proceed as in Section 2.2 to estimate the factor loading space

and to recover the latent factor process. However there is a distinctive new feature now: the

number of lags k̄ used in defining both M in (5) and M̂ in (7) may tend to infinity together with

m in order to achieve good convergence rates.

Theorem 4.2. Let conditions 2.1-2.2, 2.4 and 4.2-4.5 hold, λ ≥ 1, k̄T−1/2 = o(1), and m ≍

T 1/(2λ+1). Suppose that r is known, and the r positive eigenvalues of M are distinct. Then

‖Â−A‖2 =





Op{p
δ[k̄1/2T−1/2 + k̄−1T (1−λ)/(2λ+1)]},

if κ2 = o(p1−δ) and p2δ[k̄T−1 + T (2−2λ)/(2λ+1)] = o(1);

Op{pκ2κ
−2
1 [k̄1/2T−1/2 + k̄−1T (1−λ)/(2λ+1)]},

if p1−δ = o(κ1) and p2κ22κ
−4
1 [k̄T−1 + T (2−2λ)/(2λ+1) ] = o(1).

From Theorem 4.2, the best convergence rate for Â is attained when we choose k̄ ≍ T 1/(2λ+1).

The model with linear regression considered in Section 2.3 corresponds to the cases with λ = ∞.

Note Theorem 4.2 implies that k̄ ≍ 1 should be used when λ = ∞ and m is fixed in order to attain

the best possible rates. This is consistent with the procedures used in Section 2.2.

Now we comment on the impact of p on the convergence rate, which depends critically on the

factor strength δ ∈ [0, 1] specified in Condition 2.4. To simplify the notation, let κ1 ≍ κ2 ≍ κ which

is a mild assumption in practice. Suppose pδT (1−λ)/(2λ+1) = o(1) and k̄ ≍ T 1/(2λ+1), Theorem 4.2

then reduces to

‖Â−A‖2 =

{
Op(p

δT−λ/(2λ+1)), if κ = o(p1−δ);

Op(pκ
−1T−λ/(2λ+1)), if p1−δ = o(κ).

If κp−(1−δ) → ∞, there is an additional factor κp−(1−δ) in the convergence rate of ‖Â−A‖2 than

that under the setting κp−(1−δ) → 0, which implies that ‖Â−A‖2 converges to zero faster in the

case κ = o(p1−δ). The dimension p must satisfy the condition pδT (1−λ)/(2λ+1) = o(1), which is

automatically fulfilled when δ = 0, i.e. the factors are strong. However when the factors are weak

in the sense δ 6= 0, p can only be in the order p = o(T (λ−1)/{(2λ+1)δ}) to ensure the consistency in

estimating the factor loading matrix.

Theorem 4.3. Let the condition of Theorem 4.2 hold. In addition, if ‖Σε‖2 is bounded as p → ∞,

then

p−1/2‖Âx̂t −Axt‖2 = Op(‖Â−A‖2 + p−1/2 + T−(2λ−1)/(4λ+2)).

Comparing the above theorem with Theorem 2.2, it has one more term T (2λ−1)/(4λ+2) in the

convergence rate. When the dimension m is fixed and λ = ∞, it reduces to Theorem 2.2. On the

12



other hand, we can also consider the model (1) with diverging number of regressors (i.e., m → ∞).

Noting Proposition 4.1 with λ = ∞ and using the same argument of Theorem 2.1, it holds that

‖Â−A‖2 =





Op{k̄
−1pδ(k̄3/2 +m1/2)T−1/2},

if κ2 = o(p1−δ) and pδ(k̄1/2 +m1/2)T−1/2 = o(1);

Op{k̄
−1pκ2κ

−2
1 (k̄3/2 +m1/2)T−1/2},

if p1−δ = o(κ1) and pκ2κ
−2
1 (k̄1/2 +m1/2)T−1/2 = o(1);

provided that m = o(T 1/2) and k̄ = o(T 1/3). Theorem 2.1 can be regarded as the special case of

this result with fixed k̄ and m. Note that the best convergence rate for ‖Â−A‖2 is attained under

such setting if we choose k̄ ≍ m1/3.

5 Numerical properties

In this section, we illustrate the finite sample properties of the proposed methods in two simulated

models, one with a linear regression term and one with a nonlinear regression term. For the

linear model, both stationary and nonstationary factors were employed. In each model, we set the

dimension of yt at p = 100, 200, 400, 600, 800 and the sample size T = 0.5p, p, 1.5p respectively.

For each setting, 200 samples were generated.

Table 1: Relative frequency estimates of P (r̂ = r) for Example 1 with stationary factors.

p 100 200 400 600 800
δ = 0 D known T = 0.5p 0.700 0.960 0.990 0.995 1

T = p 0.900 0.985 1 1 1
T = 1.5p 0.980 1 1 1 1

D unknown T = 0.5p 0.615 0.940 0.990 0.995 1
T = p 0.865 0.985 1 1 1
T = 1.5p 0.960 1 1 1 1

δ = 0.5 D known T = 0.5p 0.105 0.805 0.950 0.805 0.930
T = p 0.285 0.880 0.940 1 0.975
T = 1.5p 0.895 0.975 1 1 1

D unknown T = 0.5p 0.065 0.765 0.930 0.780 0.910
T = p 0.280 0.880 0.940 1 0.975
T = 1.5p 0.870 0.975 0.995 1 1

Example 1. Consider the linear model yt = Dzt + Axt + εt, in which zt follows the VAR(1)

model:

zt =

(
5/8 1/8
1/8 5/8

)
zt−1 + et, (16)

where et ∼ N(0, I2). Let D be a p× 2 matrix of which the elements were generated independently

from the uniform distribution U(−2, 2), xt be 3 × 1 VAR(1) process with independent N(0, I3)

innovations and the diagonal autoregressive coefficient matrix with 0.6, -0.5 and 0.3 as the main

13



T=50 T=100 T=150

p = 100

0.
0

0.
2

0.
4

0.
6

Oracle

Real

T=200 T=400 T=600

p = 400

0.
0

0.
2

0.
4

0.
6

Oracle

Real

T=400 T=800 T=1200

p = 800

0.
0

0.
2

0.
4

0.
6

Oracle

Real

T=50 T=100 T=150

p = 100

0.
2

0.
4

0.
6

0.
8

Oracle

Real

T=200 T=400 T=600

p = 400

0.
2

0.
4

0.
6

0.
8

Oracle

Real

T=400 T=800 T=1200

p = 800

0.
2

0.
4

0.
6

0.
8

Oracle

Real

Figure 1: Boxplots of {D(M(Â),M(A))} for Example 1 with stationary factor, and δ = 0 (3 top

panels) and δ = 0.5 (3 bottom panels). Errors obtained using true D are marked with ‘oracle’, and

using D̂ are marked with ‘real’.

diagonal elements. This is a stationary factor process with r = 3 factors. The elements of A were

drawn independently from U(−2, 2) resulting a strong factor case with δ = 0. Also we considered a

weak factor case with δ = 0.5 for which randomly selected p−⌊p1/2⌋ elements in each column of A

were set to 0. Let εt be independent and N(0, Ip). To show the impact of the estimated coefficient

matrix D̂ on the estimation for the factors, we also report the results from using the true D. We

report the results with k̄ = 1 only, since the results with 1 ≤ k̄ ≤ 10 are similar. The relative

frequency estimates of P (r̂ = r) are reported in Table 1. It shows that the defect in estimating r

due to the errors in estimating D is almost negligible. Fig.1 displays the boxplots of the estimation

errors {D(M(Â),M(A))}. Again the performance with the estimated coefficient matrix D̂ is only

slightly worse than that with the true D. When the factors are weaker (i.e. when δ = 0.5), it is

harder to estimate both the number of factors and the factor loading space. All those findings are

in line with the asymptotic results presented in Section 2.3.

Now we consider the case with the endogeneity. To this end, we changed the definition for the

regressor process zt in the above setting. Instead of (16), we let

z1,t = 0.1x1,t + 0.1ut + 0.1u2t , z2,t = 0.1x2,t − 0.1ut + 0.1u2t ,

where ut is an AR(1) process defined by ut = 0.5ut−1 + ǫt and ǫt ∼ N(0, 1). The ordinary least

squares estimator of D is no longer consistent now. We employ two different instrument variables

wt = (ut, u
2
t )

T and w̃t = (ut, u
2
t , u

3
t , u

4
t )

T, as they are correlated with zt but uncorrelated with xt and

εt. The estimation error for D̂ is measured by the normalized Frobenius norm p−1/2‖D̂ − D‖F .
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Figure 2: Boxplots of p−1/2‖D̂ −D‖F for Example 1 with endogeneity, and δ = 0 (3 top panels)

and δ = 0.5 (3 bottom panels).

Setting R = I2 for wt and the elements of R̃ are generated from U(−2, 2) for w̃t in (13), we

computed first both the ordinary least squares (OLS) estimates and the instrument variable method

(IV) estimates for D, and then the estimates for the number of factors r and the factor loading

matrixA based on, respectively, the two sets of residuals resulted from the two regression estimation

methods. The results are reported in Figs.2 and 3 and Table 2 where IV2 and IV4 represent the

estimation usingwt and w̃t respectively. Those simulation results reinforce the findings in Section 3,

which indicate that the existence of the endogeneity has no impact in identifying and in estimating

the factor loading space. More precisely, Fig.2 shows that the errors p−1/2‖D̂−D‖F for the OLS

method are unusually large, as it effectively estimates D⋆ in (11) instead of D. On the other hand,

the IV method provides accurate estimates for D. However the differences of the two methods

on the subsequent estimation for the number of factors r and the factor loading space M(A) are

small; see Table 2 and Fig.3. Since the IV method uses extra information, it tends to offer slightly

better performance. Nevertheless Table 2 indicates that this improvement in estimating r is almost

negligible. Also, the results are not sensitive to the choice of R as long as the instrument variables

are properly selected.

Now we consider the model with nonstationary factors xt = 3(x1,t, x2,t, x3,t)
T:

x1,t − 2t/T = 0.8(x1,T−1 − 2t/T ) + e1,t, x2,t = 3t/T, x3,t = x3,t−1 +

√
10

T
e3,t, (17)

where ej,t are independent and N(0, 1). The other settings are the same as the first part of this

example. The results are reported in Table 3 and Fig.4. The patterns are similar to those in Table

1 and Fig.1, except that for a fixed p, the performance does not necessarily improve when the
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Table 2: Relative frequency estimates of P (r̂ = r) for Example 1 with endogeneity.

p 100 200 400 600 800
IV2 T = 0.5p 0.660 0.885 0.995 0.995 1

T = p 0.855 0.990 1 1 1
T = 1.5p 0.960 1 1 1 1

IV4 T = 0.5p 0.590 0.865 0.975 0.970 0.965
δ = 0 T = p 0.845 0.970 0.970 0.990 0.985

T = 1.5p 0.930 0.990 0.980 0.970 0.975
OLS T = 0.5p 0.580 0.865 0.990 1 1

T = p 0.855 0.980 1 1 1
T = 1.5p 0.945 1 1 0.995 1

IV2 T = 0.5p 0.280 0.665 0.625 0.630 0.620
T = p 0.600 0.715 0.980 1 1
T = 1.5p 0.550 0.980 0.990 1 1

IV4 T = 0.5p 0.205 0.570 0.550 0.605 0.550
δ = 0.5 T = p 0.510 0.650 0.890 0.960 0.925

T = 1.5p 0.580 0.915 0.950 0.935 0.940
OLS T = 0.5p 0.225 0.405 0.635 0.625 0.640

T = p 0.535 0.705 1 1 0.995
T = 1.5p 0.630 0.955 1 1 0.995

sample size T increases; see Fig.4. This is due to the nonstationary nature of the factors defined in

(17): new observations bring in the information on the new and time-varying underlying structure

as far as the factor processes are concerned.

Example 2. We now consider a model with nonlinear regression function. Let ut = ut be a

univariate AR(1) process defined by ut = 0.5ut−1 + et with independent N(0, 1) innovations et.

The nonlinear regression function g(ut) = (g1(ut), . . . , gp(ut))
T was defined as

gi(ut) =
exp(α

(1)
i ut)

1 + exp(α
(1)
i ut)

, i = 1, . . . ,
p

2
and gi(ut) = sin(α

(2)
i ut), i =

p

2
+ 1, . . . , p,

where the parameters α
(1)
i were drawn independently from N(0, 4), and α

(2)
i were drawn indepen-

dently from U(−2, 2) respectively. We used the same A,xt and εt as in the first part of Example

1.

We used the polynomial expansion to approximate g(ut), i.e. gi(ut) ≈
∑m

j=1 di,j lj(ut) with

lj(ut) = uj−1
t , where the order m was set as ⌊2T 1/5⌋. We obtained d̂i,j by the least square estima-

tion. Put ĝ(ut) = (ĝ1(ut), . . . , ĝp(ut))
T for ĝi(ut) =

∑m
j=1 d̂i,j lj(ut). The residuals η̂t = yt − ĝ(ut)

were then used to estimate the latent factors. We set k̄ = ⌊2T 1/5⌋; see Theorem 4.2. The simula-

tion results are reported in Table 4 and Fig.5, which present similar patterns as in the first part of

Example 1.
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Figure 3: Boxplots of {D(M(Â),M(A))} for Example 1 with endogeneity, and δ = 0 (3 top

panels) and δ = 0.5 (3 bottom panels).

6 Real data analysis

We illustrate our method by modeling the daily returns of 123 stocks from 2 January 2002 to 11

July 2008. The stocks were selected among those contained in the S&P500 which were traded

everyday during this period. The returns were calculated based on the daily close prices. We have

in total T = 1642 observations with the dimension p = 123. This data has been analyzed in Lam

and Yao (2012). They identified two factors under a pure factor model setting, i.e. model (1) with

zt ≡ 0. Furthermore the estimated factor loading space contains the return of the S&P500. Hence

it can be regarded as one of the two factors. Since the S&P500 index is often viewed as a proxy

of the market index, it is reasonable to take its return as a known factor zt in our model (1). We

calculated the ordinary least square estimator for the regression coefficient matrix D which is now

a 123×1 vector with each element representing the impact of the S&P500 index to the return of the

corresponding stock. As all the estimated elements are positive, indicating the positive correlations

between the returns of market index and the those 123 stocks.

Fig.6 displays the first 30 eigenvalues of M̂, defined as in (6) with k̄ = 1, sorted in the descending

order. The ratio of λ̂i+1/λ̂i in the right panel indicates that there is only one latent factor. Varying

k̄ between 1 to 20 did not alter this result. Fig.6(c) shows that the sparks of the estimated factor

process occur around 22 July, 2002, which is consistent with the oscillations of S&P500 index,

although the S&P500 are less volatile. The autocorrelations of the estimated factors γ̂T

j (yt− D̂zt),

where γ̂j is the unit eigenvector of M̂ corresponding to its jth largest eigenvalue, are plotted in

Fig.7 for j = 1, 2, 3. The autocorrelations of the first factor is significant non-zero. On the other
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Table 3: Relative frequency estimates of P (r̂ = r) for Example 1 with nonstationary factors.

p 100 200 400 600 800
δ = 0 D known T = 0.5p 0.155 0.525 0.855 0.925 0.970

T = p 0.465 0.800 0.940 0.990 0.990
T = 1.5p 0.625 0.890 0.995 0.985 1

D unknown T = 0.5p 0.110 0.525 0.835 0.920 0.970
T = p 0.430 0.780 0.940 0.990 0.990
T = 1.5p 0.595 0.890 0.995 0.985 1

δ = 0.5 D known T = 0.5p 0 0.070 0.175 0.385 0.525
T = p 0.025 0.235 0.535 0.705 0.765
T = 1.5p 0.145 0.475 0.740 0.815 0.860

D unknown T = 0.5p 0 0.055 0.160 0.380 0.520
T = p 0.025 0.215 0.520 0.685 0.760
T = 1.5p 0.125 0.465 0.740 0.805 0.850

Table 4: Relative frequency estimates of P (r̂ = r) for Example 2 (with nonlinear regression).

p 100 200 400 600 800
δ = 0 g known T = 0.5p 0.780 0.865 0.965 0.975 0.985

T = p 0.840 0.920 0.990 1 1
T = 1.5p 0.820 0.990 1 1 1

g unknown T = 0.5p 0.750 0.860 0.955 0.975 0.980
T = p 0.830 0.890 0.990 1 1
T = 1.5p 0.780 0.990 1 1 1

δ = 0.5 g known T = 0.5p 0.270 0.665 0.725 0.430 0.650
T = p 0.390 0.700 0.850 0.810 0.800
T = 1.5p 0.390 0.720 0.885 0.960 1

g unknown T = 0.5p 0.260 0.625 0.665 0.390 0.600
T = p 0.390 0.655 0.760 0.810 0.795
T = 1.5p 0.335 0.700 0.875 0.950 1

hand, there are hardly any significant non-zero autocorrelations for both the second and the third

factors.

To gain some appreciation of the latent factor, we divide the 123 stocks into eight sectors:

Financial, Basic Materials, Industrial Goods, Consumer Goods, Healthcare, Services, Utilities and

Technology. We estimated the latent factor for each of those eight sectors. Those estimated sector

factors are plotted in Fig.8. We observe that those estimated sector factors behave differently

for the different sectors. Especially the Basic Materials sector exhibits the largest fluctuation.

Consequently, we may deduce that the oscillations, especially the sparks, of the estimated factor

in Fig.6(c) are largely due to changes in the Basic Materials sector. This is consistent with the

relevant economics and finance principles. Basic Materials sector includes mainly the stocks of

energy companies such as oil, gas, coal et al. The energy, especially oil, is the foundation for

economic and social development. Hence, the changes in oil price are often considered as important
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Figure 4: Boxplots of {D(M(Â),M(A))} for Example 1 with nonstationary factors, and δ = 0 (3

top panels) and δ = 0.5 (3 bottom panels). Errors obtained using true D are marked with ‘oracle’,

and using D̂ are marked with ‘real’.

events which underpin stock market fluctuations, see, e.g. Jones and Kaul (1996) and Kilian and

Park (2009). During January 2002 to December 2003, international oil price had a huge increase.

It rose 19% from the average in 2002. The 2003 invasion of Iraq marks a significant event as Iraq

possesses a significant portion of the global oil reserve. Hence, the returns of the Basic Materials

sector oscillate dramatically during that period. Among other sectors, Industrial and Consumer

Goods have similar behaviors. However, the returns of both the sectors have little changes around

zero, thus they have little contributions to the estimated factor. The same arguments hold for the

Utilities sector. Also note that the returns for the Financial, Healthcare, Services and Technology

sectors are much less volatile in comparison to that of the Basic Materials sector. We may conclude

that, the estimated factor mainly reflects the feature of stocks in Basic Materials sector. The factor

also contains some market information about the Financial, Healthcare, Services and Technology

sectors, but less so on the Industrial Goods, Consumer Goods and Utilities sectors.

We repeat the above exercise for another set of return data in 14 July 2008 – 11 July 2014

from the 196 stocks contained in S&P500. Now T = 1510 and p = 196. The ratios of λ̂i+1/λ̂i

shown in Fig.9(b) indicate that there is still only one latent factor, in addition to S&P500. The

estimated latent factor shown in Fig.9(c) fluctuated widely around 2009, which is consistent with

the pronounced decline the stock market due to the global financial crisis. While the latent factor

process seems to resemble the returns of S&P500 (see Figs.9(c) and (d)), the two series are or-

thogonal with each other (with the sample correlation coefficient equal to 0.00047). The estimated

factors for each of the eight sectors are plotted in Fig.11. In contrast to the findings in 2002-2008,
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Figure 5: Boxplots of {D(M(Â),M(A))} for Example 2 with nonlinear regression, and δ = 0 (3

top panels) and δ = 0.5 (3 bottom panels). Errors obtained using true g are marked with ‘oracle’,

and using ĝ are marked with ‘real’.

all the eight sectors contributed to the fluctuation around 2009, though the financial sector was

most predominant. The crisis caused by the sharp down-turn of financial industry in early 2009

impacted all sectors in the society.
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Appendix

Throughout the Appendix, we use Cs to denote generic uniformly positive constants only depends

on the parameters Cis appear in the technical conditions which may be different in different uses.

Meanwhile, we denote Axt by ζt. We first present the following lemmas which are used in proofs

of the propositions and theorems.

Lemma 6.1. Under Conditions 2.1-2.2, ‖T−1
∑T

t=1{ztz
T

t − E(ztz
T

t )}‖F = Op(mT−1/2).
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Figure 8: The estimated latent part Axt across different sectors.
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Figure 11: The estimated latent part Axt across different sectors.
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Proof : For any i, j = 1, . . . ,m, by Cauchy-Schwarz inequality and Davydov inequality,

E

[∣∣∣∣
1

T

T∑

t=1

{zi,tzj,t − E(zi,tzj,t)}

∣∣∣∣
2]

=
1

T 2

T∑

t=1

E[{zi,tzj,t − E(zi,tzj,t)}
2]

+
1

T 2

∑

t1 6=t2

E[{zi,t1zj,t1 − E(zi,t1zj,t1)}{zi,t2zj,t2 − E(zi,t2zj,t2)}]

≤
C

T
+

C

T 2

∑

t1 6=t2

α(|t1 − t2|)
1−2/γ ≤

C

T
+

C

T

T∑

u=1

α(u)1−2/γ .

(18)

Then, E{‖T−1
∑T

t=1{ztz
T

t − E(ztz
T

t )}‖
2
F } = O(m2T−1) which implies the result. �

Proof of Proposition 2.1: Note that (D̂ − D)T = (T−1
∑T

t=1 ztz
T

t )
−1(T−1

∑T
t=1 ztη

T

t ) and

λmin(T
−1

∑T
t=1 ztz

T

t ) is bounded away from zero with probability approaching one, which is implied

by Condition 2.3 and Lemma 6.1, then ‖D̂−D‖F = Op(‖T
−1

∑T
t=1 ztη

T

t ‖F ). For each i = 1, . . . ,m

and j = 1, . . . , p, from cov(zt,ηt) = 0 and similar to (18), we can obtain E{(T−1
∑T

t=1 zi,tηj,t)
2} ≤

CT−1. Then, E{‖T−1
∑T

t=1 ztη
T

t ‖
2
F } = O(pT−1). Hence, ‖D̂−D‖F = Op(p

1/2T−1/2). �

Lemma 6.2. Under Conditions 2.1-2.2, if k = o(T ), then

‖Σ̂η(k)−Ση(k)‖F = ‖D− D̂‖2FJ1,k + ‖D− D̂‖FJ2,k + J3,k

where E(J2
1,k) ≤ Ckm2(T −k)−1+Cm2α(k)2−4/γ , E(J2

2,k) ≤ Ckpm(T −k)−1+Cpmα(k)2−4/γ and

E(J2
3,k) ≤ Ckp2(T − k)−1.

Proof : For each k = o(T ),

Σ̂η(k)−Ση(k) =
1

T − k

T−k∑

t=1

(η̂t+kη̂
T

t − ηt+kη
T

t ) +
1

T − k

T−k∑

t=1

{ηt+kη
T

t − E(ηt+kη
T

t )}

+ η̄η̄T −
1

T − k

T−k∑

t=1

η̂t+kη̄
T −

1

T − k

T−k∑

t=1

η̄η̂T

t

= I1,k + I2,k + I3,k + I4,k + I5,k.

As

I1,k = (D− D̂)

(
1

T − k

T−k∑

t=1

zt+kz
T

t

)
(D− D̂)T + (D− D̂)

(
1

T − k

T−k∑

t=1

zt+kη
T

t

)

+

(
1

T − k

T−k∑

t=1

ηt+kz
T

t

)
(D− D̂)T,
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then

‖I1,k‖F ≤ ‖D− D̂‖2F

∥∥∥∥
1

T − k

T−k∑

t=1

zt+kz
T

t

∥∥∥∥
F

+ ‖D− D̂‖F

∥∥∥∥
1

T − k

T−k∑

t=1

zt+kη
T

t

∥∥∥∥
F

+ ‖D− D̂‖F

∥∥∥∥
1

T − k

T−k∑

t=1

ηt+kz
T

t

∥∥∥∥
F

.

For any i, j = 1, . . . ,m,

E

{(
1

T − k

T−k∑

t=1

zi,t+kzj,t

)2}
≤ 2E

([
1

T − k

T−k∑

t=1

{zi,t+kzj,t − E(zi,t+kzj,t)}

]2)
+ 2max

t
{E(zi,t+kzj,t)}

2.

By Cauchy-Schwarz inequality and Davydov inequality,

E

([
1

T − k

T−k∑

t=1

{zi,t+kzj,t − E(zi,t+kzj,t)}

]2)

=
1

(T − k)2

T−k∑

t=1

E[{zi,t+kzj,t − E(zi,t+kzj,t)}
2]

+
1

(T − k)2

∑

t1 6=t2

E[{zi,t1+kzj,t1 −E(zi,t1+kzj,t1)}{zi,t2+kzj,t2 − E(zi,t2+kzj,t2)}]

≤
C

T − k
+

Ck

T − k
+

Ck(k − 1)

(T − k)2
+

C

T − k

T−2k−1∑

u=1

α(u)1−2/γ .

(19)

and {E(zi,t+kzj,t)}
2 ≤ Cα(k)2−4/γ . Then, E[{(T − k)−1

∑T−k
t=1 zi,t+kzj,t}

2] ≤ Ck(T − k)−1 +

Cα(k)2−4/γ . Thus, E{‖(T − k)−1
∑T−k

t=1 zt+kz
T

t ‖
2
F } ≤ Ckm2(T − k)−1 + Cm2α(k)2−4/γ . By the

same argument, we can obtain E{‖(T −k)−1
∑T−k

t=1 zt+kη
T

t ‖
2
F } ≤ Ckpm(T −k)−1+Cpmα(k)2−4/γ

and E{‖(T − k)−1
∑T−k

t=1 ηt+kz
T

t ‖
2
F } ≤ Ckpm(T − k)−1 + Cpmα(k)2−4/γ . Hence, ‖I1,k‖F = ‖D−

D̂‖2F J1,k+‖D−D̂‖FJ2,k where E(J2
1,k) ≤ Ckm2(T−k)−1+Cm2α(k)2−4/γ and E(J2

2,k) ≤ Ckpm(T−

k)−1 +Cpmα(k)2−4/γ . On the other hand, similar to (19), we can obtain E(‖I2,k‖
2
F ) ≤ Ckp2(T −

k)−1. For I3,k, we have E(‖I3,k‖
2
F ) ≤ E(‖η̄‖42). By Jensen inequality and Davydov inequality,

E(‖I3,k‖
2
F ) ≤ Cp2T−1. Following the same way, we have both E(‖I4,k‖

2
F ) and E(‖I5,k‖

2
F ) can be

bounded by Ckp2(T − k)−1. Hence, we complete the proof. �

Lemma 6.3. Under Condition 2.4, for k = 1, . . . , k̄,

‖Ση(k)‖2 ≤ Cp1−δ + Cκ2.

Proof : Note that Ση(k) = AΣx(k)A
T + Σxε(k), then ‖Ση(k)‖2 ≤ ‖A‖22‖Σx(k)‖2 + ‖Σxε(k)‖2.

From Condition 2.4, we complete the proof. �

Lemma 6.4. Under Conditions 2.1-2.4,

‖M̂−M‖2 = Op{(p
1−δ + κ2)pT

−1/2 + p2T−1}.
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Proof : Note that

‖M̂−M‖2 ≤
k̄∑

k=1

‖Σ̂η(k)−Ση(k)‖
2
2 + 2

k̄∑

k=1

‖Ση(k)‖2‖Σ̂η(k)−Ση(k)‖2 = I1 + I2.

By Lemmas 6.2 and 6.3, we can obtain

I1 ≤ 3‖D− D̂‖4F

k̄∑

k=1

J2
1,k + 3‖D− D̂‖2F

k̄∑

k=1

J2
2,k + 3

k̄∑

k=1

J2
3,k = Op(p

2T−1)

and

I2 ≤ 2

{
‖D− D̂‖2F

k̄∑

k=1

J1,k + ‖D− D̂‖F

k̄∑

k=1

J2,k +
k̄∑

k=1

J3,k

}
sup

1≤k≤k̄

‖Ση(k)‖2

= Op{(p
1−δ + κ2)pT

−1/2}.

Hence, we complete the proof. �

Lemma 6.5. Under Condition 2.4,

λr(M) ≥

{
Cp2(1−δ), if κ2 = o(p1−δ);

Cκ21, if p1−δ = o(κ1).

Proof : From (5), we know

λr(M) = λmin

[ k̄∑

k=1

{Σx(k)A
T +Σxε(k)}{Σx(k)A

T +Σxε(k)}
T

]
.

For each k = 1, . . . , k̄,

λmin[{Σx(k)A
T +Σxε(k)}{Σx(k)A

T +Σxε(k)}
T]

≍

{
λmin{Σx(k)Σx(k)

T}, if λmax{Σxε(k)Σxε(k)
T} = o(λmin{Σx(k)Σx(k)

T});

λmin{Σxε(k)Σxε(k)
T}, if λmax{Σx(k)Σx(k)

T} = o(λmin{Σxε(k)Σxε(k)
T}).

Notice Condition 2.4, then

λmin[{Σx(k)A
T +Σxε(k)}{Σx(k)A

T +Σxε(k)}
T] ≥

{
Cp2(1−δ), if κ2 = o(p1−δ);

Cκ21, if p1−δ = o(κ1).

Hence, we complete the proof. �

Proof of Theorem 2.1: By Lemma 6.5, ‖M̂−M‖2 = op{λr(M)} provided that either case (i)

κ2 = o(p1−δ) and p2δT−1 = o(1) or (ii) p1−δ = o(κ1) and κ−2
1 κ2pT

−1/2 = o(1) hold. By Lemma 3

of Lam et al. (2011), and using the same argument of the proof of Theorem 1 in their paper,

‖Â−A‖2 =

{
Op(p

δT−1/2), if κ2 = o(p1−δ) and p2δT−1 = o(1);

Op(κ
−2
1 κ2pT

−1/2), if p1−δ = o(κ1) and κ−2
1 κ2pT

−1/2 = o(1).
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Hence, we complete the proof. �

Proof of Theorem 2.2: Note that

Âx̂t −Axt = ÂÂ
T

Axt + ÂÂ
T

εt −Axt + ÂÂ
T

(η̂t − ηt)

= (ÂÂ
T

−AAT)Axt + Â(Â−A)Tεt + ÂATεt + ÂÂ
T

(η̂t − ηt)

= I1 + I2 + I3 + I4.

For I1, ‖I1‖2 ≤ 2‖Â − A‖2‖Axt‖2 ≤ Op(p
1/2‖Â − A‖2). For I2, ‖I2‖2 ≤ ‖Â − A‖2‖εt‖2 =

Op(p
1/2‖Â − A‖2). For I3, as E(‖I3‖

2
2) =

∑r
i=1E{(aT

i εt)
2} ≤ rλmax(Σε), then I3 = Op(1). For

I4, by Proposition 2.1, ‖I4‖2 ≤ ‖D̂ − D‖2‖zt‖2 = Op(p
1/2T−1/2). Hence, p−1/2‖Âx̂t − Axt‖2 ≤

Op(‖Â−A‖2 + p−1/2 + T−1/2). �

Proof of Theorem 2.3: Let Σζ(k) = (T − k)−1
∑T−k

t=1 cov(ζt+k, ζt), then Σζ(k) = AΣx(k)A
T.

Note that

tr{Σζ(1)
T(Ip − ÂÂT)Σζ(1)} = tr{Σx(1)

T(Ir −ATÂÂTA)Σx(1)}

≥ tr(Ir −ATÂÂTA)λmin{Σx(1)Σx(1)
T}

= r{D(M(Â),M(A))}2λmin{Σx(1)Σx(1)
T}.

By Condition 2.4,

tr{Σζ(1)
T(Ip − ÂÂT)Σζ(1)} ≥ Cp2(1−δ){D(M(Â),M(A))}2.

At the same time,

tr{Σζ(1)
T(Ip − ÂÂT)Σζ(1)} − tr{Σζ(1)

T(Ip −AAT)Σζ(1)}

= tr{AΣx(1)
TAT(AAT − ÂÂT)AΣx(1)A

T}

≤ λmax{A
T(AAT − ÂÂT)A}tr{Σx(1)Σx(1)

T}

≤ Cp2(1−δ)‖AT(AAT − ÂÂT)A‖2.

Note that tr{Σζ(1)
T(Ip −AAT)Σζ(1)} = 0, then

{D(M(Â),M(A))}2 ≤ C‖AT(AAT − ÂÂT)A‖2.

On the other hand, we have the following two inequality,

tr{Σζ(1)
T(Ip − ÂÂT)Σζ(1)} ≤ r{D(M(Â),M(A))}2λmax{Σx(1)Σx(1)

T}

≤ Cp2(1−δ){D(M(Â),M(A))}2

and

tr{Σζ(1)
T(Ip − ÂÂT)Σζ(1)} ≥ λmin{Σx(1)Σx(1)

T}tr{AT(AAT − ÂÂT)A}

≥ Cp2(1−δ)‖AT(AAT − ÂÂT)A‖2.
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Hence,

{D(M(Â),M(A))}2 ≍ ‖AT(AAT − ÂÂT)A‖2.

Note that

AT(AAT − ÂÂT)A = −AT(A− Â)(A− Â)TA+ (A− Â)T(A− Â),

then we complete the proof. �

Proof of Theorem 2.4: As (p1−δ + κ2)pT
−1/2 log T → 0, then ‖M̂−M‖2 = op{λr(M)}. Then

supj=1,...,p |λ̂j − λj(M)| ≤ ‖M̂−M‖2 = op{λr(M)}. For any j < r,

λ̂j+1 + (p1−δ + κ2)pT
−1/2 log T

λ̂j + (p1−δ + κ2)pT−1/2 log T

p
−→ C > 0.

For any j > r, note that ‖M̂ − M‖2 = op{(p
1−δ + κ2)pT

−1/2 log T} which implies that |λ̂j | =

op{(p
1−δ + κ2)pT

−1/2 log T}, then

λ̂j+1 + (p1−δ + κ2)pT
−1/2 log T

λ̂j + (p1−δ + κ2)pT−1/2 log T

p
−→ 1 > 0.

On the other hand,

λ̂r+1 + (p1−δ + κ2)pT
−1/2 log T

λ̂r + (p1−δ + κ2)pT−1/2 log T

p
−→ 0.

Hence, the criterion implies a consistent estimator of r. �

Proof of Proposition 3.1: Following the proof of Lemma 6.1, ‖T−1
∑T

t=1{ztw
T

t −E(ztw
T

t )}‖F =

Op(m
1/2q1/2T−1/2). Note that rank(R) = m and Condition 3.1, it yields λmin(T

−1
∑T

t=1 ztw
T

t R
T)

is bounded away from zero with probability approaching one. Hence, following the proof of Propo-

sition 2.1, we can obtain the result. �

Proof of Proposition 4.1: For each i = 1, . . . , p,

d̂i − di =

(
1

T

T∑

t=1

ztz
T

t

)−1( 1

T

T∑

t=1

ηi,tzt

)
+

(
1

T

T∑

t=1

ztz
T

t

)−1( 1

T

T∑

t=1

ei,tzt

)
.

Then,

‖d̂i − di‖2λmin

(
1

T

T∑

t=1

ztz
T

t

)
≤

∥∥∥∥
1

T

T∑

t=1

ηi,tzt

∥∥∥∥
2

+

∥∥∥∥
1

T

T∑

t=1

ei,tzt

∥∥∥∥
2

.

Note that E(ζt|ut) = 0 and E(εt|ut) = 0, we have ‖T−1
∑T

t=1 ηi,tzt‖2 = Op(m
1/2T−1/2) and

‖T−1
∑T

t=1 ei,tzt‖2 = ‖T−1
∑T

t=1 E(ei,tzt)‖2+Op(m
1/2T−1/2), where Op(m

1/2T−1/2)s are uniformly

for i = 1, . . . , p. On the other hand, ‖E(ei,tzt)‖
2
2 = O(m1−2λ). Thus, we complete the proof. �

Proof of Theorem 4.1: Let z = (l1(u), . . . , lm(u))T. For each i = 1, . . . , p,

ĝi(u)− gi(u) = zT

(
1

T

T∑

t=1

ztz
T

t

)−1{ 1

T

T∑

t=1

zt(ei,t + ζi,t + εi,t)

}
− ei
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where gi(u) = dT

i z+ ei. Hence,

∫

u∈U
|ĝi(u)− gi(u)|

2 du ≤ 2

{
1

T

T∑

t=1

zT

t (ei,t + ζi,t + εi,t)

}(
1

T

T∑

t=1

ztz
T

t

)−1

×

(∫

u∈U
zzT du

)(
1

T

T∑

t=1

ztz
T

t

)−1{ 1

T

T∑

t=1

zt(ei,t + ζi,t + εi,t)

}

+ Cm−2λ.

Let p(ut) be the density function of ut and pick vT such that λmax(
∫
u∈U zzT du) =

∫
u∈U vTzzTv du,

by Condition 4.1,

vTE(ztz
T

t )v =

∫

ut∈U
vTztz

T

t vp(ut) dut ≥ C

∫

ut∈U
vTztz

T

t v dut = Cλmax

(∫

u∈U
zzT du

)
.

From Condition 4.3, we know λmax(
∫
u∈U zzT du) ≤ C which implies

∫

u∈U
|ĝi(u)− gi(u)|

2 du ≤ Op(mT−1) +O(m−2λ).

The terms Op(mT−1) and O(m−2λ) are uniformly for i = 1, . . . , p, thus we complete the proof. �

Lemma 6.6. For nonlinear regression model (14), under Conditions 2.1-2.2, 4.2 and 4.5, if k =

o(T ), then

‖Σ̂η(k)−Ση(k)‖F = ‖D− D̂‖2FJ1,k + ‖D− D̂‖FJ2,k + J3,k

where E(J2
1,k) ≤ Ckm2(T −k)−1+Cm2α(k)2−4/γ , E(J2

2,k) ≤ Ckpm(T −k)−1+Cpmα(k)2−4/γ and

E(J2
3,k) ≤ Ckp2(T − k)−1 + Cp2m−2λα(k)2−4/γ .

Proof : Noting supt ‖et‖∞ = O(m−λ), similar to Lemma 6.2, we can obtain the result. �

Lemma 6.7. Under Conditions 2.1-2.2, 2.4, 4.2-4.5, if mT−1/2 = o(1), k̄T−1/2 = o(1) and λ ≥ 1,

then

‖M̂−M‖2 = Op{(p
1−δ + κ2)p[(k̄

3/2 +m)T−1/2 +m1−λ]}+Op{p
2[(k̄2 +m2)T−1 +m2−2λ]}.

Proof : Note that ‖M̂ − M‖2 ≤
∑k̄

k=1{‖Σ̂η(k) − Ση(k)‖
2
2 + 2‖Ση(k)‖2‖Σ̂η(k) − Ση(k)‖2}. By

Lemma 6.6, we complete the proof. �

Proof of Theorem 4.2: Note that m = O(T 1/(2λ+1)), then

‖M̂−M‖2 = Op{(p
1−δ + κ2)p(k̄

3/2T−1/2 + T (1−λ)(2λ+1)) + p2(k̄2T−1 + T (2−2λ)/(2λ+1))}.

Similar to the proof of Lemma 6.5, we have

λr(M) ≥

{
Ck̄p2(1−δ), if κ2 = o(p1−δ);

Ck̄κ21, if p1−δ = o(κ1).
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Then, by Lemma 6.7, ‖M̂−M‖2 = op{λr(M)} provided that either (i) κ2 = o(p1−δ) and p2δ[k̄T−1+

T (2−2λ)/(2λ+1) ] = o(1) or (ii) p1−δ = o(κ1) and p2κ22κ
−4
1 [k̄T−1 + T (2−2λ)/(2λ+1)] = o(1) hold. Using

the same argument of the proof of Theorem 2.1, we obtain the result. �

Proof of Theorem 4.3: Following the arguments of the proof of Theorem 2.2, we can construct

the result. �
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