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Abstract

While it is common practice in applied network analysis to report various stan-

dard network summary statistics, these numbers are rarely accompanied by un-

certainty quantification. Yet any error inherent in the measurements underlying

the construction of the network, or in the network construction procedure itself,

necessarily must propagate to any summary statistics reported. Here we study the

problem of estimating the density of an arbitrary subgraph, given a noisy version of

some underlying network as data. Under a simple model of network error, we show

that consistent estimation of such densities is impossible when the rates of error are

unknown and only a single network is observed. Accordingly, we develop method-

of-moment estimators of network subgraph densities and error rates for the case

where a minimal number of network replicates are available. These estimators are

shown to be asymptotically normal as the number of vertices increases to infinity.

We also provide confidence intervals for quantifying the uncertainty in these esti-

mates based on the asymptotic normality. To construct the confidence intervals, a

new and non-standard bootstrap method is proposed in order to compute asymp-

totic variances, which is infeasible otherwise. We illustrate the proposed methods

in the context of gene coexpression networks.

KEY WORDS: Bootstrap; Edge density; Graph; Method of moments; Triangles; Two-

stars.
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1 Introduction

An applied analysis in network science typically includes the following three steps: (i)

gather basic measurements relevant to the interactions among elements in a system of

interest, (ii) construct a network-based representation of that system, with nodes serving

as elements and links indicating interactions between pairs of elements, and (iii) report

various numerical summaries of network structure (e.g., density, centralities, etc.). Nec-

essarily, uncertainty at the level of the basic measurements in the first step will propagate

to the network constructed in the second step and thus to the summaries reported in the

third step.

The potential for measurement error arises in nearly every network analysis applica-

tion. Here, by ‘measurement error’ we will specifically mean true edges being observed

as non-edges, and vice versa – there are, of course, other notions of error that might

be considered. Such edge noise occurs in online social networks (e.g., Facebook), which

are often based on the extraction and merging of lists of ‘friends’ from millions of indi-

vidual accounts, where uniqueness of names is not assured. Similarly, it can be found

in biological networks (e.g., of gene regulatory relationships), which are often based on

notions of association (e.g., correlation, partial correlation, etc.) among experimental

measurements of gene activity levels that are determined by some form of statistical in-

ference. Finally, maps of the logical internet traditionally have been synthesized from

the results of surveys in which paths along which information flows are learned exper-

imentally through a large set of packet probes (e.g., via traceroute). See Chapter 3.5

of Kolaczyk (2009) for several detailed examples of applied network analyses associated

with such data.

That there is measurement error associated with these and other common types of

network constructions is typically well-understood by practitioners. And in many settings
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the general issue has received substantial attention, such as, for example, in the context

of protein-protein interaction networks (e.g., Hart, Ramani, and Marcotte (2006)) or so-

cial networks (e.g, Almquist (2012)). But, to our best knowledge, there has been little

attention to date given towards formal development of statistical methods accounting

for propagation of network error. Exceptions include statistical methodology for predict-

ing network topology or attributes with models that explicitly include a component for

network noise (e.g., Jiang, Gold, and Kolaczyk (2011); Jiang and Kolaczyk (2012)), the

‘denoising’ of noisy networks (e.g. Chatterjee (2015)), and the adaptation of methods for

vertex classification using networks observed with errors (Priebe et al., 2015).

Motivating our own work is that of Balachandran, Kolaczyk, and Viles (2017). Work-

ing with the analogue of a ‘signal plus noise’ model for networks, these authors character-

ize the asymptotic distribution of the empirical edge density (i.e., formally, the density of

observed edges) in noisy networks, in the context of what they call low-rate measurement

error. Gan and Kolaczyk (2018) offer a refinement. The edge density is an important

prototype, as it is a fundamental characteristic of networks. Its calculation generally is

one of the first steps in an applied network analysis, analogous to computing a sample

mean in analyzing traditional data. Additionally, the edge density is understood to be

a key driver of various other network characteristics – for example, placing limits on

the frequency of higher-order subgraphs (e.g., Turán (1941)). We note that the work in

these two papers is entirely probabilistic in nature, focused on approximation error using

Stein’s method. Here our focus is statistical in nature.

In particular, here we study the problem of estimating subgraph densities, with the

edge density serving as a critical initial case. We adopt a simple model for noisy networks

that, conditional on some true underlying network, assumes we observe a version of that

network corrupted by an independent random noise that effectively flips the status of

(non)edges. If it is known the rates at which edges are instead observed as non-edges,
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and non-edges as edges, then it is straightforward to construct a moment-based estimator

of the density of a given subgraph of interest from a single noisy network. However, in

the more realistic setting in which one or both of these error rates are unknown and

must themselves be estimated, the problem of identifiability arises. The problem in this

case is analogous to estimation under a two-component mixture model. We show that

consistent estimation of any subgraph density is in fact impossible under this setting.

The primary contribution in this paper is our development of method-of-moments

estimators for network subgraph densities and the underlying rates of error when repli-

cates of the observed network are available. Beginning with the fundamental case of

edge density, we provide estimators that are asymptotically normal (as the number of

vertices increases to infinity) when one or both of the error rates are unknown, using

a minimum of two or three replicates, respectively. The asymptotic normality in turn

facilitates interval estimation for network edge density. We then extend the method-of-

moments estimator to the context of an arbitrary higher-order subgraph density, and

illustrate with the cases of two-star and triangle densities, as well as the clustering coef-

ficient (or transitivity). To construct their confidence intervals, a new and non-standard

bootstrap method is proposed in order to compute asymptotic variances, which is infeasi-

ble otherwise. Numerical simulation suggests that high accuracy is possible for networks

of even modest size. We illustrate the practical use of our estimators in the context of

gene coexpression networks, where a small number of replicates of the basic underlying

measurements (e.g., microarray expression) are frequently available.

It is difficult to overstate how ubiquitous is the use of subgraph densities in empirical

network analysis. As a result, our work here is relevant to a broad and diverse cross-

section of literature in humanities, social, and natural sciences, as touched by the applied

network analysis literature. Certain subgraph densities (i.e., the edge density and the two-

star and triangle densities, through the clustering coefficient) are reported as commonly
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in network analysis as one reports, say, the mean, median, and standard deviation in

standard data analysis. In fact, they feature in what at least one author has termed

“the network analysis ‘five-number summary’ ” (Luke (2015)). Prolific use of subgraph

densities is also found in the so-called ‘triad census’ that is standard in social network

analysis (e.g., Wasserman and Faust (1994)) and in the context of ‘motif analysis’ (Milo

et al. (2002)), the latter being fundamental to both computational biology (e.g., Stone,

Simberloff, and Artzy-Randrup (2019)) and computational neuroscience (e.g., Sporns

and Betzel (2016)).

To date researchers doing empirical network analysis have necessarily had to report

these and other types of subgraph densities simply as descriptive summaries, lacking a

statistically principled framework for assessing and correcting for bias and for quantifying

uncertainty due to network noise. Our work here not only provides such a framework

but also demonstrates, in the context of a typical exercise in computational biology, that

the nature and impact of network noise on the standard practice of reporting subgraph

densities is almost surely more nuanced and pronounced than the general practitioner

likely imagines. In addition, of independent interest specifically to statisticians within our

work are (i) the impossibility theorem described in Theorem 1, and (ii) the nonstandard

bootstrap algorithm following Theorem 4.

The rest of the paper is organised as follows. Section 2 introduces the problem to

be tackled. Section 3 deals with the estimation of error rates and the inference of edge

density. It also reveals the innate difficulty associated with estimation when the error

rates are unknown. Section 4 addresses the inference of subgraph densities in general.

Numerical illustration is reported in Section 5. All technical proofs are relegated to

supplementary materials.
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2 Notation, assumptions, and problem statement

2.1 Noisy networks

Let G = (V,E) be a graph, with vertices V = {1, . . . , p} and edges E ⊆ V 2. We observe

a noisy version of G, say, Gobs = (V,Eobs), where we implicitly assume that the vertex

set V is known. Let p = |V |. Denote the p× p adjacency matrix of G by A = (Ai,j)p×p,

and that of Gobs by Y = (Yi,j)p×p. Hence Ai,j = 1 if there is a true edge between the i-th

vertex and the j-th vertex, and 0 otherwise, while Yi,j = 1 if an edge is observed between

the i-th vertex and the j-th vertex, and 0 otherwise. We assume throughout that G and

Gobs are simple, i.e., that they possess neither multi-edges nor self-loops. An implication

of the latter is that Ai,i = Yi,i ≡ 0. Note that for the sake of exposition, we assume G

to be undirected. Then Ai,j = Aj,i and Yi,j = Yj,i for any i 6= j. Extension to directed

graphs is straightforward and discussed briefly in Section 6.

Following Balachandran, Kolaczyk, and Viles (2017), we specify the errors in the

noisy network Gobs as follows:

P(Yi,j = 1 |Ai,j = 0) = α and P(Yi,j = 1 |Ai,j = 0) = α (1)

for any 1 ≤ i < j ≤ p. Note that α and β may be interpreted, respectively, as Type I and

II error rates. We assume that both α and β remain constant over different edges. For

some applications, α is known as, for example, the nominal significance level of statistical

tests for the null hypothesis that there is no edge between one vertex and another. If one

applies the same test method over different vertex pairs, and assumes (approximately)

equal strength of ‘signal’ across the network, then the power of the test 1 − β, though

unknown, also remains (approximately) the same.

Inspired by the conventional treatment of regression analysis in which inference is
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conditionally on regressors (i.e. treating them as constants) and with additive noise, we

treat Ai,j as constants and assume

Yi,j = Ai,jI(εi,j = 0) + I(εi,j = 1) (2)

for any 1 ≤ i < j ≤ p, where I(·) denotes the indicator function, and {εi,j} are specified

in Assumption 1 below.

Assumption 1. The εi,j , for all 1 ≤ i < j ≤ p, are independent random variables with

P(εi,j = 1) = α, P(εi,j = 0) = 1 − α − β and P(εi,j = −1) = β, where α, β ≥ 0 and

α + β < 1.

Now (1) follows from (2) and Assumption 1 immediately. The independence condition

in Assumption 1 is not strictly necessary. See Remark 1 in Section 3.2.1.

2.2 Subgraph density

A standard quantity of general interest in practice is the density of certain subgraphs

in G. Subgraphs of common interest include (i) edges, (ii) two-stars (also called triples)

and other higher-order k-stars, (iii) triangles and other higher-order cliques, (iv) chains,

and (v) cycles. Subgraph density is simply the total number of times a given subgraph,

say H, is found in G (where, note, overlap among copies of H is allowed), divided by

the maximum number of copies possible in a graph of the same number of vertices as

G. There are different ways to express this notion formally. Intuitively, for example, the

count fH(G) of the number of distinct copies of a subgraph H in G is represented as

fH(G) =
1

|Iso(H)|
∑

H′⊆Kp,H′∼=H

I(H ′ ⊆ G) , (3)
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where Kp is the complete graph on p vertices and H ⊆ G indicates that H is a subgraph

of G (i.e., V (H) ⊆ V (G) and E(H) ⊆ E(G)). The value |Iso(H)| is a normalization

factor for the number of isomorphisms of H. Normalizing fH(G), in turn, by the total

number of copies of H possible in the complete graph Kp then yields the density of

subgraph H in G.

For our purposes, it is more convenient to adopt an alternative expression for sub-

graph density – albeit one that is notationally more cumbersome. Consider an arbitrary

subgraph H = (VH , EH) of interest, of order |VH | ≥ 2. We characterize such subgraphs

in terms of an index set V = VH of the following generic form

V = {(i1, i′1, . . . , ik, i′k) : iℓ 6= i′ℓ for each ℓ = 1, . . . , k, |{iℓ1 , i′ℓ1} ∩ {iℓ2 , i′ℓ2}| ≤ 1

for any ℓ1 6= ℓ2, and i1, i
′
1, . . . , ik, i

′
k also

satisfying other restrictions imposed by H} ,

(4)

and k prescribed values τ1, . . . , τk ∈ {0, 1}. We then represent the subgraph density for

any subgraph H in G as

CV(τ1, . . . , τk) =
1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

Aτ1
i1,i′1

(1− Ai1,i′1
)1−τ1 · · ·Aτk

ik,i
′
k
(1− Aik,i

′
k
)1−τk . (5)

Here we adopt the convention 00 = 1.

The quantity CV(τ1, . . . , τk) defined in (5) is quite general. For example, if we let

k = 1 and τ1 = 1, it reduces to the edge density defined in (6) below, which is arguably

the most important single-number summary for networks. If we select τ1 = · · · = τk = 1

and V = {(i1, i′1, . . . , ik, i′k) : i′ℓ = iℓ+1 for each ℓ = 1, . . . , k − 1, i1 6= i2 6= · · · 6= ik 6= i′k},

then

CV(τ1, . . . , τk) =
1

p · · · (p− k)

∑

i1 6=···6=ik+1

Ai1,i2 · · ·Aik,ik+1
,
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which is the density of k connected edges in G passing through k + 1 different nodes –

that is, the density of paths of length k. If in addition we impose the constraint that

the path must start and end with the same vertex, we select τ1 = · · · = τk = 1 and

V = {(i1, i′1, . . . , ik, i′k) : i′ℓ = iℓ+1 for each ℓ = 1, . . . , k − 1, i′k = i1, i1 6= i2 6= · · · 6= ik},

yielding

CV(τ1, . . . , τk) =
1

p · · · (p− k + 1)

∑

i1 6=···6=ik

Ai1,i2 · · ·Aik,i1 ,

which is the density of cycles of length k in G. An important special case of the latter is

when k = 3, which yields the density of closed triples in G (generally interpreted as three

times the density of triangles). Similarly, if the summands Ai1,i2Ai2,i3Ai3,i1 associated

with the triangle density are instead replaced by Ai1,i2Ai2,i3(1 − Ai3,i1), we obtain the

density of (open) connected triples or two-stars. In turn, the ratio of the first of these

two quantities to its sum with the second defines the clustering coefficient (also called the

transitivity) of G – arguably the second most important summary statistic in practice

after the edge density.

In practice, given a noisy network, researchers currently report the empirical sub-

graph densities (i.e., CV applied to Gobs with adjacency matrix Y ) and assume that they

are reflective of the corresponding true subgraph densities (i.e., CV applied to G with

adjacency matrix A). The work of Balachandran, Kolaczyk, and Viles (2017) shows that,

under conditions similar to those assumed here, there is in general no reason to expect

that these empirical (or ‘plug in’) estimates are even consistent. Our goal in this paper

is to produce principled and accurate estimates of subgraph densities. In what follows,

we treat the estimation of edge density as a special base case, which helps inform the

exposition of our results for general subgraph density estimation.
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3 Inference for edge density

In this section, we consider inference of the edge density with unknown error rates α

and β. The edge is the simplest subgraph. The count of the number of edges or, upon

normalisation, the so-called edge density (aka network density) is defined as follows:

δ =
2

p(p− 1)

∑

i<j

Ai,j . (6)

It is both useful, from the perspective of our mathematical development, and fundamen-

tal, from the perspective of network theory and applications, to focus first on the edge

density δ as the estimand of interest. It reveals the innate difficulty associated with

estimation under unknown error rates. See Section 3.1 below. The inference for general

subgraphs will be presented in Section 4.

3.1 Difficulty of estimating subgraph densities

Consider estimation of the network edge density δ in (6). Figure 1 presents a simple

visual illustration of our task. The network on the left with p = 15 nodes is defined

by a deterministic adjacency matrix A with 19 edges, and hence the network density

δ = 2× 19/(15× 14) = 0.181. The noisy network on the right defined by the adjacency

matrix Y was observed with 24 edges, where Y = (Yi,j)15×15 is generated from A by (2)

with α = 5% and β = 15%. Our task is to estimate δ based on Y.

A natural estimator for δ is given by

Ȳ =
2

p(p− 1)

∑

i<j

Yi,j .

In the illustration of Figure 1, this value is Ȳ = 0.229, in comparison to the true value
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Figure 1: Left Panel – True network G, with p = 15 nodes and density δ = 0.181. Right
Panel – Noisy network Gobs, with α = 0.05, β = 0.15 and Ȳ = 0.229. The goal is to
estimate δ based on Y .

δ = 0.181. Let S = {(i, j) : Ai,j = 1, i < j} and Sc = {(i, j) : Ai,j = 0, i < j}. From

(6), we know Ȳ is a biased estimator for δ. More specifically, we have

E(Ȳ ) =
2

p(p− 1)

∑

(i,j)∈S

E(Yi,j) +
2

p(p− 1)

∑

(i,j)∈Sc

E(Yi,j)

= δ(1− β) + (1− δ)α .

(7)

But if α and β are known, (7) suggests estimating δ instead by

Ỹ =
Ȳ − α

1− α− β
. (8)

Equation (8) defines a consistent estimator for δ.

In practice, however, values for α and β typically are not readily obtainable, and

one or both must be estimated. This makes the problem of estimating δ decidedly more

difficult. In fact, it is essentially impossible to estimate any subgraph count fH(G) from

a single noisy observation Gobs.
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Formally, let M = {(α, β,A) : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, Ai,j = 0 or 1, Ai,j = Aj,i} be the

class of all models defined under (2) and Assumption 1. For any model M = (α, β,A) ∈

M, we define its dual model as M∗ = (1 − β, 1 − α,A∗), where A∗ = (A∗
i,j)p×p satisfies

A∗
i,j = 1− Ai,j for any i 6= j. Denote by FM and FM∗ the joint distributions of Y when

Y follows models M and M∗, respectively. Finally, for a given subgraph density f of

interest, define

df = sup
M∈M

|f(M)− f(M∗)| ,

where f(M) and f(M∗) are the associated subgraph densities based on model M and its

dual model M∗, respectively. We then have the following result. Note that Theorem 1

holds for any subgraph density f . When f is the edge density, df = 1.

Theorem 1. Write E for the class of all measurable functionals of the data Y. Let

Assumption 1 hold. If df > 0, then it holds that

inf
f̂∈E

sup
M

P

(
|f̂ − f | > df

2

)
≥ 1

2
.

Theorem 1 indicates that it is in general impossible to produce a consistent estimate

of a subgraph density f based on only one noisy version of the adjacency matrix A.

To build intuition for the difficulty of this problem, consider again equation (7), which

indicates that Ȳ is an unbiased estimate of

u1 ≡ (1− δ)α + δ(1− β) ,

rather than of δ. This observation suggests use of the (asymptotically) unbiased estimat-

ing equation

û1 = (1− δ)α + δ(1− β) , (9)
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where û1 = Ȳ . It is obvious that α, β and δ cannot all be uniquely identified from this

single equation.

Fortunately, in certain key areas of application we may observe more than one noisy

version of the target network G. For example, in computational biology, the common

use of replicates at the most basic level of measurement (e.g., microarray expression)

often allows for the construction of replicate networks (e.g., coexpression networks), as

we demonstrate in Section 5. Similarly, in the context of computational neuroscience, it

has become common now to obtain imaging measurements (e.g., fMRI) on multiple indi-

viduals within a given subpopulation (e.g., healthy females of a given age) and to create

networks (e.g., functional connectivity networks) for each individual. In the remainder of

this section, we demonstrate how to estimate the edge density of the adjacency matrix A

consistently using just two or three replicates. We then develop generalizations of these

results for the case of arbitrary subgraphs in Section 4.

3.2 Estimation of unknown error rates

3.2.1 One of α or β known

In some settings, one of either α or β may be known. For example, if the edges in Y

are inferred through formal hypothesis testing, then α would be the user-specified rate

of Type I error. In this case, there are only two unknown parameters that need to be

estimated, and we demonstrate how two replicates are sufficient to do so.

Suppose that Y is defined as above, and that Y∗ = (Yi,j,∗)p×p is an independent and

identically distributed replicate of Y. Both are then noisy versions of the same adjacency

matrix A, observed with the same error rates α and β. It follows from (2) that for (i, j)
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with Ai,j = 1,

Yi,j,∗ − Yi,j =





−1 , with probability β(1− β) ,

0 , with probability 1− 2β(1− β) ,

1 , with probability β(1− β) ,

and for (i, j) with Ai,j = 0,

Yi,j,∗ − Yi,j =





−1 , with probability α(1− α) ,

0 , with probability 1− 2α(1− α) ,

1 , with probability α(1− α) .

Similar to (7), we have

E

{
2

p(p− 1)

∑

i<j

|Yi,j,∗ − Yi,j|
}

= 2{(1− δ)α(1− α) + δβ(1− β)} .

Let

u2 ≡ (1− δ)α(1− α) + δβ(1− β) , (10)

for which the method of moment estimate is

û2 =
1

p(p− 1)

∑

i<j

|Yi,j,∗ − Yi,j| .

Therefore, we have a second estimating equation:

û2 = (1− δ)α(1− α) + δβ(1− β) . (11)
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Combining (9) and (11), when α is known, the estimators for β and δ are





β̂ =
û2 − α + û1α

û1 − α
,

δ̂ =
(û1 − α)2

û1 − û2 − 2û1α + α2
,

(12)

and when β is known, the estimators for α and δ are





α̂ =
û1β − û2
û1 + β − 1

,

δ̂ =
û21 − û1 + û2

û1 + û2 − 2û1β − (1− β)2
.

(13)

The following proposition gives the convergence rates for the proposed estimators.

Proposition 1. Let N = p(p− 1)/2. Under Assumption 1, if N1 = p(p− 1)δ → ∞ and

N2 = p(p− 1)(1− δ) → ∞, it holds that (i) β̂ = β +Op(N
−1/2) and δ̂ = δ +Op(N

−1/2),

provided that α is known and δ(1 − α − β)2 ≥ c for some positive constant c, (ii) α̂ =

α+Op(N
−1/2) and δ̂ = δ+Op(N

−1/2), provided that β is known and (1−δ)(1−α−β)2 ≥ c

for some positive constant c.

Remark 1. Since our estimation of the unknown parameters is based on moment esti-

mation, the independent noise dictated by Assumption 1 is not strictly necessary. As is

shown in the proof of Proposition 1, the convergence rate for the moment estimation of

the unknown parameters is determined by the convergence rates of û1 − u1 and û2 − u2.

For any i < j, let ei,j = I(εi,j = 0, 1) − (1 − β) for (i, j) ∈ S and ei,j = I(εi,j = 1) − α

for (i, j) ∈ Sc. Recall P(εi,j = 1) = α, P(εi,j = 0) = 1 − α − β and P(εi,j = −1) = β.

Then E(ei,j) = 0 for any i < j. If Var(N−1/2
∑

i<j ei,j) ≤ C for some positive constant

C, then û1 = u1 + Op(N
−1/2) without the independence assumption. When Assump-

tion 1 is satisfied, Var(N−1/2
∑

i<j ei,j) = δβ(1 − β) + (1 − δ)α(1 − α). Analogously,

û2 = u2 + Op(N
−1/2) still holds when some dependency among εi,j (i < j) is present.
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Hence, the results of Proposition 1 still hold when there is some dependency among εi,j

(i < j).

Remark 2. It is not strictly necessary thatY∗ derive from the same underlying adjacency

matrix A as Y. More specifically, let A∗ = (Ai,j,∗)p×p be the adjacency matrix underlying

the observation Y∗, and let B1 = {(i, j) : Ai,j = Ai,j,∗, i < j}. The average of |Yi,j,∗−Yi,j|

over B1 provides an unbiased estimator for the parameter u2 defined in (10), while the

original estimator û2 defined in (11) is no longer unbiased if |B1| < p(p − 1)/2. As long

as θ1 = 2|B1|/{p(p− 1)} is sufficiently close to 1, e.g. |1− θ1| = o(p−1), the bias term in

û2 will be asymptotically negligible, which means the estimators (12) and (13) will still

be consistent.

Theorem 2. Let N = p(p − 1)/2. Under Assumptions 1, if N1 = p(p − 1)δ → ∞

and N2 = p(p − 1)(1 − δ) → ∞, it holds that (i)
√
N(β̂ − β, δ̂ − δ)T →d N (0,Σ1,α)

with Σ1,α defined as (35), provided that α is known and δ(1 − α − β)2 ≥ c for some

positive constant c, (ii)
√
N(α̂ − α, δ̂ − δ)T →d N (0,Σ1,β) with Σ1,β defined as (36) in

the Appendix, provided that β is known and (1 − δ)(1 − α − β)2 ≥ c for some positive

constant c.

We can construct approximate confidence intervals for δ based on the asymptotic

normality stated in Theorem 2. Let σ2 denote the asymptotic variance of
√
N(δ̂ −

δ). Then σ depends on unknown parameters δ and β or α. Replacing those unknown

parameters by their estimates, we obtain an estimated asymptotic variance denoted by

σ̂2. Then an approximate 95% confidence interval for δ is

(
δ̂ − 1.96σ̂N−1/2, δ̂ + 1.96σ̂N−1/2

)
. (14)
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3.2.2 Both α and β unknown

When both α and β are unknown, together with δ there are three unknown parameters to

be estimated. We show that three replicates are sufficient for asymptotically consistent

estimation in this setting.

Let Y,Y∗ and Y∗∗ be independent and identically distributed replicates from (2).

Hence, for (i, j) with Ai,j = 1,

Yi,j,∗∗ − 2Yi,j,∗ + Yi,j =





−2 , with probability β2(1− β) ,

−1 , with probability 2β(1− β)2 ,

0 , with probability β3 + (1− β)3 ,

1 , with probability 2β2(1− β) ,

2 , with probability β(1− β)2 ,

and for (i, j) with Ai,j = 0,

Yi,j,∗∗ − 2Yi,j,∗ + Yi,j =





−2 , with probability α(1− α)2 ,

−1 , with probability 2α2(1− α) ,

0 , with probability α3 + (1− α)3 ,

1 , with probability 2α(1− α)2 ,

2 , with probability α2(1− α) .

Arguing in a fashion analogous to that used in producing the parameters u1 and u2,

we emerge with the parameter

u3 ≡ (1− δ)α(1− α)2 + δβ2(1− β) , (15)
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with corresponding method of moment estimator

û3 =
2

3p(p− 1)

∑

i<j

I(Yi,j,∗∗ − 2Yi,j,∗ + Yi,j = 1 or− 2) ,

from which we obtain a third estimating equation:

û3 = (1− δ)α(1− α)2 + δβ2(1− β) . (16)

Combining (9), (11), and (16), we have a nonlinear system of three equations with

three unknowns. This nonlinear system can be solved by some simple numerical itera-

tions. For example, it follows from (15) that

α̂ =
û3 − δβ2(1− β)

(1− δ)(1− α)2
. (17)

Starting with an initial value α0, we compute the estimates for β, δ and α recursively

using (12) and (17) until two successive values for α̂ are smaller than a prescribed small

number. Analogous to Proposition 1 and Theorem 2, we have the following result.

Theorem 3. Let N = p(p − 1)/2. Under Assumptions 1, if N1 = p(p − 1)δ → ∞ and

N2 = p(p − 1)(1 − δ) → ∞, it holds that α̂ = α + Op(N
−1/2), β̂ = β + Op(N

−1/2) and

δ̂ = δ + Op(N
−1/2), provided that δ(1− δ)(1− α − β)4 ≥ c for some positive constant c.

More specifically, we have
√
N(α̂−α, β̂−β, δ̂− δ)T →d N (0,Σ2) with Σ2 defined as (37)

in the Appendix.

4 Inference for higher-order subgraph densities

Now we address the inference of higher-order subgraph densities CV(τ1, . . . , τk) defined

in (5) with k ≥ 2. We continue to use method of moments estimation, but with the error
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rates α and/or β replaced by their estimators obtained in Section 3.2. The resulting

estimators admit a uniform representation; see (25) below. However, interval estimation

for CV(τ1, . . . , τk) requires the evaluation of an asymptotic variance that is a function of

the individual (unknown) network edges Aij . Accordingly, we propose a new and non-

standard bootstrap method to overcome this obstacle. To highlight the key ideas, we

first proceed in Section 4.1 with both α and β assumed to be known. The development

with unknown α and β is then presented in Section 4.2.

4.1 Inference for subgraph densities with known error rates

In this subsection, we assume that both α and β are known. All inference will be based

on one observed network Y = (Yi,j)p×p only. It follows from (2) and Assumption 1 that

Ai,j =
E(Yi,j − α)

1− α− β
and 1− Ai,j =

E(1− β − Yi,j)

1− α− β
.

Hence (5) admits a more compact representation

CV =: CV(τ1, . . . , τk) =
1

(1− α− β)k
· 1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

k∏

ℓ=1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
,

where

ϕℓ(x) = (x− α)τℓ(1− β − x)1−τℓ . (18)

Note that |{iℓ1 , i′ℓ1} ∩ {iℓ2 , i′ℓ2}| ≤ 1 for any ℓ1 6= ℓ2, Assumption 1 implies that the

{Yiℓ,i′ℓ}kℓ=1 are independent of each other. Therefore, a natural method of moments esti-

mator for CV can be defined as

C̃V =
T̃V

(1− α− β)k
, (19)
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where

T̃V =
1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)
.

To state the asymptotic properties of C̃V , we need to introduce some notation. For

any v = (i1, i
′
1, . . . , ik, i

′
k) ∈ V with V given in (4) and 1 ≤ ℓ1 < · · · < ℓs ≤ k with

1 ≤ s ≤ k − 1, we define

Gℓ1,...,ℓs(v) = {(θ1, θ′1, . . . , θs, θ′s) : (i1, i′1, . . . , iℓ1−1, i
′
ℓ1−1, θ1, θ

′
1,

iℓ1+1, i
′
ℓ1+1, . . . , iℓ2−1, i

′
ℓ2−1, θ2, θ

′
2,

. . . , iℓs−1, i
′
ℓs−1, θs, θ

′
s, iℓs+1, i

′
ℓs+1, . . . , ik, i

′
k) ∈ V} .

In turn, we define the quantity

ℵV(s) = max
v∈V

max
1≤ℓ1<···<ℓs≤k

|Gℓ1,...,ℓs(v)| (20)

and

ℵV = max
1≤s≤k−1

ℵV(s) .

Proposition 2. Under Assumption 1, if |1− α− β| ≥ c for some positive constant c, it

holds that |C̃V − CV | = Op(
√
ℵV/|V|) as p→ ∞.

Notice that ℵV(1) ≤ · · · ≤ ℵV(k − 1), so that ℵV = ℵV(k − 1). If we select V =

{(i1, i′1, . . . , ik, i′k) : i′ℓ = iℓ+1 for each ℓ = 1, . . . , k − 1, i1 6= i2 6= · · · 6= ik 6= i′k}, which

corresponds to counting paths of length k ≥ 2, then |V| = p · · · (p−k) and ℵV(s) = (p−k+

s− 1) · · · (p− k) for any 1 ≤ s ≤ k − 1. Alternately, if we select V = {(i1, i′1, . . . , ik, i′k) :

i′ℓ = iℓ+1 for each ℓ = 1, . . . , k − 1, i′k = i1, i1 6= i2 6= · · · 6= ik}, which corresponds to

counting cycles of length k ≥ 3, then |V| = p · · · (p − k + 1), ℵV(1) = 1 and ℵV(s) =

(p− k + s− 1) · · · (p− k + 1) for any 2 ≤ s ≤ k − 1. As a result, in the case of counting
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paths or cycles of length k, ℵV/|V| = {p(p − 1)}−1. Letting N = p(p − 1)/2, we then

have |C̃V − CV | = Op(N
−1/2).

To investigate the asymptotic distribution of C̃V − CV , we require the following mild

assumption.

Assumption 2. (i) ℵV(s)/ℵV → 0 for any 1 ≤ s ≤ k − 2, and (ii)

max
v∈V

max
1≤ℓ1<···<ℓk−1≤k

|Gℓ1,...,ℓk−1
(v)| ≍ min

v∈V
min

1≤ℓ1<···<ℓk−1≤k
|Gℓ1,...,ℓk−1

(v)| .

Let

SV =

√
N

(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

[
Y̊ij ,i′j

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]
, (21)

where Y̊ij ,i′j = Yij ,i′j − E(Yij ,i′j) and ϕℓ(·) is defined as (18).

Proposition 3. Let N = p(p−1)/2, ℵV/|V| ≍ N−1 and |1−α−β| ≥ c for some positive

constant c. Under Assumptions 1 and 2, it holds that
√
N(C̃V −CV) = SV + op(1) for SV

defined as (21).

Recall Yi,j = Yj,i for any i 6= j, and

max
v∈V

max
1≤ℓ1<···<ℓk−1≤k

|Gℓ1,...,ℓk−1
(v)| ≍ min

v∈V
min

1≤ℓ1<···<ℓk−1≤k
|Gℓ1,...,ℓk−1

(v)| .

Notice that ℵV/|V| ≍ N−1. Then it holds that

SV =
1√
N

∑

i<j

Y̊i,jKi,j

for some constants Ki,j. Since {Yi,j}i<j are independent, it follows from the Central Limit
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Theorem that
√
N(C̃V − CV)

d−→ N (0, σ2
V)

as p→ ∞, where the asymptotic variance σ2
V satisfies

σ2
V = lim

p→∞

1

N

∑

i<j

K2
i,jVar(Yi,j) . (22)

It is easy to see from (2) that Var(Yi,j) = Ai,j(1− α − β)(β − α) + α(1− α). As we

do not know Ai,j , it is impossible to compute σ2
V based on (22) (except for some simple

special cases such as when K2
i,j does not vary with respect to i and j). To overcome this

difficulty, we propose a non-standard bootstrap procedure as follows: we draw bootstrap

samples Y † according to

Y †
i,j ≡ Y †

j,i = Yi,jI(ηi,j = 0) + I(ηi,j = 1) for i < j , (23)

where {ηi,j} are independent random variables, P(ηi,j = 0) = γ1, P(ηi,j = 1) = γ2 and

P(ηi,j = −1) = 1− γ1 − γ2, with γ1 > 0, γ2 > 0 and γ1 + γ2 < 1 satisfying





γ1(1− γ1 − 2γ2) = β − α ,

γ2(1− γ2) = α(1− β) .

(24)

Now let

S†
V =

√
N

(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

{
Y̊ †

ij ,i′j

∏

ℓ6=j

ϕℓ

(
Yiℓ,i′ℓ

)}

with Y̊ †

ij ,i′j
= Y †

ij ,i′j
−Yij ,i′jγ1−γ2 and ϕℓ(·) defined as in (18). Theorem 4 below shows that

the distribution of
√
N(C̃V − CV) can be approximated by the conditional distribution
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of S†
V given Y = (Yi,j)p×p.

Note that (24) may admit more than one legitimate solution for (γ1, γ2); any one of

them can serve for our purpose. Furthermore, the bootstrap sample (Y †
i,j)p×p does not

necessarily resemble the full behavior of the original sample (Yi,j)p×p. What matters here

is the fact that it has the correct (conditional expected) variance:

E{Var(Y †
i,j |Y)} = Var(Yi,j) .

Note that Var(Y †
i,j |Y) = Yi,j(β − α) + α(1− β), which is guaranteed by (24).

Theorem 4. Under the conditions of Proposition 3, it holds that

sup
z∈R

∣∣P
{√

N(C̃V − CV) > z
}
− P(S†

V > z
∣∣Y)

∣∣ → 0

as p→ ∞.

Theorem 4 can be extended to multiple cases easily, which is required for construct-

ing the joint confidence regions for several subgraph densities, or their functions such

as the clustering coefficient. For given (V1, τ1,1, . . . , τ1,k1), . . . , (Vm, τm,1, . . . , τm,km), we

approximate the joint distribution of
√
N(C̃V1

− CV1
, . . . , C̃Vm

− CVm
)T by the following

parametric bootstrap procedure:

1: repeat

2: given data Y = (Yi,j)p×p draw bootstrap samples Y† = (Y †
i,j)p×p as in (23)

3: calculate bootstrap estimate ϑ
† = (ϑ†

1, . . . , ϑ
†
m)

T, where

ϑ†
q =

√
N

(1− α− β)kq

kq∑

j=1

(−1)1−τq,j

|Vq|
∑

v=(i1,i′1,...,ikq ,i
′
kq

)∈Vq

{
Y̊ †

ij ,i′j

∏

ℓ6=j

ϕq,ℓ

(
Yiℓ,i′ℓ

)}

for each q = 1, . . . ,m with Y̊ †

ij ,i′j
= Y †

ij ,i′j
− Yij ,i′jγ1 − γ2 and ϕq,ℓ(x) = (x − α)τq,ℓ(1 −
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β − x)1−τq,ℓ for any x ∈ {0, 1}

4: until B replicates obtained, for a large integer B

5: approximate the joint distribution by the empirical distribution function of {ϑ†
1, . . . ,ϑ

†
B}

Remark 3. For estimating two-star density, we let k = 2, τ1 = τ2 = 1 and V =

{(i1, i′1, i2, i′2) : i′1 = i2, i1 6= i2 6= i′2}. Then

SV =
(1− α− β)−1

√
N

p(p− 1)(p− 2)

∑

i1 6=i2 6=i3

(Y̊i1,i2Ai2,i3 + Y̊i2,i3Ai1,i2)

and

S†
V =

(1− α− β)−2
√
N

p(p− 1)(p− 2)

∑

i1 6=i2 6=i3

{Y̊ †
i1,i2

(Yi2,i3 − α) + Y̊ †
i2,i3

(Yi1,i2 − α)} .

Remark 4. For estimating triangle density, we let k = 3, τ1 = τ2 = τ3 = 1 and

V = {(i1, i′1, i2, i′2, i3.i′3) : i′1 = i2, i
′
2 = i3, i

′
3 = i1, i1 6= i2 6= i3}. Then

SV =
(1− α− β)−2

√
N

p(p− 1)(p− 2)

∑

i1 6=i2 6=i3

(Y̊i1,i2Ai2,i3Ai3,i1 + Y̊i2,i3Ai1,i2Ai3,i1 + Y̊i3,i1Ai1,i2Ai2,i3)

and

S†
V =

(1− α− β)−3
√
N

p(p− 1)(p− 2)

∑

i1 6=i2 6=i3

{
Y̊ †
i1,i2

(Yi2,i3 − α)(Yi3,i1 − α) + Y̊ †
i2,i3

(Yi1,i2 − α)(Yi3,i1 − α)

+ Y̊ †
i3,i1

(Yi1,i2 − α)(Yi2,i3 − α)
}
.

4.2 Estimation of subgraph densities with unknown error rates

When the error rates α and β are unknown, we simply use the estimator C̃V defined in (19)

with α and β replaced by their estimators derived in Section 3.2. Then its asymptotic

properties are more complex, and, consequently, the construction of confidence sets is

more involved. Note that we need at most three samples Y,Y∗,Y∗∗ for estimating α
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and β in Section 3.2. Obviously an improvement to the approach outlined below can

be entertained by combining the three estimators obtained from computing (19), using

one of the three available samples each time. For simplicity, we do not pursue this idea

further here.

Given estimators (α̃, β̃) for (α, β), we define

ĈV =
T̂V

(1− α̃− β̃)k
(25)

as an estimator for CV , where

T̂V =
1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

k∏

ℓ=1

(
Yiℓ,i′ℓ − α̃

)τℓ(1− β̃ − Yiℓ,i′ℓ
)1−τℓ .

See also (19). Here we let (α̃, β̃) = (α, β̂) for β̂ defined in (12) if α is known, (α̃, β̃) = (α̂, β)

for α̂ defined in (13) if β is known, and (α̃, β̃) = (α̂, β̂) for (α̂, β̂) defined in Section 3.2.2

if both α and β are unknown. Let

∆α,V =
kCV

1− α− β
− 1

(1− α− β)k

∑

j:τj=1

1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
(26)

and

∆β,V =
kCV

1− α− β
− 1

(1− α− β)k

∑

j:τj=0

1

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
(27)

with ϕℓ(·) defined as in (18).

Proposition 4. Let N = p(p− 1)/2, ℵV/|V| ≍ N−1, max{|α̃−α|, |β̃−β|} = Op(N
−1/2)

and |1 − α − β| ≥ c for some positive constant c. Under Assumption 1, it holds that

|ĈV −CV | = Op(N
−1/2). Furthermore, if Assumption 2 also holds, then

√
N(ĈV −CV) =

25



SV +∆α,V

√
N(α̃− α) + ∆β,V

√
N(β̃ − β) + op(1), where SV is defined as (21).

In comparison to Proposition 3, the leading term of
√
N(ĈV − CV) with unknown α

or/and β has an additional part

ΞV := ∆α,V

√
N(α̃− α) + ∆β,V

√
N(β̃ − β) , (28)

which is a linear combination of
√
N(α̃ − α) and

√
N(β̃ − β). Since SV and ΞV both

converge to normal distributions,
√
N(ĈV − CV) is also asymptotically normal. Let

κ1 = α(1− α), κ2 = β(1− β) and κ3 = 1− α− β. Define

G =




gα,1 gα,2 gα,3

gβ,1 gβ,2 gβ,3


 , (29)

where (gα,1, gα,2, gα,3, gβ,1, gβ,2, gβ,3) are specified as follows.

• If only α is known, gα,1 = gα,2 = gα,3 = 0, gβ,1 =
κ1−κ2

δκ2
3

, gβ,2 =
1

δκ3
and gβ,3 = 0.

• If only β is known, gα,1 =
κ1−κ2

(1−δ)κ2
3

, gα,2 =
1

(1−δ)κ3
, gα,3 = 0 and gβ,1 = gβ,2 = gβ,3 = 0.

• If both α and β are unknown, gα,1 = (1−2β)α+β2

(1−δ)κ2
3

, gα,2 = α−2β
(1−δ)κ2

3

, gα,3 = 1
(1−δ)κ2

3

,

gβ,1 = − (1−2α)β+α2

δκ2
3

, gβ,2 =
β−2α+1

δκ2
3

and gβ,3 = − 1
δκ2

3

.

Let κ4 = β − α. We define a 3-dimensional vector hV such that

hT

V =
[
6κ4, 3(κ

2
4 − κ1 − κ2), 2{κ4(−6αβ + 3κ23 − 4κ3) + (1− α)(β − 2α)}

]

× 1

3

k∑

j=1

(−1)1−τjCV(τ1, . . . , τj−1, 1, τj+1, . . . , τk)

+
{
6κ1, 3κ1(1− 2α), 2κ1(1− α)(1− 3α)

}

× 1

3κk3

k∑

j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i
′
k
)∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
.

(30)
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Now we can state the following theorem.

Theorem 5. Let N = p(p−1)/2, ℵV/|V| ≍ N−1, |1−α−β| ≥ c for some positive constant

c, N1 = p(p− 1)δ → ∞ and N2 = p(p− 1)(1− δ) → ∞. Under Assumptions 1 and 2, it

holds that
√
N(ĈV−CV) →d N (0, φ2

V) with φ
2
V = σ2

V+(∆α,V ,∆β,V)GΣGT(∆α,V ,∆β,V)
T+

hT

VG
T(∆α,V ,∆β,V)

T, where σ2
V and Σ are defined as (22) and (34), respectively, provided

that one of the following three conditions holds: (i) δ(1 − α − β)2 ≥ c for some positive

constant c when only α is known, (ii) (1− δ)(1− α− β)2 ≥ c for some positive constant

c when only β is known, or (iii) δ(1 − δ)(1 − α − β)4 ≥ c for some positive constant c

when both of α and β are unknown.

Recall that
√
N(ĈV − CV) = SV + ΞV + op(1). The asymptotic variance φ2

V stated in

Theorem 5 actually can be divided into three parts. The first term σ2
V is the asymptotic

variance of SV . The second term (∆α,V ,∆β,V)GΣGT(∆α,V ,∆β,V)
T is the asymptotic

variance of ΞV . The third term hT

VG
T(∆α,V ,∆β,V)

T is two times the asymptotic covariance

between SV and ΞV .

Remark 5. By way of comparison with Theorem 5 here, based on Theorem 10 of Bal-

achandran, Kolaczyk, and Viles (2017) and the discussion immediately following that

theorem, we can conclude that in general the empirically observed subgraph counts will

not even be consistent estimates of CV .

4.3 Joint inference of subgraph densities with unknown error

rates

Theorem 5 can be extended to the case of multiple subgraph densities, which is re-

quired for constructing the joint confidence regions for several subgraph densities or a

smooth function thereof. Given (V1, τ1,1, . . . , τ1,k1), . . . , (Vm, τm,1, . . . , τm,km), it holds that
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the random vector
√
N(ĈV1

− CV1
, . . . , ĈVm

− CVm
)T converges to a multivariate normal

distribution N (0,V). Let

ϑ = (SV1
, . . . , SVm

)T and θ = (ΞV1
, . . . ,ΞVm

)T

where SVq
= SVq

(τq,1, . . . , τq,kq) and ΞVq
= ΞVq

(τq,1, . . . , τq,kq) are defined in the same man-

ner as (21) and (28), respectively, but in which (V , τ1, . . . , τk) is replaced by (Vq, τq,1, . . . , τq,kq)

now. It follows from Proposition 4 that V = limp→∞Vp with

Vp = Var(ϑ)︸ ︷︷ ︸
V1,p

+Var(θ)︸ ︷︷ ︸
V2,p

+Cov(ϑ,θ) + Cov(θ,ϑ)︸ ︷︷ ︸
V3,p

. (31)

The first term V1,p can be consistently estimated by the bootstrap procedure presented

in Section 4.1 with (α, β) replaced by (α̃, β̃). To evaluate V2,p and V3,p, we put

∆ =




∆α,V1
∆β,V1

...
...

∆α,Vm
∆β,Vm




and H =




hT

V1

...

hT

Vm



,

where ∆α,Vq
, ∆β,Vq

and hT

Vq
are defined in the same manner as (26), (27) and (30),

respectively, with (V , τ1, . . . , τk) replaced by (Vq, τq,1, . . . , τq,kq) now. Then it holds that

V2,p = ∆GΣGT∆T + o(1) and V3,p =
1

2

(
HGT∆T +∆GHT

)
+ o(1) , (32)

where G and Σ are defined as (29) and (34), respectively.

For given q = 1, . . . ,m, τq,1, . . . , τq,kq ∈ {0, 1} and (α̃, β̃), define ϕ̃q,ℓ(x) = (x −

α̃)τq,ℓ(1− β̃−x)1−τq,ℓ for x ∈ {0, 1}. Let κ̃1 = α̃(1− α̃), κ̃2 = β̃(1− β̃) and κ̃3 = 1− α̃− β̃.
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Since

1

|Vq|
∑

v=(i1,i′1,...,ikq ,i
′
kq

)∈Vq

∏

ℓ6=j

E
{
ϕq,ℓ

(
Yiℓ,i′ℓ

)}

can be consistently estimated by

1

|Vq|
∑

v=(i1,i′1,...,ikq ,i
′
kq

)∈Vq

∏

ℓ6=j

ϕ̃q,ℓ

(
Yiℓ,i′ℓ

)
,

then

∆̂α,Vq
=

k

κ̃3
ĈVq

− 1

κ̃k3

∑

j:τq,j=1

1

|Vq|
∑

v=(i1,i′1,...,ikq ,i
′
kq

)∈Vq

∏

ℓ6=j

ϕ̃q,ℓ

(
Yiℓ,i′ℓ

)

and

∆̂β,Vq
=

k

κ̃3
ĈVq

− 1

κ̃k3

∑

j:τq,j=0

1

|Vq|
∑

v=(i1,i′1,...,ikq ,i
′
kq

)∈Vq

∏

ℓ6=j

ϕ̃q,ℓ

(
Yiℓ,i′ℓ

)

are consistent estimates for ∆α,Vq
and ∆β,Vq

, respectively. Replacing ∆α,Vq
, ∆β,Vq

and

(α, β) by ∆̂α,Vq
, ∆̂β,Vq

and (α̃, β̃), respectively, we can obtain consistent estimates of∆,G,

H and Σ, and, consequently, a consistent estimate of V2,p. For i = 1, 2, 3, denote by V̂i,p

the consistent estimate of Vi,p. Then the joint distribution of
√
N(ĈV1

−CV1
, . . . , ĈVm

−

CVm
)T can be approximated by N (0, V̂p) with V̂p = V̂1,p + V̂2,p + V̂3,p.

Remark 6. For estimating two-star density, we let k = 2, τ1 = τ2 = 1 and V =

{(i1, i′1, i2, i′2) : i′1 = i2, i1 6= i2 6= i′2}. Then ĈV = κ̃−2
3 {p(p− 1)(p− 2)}−1

∑
i1 6=i2 6=i3

(Yi1,i2 −

α̃)(Yi2,i3 − α̃), ∆̂α,V = 2κ̃−1
3 ĈV − 2κ̃−2

3 {p(p− 1)}−1
∑

i1 6=i2
(Yi1,i2 − α̃), ∆̂β,V = 2κ̃−1

3 ĈV and

ĥT

V =
2ĈV

3

[
6κ̃4, 3(κ̃

2
4 − κ̃1 − κ̃2), 2{κ̃4(−6α̃β̃ + 3κ̃23 − 4κ̃3) + (1− α̃)(β̃ − 2α̃)}

]

+
2

3κ̃23

{
6κ̃1, 3κ̃1(1− 2α̃), 2κ̃1(1− α̃)(1− 3α̃)

} 1

p(p− 1)

∑

i1 6=i2

(Yi1,i2 − α̃) .
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Remark 7. For estimating triangle density, we let k = 3, τ1 = τ2 = τ3 = 1 and

V = {(i1, i′1, i2, i′2, i3.i′3) : i′1 = i2, i
′
2 = i3, i

′
3 = i1, i1 6= i2 6= i3}. Then ĈV = κ̃−3

3 {p(p −

1)(p−2)}−1
∑

i1 6=i2 6=i3
(Yi1,i2−α̃)(Yi2,i3−α̃)(Yi3,i1−α̃), ∆̂α,V = 3κ̃−1

3 ĈV−3κ̃−3
3 {p(p−1)(p−

2)}−1
∑

i1 6=i2 6=i3
(Yi1,i2 − α̃)(Yi2,i3 − α̃), ∆̂β,V = 3κ̃−1

3 ĈV and

ĥT

V = ĈV

[
6κ̃4, 3(κ̃

2
4 − κ̃1 − κ̃2), 2{κ̃4(−6α̃β̃ + 3κ̃23 − 4κ̃3) + (1− α̃)(β̃ − 2α̃)}

]

+
1

κ̃33

{
6κ̃1, 3κ̃1(1− 2α̃), 2κ̃1(1− α̃)(1− 3α̃)

}

× 1

p(p− 1)(p− 2)

∑

i1 6=i2 6=i3

(Yi1,i2 − α̃)(Yi2,i3 − α̃) .

5 Numerical illustration

5.1 Simulations

We conduct some simulations to illustrate the finite sample properties of the proposed

estimation methods. For given δ ∈ (0, 1) and integers p, N2∗ and N△, we specify a

p × p deterministic adjacency matrix A with ⌊δp(p − 1)/2⌋ edges randomly allocated

among vertex pairs subject to the condition that there are exactly N2∗ (open and closed)

two-stars (also called triplets), and N△ triangles. Hence the clustering coefficient of the

corresponding network is

γ = 3N△/N2∗ . (33)

Generating such A is accomplished by an adaptation of the rewiring ideas of Mahadevan

et al. (2006), which, to our best knowledge, is new. Note that δ is the edge density,

2N2∗/{p(p− 1)(p− 2)} and 6N△/{p(p− 1)(p− 2)} are, respectively, the two-star density

and the triangle density. We set α = 0.05, β = 0.05 or 0.20, p = 30, 50, 100 and 200.

We assume that both α and β are unknown. Therefore we need 3 noisy observations

Y,Y∗,Y∗∗ to facilitate the estimation, which are generated according to (2).
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We evaluate the point estimates for δ, α and β iteratively using (12) and (17). More

precisely we set an initial value α0 = 0.2, and obtain β̂ and δ̂ from (12). Plugging (α, β̂, δ̂)

into the right-hand side of (17), we obtain α̂. We repeat this exercise by setting α = α̂,

and terminate the recursion when the absolute difference of two successive values of α is

smaller than 10−4. We also calculate the approximate confidence intervals for δ based on

the asymptotic normality stated in Theorem 3. More precisely, the confidence interval

is in the same form as (14) with the asymptotic variance determined by (37) in which

α, β, δ are replaced by their respective estimates.

Having obtained estimates α̂ and β̂, the point estimates for the densities of two-star

edges and triangles are ĈV defined in (25); see also Remarks 6 and 7. Then a plug-in

estimate for clustering coefficient is obtained based on (33). To compute their confidence

intervals is more involved, and is based on the procedure described in Section 4.3. More

precisely, we calculate the joint asymptotic distribution of the normalized estimators for

two-star edge density and triangle density, which is a two-dimensional normal distribution

with zero mean and variance-covariance matrix Vp = V1,p +V2,p +V3,p, as given in the

form (31). Note that V2,p,V3,p can be calculated directly; see (32) and also Remarks 6

and 7. To calculate V1,p, we have to apply the bootstrap algorithm presented in Section

4.1 with α = α̂ and β = β̂; see also Remarks 3 and 4. We replicate bootstrap sampling

500 times. Then a 95% confidence interval is ĈV ± 1.96s, where s is the square-root

of, respectively, the (1,1)-element or the (2,2)-element of 2Vp/{p(p − 1)} for two-star

density or triangle density. Consequently a confidence interval for clustering coefficient

is deduced based on (33).

To assess the performance of the estimation procedure, we replicate the simulation

500 times for each setting. The results are reported in Tables 1 and 2. As the densities for

two-stars and triangles are very small (i.e. smaller than 10−2), we report the estimates for

the counts N2∗ and N△ instead. The mean absolute errors (MAE) for the point estimates
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Table 1: Mean absolute errors (MAE) of the point estimates for error rates α, β, edge
density δ, two-star count N2∗, triangle count N△ and clustering coefficient γ in the
simulation with 500 replications for noisy network with p nodes, and α = 0.05.

p β δ N2∗ N△ γ MAE(α̂) MAE(β̂) MAE(δ̂) MAE(N̂2∗) MAE(N̂△) MAE(γ̂)
30 .05 .1 100 15 .4500 .0057 .0369 .0103 24.61 3.450 .1079

.20 .0064 .0622 .0150 34.66 5.781 .1897
30 .05 .2 430 40 .2791 .0058 .0228 .0103 48.54 6.248 .0279

.20 .0072 .0385 .0162 74.44 11.25 .0538
50 .05 .1 1260 50 .1190 .0034 .0243 .0058 105.0 11.45 .0204

.20 .0037 .0397 .0086 170.3 17.57 .0334
50 .05 .2 2300 140 .1826 .0037 .0138 .0061 145.5 16.54 .0132

.20 .0048 .0275 .0111 255.4 27.98 .0230
100 .05 .1 5000 150 .0900 .0017 .0125 .0030 299.1 22.84 .0107

.20 .0020 .0237 .0048 481.3 35.45 .0170
100 .05 .2 22000 1800 .2455 .0019 .0071 .0031 630.7 82.42 .0054

.20 .0024 .0157 .0058 1199 154.2 .0096
200 .05 .1 40000 1500 .1125 .0008 .0065 .0016 1235 82.09 .0039

.20 .0010 .0126 .0027 2179 137.1 .0063
200 .05 .2 155000 10000 .1935 .0008 .0036 .0016 2444 258.1 .0023

.20 .0012 .0078 .0027 4249 431.4 .0036

for the error rates α, β, the edge density δ, the two-star count N2∗, the triangle count

N△, and the clustering coefficient γ are reported in Table 1. For example, MAE(δ̂) =

1
500

∑500
i=1 |δi − δ|, where δ1, . . . , δ500 denote the estimated values in the 500 replications

of simulation, and δ denotes the true value. When p increases, the estimation errors for

α, β, δ and γ decrease. Furthermore the errors with β = 0.2 are always greater than those

with β = 0.05. This is due to greater (Type II) errors occurring in the observations Yi,j .

The estimation for the edge density δ is very accurate, and is more accurate than that for

the clustering coefficient γ which is a higher-order quantity, though γ can be estimated

accurately too especially when p ≥ 100. Also noticeable are greater errors in estimating

β than those in estimating α. For sparser networks (such as δ = 0.1 or 0.2), there are a

comparatively smaller number of Ai,j taking value 1, and, hence, the information on β

is less. Note that the estimation for β improves when δ increases from 0.1 to 0.2. The

MAE for the two-star count and the triangle count depend on the magnitudes of the

counts themselves. Note that the relative MAE (i.e. MAE(N̂2∗)/N2∗ or MAE(N̂△)/N△)
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are small or very small. Indeed they decrease too when p increases.

The estimated 95% confidence intervals for δ,N2∗, N△ and γ are reported in Table

2. The estimated coverage probabilities are indeed around 95%. The interval estimation

for the edge density δ is accurate as the average interval lengths are small, varying from

0.0602 when p = 30 to 0.0072 when p = 200. Note that the true value of δ is either 0.1

or 0.2. The confidence intervals for the clustering coefficient γ tend to be conservative

with the coverage probabilities ranging from 96.4% to 99.9%. Nevertheless, the average

interval lengths are also small, especially for large p. For example, when p = 200 and

γ = 0.1935, the average interval length is 0.0111 when β = 0.05, or 0.0211 when β = 0.2.

Table 2: The 95% confidence intervals for edge density δ, two-star count N2∗, triangle
count N△ and clustering coefficient γ in the simulation with 500 replications for noisy
networks with p nodes, and α = 0.05. Reported in the table are the relative frequencies
(RF) of the event that a confidence interval covers the corresponding true value, and also
the average Length of the intervals.

True value δ N2∗ N△ γ
p β δ N2∗ N△ γ RF Length RF Length RF Length RF Length
30 .05 .1 100 15 .4500 .950 .0520 .950 130.5 .978 20.92 .982 .6316

.20 .938 .0602 .899 146.0 .939 26.10 .986 .9709
30 .05 .2 430 40 .2791 .954 .0496 .950 239.1 .960 33.60 .982 .1633

.20 .929 .0747 .920 349.9 .941 52.57 .990 .2582
50 .05 .1 1260 50 .1190 .952 .0301 .956 544.1 .964 62.04 .966 .1144

.20 .950 .0396 .946 765.7 .947 82.04 .990 .1519
50 .05 .2 2300 140 .1826 .942 .0295 .946 705.8 .966 88.06 .976 .0770

.20 .950 .0530 .940 1256 .955 152.5 .991 .1313
100 .05 .1 5000 150 .0900 .960 .0150 .966 1521 .970 129.1 .972 .0637

.20 .954 .0253 .954 2571 .990 216.2 .999 .1070
100 .05 .2 22000 1800 .2455 .954 .0145 .954 3011 .956 404.1 .968 .0281

.20 .948 .0288 .950 6081 .956 808.0 .978 .0541
200 .05 .1 40000 1500 .1125 .948 .0074 .948 6014 .958 435.1 .968 .0228

.20 .944 .0131 .940 10559 .960 768.7 .986 .0399
200 .05 .2 155000 10000 .1935 .942 .0072 .940 11399 .938 1197 .964 .0111

.20 .970 .0142 .972 22323 .966 2329 .970 .0211
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5.2 Application: Gene expression networks

It is a standard exercise in computational biology to construct and analyze networks

from gene expression data. For the purpose of illustration, we consider the data and

network construction described in Section 7.3.1 of Kolaczyk and Csárdi (2014). These

data, originally published by Faith et al. (2007), contain (log) gene expression levels in

the bacteria Escherichia coli (E. coli), measured for 153 genes under each of 40 different

experimental conditions, with three replicates of each condition. For each set of replicates,

we constructed a network among the 153 genes by applying a threshold to the Fisher

transformation of the Pearson correlation coefficients calculated for the expression levels

between all pairs of genes. A Bonferonni correction was used to adjust for multiple

testing, with the family-wise error rate controled at the 0.05 level. While there are

numerous other approaches to construction of gene coexpression networks, this simple

method is both immediately amenable to our illustration and not uncommon in practice.

The empirical edge density in each of the three resulting networks is quite stable,

i.e., approximately 0.073, 0.075, and 0.074, respectively. With 153 × 152/2 = 11, 628

hypothesis tests, the nominal value of α in this analysis is at most 4.3 × 10−6. Taking

this value as known, and calculating the estimates in (12) for two of the networks, we

obtain β̂ = 0.456 and δ̂ = 0.135. The corresponding approximate 95% confidence interval

for δ is (0.131, 0.139). Similar results are obtained for the other possible pairings of the

three networks. These numbers suggest that the true edge density δ differs substantially

from those observed empirically. However, it is well known that the nominal Type I

error rates in this setting can be quite inaccurate (e.g., Cosgrove, Gardner, and Kolaczyk

(2010)). If we instead treat α as unknown, the estimators defined by (9), (11), and

(16) yield estimates α̂ = 0.024, β̂ = 0.232, and δ̂ = 0.067. These numbers suggest

that the Type I error rate is orders of magnitude higher than nominally expected, and
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furthermore that the Type II error rate is nearly one in four. On the other hand, the

resulting method-of-moments estimate of the edge density δ suggests that the empirical

edge densities observed in our networks over-estimate only slightly.

However, consider now estimation of higher-order quantities – specifically, of the

number of two-stars N2∗, the number of triangles N△, and the clustering coefficient γ.

For the three networks, the empirical values of these numbers are, respectively, 19112,

3373, and 0.53 for the first network, 22952, 4814, and 0.63 for the second network, and

21820, 4349, and 0.60 for the third network. Thus we see substantially more variability

in these numbers across networks than we did for the empirical edge density. Applying

our proposed method-of-moments estimators to these data, we obtain estimates of ap-

proximately N̂2∗ = 25248, N̂△ = 7243, and γ̂ = 0.86. These are all substantially higher

than their empirical counterparts, indicating a nontrivial upward adjustment for network

noise, presumably driven in large part by the high estimated rate of Type II error.

Finally, applying our bootstrap-based methodology for construction of asymptotic

confidence intervals, we obtain an approximate 95% confidence interval for δ of (0.06, 0.074),

which further reinforces the evidence that the true network edge density is less than that

observed empirically. At the same time, the corresponding confidence interval for the

clustering coefficient γ is (0.81, 0.91), suggesting that the true network clustering co-

efficient is roughly 1/3 larger than observed empirically. Furthermore, the confidence

intervals for N2∗ and N△ are (21580, 28915) and (5879, 8607), respectively, by which

we see that the triangle count appears to be more adversely affected by noise than the

two-star count.

Ultimately, we see that the ability to account for network noise appropriately in

reporting these basic summary statistics can lead to distinctly different numbers and

conclusions. From a biological perspective, the fact that the empirically observed edge

density is inferred to be fairly accurate, while the clustering coefficient is inferred to
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be noticeably larger than observed empirically, is suggestive. Specifically, increasing

clustering coefficient has been found to trend with increasing modularity in a variety

of biological networks (Ravasz et al. (2002); Pavlopoulos et al. (2011)). Modules (i.e.,

groups of highly connected nodes) in gene co-expression networks are understood to be

reflective of groups of genes that cooperate in common biological functions. Our results

suggest that the presence of modularity in gene co-expression – and, hence, the level of

functional cooperation among genes – may well be even more pronounced than currently

believed.

6 Discussion

Here we have developed a general framework for estimation and uncertainty quantifica-

tion of arbitrary subgraph densities in contexts wherein one has observations of noisy

networks. Our approach requires as few as two or three replicates of network obser-

vations, and employs method-of-moments techniques to derive estimators and establish

their asymptotic consistency and normality. Simulations demonstrate that substantial

inferential accuracy is possible in networks of even modest size when nontrivial noise is

present. And our application to coexpression networks in the context of computational

biology shows that the gains offered by our approach over presenting traditional empirical

network summaries can be substantial.

The approach we develop here is relevant and broadly applicable to numerous con-

texts wherein it is possible to obtain some notion of a handful of network replicates. For

example, multiple observations of networks are encountered in genetics (e.g., Bartlett,

Olhede, and Zaikin (2014)), computational neuroscience (e.g., Biswal, Menness, and Zuo

(2010)), on-line social media (e.g., Mukherjee, Sarkar, and Lin (2017)), and in the study

of psychiatric disorders (e.g., Nelson, Bassett, CamBass, Bullmore, and Lim (2017)).
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Similarly, we note that most papers on dynamic networks assume that the networks

observed over different times are (conditionally) independent of each other as the con-

nection probabilities evolve over time. As a result, for connection probabilities that do

not evolve too quickly, our results are directly applicable within small windows of time

(i.e., in light of Remark 2, following Theorem 1). See Pensky (2019) and Zhao, Chen,

and Lin (2019), and the references therein, for a variety of examples of relevant dynamic

networks.

Our development here is general and supported by formal theoretical arguments. In

practice, other approaches have been utilized to date for uncertainty quantification in

certain specific contexts, albeit – to our best knowledge – without the formal justifica-

tion developed here. For example, in the context of gene expression measurements (as in

the application described in Section 5.2), investigators will sometimes use bootstrapping

of the original experiments to resample many pseudo-data sets and construct many net-

works, from which in turn they generate bootstrap distributions of network summaries

of interest (e.g., Xulvi-Brunet and Li (2009)).

We have pursued a frequentist approach to the problem of uncertainty quantifica-

tion for network summary statistics. If the replicates necessary for our approach are

unavailable in a given setting, a Bayesian approach is a natural alternative. For exam-

ple, posterior-predictive checks for goodness-of-fit based on examination of a handful of

network summary measures is common practice (e.g., (Bloem-Reddy and Orbanz, 2018,

Sec 5.3)). Note, however, that the Bayesian approach requires careful modeling of the

generative process underlying G and typically does not distinguish between signal and

noise components. Our analysis is conditional on G, and hence does not require that

G be modeled. It is effectively a ‘signal plus noise’ model, with the signal taken to be

fixed but unknown. Related and more formal work has been done in the context of

graphon modeling, with the goal of estimating network motif frequencies (e.g., Latouche
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and Robin (2016)). However, again, one typically does not distinguish between signal

and noise components in this setting. Additionally, we note that the problem of practical

graphon estimation itself is still a developing area of research.

Our work here sets the stage for extensions of various levels of difficulty. For ex-

ample, while we have focused here on the case of undirected graphs, the extension to

directed graphs is straightforward. For directed graphs, Ai,j 6= Aj,i and Yi,j 6= Yj,i. The

representation (2) relies on independent εi,j for 1 ≤ i 6= j ≤ p. The statistics used for

estimation should be changed accordingly too. For example in (6) the sum should be

taken for all i 6= j instead of i < j, and the sum should be divided by p(p− 1) instead of

p(p− 1)/2. Then the current technical proofs for undirected graphs are applicable iden-

tically to directed graphs. On the other hand, whereas we have focused on estimation

solely in the case of subgraph densities, which rests on the behavior of counting statistics,

we anticipate that the estimation of non-counting network summaries (e.g., summaries

based on shortest path lengths) from noisy network data is likely nontrivial, due to the

fact that the latter are based on extremes rather than counts.
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Appendix

Here we derive expressions for the covariance matrices in Theorem 2. Let κ1 = α(1−α),

κ2 = β(1− β) and κ3 = 1− α− β. Let

Wα =




κ2−κ1

δκ2
3

− 1
δκ3

2β−1
κ2
3

− 1
κ2
3


 , Wβ =




κ2−κ1

(1−δ)κ2
3

− 1
(1−δ)κ3

2α−1
κ2
3

1
κ2
3




and

W =




(1−2β)α+β2

(1−δ)κ2
3

α−2β
(1−δ)κ2

3

1
(1−δ)κ2

3

− (1−2α)β+α2

δκ2
3

β−2α+1
δκ2

3

− 1
δκ2

3

3κ3+6αβ−2
κ3
3

3κ3+6β−2
κ3
3

− 2
κ3
3



.

Define a matrix

Σ = (σij)3×3 (34)

with σ11 = δκ2 + (1− δ)κ1, σ22 = δκ2(1/2− κ2) + (1− δ)κ1(1/2− κ1), σ33 = δβκ2(1/3−

βκ2)+ (1− δ)κ1(1−α){1/3−κ1(1−α)}, σ12 = σ21 = δκ2(β− 1/2)+ (1− δ)κ1(1/2−α),

σ13 = σ31 = δκ2(β
2/3 − 2κ2/3) + (1 − δ)κ1{(1− α)2/3 − 2κ1/3} and σ23 = σ32 =

δβκ2(1/3−κ2)+(1−δ)(1−α)κ1(1/3−κ1). Denote by Σ1 = (σij)2×2 the 2×2 submatrix

of Σ. Based on such defined Σ and Σ1, let

Σ1,α = WαΣ1W
T

α , (35)

Σ1,β = WβΣ1W
T

β
(36)

and

Σ2 = WΣWT . (37)
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Supplementary Material for “Estimation of

Subgraph Densities in Noisy Networks” by Chang,

Kolaczyk and Yao

Proof of Theorem 1

Recalling the definition of FM and FM∗ as the joint distributions of Y when Y follows

models M and M∗, respectively, denote by Fi,j,M and Fi,j,M∗ the corresponding marginal

distribution of Yi,j. From Assumption 1, we have

H2(FM , FM∗) ≤
∑

(i,j)∈S

H2(Fi,j,M , Fi,j,M∗) +
∑

(i,j)∈Sc

H2(Fi,j,M , Fi,j,M∗) ,

where S = supp(A), Sc = supp(A∗), and H(·, ·) denotes the Hellinger distance between

two distributions. Since Fi,j,M = Fi,j,M∗ for any i 6= j which implies H2(Fi,j,M , Fi,j,M∗) =

0, then H2(FM , FM∗) = 0.

Without lose of generality, we assume df = |f(M) − f(M∗)| for some M ∈ M with

f(M) > f(M∗). For any f̂ ∈ E , we consider the hypothesis testing problem H0 : Y ∼M

versus H1 : Y ∼ M∗, and define the test function Ψ = I{f̂ > f(M) + df/2}, which

means we reject H0 if Ψ = 1 and accept H0 if Ψ = 0. The testing affinity (Le Cam, 1973,

2012) is defined as

π(M1,M2) = inf
0≤φ≤1

φ-measurable

EH0
(φ) + EH1

(1− φ),

and it is the minimal sum of type I and type II errors of any test between H0 and

H1. Recall H(FM , FM∗) = 0 and π(M1,M2) ≥ 1 − H(FM , FM∗), then π(M1,M2) = 1.

Notice that PM(|f̂ − f | ≥ df/2) ≥ PM(f̂ > f + df/2) = type I error and PM∗(|f̂ −

f | ≥ df/2) ≥ PM∗(f̂ ≤ f − df/2) = PM∗{f̂ ≤ f(M) + df/2} = type II error. Thus

1



max{PM(|f̂ − f | ≥ df/2),PM∗(|f̂ − f | ≥ df/2)} ≥ 1/2 which implies

sup
M

P

(
|f̂ − f | > df

2

)
≥ 1

2
.

Since the above result holds for any f̂ ∈ E , the proof of Theorem 1 is complete. �

A useful lemma

To prove Proposition 1 and Theorems 2 and 3, we need the following lemma.

Lemma 1. Let N = p(p − 1)/2, κ1 = α(1 − α) and κ2 = β(1 − β). Under Assumption

1, if N1 = p(p − 1)δ → ∞ and N2 = p(p − 1)(1 − δ) → ∞, it holds that
√
N(û1 −

u1, û2 − u2, û3 − u3)
T →d N (0,Σ) with Σ = (σij)3×3, where σ11 = δκ2 + (1− δ)κ1, σ22 =

δκ2(1/2−κ2)+(1−δ)κ1(1/2−κ1), σ33 = δβκ2(1/3−βκ2)+(1−δ)κ1(1−α){1/3−κ1(1−α)},

σ12 = σ21 = δκ2(β − 1/2) + (1 − δ)κ1(1/2 − α), σ13 = σ31 = δκ2(β
2/3 − 2κ2/3) + (1 −

δ)κ1{(1− α)2/3− 2κ1/3} and σ23 = σ32 = δβκ2(1/3− κ2) + (1− δ)(1− α)κ1(1/3− κ1).

Proof. Let S = {(i, j) : Ai,j 6= 0, i < j} and Sc = {(i, j) : Ai,j = 0, i < j}. By the

definition of ûk and uk (k = 1, 2, 3), we have

û1 − u1 =
1

N

∑

(i,j)∈S

{Yi,j − (1− β)}+ 1

N

∑

(i,j)∈Sc

(Yi,j − α),

û2 − u2 =
1

2N

∑

(i,j)∈S

(|Yi,j,∗ − Yi,j| − 2κ2) +
1

2N

∑

(i,j)∈Sc

(|Yi,j,∗ − Yi,j| − 2κ1)

û3 − u3 =
1

3N

∑

(i,j)∈S

(ξi,j − 3βκ2) +
1

3N

∑

(i,j)∈Sc

{ξi,j − 3κ1(1− α)}

2



where ξi,j = I(Yi,j,∗∗ − 2Yi,j,∗ + Yi,j = 1 or− 2). It follows from Assumption 1 that

NE{(û1 − u1)
2} = δκ2 + (1− δ)κ1 = σ11,

NE{(û2 − u2)
2} = δκ2

(
1

2
− κ2

)
+ (1− δ)κ1

(
1

2
− κ1

)
= σ22,

NE{(û3 − u3)
2} = δβκ2

(
1

3
− βκ2

)
+ (1− δ)κ1(1− α)

{
1

3
− κ1(1− α)

}
= σ33,

NE{(û1 − u1)(û2 − u2)} = δκ2

(
β − 1

2

)
+ (1− δ)κ1

(
1

2
− α

)
= σ12,

NE{(û1 − u1)(û3 − u3)} = δκ2

(
β2

3
− 2κ2

3

)
+ (1− δ)κ1

{
(1− α)2

3
− 2κ1

3

}
= σ13,

NE{(û2 − u2)(û3 − u3)} = δβκ2

(
1

3
− κ2

)
+ (1− δ)(1− α)κ1

(
1

3
− κ1

)
= σ23.

By the Lindberg-Feller Central Limit Theorem, we have Lemma 1. �

Proof of Proposition 1

Define g1(x, y, z) = (1−z)x+z(1−y) and g2(x, y, z) = (1−z)x(1−x)+zy(1−y) for any

(x, y, z) ∈ (0, 1)3. When α is known, it holds that g1(α, β̂, δ̂)− g1(α, β, δ) = û1 − u1 and

g2(α, β̂, δ̂) − g2(α, β, δ) = û2 − u2. Since the equations g1(α, y, z) = u1 and g2(α, y, z) =

u2 have the unique solution (y, z) = (β, δ), and (û1, û2) = (u1, u2) + op(1), we have

consistency of (β̂, δ̂). By Taylor expansion, we have Dα(β̂−β, δ̂−δ)T = (û1−u1, û2−u2)T

with

Dα =




∂g1(x,y,z)
∂y

∂g1(x,y,z)
∂z

∂g2(x,y,z)
∂y

∂g2(x,y,z)
∂z




∣∣∣∣
(x,y,z)=(α,β∗,δ∗)

(A.1)

where (β∗, δ∗) = λ · (β, δ) + (1 − λ) · (β̂, δ̂) for some λ ∈ (0, 1). Notice that det(Dα) =

−δ∗(1 − α − β∗)2. Since δ(1 − α − β)2 ≥ c for some positive constant c, with the

continuity of the function δ(1−α− β)2 with respect to (β, δ), we know det(Dα) ≤ −c/2

with probability approaching one. Therefore, (β̂ − β, δ̂ − δ)T = D−1
α (û1 − u1, û2 − u2)

T.

3



From Lemma 1, (û1 − u1, û2 − u2) = Op(N
−1/2) which implies part (i) of Proposition 1.

Analogously, we have part (ii). �

Proof of Theorem 2

It follows from Lemma 1 that
√
N(û1 − u1, û2 − u2)

T →d N (0,Σ1) where Σ1 = (σij)2×2

with σij specified in Lemma 1. We first consider the case with known α. As we have

shown in the proof of Proposition 1, (β̂ − β, δ̂ − δ)T = D−1
α (û1 − u1, û2 − u2)

T with

D−1
α = − 1

δ∗(1− α− β∗)2




β∗(1− β∗)− α(1− α) −(1− α− β∗)

−δ∗(1− 2β∗) −δ∗


 .

Therefore,
√
N(β̂ − β, δ̂ − δ)T →d N (0,Σ1,α) with

Σ1,α =
1

δ2κ43




κ2 − κ1 −κ3
−δ(1− 2β) −δ


Σ1




κ2 − κ1 −δ(1− 2β)

−κ3 −δ




where κ1 = α(1 − α), κ2 = β(1 − β) and κ3 = 1 − α − β. This completes part (i) of

Theorem 2. For part (ii), notice that

Dβ =




∂g1(x,y,z)
∂x

∂g1(x,y,z)
∂z

∂g2(x,y,z)
∂x

∂g2(x,y,z)
∂z




∣∣∣∣
(x,y,z)=(α∗,β,δ∗)

,

where (α∗, δ∗) = λ · (α, δ) + (1− λ) · (α̂, δ̂) for some λ ∈ (0, 1). Then

D−1
β = − 1

(1− δ∗)(1− α∗ − β)2




β(1− β)− α∗(1− α∗) −(1− α∗ − β)

−(1− δ∗)(1− 2α∗) 1− δ∗


 .

4



Since (α̂ − α, δ̂ − δ)T = D−1
β (û1 − u1, û2 − u2)

T, then
√
N(α̂ − α, δ̂ − δ)T →d N (0,Σ1,β)

with

Σ1,β =
1

(1− δ)2κ43




κ2 − κ1 −κ3
−(1− δ)(1− 2α) 1− δ


Σ1




κ2 − κ1 −(1− δ)(1− 2α)

−κ3 1− δ


 .

Therefore, we have part (ii). �

Proof of Theorem 3

Define g3(x, y, z) = (1 − z)x(1 − x)2 + zy2(1 − y) for any (x, y, z) ∈ (0, 1)3. Recall

g1(x, y, z) = (1− z)x+ z(1− y) and g2(x, y, z) = (1− z)x(1− x) + zy(1− y). Following

the same arguments in the proof of Proposition 1 for the consistency of (β̂, δ̂), we have

the consistency of (α̂, β̂, δ̂). By Taylor expansion, we have D(α̂ − α, β̂ − β, δ̂ − δ)T =

(û1 − u1, û2 − u2, û3 − u3)
T with

D =




∂g1(x,y,z)
∂x

∂g1(x,y,z)
∂y

∂g1(x,y,z)
∂z

∂g2(x,y,z)
∂x

∂g2(x,y,z)
∂y

∂g2(x,y,z)
∂z

∂g3(x,y,z)
∂x

∂g3(x,y,z)
∂y

∂g3(x,y,z)
∂z




∣∣∣∣
(x,y,z)=(α∗,β∗,δ∗)

,

where (α∗, β∗, δ∗) = λ · (α, β, δ) + (1 − λ) · (α̂, β̂, δ̂) for some λ ∈ (0, 1). Notice that

det(D) = −(1−δ∗)δ∗(1−α∗−β∗)4. Since (1−δ)δ(1−α−β)4 ≥ c for some positive constant

c, with the continuity of the function (1−δ)δ(1−α−β)4 with respect to (α, β, δ), we know

det(D) ≤ −c/2 with probability approaching one. Therefore, (α̂ − α, β̂ − β, δ̂ − δ)T =

D−1(û1 − u1, û2 − u2, û3 − u3)
T. From Lemma 1, (û1 − u1, û2 − u2, û3 − u3) = Op(N

−1/2)

5



which implies (α̂− α, β̂ − β, δ̂ − δ) = Op(N
−1/2). Since

D−1 =




(1−2β∗)α∗+β∗2

(1−δ∗)(1−α∗−β∗)2
α∗−2β∗

(1−δ∗)(1−α∗−β∗)2
1

(1−δ∗)(1−α∗−β∗)2

− (1−2α∗)β∗+α∗2

δ∗(1−α∗−β∗)2
β∗−2α∗+1

δ∗(1−α∗−β∗)2
− 1

δ∗(1−α∗−β∗)2

−3(α∗+β∗)−6α∗β∗−1
(1−α∗−β∗)3

− 3α∗−3β∗−1
(1−α∗−β∗)3

− 2
(1−α∗−β∗)3



,

then
√
N(α̂− α, β̂ − β, δ̂ − δ)T →d N (0,Σ2) with

Σ2 =




(1−2β)α+β2

(1−δ)κ2
3

α−2β
(1−δ)κ2

3

1
(1−δ)κ2

3

− (1−2α)β+α2

δκ2
3

β−2α+1
δκ2

3

− 1
δκ2

3

3κ3+6αβ−2
κ3
3

3κ3+6β−2
κ3
3

− 2
κ3
3




Σ




(1−2β)α+β2

(1−δ)κ2
3

− (1−2α)β+α2

δκ2
3

3κ3+6αβ−2
κ3
3

α−2β
(1−δ)κ2

3

β−2α+1
δκ2

3

3κ3+6β−2
κ3
3

1
(1−δ)κ2

3

− 1
δκ2

3

− 2
κ3
3



,

where where κ1 = α(1−α), κ2 = β(1− β), κ3 = 1−α− β, and Σ is specified in Lemma

1. This completes the proof of Theorem 3. �

Proof of Proposition 2

To simplify the notation, we write T̃V(τ1, . . . , τk) and TV(τ1, . . . , τk) as T̃V and TV , respec-

tively. Let ϕ̊ℓ(Yiℓ,i′ℓ) = ϕℓ(Yiℓ,i′ℓ)− E{ϕℓ(Yiℓ,i′ℓ)}. Then

T̃V =
1

|V|
∑

v∈V

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)
.

6



Notice that

T̃V − TV =
1

|V|
∑

v∈V

[ k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)
−

k∏

ℓ=1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]

=
1

|V|
∑

v∈V

k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

k∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

=
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

1

|V|
∑

v∈V

k∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ .

By Cauchy-Schwarz inequality, we have

E
(
|T̃V − TV |2

)
≤ Jk

k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

E

{(
1

|V|
∑

v∈V

k∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)2}

where Jk = 2k − 1. For any given ξ1, . . . , ξk ∈ {0, 1}, define

ψξ1,...,ξk(v) =
k∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

with v = (i1, i
′
1, . . . , ik, i

′
k) ∈ V . Therefore,

E
(
|T̃V − TV |2

)
≤ Jk

k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

E

{(
1

|V|
∑

v∈V

ψξ1,...,ξk(v)

)2}
. (A.2)

For ℵV(s) defined in (20), we adopt the convention ℵV(0) = 1. If ξ1 + · · · + ξk = s

with 1 ≤ s ≤ k, without lose of generality, we assume ξ1 = · · · = ξs = 1 and ξs+1 = · · · =

ξk = 0. Then

1

|V|
∑

v∈V

ψ1,...,1,0,...,0(v) =
1

|V|
∑

v∈V

( s∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)
·

k∏

ℓ=s+1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)})
.

7



For any v = (i1, i
′
1, . . . , ik, i

′
k) ∈ V and ṽ = (̃i1, ĩ

′
1, . . . , ĩk, ĩ

′
k) ∈ V , if |{{i1, i′1}, . . . , {is, i′s}}∩

{{̃i1, ĩ′1}, . . . , {̃is, ĩ′s}}| < s, then E{ψ1,...,1,0,...,0(v)ψ1,...,1,0,...,0(ṽ)} = 0. Recall that |ψξ1,...,ξk(v)| ≤

qkmax for any ξ1, . . . , ξk ∈ {0, 1} and v ∈ V , where qmax = max{1− α, α, 1− β, β}. Thus,

E

[{
1

|V|
∑

v∈V

ψ1,...,1,0...,0(v)

}2]
≤ 2ss!ℵV(k − s)

|V|2
∑

v∈V

q2kmax =
2ss!q2kmaxℵV(k − s)

|V| .

Similarly, we know

E

[{
1

|V|
∑

v∈V

ψξ1,...,ξk(v)

}2]
≤ 2ss!q2kmaxℵV(k − s)

|V| (A.3)

for any ξ1, . . . , ξk ∈ {0, 1} such that ξ1+ · · ·+ ξk = s. Therefore, from (A.2), it holds that

E
(
|T̃V − TV |2

)
≤ 2kk!q2kmaxJ

2
k

|V| max
1≤s≤k

ℵV(k − s) =
2kk!q2kmaxJ

2
k

|V| ℵV . (A.4)

It follows from Markov inequality that

|T̃V − TV | = Op

(√ℵV

|V|

)
.

We complete the proof of Proposition 2. �
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Proof of Proposition 3

Notice that ℵV(s)/ℵV → 0 for each 1 ≤ s ≤ k − 2. By the definition of ϕℓ(·), we have

ϕ̊ℓ(Yiℓ,i′ℓ) = (−1)1−τℓY̊iℓ,i′ℓ with Y̊iℓ,i′ℓ = Yiℓ,i′ℓ − E(Yiℓ,i′ℓ). Then we have

T̃V − TV =
∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

1

|V|
∑

v∈V

k∏

ℓ=1

ϕ̊ℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ + op

(√ℵV

|V|

)

=
k∑

j=1

1

|V|
∑

v∈V

[
ϕ̊j

(
Yij ,i′j

)∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]
+ op

(√ℵV

|V|

)

=
k∑

j=1

(−1)1−τj

|V|
∑

v∈V

[
Y̊ij ,i′j

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]
+ op

(√ℵV

|V|

)
.

(A.5)

Notice that ℵV/|V| = Op(N
−1) and

√
N(C̃V − CV) = (1− α− β)−k

√
N(T̃V − TV). Then

we complete the proof of Proposition 3. �

Proof of Theorem 4

Let

θ = E

{( k∑

j=1

(−1)1−τj

|V|
∑

v∈V

[
Y̊ij ,i′j

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}])2}
.

Based on the Berry-Essen Theorem, we have

sup
z∈R

∣∣∣∣P
{√

N(C̃V − CV) ≤ z
}
− Φ

{
(1− α− β)kz√

Nθ

}∣∣∣∣ → 0 , (A.6)

where Φ(·) denotes the cumulative distribution function of standard normal distribution.

It holds that

θ =
k∑

j1,j2=1

(−1)2−τj1−τj2

|V|2
∑

v,ṽ∈V

[
E
(
Y̊ij1 ,i′j1

Y̊ĩj2 ,̃i′j2

) ∏

ℓ6=j1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)} ∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]
.

(A.7)
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Notice that E(Y̊ij1 ,i′j1
Y̊ĩj2 ,̃i′j2

) = {Aij1 ,i
′
j1
(1 − α − β) + α}{1 − α − Aij1 ,i

′
j1
(1 − α − β)} =

Var(Yij1 ,i′j1
) if {ij1 , i′j1} = {̃ij2 , ĩ′j2}, and E

(
Y̊ij1 ,i′j1

Y̊ĩj2 ,̃i′j2

)
= 0 if {ij1 , i′j1} 6= {̃ij2 , ĩ′j2}.

For any j1, j2 = 1, . . . , k and v = (i1, i
′
1, . . . , ik, i

′
k) ∈ V , define Vj1,j2(v) = {ṽ =

(̃i1, ĩ
′
1, . . . , ĩk, ĩ

′
k) ∈ V : {̃ij2 , ĩ′j2} = {ij1 , i′j1}}. Then

θ =
k∑

j1,j2=1

(−1)2−τj1−τj2

|V|2
∑

v∈V

[
Var

(
Yij1 ,i′j1

) ∏

ℓ6=j1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)} ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]
.

Define

Z =

√
N

(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v∈V

{
Y̊ †

ij ,i′j

∏

ℓ6=j

ϕℓ

(
Yiℓ,i′ℓ

)}
.

Given Y = (Yi,j), we have Z →d N (0, σ̂2
V) with

σ̂2
V =

1

(1− α− β)2k
lim
p→∞

NE
∗

([ k∑

j=1

(−1)1−τj

|V|
∑

v∈V

{
Y̊ †

ij ,i′j

∏

ℓ6=j

ϕℓ

(
Yiℓ,i′ℓ

)}]2)

= :
1

(1− α− β)2k
lim
p→∞

Nθ∗ ,

where E
∗(·) denotes the conditional expectation given Y. Based on the Berry-Essen

Theorem, we have

sup
z∈R

∣∣∣∣P
(
Z ≤ z |Y

)
− Φ

{
(1− α− β)kz√

Nθ∗

}∣∣∣∣ → 0 . (A.8)

Same as (A.7), we have

θ∗ =
k∑

j1,j2=1

(−1)2−τj1−τj2

|V|2
∑

v,ṽ∈V

[
E

∗
(
Y̊ †

ij1 ,i
′
j1

Y̊ †

ĩj2 ,̃i
′
j2

) ∏

ℓ6=j1

ϕℓ

(
Yiℓ,i′ℓ

) ∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)]

=
k∑

j1,j2=1

(−1)2−τj1−τj2

|V|2
∑

v∈V

[
Var∗

(
Y †

ij1 ,i
′
j1

) ∏

ℓ6=j1

ϕℓ

(
Yiℓ,i′ℓ

) ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)]
.
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It follows from (A.6) and (A.8) that

sup
z∈R

∣∣P
{√

N(C̃V − CV) ≤ z
}
− P

(
Z ≤ z |Y

)∣∣

≤ sup
z∈R

∣∣∣∣Φ
{
(1− α− β)kz√

Nθ

}
− Φ

{
(1− α− β)kz√

Nθ∗

}∣∣∣∣+ o(1) .

In the sequel, we show |θ∗ − θ| = op(N
−1). To do this, we only need to show

∆j1,j2 :=
1

|V|2
∑

v∈V

[
Var∗

(
Y †

ij1 ,i
′
j1

) ∏

ℓ6=j1

ϕℓ

(
Yiℓ,i′ℓ

) ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)]

− 1

|V|2
∑

v∈V

[
Var

(
Yij1 ,i′j1

) ∏

ℓ6=j1

E
{
ϕℓ

(
Yiℓ,i′ℓ

)} ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]

= op(N
−1)

for any j1, j2 = 1, . . . , k. Denote by Var∗(·) the conditional variance given Y. Notice that

Var∗(Y †

ij ,i′j
) = Yij ,i′j(β − α) + α(1− β) and E{Var∗(Y †

ij ,i′j
)} = Var(Yij ,i′j). Given j1, define

ϕ̃ℓ(Yiℓ,i′ℓ) = ϕℓ(Yiℓ,i′ℓ) for any ℓ 6= j1, and ϕ̃j1(Yij1 ,i′j1
) = Yij1 ,i′j1

(β − α) + α(1− β). Then

∆j1,j2 =
1

|V|2
∑

v∈V

[ k∏

ℓ=1

ϕ̃ℓ

(
Yiℓ,i′ℓ

)
−

k∏

ℓ=1

E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}] ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}

+
1

|V|2
∑

v∈V

[ k∏

ℓ=1

E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}] ∑

ṽ∈Vj1,j2
(v)

[ ∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)
−

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]

+
1

|V|2
∑

v∈V

[ k∏

ℓ=1

ϕ̃ℓ

(
Yiℓ,i′ℓ

)
−

k∏

ℓ=1

E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]

×
∑

ṽ∈Vj1,j2
(v)

[ ∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)
−

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]

:= ∆j1,j2(1) + ∆j1,j2(2) + ∆j1,j2(3) .

We will show |∆j1,j2(1)| = op(N
−1), |∆j1,j2(2)| = op(N

−1) and |∆j1,j2(3)| = op(N
−1).
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For ∆j1,j2(1), it holds that

∆j1,j2(1) =
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

1

|V|2
∑

v∈V

k∏

ℓ=1

˚̃ϕℓ(Yiℓ,i′ℓ)
ξℓ
[
E
{
ϕ̃ℓ(Yiℓ,i′ℓ)

}]1−ξℓB1(v)

where ˚̃ϕℓ(Yiℓ,i′ℓ) = ϕ̃ℓ(Yiℓ,i′ℓ)− E{ϕ̃ℓ(Yiℓ,i′ℓ)} and

B1(v) =
∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}
.

Same as (A.2) and (A.4), we have

E
{
|∆j1,j2(1)|2

}
≤ Cℵ3

V

|V|3 = O(N−3) ,

which implies |∆j1,j2(1)| = Op(N
−3/2) = op(N

−1). Notice that if ṽ ∈ Vj1,j2(v), then

v ∈ Vj2,j1(ṽ). We can reformulate ∆j1,j2(2) as

∆j1,j2(2) =
1

|V|2
∑

ṽ∈V

[ ∏

ℓ6=j2

ϕℓ

(
Yĩℓ ,̃i′ℓ

)
−

∏

ℓ6=j2

E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}] ∑

v∈Vj2,j1
(ṽ)

[ k∏

ℓ=1

E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]
.

Following the same arguments to bound E{|∆j1,j2(1)|2}, we have |∆j1,j2(2)| = op(N
−1).

For ∆j1,j2(3), we can reformulate it as

∆j1,j2(3) =
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

k−1∑

ξ̃1+···+ξ̃j2−1+ξ̃j2+1+···+ξ̃k=1

ξ̃1,...,ξ̃j2−1,ξ̃j2+1,...,ξ̃k∈{0,1}

1

|V|2
∑

v∈V

( k∏

ℓ=1

˚̃ϕℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)

×
∑

ṽ∈Vj1,j2
(v)

( ∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)
.
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By Cauchy-Schwarz inequality, we have

E

{∣∣∣∣
1

|V|2
∑

v∈V

( k∏

ℓ=1

˚̃ϕℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)

×
∑

ṽ∈Vj1,j2
(v)

( ∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)∣∣∣∣
2}

≤ 1

|V|4E
{∑

v∈V

( k∏

ℓ=1

˚̃ϕℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)2

×
∑

v∈V

( ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)2}
.

Notice that ϕ̃ℓ

(
Yiℓ,i′ℓ

)
is bounded, then

E

{∣∣∣∣
1

|V|2
∑

v∈V

( k∏

ℓ=1

˚̃ϕℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)

×
∑

ṽ∈Vj1,j2
(v)

( ∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)∣∣∣∣
2}

≤ C

|V|3
∑

v∈V

E

{( ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)2}
.

Same as (A.3), we have

E

{( ∑

ṽ∈Vj1,j2
(v)

∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)2}
≤ CℵVℵV(k − 2) ,
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which implies

E

{∣∣∣∣
1

|V|2
∑

v∈V

( k∏

ℓ=1

˚̃ϕℓ

(
Yiℓ,i′ℓ

)ξℓ[
E
{
ϕ̃ℓ

(
Yiℓ,i′ℓ

)}]1−ξℓ

)

×
∑

ṽ∈Vj1,j2
(v)

( ∏

ℓ6=j2

ϕ̊ℓ

(
Yĩℓ ,̃i′ℓ

)ξ̃ℓ[
E
{
ϕℓ

(
Yĩℓ ,̃i′ℓ

)}]1−ξ̃ℓ

)∣∣∣∣
2}

≤ CℵVℵV(k − 2)

|V|2 = o

( ℵ2
V

|V|2
)

= o(N−2) .

Then |∆j1,j2(3)| = op(N
−1). We complete the proof of Theorem 4. �

Proof of Proposition 4

To simplify the notation, we write T̂V(τ1, . . . , τk), T̃V(τ1, . . . , τk) and TV(τ1, . . . , τk) as T̂V ,

T̃V and TV , respectively. For given τ1, . . . , τk ∈ {0, 1}, we define ϕ̂ℓ(x) = (x − α̃)τℓ(1 −

β̃ − x)1−τℓ for x ∈ {0, 1}. Recall that

T̃V =
1

|V|
∑

v∈V

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)
.

As we have shown in Proposition 2 that |T̃V − TV | = Op(N
−1/2). To show |T̂V − TV | =

Op(N
−1/2), we only need to prove |T̂V − T̃V | = Op(N

−1/2).

For each v ∈ V , we have the following identity

k∏

ℓ=1

ϕ̂ℓ

(
Yiℓ,i′ℓ

)
−

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)
=

k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

k∏

ℓ=1

{
ϕ̂ℓ

(
Yiℓ,i′ℓ

)
− ϕℓ

(
Yiℓ,i′ℓ

)}ξℓ
{
ϕℓ

(
Yiℓ,i′ℓ

)}1−ξℓ .

Recall that ϕ̂ℓ(Yiℓ,i′ℓ) − ϕℓ(Yiℓ,i′ℓ) = (α − α̃)τℓ(β − β̃)1−τℓ and Yiℓ,i′ℓ ∈ {0, 1}. Let rmax =
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max{|α̃− α|, |β̃ − β|}. Notice that rmax = Op(N
−1/2). Then

∣∣∣∣
k∏

ℓ=1

ϕ̂ℓ

(
Yiℓ,i′ℓ

)
−

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)∣∣∣∣ ≤
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

k∏

ℓ=1

(
|α̂− α|τℓ |β̂ − β|1−τℓ

)ξℓ

≤
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

rξ1+···+ξk
max =

k∑

ℓ=1

Cℓ
kr

ℓ
max ,

which implies that |T̂V − T̃V | ≤
∑k

ℓ=1C
ℓ
kr

ℓ
max = Op(N

−1/2).

Recall that α̃ − α = Op(N
−1/2), β̃ − β = Op(N

−1/2) and T̂V − TV = Op(N
−1/2). It

holds that

√
N
(
ĈV − CV

)
=

√
NT̂V

(1− α̃− β̃)k
−

√
NTV

(1− α− β)k

=

√
N(T̂V − TV)

(1− α− β)k
+
kTV

√
N(α̃− α)

(1− α− β)k+1
+
kTV

√
N(β̃ − β)

(1− α− β)k+1
+Op(N

−1/2)

=

√
N(T̂V − TV)

(1− α− β)k
+
kCV

√
N(α̃− α)

1− α− β
+
kCV

√
N(β̃ − β)

1− α− β
+Op(N

−1/2) .

(A.9)

In the sequel, we will specify the leading term of
√
N(T̂V − TV). Notice that

√
N(T̂V −

TV) =
√
N(T̂V − T̃V) +

√
N(T̃V − TV). Recall that

T̂V − T̃V =
1

|V|
∑

v∈V

k∏

ℓ=1

ϕ̂ℓ

(
Yiℓ,i′ℓ

)
− 1

|V|
∑

v∈V

k∏

ℓ=1

ϕℓ

(
Yiℓ,i′ℓ

)

=
1

|V|
∑

v∈V

k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

k∏

ℓ=1

{
ϕ̂ℓ

(
Yiℓ,i′ℓ

)
− ϕℓ

(
Yiℓ,i′ℓ

)}ξℓ
{
ϕℓ

(
Yiℓ,i′ℓ

)}1−ξℓ .
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Since ϕ̂ℓ(Yiℓ,i′ℓ)− ϕℓ(Yiℓ,i′ℓ) = (α− α̃)τℓ(β − β̃)1−τℓ , we have that

T̂V − T̃V =
k∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

(α− α̃)
∑k

ℓ=1
τℓξℓ(β − β̃)

∑k
ℓ=1

(1−τℓ)ξℓ
1

|V|
∑

v∈V

k∏

ℓ=1

{
ϕℓ

(
Yiℓ,i′ℓ

)}1−ξℓ .

If
∑k

ℓ=1 ξℓ ≥ 2, then

(α− α̃)
∑k

ℓ=1
τℓξℓ(β − β̃)

∑k
ℓ=1

(1−τℓ)ξℓ = Op(N
−1) .

for any ξ1, . . . , ξk, τ1, . . . , τk ∈ {0, 1}. Due to |ϕℓ(Yiℓ,i′ℓ)| ≤ max{1− α, α, 1− β, β}, then

T̂V − T̃V

=
∑

ξ1+···+ξk=1

ξ1,...,ξk∈{0,1}

(α− α̃)
∑k

ℓ=1
τℓξℓ(β − β̃)

∑k
ℓ=1

(1−τℓ)ξℓ
1

|V|
∑

v∈V

k∏

ℓ=1

{
ϕℓ

(
Yiℓ,i′ℓ

)}1−ξℓ +Op(N
−1)

=
k∑

j=1

(α− α̃)τj(β − β̃)1−τj
1

|V|
∑

v∈V

∏

ℓ6=j

ϕℓ

(
Yiℓ,i′ℓ

)
+Op(N

−1) .

Similar to (A.4), we have

∣∣∣∣
1

|V|
∑

v∈V

∏

ℓ6=j

ϕℓ

(
Yiℓ,i′ℓ

)
− 1

|V|
∑

v∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}∣∣∣∣ = Op

{√ℵV(k − 2)

|V|

}

for any j = 1, . . . , k. Since ℵV/|V| ≍ N−1 and ℵV(k − 2)/ℵV → 0, it holds that

T̂V − T̃V =
k∑

j=1

(α− α̃)τj(β − β̃)1−τj
1

|V|
∑

v∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
+ op(N

−1) .
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As we have shown in (A.5),

T̃V − TV =
k∑

j=1

(−1)1−τj

|V|
∑

v∈V

[
Y̊ij ,i′j

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]
+ op(N

−1/2) .

Thus, it follows from (A.9) that

√
N
(
ĈV − CV

)
=

√
N

(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v∈V

[
Y̊ij ,i′j

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}]

− 1

(1− α− β)k

k∑

j=1

√
N(α̃− α)τj(β̃ − β)1−τj

1

|V|
∑

v∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}

+
kCV

√
N(α̃− α)

1− α− β
+
kCV

√
N(β̃ − β)

1− α− β
+ op(1) .

We complete the proof of Proposition 4. �

Proof of Theorem 5

Recall that û1−u1 = (2N)−1
∑

i 6=j Y̊i,j, û2−u2 = (4N)−1
∑

i 6=j{ηi,j−E(ηi,j)} and û3−u3 =

(6N)−1
∑

i 6=j{ξi,j−E(ξi,j)} with ηi,j = |Yi,j,∗−Yi,j| and ξi,j = I(Yi,j,∗∗−2Yi,j,∗+Yi,j = 1 or−

2). Let η̊i,j = ηi,j−E(ηi,j) and ξ̊i,j = ξi,j−E(ξi,j). Define κ1 = α(1−α) and κ2 = β(1−β).

Due to {(Yi,j, Yi,j,∗, Yi,j,∗∗)}i<j are independent, and Yi,j = Yj,i, Yi,j,∗ = Yj,i,∗ and Yi,j,∗∗ =

Yj,i,∗∗, thus E(Y̊s1,t1Y̊s1,t2) = As1,t1κ2+(1−As1,t1)κ1 if {s1, t1} = {s2, t2}, E(Y̊s1,t1Y̊s1,t2) = 0

if {s1, t1} 6= {s2, t2}, E(Y̊s1,t1 η̊s1,t2) = As1,t1κ2(2β− 1)+ (1−As1,t1)κ1(1− 2α) if {s1, t1} =

{s2, t2}, E(Y̊s1,t1 η̊s1,t2) = 0 if {s1, t1} 6= {s2, t2}, E(Y̊s1,t1 ξ̊s1,t2) = As1,t1κ2(β
2 − 2κ2) +

(1 − As1,t1)κ1{(1 − α)2 − 2κ1} if {s1, t1} = {s2, t2} and E(Y̊s1,t1 ξ̊s1,t2) = 0 if {s1, t1} 6=

{s2, t2}. Notice that
√
N{ĈV(τ1, . . . , τk)−CV(τ1, . . . , τk)} = SV(τ1, . . . , τk)+ΞV(τ1, . . . , τk)

with ΞV(τ1, . . . , τk) = ∆α,V(τ1, . . . , τk)
√
N(α̃ − α) + ∆β,V(τ1, . . . , τk)

√
N(β̃ − β). The

asymptotic variances of SV(τ1, . . . , τk) has been specified in Theorem 2 and the asymptotic

variance of ΞV(τ1, . . . , τk) can be obtained via Theorems 2 and 3. Here we only need to
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specify Cov{SV(τ1, . . . , τk),ΞV(τ1, . . . , τk)}. Due to ΞV(τ1, . . . , τk) is a linear combination

of
√
N(α̃−α) and

√
N(β̃− β), and the leading terms of α̃−α and β̃− β are both linear

combinations of û1 − u1, û2 − u2 and û3 − u3, then the leading term of ΞV(τ1, . . . , τk)

is also a linear combination of û1 − u1, û2 − u2 and û3 − u3. We first calculate a more

general result Cov{SV(τ1, . . . , τk), x1
√
N(û1−u1)+x2

√
N(û2−u2)+x3

√
N(û3−u3)} for

any (x1, x2, x3) ∈ R
3.

Notice that

Cov
{
SV(τ1, . . . , τk), x1

√
N(û1 − u1) + x2

√
N(û2 − u2) + x3

√
N(û3 − u3)

}

=
x1

2(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v∈V

∑

s 6=t

E
(
Y̊ij ,i′j Y̊s,t

)∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}

+
x2

4(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v∈V

∑

s 6=t

E
(
Y̊ij ,i′j η̊s,t

)∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}

+
x3

6(1− α− β)k

k∑

j=1

(−1)1−τj

|V|
∑

v∈V

∑

s 6=t

E
(
Y̊ij ,i′j ξ̊s,t

)∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}

=

{
x1(κ2 − κ1)

1− α− β
+
x2{κ2(2β − 1)− κ1(1− 2α)}

2(1− α− β)

+
x3[κ2(β

2 − 2κ2)− κ1{(1− α)2 − 2κ1}]
3(1− α− β)

}

×
k∑

j=1

(−1)1−τjCV(τ1, . . . , τj−1, 1, τj+1, . . . , τk)

+

[
x1κ1

(1− α− β)k
+
x2κ1(1− 2α)

2(1− α− β)k
+
x3κ1{(1− α)2 − 2κ1}

3(1− α− β)k

]

×
k∑

j=1

(−1)1−τj

|V|
∑

v∈V

∏

ℓ6=j

E
{
ϕℓ

(
Yiℓ,i′ℓ

)}
.

(A.10)

If α is known, we have α̃ = α and β̃ = β̂. Then ΞV(τ1, . . . , τk) = ∆β,V(τ1, . . . , τk)
√
N(β̂−

β). As we have shown in the proof of Theorem 2, β̂ − β = c1,β,1(û1 − u1) + c1,β,2(û2 −

u2) + op(N
−1/2). With selecting x1 = c1,β,1∆β,V(τ1, . . . , τk), x2 = c1,β,2∆β,V(τ1, . . . , τk)
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and x3 = 0 in (A.10), we then have part (i).

If β is known, we have α̃ = α̂ and β̃ = β. Then ΞV(τ1, . . . , τk) = ∆α,V(τ1, . . . , τk)
√
N(α̂−

α). As we have shown in the proof of Theorem 2, α̂ − α = c1,α,1(û1 − u1) + c1,α,2(û2 −

u2) + op(N
−1/2). With selecting x1 = c1,α,1∆α,V(τ1, . . . , τk), x2 = c1,α,2∆α,V(τ1, . . . , τk)

and x3 = 0 in (A.10), we then have part (ii).

If α and β are unknown, we have α̃ = α̂ and β̃ = β̂. Then ΞV(τ1, . . . , τk) =

∆α,V(τ1, . . . , τk)
√
N(α̂−α)+∆β,V(τ1, . . . , τk)

√
N(β̂−β). As we have shown in the proof

of Theorem 3, α̂ − α = c2,α,1(û1 − u1) + c2,α,2(û2 − u2) + c2,α,3(û3 − u3) + op(N
−1/2)

and β̂ − β = c2,β,1(û1 − u1) + c2,β,2(û2 − u2) + c2,β,3(û3 − u3) + op(N
−1/2). With se-

lecting x1 = c2,α,1∆α,V(τ1, . . . , τk) + c2,β,1∆β,V(τ1, . . . , τk), x2 = c2,α,2∆α,V(τ1, . . . , τk) +

c2,β,2∆β,V(τ1, . . . , τk) and x3 = c2,α,3∆α,V(τ1, . . . , τk) + c2,β,3∆β,V(τ1, . . . , τk) in (A.10), we

then have part (iii). �

References

Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions. Annals

of Statistics, 1, 38–53.

Le Cam, L. (2012). Asymptotic methods in statistical decision theory. Springer Science &

Business Media.

19


