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Abstract

We propose a methodology for modeling and forecasting daily electricity load.

Two main ingredients of our approach are (i) clustering pairs of successive daily

load curves into homogeneous sub-groups, and (ii) modeling the dependence be-

tween the successive curves within each of such sub-groups via curve linear regres-

sion. For the former task, we adopt the k-centers functional clustering (k-CFC)

from Chiou and Li (2007) which simultaneously accounts for the dissimilarities

between clusters in terms of both the mean and the covariance functions. Besides,

we propose some model selection criteria which are applicable to the functional

data together with the k-CFC, to identify the number of clusters as well as the

optimal clustering of the data. For the latter part of the methodology, the curve

linear regression technique from Cho et al. (2013a) plays a significant part, which

reduces the curve regression problem to a finite number of scalar linear regres-

sion problems via singular value decomposition in a Hilbert space. The combined

methodology is applied to a range of simulated datasets as well as to the French

electricity load data collected between 1996 and 2009, where various model selec-

tion methods are investigated and the SVD-based curve linear regression methods

are compared to other competitors.

1 Introduction

Electricity load forecast is an essential entry in optimizing the power system scheduling

as electricity cannot be stored or discharged without incurring extra costs. Therefore

it is of great importance for electricity providers to model and forecast electricity loads
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accurately over short-term (from one hour to one month ahead) and long-term (from

one month to five years ahead) horizons, and various models have been proposed for

the purpose.

The French energy company Électricité de France (EDF) manages a large panel of pro-

duction units across Europe, which includes water dams, nuclear plants, wind turbines,

coal and gas plants. Based on the vast knowledge on French electricity consumption pat-

terns accumulated over 20 years, EDF has developed a forecasting model which consists

of complex regression models based on past loads, temperature and calendar events, cou-

pled with classical time series models such as the seasonal ARIMA (SARIMA) (Bruhns

et al. 2005). This operational model performs very well, attaining about 1% mean

absolute percentage error in forecasting the electricity consumption in France over one

day horizon. Due to its complexity, however, the model may have a limited capacity

in adapting to constantly changing electricity consumption environments, which may

be attributed to the opening of new markets, technological innovations, social and eco-

nomic changes, to name a few.

Cho et al. (2013a) and Cho et al. (2013b) recognized the strategic importance of de-

veloping an adaptive forecasting model and proposed to model the dependence across

consecutive daily loads via curve linear regression. By regarding each daily load as a

curve, the proposed model takes advantage of the continuity of the load curves in sta-

tistical modeling, while embedding some nonstationary features, such as daily patterns

(see Figure 1), into a stationary framework in a functional space. The key ingredient

of the proposed curve linear regression technique is the dimension reduction based on

the singular value decomposition (SVD) in a Hilbert space, which effectively reduces

the problem to several ordinary (i.e. scalar) linear regression problems. Compared

to the EDF operational model, this approach does not incorporate much of the data-

specific knowledge, while maintaining competitive prediction accuracy when applied to

the French electricity consumption data.

In fitting the curve linear regression model, it is implicitly assumed that the depen-

dence structure between the regressor (e.g. electricity load of the current day) and the

response (electricity load of the next day) curves, such as their profiles and covariance

function, does not change across observations. However, this assumption does not ap-

pear reasonable in electricity load modeling due to meteorological and economic factors,

as demonstrated below with the electricity load data observed between 1996 and 2009

in France.

Firstly, as shown in Figure 1, there exist systematic discrepancies in the profiles and

the variability of daily load curves observed on different days of a week and in different
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months. While successive daily loads on Mondays–Tuesdays in June behave similarly,

they are distinctively different from those observed on Saturdays–Sundays in June, and

also from those observed on Mondays–Tuesdays in January. Those profile discrepancies

are reflected predominantly in the locations and magnitudes of daily peaks. Typically

in France, daily peaks occur at noon in summer and in the evening in winter due to

economic cycle as well as the usage of electrical heating and lighting. Hence, the profiles

of successive daily curves vary over different days within a week, and also over different

months within a year.

In addition, to gain an insight into the possible seasonal variation present in the co-

variance between successive daily loads (denoted by Xi(·) and Xi+1(·)), we examine the

projections of daily load curves onto the first left singular function, which is obtained

from the SVD of the sample covariance operator (cov{Xi(·), Xi+1(·)}) from the pooled

dataset, see Figure 2. Note that each Xi(·) has been de-meaned with the mean curve

obtained by averaging out all the daily curves observed on the same day of a week. If

the profiles of the pairs of curves as well as their covariance undergo seasonal changes,

we expect such seasonality to be reflected in the above projections over the span of one

year. Indeed, the boxplots in Figure 2 indicate that in cold climate, the relationship

between two consecutive daily loads is more volatile than that in warmer climates, and

that the covariance structure is time-varying over a year’s period.
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Figure 1: French electricity loads (in MW) on Mondays–Tuesdays in January (solid),
Mondays–Tuesdays in June (broken) and Saturdays–Sundays in June (dotted) between 1996
and 2009.
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Figure 2: Boxplots of the successive daily load projections with respect to different months.

From the above observations, it is evident that prior to modeling the electricity load

data via curve linear regression, an essential step is to partition the pairs of regressor

and response curves into sub-groups with homogeneous dependence structure. The

importance of clustering daily electricity loads was emphasized in Cho et al. (2013b),

where it was shown that when the daily loads were well-partitioned, the proposed curve

linear regression method could directly be applied to the data without any trend or

seasonality modeling (as in Cho et al. (2013a) with the two-stage hybrid method), and

still achieve even superior forecasting performance. Also, it was further argued that a

data-driven clustering method might be necessary to handle the ever-changing nature

of the electricity load data.

Hence in this paper, we address the problem of functional data clustering with the view

of modeling and forecasting in the following step using a curve linear regression model.

We note that this combined approach may be applicable to a wide range of functional

data in general besides the application to electricity load modeling.

The dynamic nature of real-life data has been noted in the functional data analysis

literature, and several clustering methods have been proposed and applied to various

datasets. For example in Antoniadis et al. (2011), wavelet-based dissimilarity measures

were introduced to detect patterns and clusters in functional data, and applied to cluster

daily electricity loads into sub-groups of homogeneous profiles. Chiou (2012) adopted a

subspace projected functional clustering method termed k-centers functional clustering

(k-CFC) from Chiou and Li (2007), to identify distinct daily traffic flow patterns and

predict future traffic flow based on the observed flow in transportation management.
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We refer to Jacques and Preda (2013) for an overview of functional data clustering.

In particular, the k-CFC takes into account both the mean function and the modes of

variation differentials between any two clusters, and thus is distinguished from many

other clustering methods where the clustering criteria account for centrality features

only, usually the mean function. Regarding the problem of clustering the pairs of

regressor and response curves, say {Xi(·), Yi(·)}, as that of clustering the joined curves

Zi(·) ≡ (Xi, Yi)(·), we show that the k-CFC is applicable to the problem of partitioning

the pairs of observations into sub-groups of homogeneous linear dependence structure

between Xi(·) and Yi(·).
Many clustering methods, including the k-CFC, require a pre-determined number of

clusters as an input, which is closely linked to selecting the “optimal” clustering of

the data. Numerous suggestions have been made in the literature, such as objective

function-based approaches (Caliński and Harabasz (1974), Hartigan (1975), Rousseeuw

(1987), Krzanowski and Lai (1988), Tibshirani et al. (2001), James and Sugar (2003)),

and pairwise testing-based approaches (Li and Chiou (2011)). However, difficulties

arise as different model selection methods lead to different optimal clustering of the

same data. We discuss a range of cluster number selection criteria, some of which are

extensions of existing methods for multivariate data clustering to the functional data

framework, and present a comparative study on various simulated datasets which is a

separate contribution of this work.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the

curve linear regression technique introduced in Cho et al. (2013a). Then in Section 3,

we describe the k-centers functional clustering algorithm and discuss its applicability to

our framework, as well as presenting various model selection methods for choosing the

final clustering. A comprehensive simulation study is conducted in Section 4, where the

combined methodology of functional clustering and curve linear regression, is assessed

alongside other competitors. In Section 5, we study the performance of the methodology

on the French electricity load data in its modified form, and Section 6 closes the paper

with some concluding remarks.

2 Curve linear regression via dimension reduction

As noted in Introduction, every day at noon, EDF forecasts the half-hourly consumption

of electricity for the next 24 hours. We can regard such half-hourly loads for the next

24 hours from the noon on the i-th day as a curve response (≡ Yi(·)), and the loads

for the 24 hours up to the noon on the i-th day as a curve regressor (≡ Xi(·)). Then
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the following curve linear regression model can be adopted to model the dependence

between the successive daily loads:

Yi(u) = µY (u) +

∫
I2
{Xi(v)− µX(v)}β(u, v)dv + εi(u) for u ∈ I1, (1)

where µY (u) = E{Yi(u)}, µX(v) = E{Xi(v)} and I1 and I2 denote the supports of Yi(·)
and Xi(·), respectively. The linear operator β is a regression coefficient function defined

on I1 × I2, and εi(·) is noise and assumed to satisfy E{εi(u)} = 0 for all u ∈ I1.
Functional linear regression models have been discussed in various settings as listed

in Chapter 12 of Ramsay and Silverman (2005), including the case where both the

response and the regressor variables are functions as in (1). Dimension reduction based

on Karhunen-Loève decomposition, or functional principal component (FPC) analysis,

has played a key role in the functional data literature. The conventional approach to

the problem in (1) based on the dimension reduction, is to expand Yi(·) and Xi(·) via
Karhunen-Loève decomposition, then to fit simple linear regression models between the

terms from such expansions. We note that this approach is equivalent to the dimension

reduction based on principal component analysis in multivariate analysis, and refer to

it by “FPC” in the subsequent sections. For further references on functional linear

models, see e.g. Ramsay and Dalzell (1991), Chiou et al. (2004), Yao et al. (2005) and

Hall and Horowitz (2007).

Similarly, an empirical Bayes approach proposed in Zhou et al. (2011) also builds a

predictive model between the principal component scores of Yi(·) and Xi(·), which is

based on the expectation of the posterior distribution when normality is imposed on

the prior distribution of the scores. We refer to this method by “Bayes” for further

discussion in Section 4.

Since the principal components do not necessarily represent the directions in which

Xi(·) and Yi(·) are most correlated, Cho et al. (2013a) introduced an alternative where

the singular value decomposition (SVD) in a Hilbert space was adopted to single out the

directions upon which the projections of Yi(·) were most correlated with Xi(·). While

this approach is closely related to the canonical correlation analysis, its focus is on

regressing Yi(·) on Xi(·) and therefore does not treat Yi(·) and Xi(·) on an equal footing,

which is different from, and much simpler than, the latter. In what follows, we lay out

the details of the SVD-based curve linear regression method in a generic setting. Let

{Yi(·), Xi(·)}, i = 1, . . . , n, be a random sample where Yi(·) ∈ L2(I1), Xi(·) ∈ L2(I2),
and let I1 and I2 be two compact subsets of R (which are allowed to be different).

We denote by L2(I) the Hilbert space consisting of all the square integrable curves
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defined on the set I, which is equipped with the inner product ⟨f, g⟩ =
∫
I f(u)g(u)du

for any f, g ∈ L2(I). For now, it is assumed that E{Yi(u)} = 0 for all u ∈ I1 and

E{Xi(v)} = 0 for all v ∈ I2. The covariance operator between Yi(·) and Xi(·) is

denoted by Σ(u, v) = cov{Yi(u), Xi(v)}. Under the assumption∫
I1
E{Yi(u)2}du+

∫
I2
E{Xi(v)

2}dv <∞, (2)

Σ defines the following two bounded operators between L2(I1) and L2(I2),

f1(u)→
∫
I1
Σ(u, v)f1(u)du ∈ L2(I2) and f2(v)→

∫
I2
Σ(u, v)f2(v)dv ∈ L2(I1)

for any fl(·) ∈ L2(Il), l = 1, 2.

Performing the SVD on Σ, there exists a triple sequence {λj, φj(·), ψj(·)}, j = 1, 2, . . .

which satisfies

Σ(u, v) =
∞∑
j=1

√
λj φj(u)ψj(v), (3)

where {φj(·)} is an orthonormal basis of L2(I1), {ψj(·)} is that of L2(I2), and the

squared singular values {λj} are ordered in a decreasing manner as λ1 ≥ λ2 ≥ · · · ≥ 0.

See Smithies (1937) for further discussion on the SVD in a Hilbert space.

Since {φj(·)} and {ψj(·)} are the orthonormal basis of L2(I1) and L2(I2), we may write

Yi(u) =
∞∑
j=1

ξijφj(u), Xi(v) =
∞∑
k=1

ηikψk(v), (4)

where ξij and ηik are random variables defined as ξij = ⟨Yi, φj⟩ and ηik = ⟨Xi, ψk⟩.
From (3), it is straightforward to derive that

cov(ξij, ηik) = E(ξijηik) =

{ √
λj for j = k,

0 for j ̸= k.
(5)

The dimensionality of the functional data has been defined in various contexts, e.g. see

Hall and Vial (2006) and Bathia et al. (2010). A correlation dimension between the

two curves Yi(·) and Xi(·) was defined in Cho et al. (2013a) with the eigenvalues λj.

Definition 1. If λr > 0 and λr+1 = 0, the correlation between Yi(·) and Xi(·) is

r-dimensional.

When the correlation between Yi(·) and Xi(·) is r-dimensional, it follows from (5) that
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cov{ξij, Xi(v)} = 0 for all j > r and v ∈ I2, from which we can conclude that the

curve linear regression model (1) has an equivalent representation by r (scalar) linear

regression models. It was summarized in Theorem 1 of Cho et al. (2013a) as follows:

under the assumptions

(A1) the regression coefficient operator β is in the Hilbert space L2(I1 × I2), and

(A2) εi(·) are i.i.d. with E{εi(u)} = 0 and E{Xi(v)εj(u)} = 0 for any u ∈ I1, v ∈ I2
and i, j ≥ 1,

the curve regression model (1) may be represented equivalently by

ξij =
∑∞

k=1 βjkηik + εij for j = 1, . . . , r,

ξij = εij for j = r + 1, r + 2, . . . ,
(6)

where εij =
∫
I1 φj(u)εi(u)du, and βjk =

∫
I1×I2 φj(u)ψk(v)β(u, v)dudv.

2.1 Estimation and forecasting

Given the observed pairs of curves {Yi(·), Xi(·)}, i = 1, · · · , n, let

Σ̂(u, v) =
1

n

n∑
i=1

{Yi(u)− Ȳ (u)}{Xi(v)− X̄(v)},

where Ȳ (u) = n−1
∑

i Yi(u) and X̄(v) = n−1
∑

iXi(v). Performing the SVD on Σ̂(u, v),

we obtain the estimators for {λj, φj(·), ψj(·)} as {λ̂j, φ̂j(·), ψ̂j(·)}, j = 1, 2, . . . . The

SVD of Σ̂(u, v) can be transformed into the eigenanalysis of a non-negative definite

matrix, see Section 2.2.2 of Bathia et al. (2010).

Adopting the results from Bathia et al. (2010) on the consistency of λ̂j, Cho et al.

(2013a) proposed the use of a ratio-based estimator

r̂ = arg max
1≤j≤d

λ̂j/λ̂j+1 (7)

to determine the correlation dimension, where d is a pre-specified upper bound on r.

In Cho et al. (2013b), it was noted that this estimator should be used with caution as

different components of the SVD can have different degrees of “strength” in the sense

that, there may exist some k < r for which non-zero λj ̸= 0, j > k are considerably

smaller than λj, j ≤ k. Further discussion on this point in the framework of factor
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analysis can be found in Lam and Yao (2012). Heuristically, we may estimate r as

r̂ = max{1 ≤ j ≤ d : λ̂j/λ̂j+1 > M}, (8)

for sufficiently chosen M to avoid neglecting such smaller non-zero eigenvalues.

Taking into account the fact that var(ηik) → 0 as k → ∞ (see (2) and (4)), we may

include only the first Q terms ηik, k = 1, . . . , Q in the r multiple linear regression

models, and obtain the ordinary least squares (OLS) estimator of the finite number

of linear coefficients. Note that, while the OLS estimator of βjk is unbiased (assuming

βjk = 0 for all k > Q), its variance tends to increase withQ in finite sample performance.

That is, if Q is selected too large, we may end up with a model which fits the data too

closely but performs poorly in prediction. We use Q = 15 in the subsequent simulation

study and real data analysis which works reasonably well.

Once the r̂ scalar linear regression models between ξ̂ij = ⟨Yi − Ȳ , φ̂j⟩ and η̂ik = ⟨Xi −
X̄, ψ̂k⟩, k = 1, . . . , Q, are fitted as

ξ̂ij =

Q∑
k=1

β̂jkη̂ik, j = 1, . . . , r̂,

the next step is to predict Y (·) for a given regressor curve X(·). The predictor Y (u)

takes the following form Ŷ (u) = Ȳ (u) +
∑r̂

j=1 ξ̂jφ̂j(u), where ξ̂j are predicted as ξ̂j =∑Q
k=1 β̂jkη̂k with η̂k = ⟨X − X̄, ψ̂k⟩.

3 Functional data clustering

The curve linear regression framework discussed in Section 2 assumes that the pairs of

curves have an identical dependence structure as in (1) across the observations, sharing

the common mean functions and covariance operator (and thus regression coefficient

operator). However in practice, this assumption is often found too strong as demon-

strated in Introduction. Therefore, an essential step prior to building forecasting models

is to partition the pairs of curves into homogeneous sub-groups, each of which consists

of {Xi(·), Yi(·)} that can be modeled as sharing an identical dependence structure. In

other words, denoting such sub-groups by

Ck =
{
{X(k)

i (·), Y (k)
i (·)}, i = 1, . . . , nk

}
k = 1, . . . , K∗
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with nk denoting the number of curves belonging to Ck, there exist µ
(k)
X (·) ∈ L2(I2),

µ
(k)
Y (·) ∈ L2(I1), and bounded operators Σ

(k)
X , Σ

(k)
Y and Σ(k) for each k, such that any

{X(k)
i (·), Y (k)

i (·)} ∈ Ck satisfy

• E{X(k)
i (v)} = µ

(k)
X (v), E{Y (k)

i (u)} = µ
(k)
Y (u) and

• cov{X(k)
i (v), X

(k)
i (v′)} = Σ

(k)
X (v, v′), cov{Y (k)

i (u), Y
(k)
i (u′)} = Σ

(k)
Y (u, u′) and

cov{Y (k)
i (u), X

(k)
i (v)} = Σ(k)(u, v)

for all u, u′ ∈ I1, v, v′ ∈ I2. Further, there exists a regression coefficient operator β(k)

for each k which satisfies

Y
(k)
i (u) = µ

(k)
Y (u) +

∫
I2
{X(k)

i (v)− µ(k)
X (v)}β(k)(u, v)dv + ε

(k)
i (u) (9)

for all i = 1, . . . , nk, where ε
(k)
i (·) is i.i.d. noise with E{ε(k)i (u)} = 0 and E{X(k)

i (v)ε
(k)
i′ (u)} =

0 for all u ∈ I1, v ∈ I2 and i, i′ = 1, . . . , nk.

Let Z
(k)
i (·) be the curve joining the regressor and the response curves, i.e. Z

(k)
i (·) ≡

(X
(k)
i , Y

(k)
i )(·), and Z(k)

i (·) ∈ L2(I) where I = I2∪I1. Such composite curves have been

employed in multivariate functional principal component analysis (PCA), to examine

the simultaneous variation of more than one function. We refer to Chapter 8.5 of

Ramsay and Silverman (2005) for further details, such as the definition of an inner

product for a composite curve.

Under our definition of Ck, the pairs of curves in each Ck form Z
(k)
i (·), i = 1, . . . , nk

which share the identical mean curve µ(k)(·) ≡ E{Z(k)
i (·)} = (µ

(k)
X , µ

(k)
Y )(·). Also, there

exists a covariance operator satisfying Γ(k)(t, t′) ≡ cov{Z(k)
i (t), Z

(k)
i (t′)}, t, t′ ∈ I for all

i = 1, . . . , nk since

Γ(k)(t, t′) =


Σ

(k)
X (t, t′) when t ∈ I2, t′ ∈ I2,

Σ
(k)
Y (t, t′) when t ∈ I1, t′ ∈ I1,

Σ(k)(t, t′) when t ∈ I1, t′ ∈ I2 or t ∈ I2, t′ ∈ I1.

Hence, the task of clustering the pairs of curves {Xi(·), Yi(·)}, i = 1, · · · , n is equiva-

lently accomplished by clustering the joined curves Zi(·) into the sub-groups of homo-

geneous mean and covariance functions. The k-centers functional clustering (k-CFC)

introduced in Chiou and Li (2007) is designed specifically to achieve this goal, and the

details of the procedure are discussed in the following section.
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3.1 k-centers functional clustering

Chiou and Li (2007) proposed the k-CFC to account for between-cluster inhomogeneities

in both the mean functions and the modes of variation. The k-CFC is similar to the

k-means algorithm in that it iteratively re-classifies the observations based on the L2-

distance between each observed curve and the cluster centers. However in the k-CFC,

cluster centers are assigned individually for each observation as its projections onto the

functional principal component (PC) spaces corresponding to different clusters, and

thus both the mean and the covariance function differentials are simultaneously taken

into consideration. As with many clustering techniques, the k-CFC requires the total

number of clusters K∗ as an input, which we assume to be known throughout this

section.

Adopting the functional framework from Chiou and Li (2007), let random curve Zi(·) be
independently sampled from a mixture of K∗ stochastic processes in L2(I), where each
sub-process Z(k)(·) is associated with a cluster Ck. Also let Ci ≡ C(Zi) ∈ {1, . . . , K∗}
denote the random variable representing the cluster membership of Zi(·). For each sub-

process Z(k)(·), there exist µ(k)(·) and Γ(k) as defined previously, such that E{Zi(t)|Ci =

k} = µ(k)(t) and cov{Zi(t), Zi(t
′)|Ci = k} = Γ(k)(t, t′). Since for all Zi(·),∫

I
E{Zi(t)}2dt =

∫
I1
E{Yi(u)}2du+

∫
I2
E{X(k)

i (v)}2dv <∞ (10)

under (2), the following Karhunen-Loève expansion is valid for Z(k)(·):

Z(k)(t) = µ(k)(t) +
∞∑
j=1

ζ
(k)
j ρ

(k)
j (t) for all t ∈ I, (11)

where ζ
(k)
j ≡ ζ

(k)
j (Z(k)) = ⟨Z(k) − µ(k), ρ

(k)
j ⟩. Also, {ρ(k)j (·)}j are eigenfunctions asso-

ciated with Γ(k), with the corresponding eigenvalues {σ(k)
j }j such that ⟨Γ(t, ·), ρ(k)j ⟩ =

σ
(k)
j ρ

(k)
j (t). Further, we assume that the eigenvalues are in non-increasing order.

We denote an operator projecting Zi(·) onto the functional PC space associated with

Ck by Pk(·), i.e.,

Pk(Zi)(t) = µ(k)(t) +
∞∑
j=1

ζ
(k)
j (Zi)ρ

(k)
j (t)

with ζ
(k)
j (Zi) = ⟨Zi−µ(k), ρ

(k)
j ⟩. If C(Zi) = k∗, then Pk∗(Zi) is identical to the Karhunen-

Loève expansion of Zi(·) and thus the L2-norm ∥Zi −Pk∗(Zi)∥2 = 0, while there exists
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a discrepancy between Zi(·) and Pk(Zi) for all other k ̸= k∗. Motivated by this, Chiou

and Li (2007) proposed to assign the K∗ cluster centers to each Zi(·) as its projections
Pk(Zi)(·) associated with the K∗ clusters, and to determine its cluster membership

based on the L2-distances between Zi(·) and Pk(Zi)(·). In other words, the cluster

membership Ĉ(Zi) is assigned as

Ĉ(Zi) = arg min
k∈{1,...,K∗}

∥Zi − P̂k(Zi)∥2, (12)

where P̂k(·) is the projection operator estimated from the observations belonging to the

current Ck.
To estimate these operators, the observations must have already been clustered into

Ck, k = 1, . . . , K∗. As this is unattainable in practice, the k-CFC takes an iterative

updating approach similar to that of the k-means algorithm. Namely, given an initial

clustering, µ(k)(·) and {ρ(k)j (·)} are estimated from the observations currently belonging

to Ck for each k, and thus P̂k(·) is estimated. Then based on the estimated cluster

centers, P̂k(Zi), each Zi(·) is re-classified according to (12), and consequently the clus-

ters and the corresponding projection operators are updated. This re-classification is

repeated until a certain termination condition is met, e.g. when there are no more

curves to be re-classified.

Chiou and Li (2007) suggested to initially partition the observations by applying the k-

means algorithm to the first few functional PC scores obtained from the pooled dataset.

In some applications, there may be some exogenous information which can readily be

used to produce an initial clustering. For example, in electricity load data analysis,

calendar variables can serve as criteria for initial clustering. We further discuss on this

point in Section 5.

Since the expansion in (11) involves infinitely many terms, we identify a finite number

dk for each Ck such that only the first dk leading eigenfunctions are employed in the

projection operator. A similar problem of estimating a curve dimensionality is addressed

in Section 2.1. However, we note that our focus here is to find dk which leads to a well-

performing truncated projection operator

P̃k(Z)(t) = µ(k)(t) +

dk∑
j=1

ζ
(k)
j (Z)ρ

(k)
j (t)

in the sense that ∥P̂k(Z)−Pk(Z)∥2 is small, without seeking to identify the underlying

dimensionality. To this end, we adopt one of the suggestions made in Chiou and Li
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(2007) and select dk based on the cumulative percentage of total variance:

dk = min

{
q ≥ 1 :

∑q
j=1 σ

(k)
j∑∞

j=1 σ
(k)
j I(σ(k)

j > 0)
> τ

}
, (13)

where τ is a pre-specified value within (0, 1). In the simulation study reported later,

τ = 0.8 is used which works reasonably well.

For each Ck, we estimate µ(k)(·) and Γ(k) at each iteration as µ̂(k)(t) = n−1
k

∑nk

i=1 Z
(k)
i (t)

and Γ̂(k)(t, t′) = n−1
k

∑nk

i=1{Z
(k)
i (t)−µ̂(k)(t)}{Z(k)

i (t′)−µ̂(k)(t′)} for all t, t′ ∈ I. Then per-

forming eigenanalysis on Γ̂(k), we estimate the eigenvalues and eigenfunctions {σ̂(k)
j , ρ̂

(k)
j (·)}j

as well as dk, and consequently the cluster centers for each observed curve Zi(·) is esti-
mated as

P̂k(Zi)(t) = µ̂(k)(t) +

dk∑
j=1

ζ̂
(k)
j (Zi)ρ̂

(k)
j (t), where ζ̂

(k)
j (Zi) = ⟨Zi − µ̂(k), ρ̂

(k)
j ⟩.

In the re-classification step, if the current membership of Zi(·) is k∗, the mean curve

and the covariance operator of Ck∗ are obtained as leave-one-out estimators, and these

estimates are used in the corresponding cluster center P̂k∗(Zi)(·).
In summary, the k-CFC algorithm takes the following steps to iteratively partition the

curve observations into homogeneous sub-groups.

k-CFC algorithm

Step 0: Initial clustering. From the pooled data, obtain Z̄(t) = n−1
∑n

i=1 Zi(t) and

Γ̂(t, t′) = n−1
∑n

i=1(Zi(t)− Z̄(t))(Zi(t
′)− Z̄(t′)). Then perform eigenanalysis on Γ̂

to obtain eigenfunctions ρ̂j(·) and the corresponding eigenvalues σ̂j for j = 1, 2, . . ..

For a d chosen similarly as dk in (13) with σ̂j replacing σ̂
(k)
j , apply the k-means

clustering to the first d functional PC scores ζ̂j(Zi) = ⟨Zi − Z̄, ρ̂j⟩ and produce

initial clusters Ck, k = 1, . . . , K∗.

Step 1 Update the projection operators P̂k based on the current clustering. Then for

each observation Zi(·), obtain its projections onto the K∗ functional PC spaces

as P̂k(Zi)(·), k = 1, . . . , K∗ and re-classify the curve according to Ĉ(Zi) =

argmin1≤k≤K∗ ∥Zi − P̂k(Zi)∥2. Based on this re-classification step, update the

clusters Ck, k = 1, . . . , K∗.

Step 2 Repeat Step 1 until Ck no longer change.

Once equipped with Ck, k = 1, . . . , K∗ returned by the k-CFC, as a new observation
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Z(·) is made, it is classified to one of the K∗ clusters based on the membership criterion

in (12), i.e. Ĉ(Z) = argmink=1,...,K∗ ∥Z − P̂k(Z)∥2.
There still remains a non-trivial question on the choice of the total number of clusters

K∗. In Section 3.3, we list a number of methods from the relevant multivariate clustering

literature, and propose their extensions in the context of k-CFC, some of which are

motivated by the theoretical properties of k-CFC discussed in the next section.

3.2 Properties of the k-CFC

Pollard (1981) showed that in multivariate data classification, the centers of clusters

returned by the k-means algorithm were consistent. The two essential tools are used in

the proof: the fact that the optimal sample cluster centers are contained in a compact

ball and the strong law of large numbers. However, due to the infinite-dimensional

nature of the functional data, it still remains as a challenging task to extend the above

arguments to the case of k-CFC algorithm. Instead, Chiou and Li (2007) provide with

some conditions under which the functional PC spaces associated with any two true

clusters C∗k and C∗l are distinguished by the L2-distance measure (12).

Let ci = C∗(Zi) indicate the true cluster membership of Zi(·) in the sense that Zi(·) is
generated from the sub-process corresponding to the cluster C∗ci , and let |C∗k | = n∗

k for

all k = 1, . . . , K∗. We impose the following condition on the number of observations in

each true cluster to study the asymptotic properties of the estimated cluster centers.

(C1) There exists δ ∈ (0, 1) such that n−δ · n∗
k →∞.

Each sub-process corresponding to C∗k is equipped with the mean function µ∗(k)(·) and
the pair of eigenvalues and eigenfunctions {σ∗(k)

j , ρ
∗(k)
j (·)}, j = 1, 2, . . .. The projection

operator P∗
k(·) associated with Ck is defined accordingly with µ∗(k)(·) and {ρ∗(k)j (·)}∞j=1,

and so does its truncated operator P̃∗
k with µ∗(k)(·) and {ρ∗(k)j (·)}dkj=1.

The consistency of ρ̂
∗(k)
j (·) estimated within each C∗k can be shown by adapting the proof

of Theorem 1 in Bathia et al. (2010), in the sense that

sup
t∈I
|ρ̂∗(k)j (t)− ρ∗(k)j (t)| = Op(n

−δ/2)

for a compact I, provided that E{
∫
I Zi(t)

2dt}2 <∞. Similarly, supposing that supt∈I |µ̂∗(k)(t)−
µ∗(k)(t)| = Op(n

−δ/2) as done in Assumption 1 of Chiou and Li (2007), we can show the

following for estimated projection operator P̂∗
k(Zi)(t) = µ̂∗(k)(t)+

∑dk
j=1 ζ̂

∗(k)(Zi)ρ̂
∗(k)
j (t):

∥P̂∗
k(Zi)− P̃∗

k(Zi)∥2 = Op(n
−δ/2), (14)
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see Section A in Appendix for the proof.

Using the above result, Lemma 1 of Chiou and Li (2007) shows that for all l ̸= ci,

∥P̂∗
c (Zi)− P̂∗

l (Zi)∥22 = ∥P̃∗
c (Zi)− P̃∗

l (Zi)∥22 +Op(n
−δ)

= ∥µ∗(c) − µ∗(l)∥2 +
dc∑
j=1

|ζ∗(c)j (P̃∗
c (Zi))|2 −

dl∑
j=1

|ζ∗(l)j (P̃∗
c (Zi))|2

+ 2
dc∑
j=1

ζ
∗(c)
j (P̃∗

c (Zi))⟨µ∗(c) − µ∗(l), ρ
∗(k)
j ⟩+

dl∑
j=1

|⟨Rc(Zi), ρ
∗(l)
j ⟩|2 +Op(n

−δ) (15)

(the subscript i is dropped from ci for notational brevity), whereRc(Zi) =
∑∞

j=dc+1 ζ
∗(c)
j (Zi)ρ

∗(c)
j ,

i.e. the residual resulting from the truncation of Karhunen-Loève expansion. Since

σ
∗(c)
j → 0 as j → ∞ under (10), we may assume that dl

∑∞
j=dc+1 σ

∗(c)
j → 0 as dc =

dc(n)→∞, which leads to the term
∑dl

j=1 |⟨Rc(Zi), ρ
∗(l)
j ⟩|2 → 0 in probability.

Defining M∗(k) as the functional space spanned by {ρ∗(k)j (·), j = 1, . . . , dk} for all k,

the following are referred to as non-identifiability conditions in Chiou and Li (2007):

(C2) µ∗(k)(t) = µ∗(l)(t) for all t ∈ I, or µ∗(k)(·), µ∗(l)(·) ∈M∗(l).

(C3) M∗(k) ⊆M∗(l).

When both (C2) and (C3) are met with k = ci and some l ̸= ci, the right-hand side

of (15) converges to zero as n → ∞. This implies that the two clusters C∗c and C∗l
are indistinguishable from each other in terms of the corresponding cluster centers for

Zi(·). On the other hand, when either (C2) or (C3) is not met, ∥P̂∗
ci
(Zi) − P̂∗

l (Zi)∥22
is bounded away from zero. Hence, it is easily seen that the true membership of Zi(·)
can be identified by the L2-distance criterion in (12), as long as every pair of the true

clusters are identifiable in the sense that either of (C2) or (C3) is not met for any k ̸= l.

As the true clusters are unknown, let alone the true total number of clusters K∗, the

estimated mean functions and eigenfunctions have smaller convergence rates than those

assumed above, and the consistency of the estimated cluster centers also suffer in the re-

classification procedure. However, we may apply these findings in assessing the clusters

finally returned by the k-CFC with some K as an input for the number of clusters, and

thus derive a model selection criterion. Indeed some of the cluster number selection

methods described in the next section actively make use of the theoretical properties

discussed above.
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3.3 Identifying the optimal number of clusters

Most clustering procedures including the k-CFC algorithm, require the knowledge of the

total number of clusters as an input, which is often closely related to the quality of the

clustering outcome yet is largely unavailable in practice. This problem of determining

the number of clusters is widely regarded as one of the most difficult challenges, as

remarked by Gordon (1999) (Chapter 6) and the references therein.

A commonly adopted approach is to apply a classification technique with a range of

K as an input and then assess the resulting clusters to estimate the optimal number

of clusters. As noted by Tibshirani et al. (2001), clustering assessment methods may

be categorized into two, as global and local approaches. The former builds an object

function evaluating the clusters which is optimized as a function of K. Examples of

such global methods are provided in Section 3.3.1. The forward functional testing

method proposed in Li and Chiou (2011) is a local method in the sense that for any

pairs of clusters, it tests whether to merge them or not according to the identifiability

conditions, see Section 3.3.2 for more details.

3.3.1 Global approaches

Many global approaches employ some objective functions for evaluating the relative

quality of clustering, and ultimately selecting an appropriate number of clusters. They

are often constructed with certain within-cluster (WC) and between-clusters (BS) dis-

similarity measures, noting that when the observations are clustered “optimally”, we

expect the former to be small and the latter to be large.

The silhouette statistic (Rousseeuw 1987) is an example of such objective functions

originally applied to multivariate data clustering. Its definition can be extended to be

applicable in the functional clustering framework as follows. Given the clusters returned

with an input cluster number K, for an observation Zi(·) with ci = C(Zi), let ai(K)

denote the average distance between Zi(·) and all the other curve members in Cci (WC

dissimilarity). Also, denoting by loi the index of the “nearest” cluster for Zi(·) in the

sense that loi = argmin1≤k ̸=ci≤K

∑nk

j=1 ∥Zi − Z
(k)
j ∥22, let bi(K) be the average distance

between Zi(·) and the curve members in Cloi (BC dissimilarity). Then the silhouette

statistic is defined as

soi (K) =
bi(K)− ai(K)

max{ai(K), bi(K)}
,

and the optimal number of clusters K̂ is chosen as where So(K) =
∑n

i=1 s
o
i (K) is

maximized.

soi (·) may be modified to exploit some properties of the estimated projection operators
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discussed in Section 3.2. We define li to denote another index of the nearest cluster for

Zi(·), according to the distance between Zi(·) and its projections onto the K−1 clusters
Ck, k ̸= ci, i.e. li = argmin1≤k ̸=ci≤K ∥Zi − P̂k(Zi)∥22. Then the modified silhouette

statistic is of the form

si(K) =
∥P̂ci(Zi)− P̂li(Zi)∥22
∥Zi − P̂ci(Zi)∥22

.

With a slight abuse of notation, let si(K
∗) denote the silhouette statistic obtained under

the true clustering, i.e., not only K = K∗ but also ci = C∗(Zi) for all i. Also assume

that each cluster is identifiable in the sense that either of (C2) or (C3) is not met. Then,

the denominator of si(K
∗) is close to 0 while its numerator is bounded away from 0 (as

a result of the arguments below (see (14) and the arguments below (15)), which implies

that S(K∗) =
∑n

i=1 si(K
∗) satisfies n−δ · S(K∗)→∞.

On the other hand, when K < K∗, the denominator of si(K) is expected to be bounded

away from 0 for some clusters, as the corresponding P̂ci(·) does not well-approximate

the true Karhunen-Loève expansion of Zi(·). Also when K > K∗, it is likely that some

of the true clusters are split into two, which results in si(K) with their numerators of

the order n−δ for those Zi(·) belonging to the split clusters. In summary, assuming that

the size of each true cluster is sufficiently large, i.e., δ = 1 and thus n∗
k ≍ n for all

k = 1, . . . , K∗, we expect that S(K) is maximized at K = K∗.

Other dissimilarity measures that are frequently adopted in the literature are WC and

BC sum of squares (SS). However, some adjustments are necessary to the notion of

WCSS commonly used in the multivariate clustering literature, since in the k-CFC,

cluster centers are determined for each Zi(·) separately, in place of the cluster means

conventionally adopted in these measures.

Recall that the k-means algorithm sets out to minimize the following WCSS

K∑
k=1

nk∑
i=1

∥Z(k)
i − µ̂(k)∥22,

where Z
(k)
i (·) denotes the i-th observation in Ck and µ̂(k)(·) denotes the cluster center

of Ck. We propose a new definition of WCSS in the framework of k-CFC as

W (K) =
K∑
k=1

nk∑
i=1

∥Z(k)
i − P̂k(Z

(k)
i )∥22 =

n∑
i=1

∥Zi − P̂ci(Zi)∥22.
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Similarly, we use the following as the BCSS

B(K) =
n∑

i=1

∥P̂ci(Zi)− µ̂(Zi)∥22,

where µ̂(Zi)(·) is the pooled cluster center for Zi(·), which may take the forms

(i) µ̂(Zi)(t) = n−1
∑K

k=1 nkP̂k(Zi)(t), or

(ii) µ̂(Zi)(t) = P̂(Zi)(t) with P̂(·) denoting the projection operator to the functional

PC space of the pooled data.

Besides, we compute the degrees of freedom ofW (K) in the spirit of the effective degrees

of freedom (see e.g. (3.60) of Hastie et al. (2001)) as

df(K) = K +
K∑
k=1

(nk − 1)

∑dk
j=1 σ̂

(k)
j∑

k σ̂
(k)
j I(σ̂(k)

j > 0)
,

where the second term accounts for the projection onto the functional PC space in

P̂ki(Zi)(·).
Using these definitions, we propose to extend some cluster number selection criteria

suggested in the multivariate clustering literature, to functional clustering setting.

Caliński and Harabasz (1974): The variance ratio criterion

CH(K) =
B(K)/(K − 1)

W (K)/(n− df(K))
,

analogous to F -statistic in univariate data analysis, finds the best partitioning as

where CH(K) is maximized for K ≥ 2. We denote the criteria obtained with two

different choices of µ̂(Zi)(·) as in the above (i) and (ii), by CH1(·) and CH2(·),
respectively.

Hartigan (1975): Defined using WCSS only as

H(K) =
1

n−K − 1

{
W (K)−W (K + 1)

W (K + 1)

}
,

it is feasible to obtainH(K) for allK ≥ 1. Instead of deriving a test criterion from

a F -distribution, Hartigan (1975) suggested to increase the number of clusters as

long as H(K) > 10, i.e. K̂ is selected as the smallest K for which H(K) ≤ 10.
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Krzanowski and Lai (1988): Denoting the dimensionality of the data by p,

KL(K) =

∣∣∣∣(K − 1)2/pW (K − 1)−K2/pW (K)

K2/pW (K)− (K + 1)2/pW (K + 1)

∣∣∣∣
returns the number of cluster as where it is maximized for K ≥ 2. When applying

KL(K) for functional clustering, p may be set as the size of the discrete grids over

which the curves are observed.

Occasionally, the k-CFC returns different clustering configurations for the same given

number of clusters, due to e.g. cluster merging or the different choices of initial clusters.

To cope with such situations, we may regard So(·), S(·), CH1(·) and CH2(·), not as a
function of K but as that of cluster configuration, and identify the optimal clustering

of the data as where each function is maximized. Note that this adjustment is not

applicable to H(·) and KL(·).

3.3.2 Forward functional testing

Motivated by the identifiability conditions (C2)–(C3), Li and Chiou (2011) proposed a

multiple hypothesis testing scheme named forward functional testing (FFT). It evalu-

ates the clustering by testing whether there exists any pair of clusters which are not

identifiable (i.e., both (C2) and (C3) are met). If so, such two clusters are merged into

one whereas, if there exists no such pair of clusters, we can sufficiently believe that the

clustering is valid.

More specifically, the following null hypotheses are tested

H01(k, l) : µ
(k)(·) = µ(l)(·) and H02(k, l) :M(k) =M(l),

for all pairs of Ck and Cl, k ̸= l. When the sub-processes corresponding to the two

clusters are identifiable, the discrepancy is reflected in the test statistics

D1(k, l) = ∥µ̂(k) − µ̂(l)∥22, and

D2(k, l) =
d∑

j=1

ω
(k)
j ∥ρ̂

(k)
j − P̂l(ρ̂

(k)
j )∥22 + ω

(l)
j ∥ρ̂

(l)
j − P̂k(ρ̂

(l)
j )∥22,

where d = min(dk, dl) and ω
(k)
j is defined as ω

(k)
j = σ̂

(k)
j /

∑
j′ σ̂

(k)
j′ I(σ̂

(k)
j′ > 0).

By repeatedly generating bootstrap samples according to the resampling scheme given in

Efron and Tibshirani (1994), we compare D1(k, l) and D2(k, l) against the test statistics

that are similarly obtained from the bootstrap samples, and thus produce p-values.
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Starting from the initial cluster number K = K0 ≥ 2, the FFT procedure is applied

to the clusters returned by the k-CFC with K as an input number of clusters. We

update K by one, as long as either H01(k, l) or H02(k, l) is rejected for all pairs of (k, l)

according to the chosen multiple testing method. Otherwise, the procedure stops and

we set the optimal number of clusters as K̂ = K − 1. For further details of the FFT

procedure, including bootstrap sample generation, see Sections 3.1–3.2 of Li and Chiou

(2011).

Due to the bootstrap sampling, the FFT procedure is computationally intensive com-

pared to the global approaches listed in Section 3.3.1. Besides, when the input K is

set greater than K∗, the k-CFC often splits (approximately) homogeneous clusters into

two. Then, the bootstrap samples from such split clusters resemble the data too closely,

such that the FFT still rejects the null hypotheses and causes false alarms. Also, the k-

CFC occasionally merges two or more clusters into one for a large input of K. However,

sometimes the FFT procedure may be quitted before reaching such a large K, and does

not benefit from clustering merging which may lead to inferior clustering configuration

as observed in the simulation study.

Remark 1. We note that some of the model selection methods described above are not

applicable to identify the true cluster number when K∗ = 1. However, when the input

cluster number K is greater than K∗, it has been empirically observed that the k-CFC

merges multiple clusters into one during the re-classification steps. This feature was

investigated on simulated datasets in Li and Chiou (2011), where they showed that

when K > K∗, merging occurs with high frequencies for the input values of K closer

to K∗. Since the FFT is stopped when merging occurs, the true K∗ = 1 was identified

over 93% of simulated datasets generated in the paper.

4 Simulation study

In this section, we conduct a simulation study with two aims. First, we investigate the

performance of various model selection techniques described in Section 3.3 in combi-

nation with the k-CFC, whether they are able to identify the true clusters (and the

total number) and predict correct cluster memberships on the test set. Then we pro-

ceed to a comparative study between the SVD-based curve linear regression technique

and its competitors (recall FPC and Bayes described in Section 2), by fitting different

curve linear regression models fitted within each cluster and examining their predictive

performance. In this manner, we attempt to fully appreciate the joint methodology

combining clustering and forecasting steps.
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We adopt a range of models to simulate curve data. The models (M1)–(M4) were first

employed in Li and Chiou (2011), although the size of each cluster and observation

grids are set differently here. The curve observations are generated as

Z
(k)
i (tl) = µ(k)(tl) +

dk∑
j=1

ζ
(k)
ij ρ

(k)
j (tl) + ε

(k)
i (tl), i = 1, . . . , nk; k = 1, . . . , K∗, (16)

where each curve is observed on equispaced grids tl = (l−1)/(p−1) for l = 1, . . . , p = 60.

The random effects ζ
(k)
ij are generated independently fromN (0, σ

(k)
j ). For the specifics of

the choice of µ(k)(·), ρ(k)j (·) and σ(k)
j we refer to Section 4.1 of Li and Chiou (2011). Unlike

in the original models, we include the measurement error ε
(k)
i (tl) which is generated at

each tl as an i.i.d. random variable following N (0, σ
(k)
dk
/200).

For each model, we generate both the training set (denoted by {Z(k)
i (·), i = 1, . . . , nk}, k =

1, . . . , K) and the test set ({Z̃(k)
i (·), i = 1, . . . , ñk}, k = 1, . . . , K). For the training set,

nk is independently generated from U(300, 400) in (M1)–(M3), U(150, 250) in (M4)

and U(100, 200) in (M5), while for the test set, ñk is independently generated from

U(30, 60) in (M1)–(M3) and U(20, 50) in (M4)–(M5). Finally, when we refer to the

pooled dataset, we adopt the notations {Zi(·), i = 1, . . . , n} for the training set and

{Z̃i(·), i = 1, . . . , ñ} for the test set.

(M1) K∗ = 3 with a shared mean function but different eigenspaces.

(M2) K∗ = 3 with a shared eigenspace but different mean functions.

(M3) K∗ = 3 with different mean functions and eigenspace.

(M4) K∗ = 6 with different mean functions and eigenspace: This model is in-

cluded to see whether the model selection criteria are effective for identifying the

true cluster number when it is larger than that considered in (M1)–(M3).

(M5) K∗ = 4 with three classes generated from the electricity load data: As ob-

served in Introduction, we expect that pairs of daily electricity loads observed on

the same consecutive days of a week in the same month, behave similarly in terms

of their profiles and covariance structures. Therefore we define four classes for

Z
(k)
i (·) = (X

(k)
i , Y

(k)
i )(·) as in Table 1, and each Z

(k)
i (·) is observed over p = 96

equispaced grids (every half an hour). Within each class, Z
(k)
i (·) is generated as in

(16), where µ(k)(·), ρ(k)j (·), σ(k)
j and dk are estimated using the observations from

the French electricity load dataset (collected between 1996 and 2009) correspond-

ing to each class, and the measurement error is generated at each tl as an i.i.d.

random variable following N (0, σ̂
(k)
dk
/200).
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Table 1: Four classes in (M5).

k 1 2 3 4
day month day month day month day month

X
(k)
i Tuesday July Friday June Saturday September Friday April

Y
(k)
i Wednesday July Saturday June Sunday September Saturday April

Sample datasets generated from (M1)–(M5) are plotted in Figures 3–7.

4.1 Performance of the k-CFC and model selection methods

We study the performance of the k-CFC algorithm along with the model selection

techniques discussed in Section 3.3, such as the objective function-based methods (So(·),
S(·), CH(·), H(·) and KL(·)), and the FFT procedure. Besides the estimated number

of clusters (K̂), we adopt the adjusted Rand index to assess the quality of cluster

configurations returned by different methods. The adjusted Rand index is a measure

of agreement between two clusterings, such that a value close to 1 indicates higher

agreement between the two, see Hubert and Arabie (1985) for further details. We obtain

the adjusted Rand index between the estimated and the true cluster memberships on

the training set (θ̂), and that between the predicted and the true cluster memberships on

the test set (θ̃). We also report the quality of the clustering resulted from the following

approaches as a reference:

• oracle: apply the k-CFC with K∗ known,

• initial: apply Step 0 of the k-CFC with K∗ known, and

• k-means : apply the k-means algorithm by regarding the curves observed over size

p grids as vectors of length p, with K∗ known.

Note that the three approaches are infeasible in practice, since they all assume K∗ is

known. The k-CFC is applied to the simulated datasets from (M1)–(M5) with K = 2

as an initial input, and it is increased by one until K = 10 is reached (K = 12 in the

case of (M4)). None of the model selection methods returned the maximum allowed K

as the final number of clusters in the simulation study below.

In view of the curve linear regression modeling conducted in the next step, we regard

each curve as consisting of the regressor and the response curves, each part being

observed over equal length of grids (p/2), and we denote the regressor and the response

curves by {Xi(·), Yi(·)}ni=1 for the training set and {X̃i(·), Ỹi(·)}ñi=1 for the test set. This
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Figure 3: Zi(·), i = 1, . . . , n generated from
(M1) where K∗ = 3.
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Figure 4: Zi(·), i = 1, . . . , n generated from
(M2) where K∗ = 3.
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Figure 5: Zi(·), i = 1, . . . , n generated from
(M3) where K∗ = 3.
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Figure 6: Zi(·), i = 1, . . . , n generated from
(M4) where K∗ = 6.
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Figure 7: Zi(·), i = 1, . . . , n generated from
(M5) where K∗ = 4.
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notion comes naturally in the setting of (M5), where each curve joins the electricity

loads observed on two consecutive days.

Then, when predicting the cluster memberships of the test set, we assume Z̃i(·) is

observed partially such that only X̃i(·) is available, and its membership is predicted as

follows:

Ĉ(Z̃i) = arg min
k=1,...,K

∥X̃i − P̂X
k (X̃i)∥22, (17)

where each P̂X
k (·) is estimated from the training set using X

(k)
i (·) belonging to Ĉk in

the same manner as P̂k(·). The results reported in Tables 2–6 are based on the 100

replications generated from each model.

Overall, it is apparent that the k-CFC can identify the true clustering for the models

considered in this study, when combined with a suitable model selection technique,

regardless of whether the dissimilarities between the clusters originates from either

the mean function or the modes of variation or both. Some of the model selection

criteria perform as well as the oracle approach, and occasionally even better due to

the cluster merging. Although equipped with the prior information on true K∗, the

initial or the k-means procedures often return poor clusterings as they do not account

for the entire dependence structure differentials. Gordon and Henderson (1977) noted

that the k-means clustering with the sum of squares criterion tends to find clusters

of hyperspherical shapes, such that long, straggling sets of points (e.g., when there

exist high correlations within each observed vector) are broken up into several different

groups, which accounts for poor clusterings returned by the two methods.

Since the simulated datasets used in the study are generated from the models in the

form of the truncated Karhunen-Loève expansion in (16), the k-CFC performs well

when combined with S(·), an objective function which is designed specifically to take

into account the properties of the projection operators employed by the classification

criterion. It outperforms other model selection methods in terms of both the total

number of clusters and the adjust Rand index for (M1)–(M4). On the other hand, S(·)
tends to under-estimate the number of clusters for (M5), which implies that the within-

cluster and between-clusters dissimilarity measures adopted by S(·) are not suitable for
detecting differences among the clusters in (M5).

While the FFT performs well for (M1)–(M3) and (M5), correctly identifying K∗ over

at least 70% of the simulated datasets, it tends to over-estimate the number of clusters

for (M4) by additionally splitting a true cluster. This may be due to the bootstrap

resampling scheme which, as mentioned in Section 3.3.2, generates bootstrap samples
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that resemble the data too closely and thus leads to false alarms.

H(·) prefers clusterings with K > K∗ and large adjusted Rand indices, presumably by

including an additional cluster resulted from splitting a true cluster. While the FFT

achieves better accuracy than H(·) in terms of the number of total clusters, θ̂ and θ̃

returned by the two methods are comparable. We note that global approaches are

allowed to compare the clusterings returned by the k-CFC with a wider range of K as

an input compared to the FFT (due to its stopping rule), and thus benefit from cluster

merging occurring during the re-classification step.

CH1(·) and CH2(·) often under-estimate the number of clusters, as the reduction in

WCSS due to adding another cluster does not outweigh the reduction in BCSS accord-

ing to the scalings adopted by these criteria. Exceptions occur for (M4) (in the case

of CH1(·)) and (M5), where the two methods prove to be effective in identifying the

true clusters, and this is more striking for the latter model where other well-performing

criteria fail to do so. Finally, since So(·) and KL(·) are originally proposed for multi-

variate data clustering (the latter even involves the dimensionality p in the criterion),

their performance is not outstanding on most of the simulated examples.

We conclude that depending on the underlying structure of the data, different model

selection methods are particularly more suited.

4.2 Performance of curve linear regression models

To assess the performance of curve linear regression methods when combined with the

k-CFC, we apply the three methods described in Section 2 (denoted by SVD, FPC

and Bayes respectively), to the curves clustered as in the previous section. Using each

technique, we estimate the curve linear regression models within the clusters resulted

from applying various model selection methods on the training set. Then on the test set,

according to the predicted memberships of Z̃i (see (17)), we forecast the corresponding

response Ỹi(·) as
̂̃
Y i(·) using the curve linear regression model estimated from the cluster

Ĉ(Z̃i). The forecasting performance of SVD, FPC and Bayes is evaluated using the root-

mean-square error (RMSE)

√
ñ−1

∑ñ
i=1 ∥Ỹi −

˜̂
Y i∥22 with ñ =

∑K
k=1 ñk. In Tables 2–6,

we report the prediction errors of different curve linear regression methods combined

with different model selection criteria for clustering. We also present the prediction

results obtained with the knowledge of the true memberships of Z̃i, which is reported

under the heading “oracle∗”.

Naturally, good membership forecasts lead to better forecasts of Ỹi, and the advantage

is more pronounced with the SVD method than the other two. It is also this SVD-based
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Table 2: Summary of simulation results for (M1) where K∗ = 3. The largest θ̂, θ̃ and the
smallest RMSE, among those returned by different model selection methods and forecasting
models, are marked by ∗.

clustering RMSE

K̂ SVD FPC Bayes

1 2 3 4 5 θ̂ θ̃ mean sd mean sd mean sd
So 0 95 5 0 0 0.586 0.585 0.094 0.02 0.518 0.121 1.53 0.144
S 0 0 100 0 0 1∗ 1∗ 0.074∗ 0.001 0.421 0.122 1.523 0.127

CH1 0 94 6 0 0 0.596 0.594 0.092 0.006 0.516 0.123 1.53 0.143
CH2 0 95 5 0 0 0.586 0.585 0.094 0.018 0.52 0.119 1.53 0.144
H 0 0 69 30 1 0.953 0.958 0.074∗ 0.001 0.424 0.12 1.524 0.125
KL 0 37 62 1 0 0.823 0.826 0.087 0.036 0.467 0.13 1.521 0.144
FFT 0 0 92 8 0 0.85 0.84 0.109 0.072 0.447 0.134 1.529 0.126
initial − − − − − 0.021 0.423 0.282 0.021 0.694 0.088 1.737 0.185

k-means − − − − − 0.017 0.413 0.279 0.019 0.7 0.076 1.723 0.165
oracle − − − − − 1 1 0.074 0.001 0.421 0.122 1.523 0.127
oracle∗ − − − − − − − 0.074 0.001 0.421 0.122 1.523 0.127

Table 3: Summary of simulation results for (M2) where K∗ = 3.
clustering RMSE

K̂ SVD FPC Bayes

1 2 3 4 5 6 7 θ̂ θ̃ mean sd mean sd mean sd
So 0 86 12 2 0 0 0 0.396 0.337 0.419 0.248 0.79 0.133 1.565 0.193
S 0 0 100 0 0 0 0 0.999∗ 0.993∗ 0.056∗ 0.006 0.466 0.157 1.538 0.119

CH1 0 65 34 0 1 0 0 0.665 0.583 0.326 0.305 0.723 0.205 1.569 0.196
CH2 0 97 3 0 0 0 0 0.412 0.339 0.44 0.264 0.793 0.139 1.553 0.209
H 0 0 93 7 0 0 0 0.988 0.983 0.056∗ 0.006 0.467 0.156 1.539 0.119
KL 0 22 63 5 3 5 2 0.856 0.834 0.129 0.135 0.558 0.19 1.534 0.162
FFT 0 8 77 10 3 2 0 0.771 0.729 0.219 0.259 0.602 0.215 1.562 0.128
initial − − − − − − − 0.029 0.014 0.647 0.071 0.805 0.115 1.552 0.232

k-means − − − − − − − 0.026 0.022 0.632 0.07 0.769 0.083 1.501 0.17
oracle − − − − − − − 0.999 0.993 0.056 0.006 0.466 0.157 1.538 0.119
oracle∗ − − − − − − − − − 0.054 0.001 0.47 0.158 1.542 0.115

linear regression method which consistently achieves the smallest forecasting RMSE in

combination with well-performing model selection methods, and in such case, the RMSE

is as small as the error of the oracle∗ predictor. As noted in Cho et al. (2013a), good

performance of the SVD-based method is attributed to the fact that SVD singles out

the directions upon which the projections of Yi(·) are most correlated with Xi(·). These
arguments do not apply to the principal components, and it is reflected in relatively

poor performance of the FPC and the Bayes methods.

Occasionally, over-estimating the number of clusters obtains good forecasting results.

As mentioned previously, a clustering with K > K∗ returned by the k-CFC is likely

to have an additional cluster resulted from further partitioning a true homogeneous

cluster, which lead to over-fitted forecasting models. This is observable especially with

the clustering results returned by H(·), which is consistent with the observations made

on its clustering performance in the previous section.
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Table 4: Summary of simulation results for (M3) where K∗ = 3.
clustering RMSE

K̂ SVD FPC Bayes

1 2 3 4 5 θ̂ θ̃ mean sd mean sd mean sd
So 0 86 12 1 1 0.53 0.412 0.516 0.273 1.033 0.173 1.911 0.231
S 0 0 100 0 0 1∗ 0.996∗ 0.064∗ 0.004 0.573 0.18 1.943 0.152

CH1 0 86 14 0 0 0.558 0.44 0.511 0.323 1.026 0.202 1.907 0.235
CH2 0 99 1 0 0 0.502 0.377 0.547 0.297 1.041 0.173 1.907 0.242
H 3 0 71 25 1 0.929 0.933 0.083 0.111 0.582 0.194 1.942 0.156
KL 0 14 85 0 1 0.93 0.912 0.119 0.159 0.633 0.242 1.927 0.169
FFT 0 6 84 9 1 0.845 0.805 0.213 0.243 0.723 0.254 1.935 0.19
initial − − − − − 0.073 0.089 0.757 0.108 1.015 0.102 1.941 0.207

k-means − − − − − 0.056 0.13 0.719 0.1 0.995 0.102 1.914 0.177
oracle − − − − − 1 0.996 0.064 0.004 0.573 0.18 1.943 0.152
oracle∗ − − − − − − − 0.062 0.001 0.573 0.18 1.943 0.152

Table 5: Summary of simulation results for (M4) where K∗ = 6.
clustering RMSE

K̂ SVD FPC Bayes

1 2 3 4 5 6 7 8 9 θ̂ θ̃ mean sd mean sd mean sd
So 0 0 0 0 33 67 0 0 0 0.943 0.939 0.202 0.258 0.574 0.155 1.654 0.121
S 0 0 0 0 0 93 7 0 0 0.994∗ 0.991∗ 0.182 0.242 0.529 0.131 1.631 0.124

CH1 0 0 0 0 5 92 3 0 0 0.99 0.986 0.189 0.251 0.537 0.137 1.635 0.126
CH2 0 24 8 0 41 27 0 0 0 0.705 0.644 0.549 0.568 0.894 0.45 2.09 0.702
H 0 0 0 2 2 17 46 26 7 0.939 0.937 0.105∗ 0.165 0.506 0.13 1.633 0.121
KL 0 3 7 18 4 29 37 2 0 0.835 0.827 0.268 0.34 0.65 0.27 1.794 0.334
FFT 0 0 0 0 8 56 33 3 0 0.909 0.911 0.189 0.235 0.567 0.154 1.649 0.123
initial − − − − − − − − − 0.727 0.801 0.445 0.268 0.764 0.108 1.791 0.142

k-means − − − − − − − − − 0.608 0.78 0.674 0.468 0.93 0.313 1.923 0.307
oracle − − − − − − − − − 0.986 0.98 0.201 0.251 0.542 0.14 1.646 0.127
oracle∗ − − − − − − − − − − − 0.053 0.001 0.468 0.096 1.635 0.114

Table 6: Summary of simulation results for (M5) where K∗ = 4.
clustering RMSE

K̂ SVD FPC Bayes

1 2 3 4 5 6 7 θ̂ θ̃ mean sd mean sd mean sd
So 0 0 100 0 0 0 0 0.713 0.682 941.28 175.78 1827.54 499.11 1279.18 847.96
S 0 97 3 0 0 0 0 0.351 0.297 2552.76 401.60 3145.63 347.39 3217.01 497.91

CH1 0 0 2 98 0 0 0 0.996 0.973 579.36 164.01 1456.93 320.73 1057.21 665.15
CH2 0 0 1 99 0 0 0 0.998∗ 0.975∗ 577.36∗ 161.96 1451.24 315.66 1055.89 665.49
H 0 0 0 35 51 12 2 0.933 0.914 597.20 163.31 1443.15 315.93 1048.94 637.81
KL 0 32 3 60 5 0 0 0.776 0.743 1222.41 936.47 2002.39 864.94 1808.85 1169.36
FFT 0 0 0 71 29 0 0 0.962 0.95 593.83 159.03 1461.84 325.61 1078.02 670.59
initial − − − − − − − 0.827 0.875 848.32 203.40 1954.53 401.30 1151.56 494.41

k-means − − − − − − − 0.784 0.787 861.14 387.26 1880.41 573.51 1279.27 788.46
oracle − − − − − − − 0.999 0.977 573.95 160.14 1451.43 315.54 1052.82 66.49
oracle∗ − − − − − − − − − 399.95 26.16 1365.56 333.52 947.83 711.47
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5 Clustering and forecasting of daily electricity loads

We apply the combined methodology of functional data clustering and curve linear

regression modeling, to the problem of forecasting daily electricity loads. To this end,

we use the French electricity load dataset collected between 1 January 1996 and 31

December 2008 as the training set ({Zi(·)}ni=1, n = 4749), and that collected between

1 January 2009 and 31 December 2009 as the test set ({Z̃i(·)}ni=1, n = 365).

As EDF produces one day-ahead forecast of electricity loads at noon, we set the obser-

vations made over the half-hour grids from the noon of day (i− 1) to the noon of day i

as the regressor curve Xi(·) (total 48 grids). Accordingly, we define the corresponding

response curve Yi(·) = Xi+1(·) and the joined curve Zi(·) = (Xi, Yi)(·), and the test set

is defined similarly as Z̃i(·) = (X̃i, Ỹi)(·).
To recap, the typical modeling and forecasting procedure is as follows.

Step 1: Clustering and modeling.

Step 1.1: Choose an initial cluster number K0 and let K ← K0.

Step 1.2: Apply the k-CFC to partition Zi(·), i = 1, . . . , n into K homogeneous sub-

groups and let K ← K + 1.

Step 1.3: Repeat Step 1.2 until K reaches the pre-specified maximum cluster number

K1, and apply model selection methods to identify K̂ and the final clustering

Ĉk, k = 1, . . . , K̂.

Step 1.4: Within each Ĉk, fit a curve linear regression model

Y
(k)
i (u) = µ

(k)
Y (u) +

∫
v∈I2

β(k)(u, v){X(k)
i (v)− µ(k)

X (v)}+ ε
(k)
i (u)

by estimating µ̂
(k)
X (·), µ̂(k)

Y (·) and β̂(k).

Step 2: Forecasting.

Step 2.1: Classify each Z̃i(·) to one of the K̂ clusters as described in (17), i.e. its

membership Ĉ(Z̃i) is determined as

Ĉ(Z̃i) = arg min
1≤k≤K̂

∥X̃i − P̂X
k (X̃i)∥22.

Step 2.2: Forecast each Ỹi(·) as
̂̃
Y i(u) = µ̂

(c)
Y (u)+

∫
v∈I2 β̂

(c)(u, v){X̃i(v)− µ̂(c)
X (v)} with

c = Ĉ(Z̃i).
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The difficulty in performing the Step 1.4 of the above procedure on the current training

set is that, as noted in Introduction, the mean and the modes of variation of Zi(·)
depend heavily on the calendar variables such as the corresponding day of a week and

the month of a year. Therefore, it is conceivable that there are a lot more classes in this

dataset compared to those models considered (whereK = 3, . . . , 6) in Section 4. Indeed,

classifying the training set with the above two calendar variables as a classification rule,

we obtained 92 classes in total. (Note that in applying the classification rule, the size

of each class was required to be greater than or equal to 10, and the classes with fewer

than 10 members were re-classified to the classes with more than 10 members according

to the L2-distance in (12)).

We have observed that the model selection criteria in Section 3.3.1 often failed to return

a sufficiently large K as the number of clusters. That is, when combined with the k-

CFC as in the above Step 1, they often attained the highest value at K = 2 (minimum

allowable number of clusters) then gradually decreased as K increased. The FFT also

prefers the clustering with small K, and tends not to reject the null hypotheses for K

greater than 10.

Instead, we have devised a new local approach to accommodate the prior knowledge on

the electricity load patterns, as well as effectively handling the large size of the data.

Commencing with the K = 92 classes obtained as above, we merge two classes Ck0 and

Cl0 which are nearest to each other in the sense that

(k0, l0) = arg min
1≤k ̸=l≤K

nk∑
i=1

∥Z(k)
i − P̂l(Z

(k)
i )∥22 +

nl∑
i=1

∥Z(l)
i − P̂k(Z

(l)
i )∥22. (18)

With the reduced number of classes, we repeatedly perform the merging untilK = 2. At

each iteration, the curve linear regression models are fitted within each class using the

three methods SVD, FPC and Bayes (as in the above Step 1.4), each test set observation

is classified to one of the K clusters (Step 2.1), and the forecast of Ỹi is produced (Step

2.2).

(a) When fitting the curve linear regression models, it has been noted in Cho et al.

(2013a) and Cho et al. (2013b) that including the temperature observations Ti(·)
(made over the same grids as Xi(·)) and forecasts T F

i (·) (made over the same grids

as Yi(·)) in the curve regressor, often bring in superior forecasts. Therefore below

we report the RMSE obtained on the fitted ({Ŷi}ni=1) and predicted ({ ̂̃Y i}ñi=1)

curves from the curve linear regression models with the joined curve (Xi, Ti, T
F
i )(·)

as regressor. Note that the fitted curves {Ŷi}ni=1 are obtained using leave-one-out

estimators of µ
(k)
Y (·), µ(k)

X (·) and β(k) in the curve linear regression models.

29



(b) It has been pointed out during our application study that, while Zi(·) joining two

consecutive daily loads are identifiable on any day of a week, it is not the case

when performing the membership prediction. For example, while daily electricity

load curves observed on Tuesday (i.e. from Monday midday to Tuesday midday),

Wednesday, Thursday and Friday of the same week behave very close to each

other, the load curves on Tuesday–Thursday and that on Friday behave markedly

different due to the economic cycle. It implies that the membership prediction

criterion in Step 2.2 is likely to regard Z̃i(·) on Tuesday-Thursday and that on

Friday as belonging to the same class, and this misclassification leads to poor one-

day ahead load forecasting. To remedy this, when classifying the test data, we use

the seven-day load curves Xo
i (·) = (Xi−6, . . . , Xi)(·) and X̃o

i (·) = (X̃i−6, . . . , X̃i)(·)
in place of Xi(·) and X̃i(·), respectively.

The results of merging are summarized in Figure 8, which shows the minimum distance

between the clusters, the fitted RMSE of {Ŷi(·)}ni=1 and the forecast RMSE of { ̂̃Y i(·)}ñi=1

from SVD and FPC. The results from Bayes are omitted from the figure for better

presentation, as the corresponding RMSE (in the range of 6000–10000 MW) is far

greater than the RMSE produced by the other two methods. For a reference, some

model selection criteria computed on the clustering at each iteration as well as the

results from performing the FFT, are presented in Figure 9.

Overall, the SVD performs far superior to the FPC, consistently with the results from

our simulation study in Section 4.2. As expected, the minimum distance between any

two clusters increases as K decreases. On the other hand, the fitted and the forecast

RMSE remain almost constant as K decreases from K = 92 to around K = 30, which

implies that not much is lost in terms of between-class dissimilarities by locally merging

the classes defined by the calendar variables up to a certain K.

By studying which of the two classes are merged at each iteration, we gain an in-

sight into the patterns of successive daily loads; full list of the merged classes and

the corresponding calendar variables is provided in the table of Appendix B, which

also reports the iteration-by-iteration fitted and the forecast RMSE. From the table, it

can be concluded that the merging occurs between the classes associated with warmer

months (April–October) first then moves on to those associated with colder months

(November–December, January–March). Also, the classes corresponding to Tuesday–

Thursday within the same month tend to get merged together, then those corresponding

to nearby months (e.g. June and July) are merged. Overall, these patterns agree with

the opinions of the experts at EDF.
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Figure 8: Top: distance between Ck0 and Cl0 at each iteration; middle: fitted RMSE (in MW)
of {Ŷi(·)}ni=1 from SVD (empty circle) and FPC (empty triangle) on the training set; bottom:

forecast RMSE (in MW) of { ̂̃Y i(·)}ñi=1 on the test set.
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Figure 9: Top:S(K) (empty circle, left y-axis), CH1(K) (empty triangle, right y-axis) and
CH2(K) (filled triangle, right y-axis) over K = 92, . . . , 2; bottom: The results of performing
FFT over K = 92, . . . , 2 where 0 indicates not rejecting the null hypotheses (and thus not
requiring an additional cluster) and 1 indicates rejecting at least one of the null hypotheses
at α = 0.05

6 Conclusions

In this paper, we have studied the combined methodology of functional data cluster-

ing and curve linear regression for modeling and forecasting daily electricity loads.

Functional data clustering is achieved by the k-CFC, which partitions the data into

sub-groups of homogeneous mean and covariance structures such that the curve linear

regression technique is applicable to each of the sub-groups separately. We have also

proposed some extensions of clustering selection criteria and studied their performance

on simulated datasets in conjunction with the k-CFC.

The French electricity load dataset, according to the classification rule based on the

calendar variables, consists of 92 classes. Applying the methodology to the dataset in

its modified form, it is clear that with the reduced number of classes, the curve linear

regression method still returns forecasts which are as good as those from the 92 classes.

Also we can collect information on the patterns of daily electricity loads from studying

the order of the occurring of merging, which coincides with the observations made from

extensively studying the French electricity load patterns at EDF.

While it still remains as a task to develop a fully adaptive clustering procedure for

the electricity load curves which does not rely on any prior information, it would be

interesting to see how well the current methodology works when applied to the domestic

and industrial usage separately. We defer these questions to future work.
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A Lemma 1

Lemma 1. The estimated projection operator P̂∗
k satisfies

∥P̂∗
k(Zi)− P̃∗

k(Zi)∥2 = Op{(n∗
k)

−1/2},

for all k = 1, . . . , K∗.

Proof. Note that

ζ̂
∗(k)
j (Zi) = ⟨Zi − µ̂∗(k), ρ̂

∗(k)
j ⟩ = ⟨Zi − (µ∗(k) +Op{(n∗

k)
−1/2}), ρ∗(k)j +Op{(n∗

k)
−1/2}⟩

= ⟨Zi − µ∗(k), ρ
∗(k)
j ⟩+Op{(n∗

k)
−1/2} = ζ

∗(k)
j (Zi) +Op{(n∗

k)
−1/2}.

Therefore

P̂∗
k(Zi)(t) = µ̂∗(k)(t) +

dk∑
j=1

ζ̂
∗(k)
j (Zi)ρ̂

∗(k)
j (t)

= µ∗(k)(t) +Op{(n∗
k)

−1/2}+
dk∑
j=1

(ζ
∗(k)
j (Zi) +Op{(n∗

k)
−1/2})(ρ∗(k)j (t) +Op{(n∗

k)
−1/2})

= µ∗(k)(t) +

dk∑
j=1

ζ∗(k)(Zi)ρ
∗(k)
j (t) +Op{(n∗

k)
−1/2} = P̃∗

k(Zi)(t) +Op{(n∗
k)

−1/2}.

B Table summarizing the results from merging

List of the two classes merged at each iteration and the associated calendar variables along

with the iteration-by-iteration fitted and the forecast RMSE. Three leading days and months

associated with Xi(·) are presented. NAs correspond to classes which consist of invalidated

observations or those from bank holidays.

RMSE (MW) Class k0 Class l0

K fitted forecast month day month day

92 739 975 Jul – – Wed – – Jul – – Thu – –

91 744 1006 Jun – – Wed – – Jun – – Thu – –

90 738 1004 Aug – – Thu – – Aug – – Wed – –

89 738 1005 Jul – – Tue – – Jul – – Thu Wed –

88 737 974 Aug – – Thu Wed – Aug – – Tue – –

87 737 974 Jun – – Tue – – Jun – – Thu Wed –

86 737 980 Jun – – Sat – – Jul Jun – Sat – –

85 737 981 Sep – – Wed – – Sep – – Thu – –

84 737 984 May – – Fri – – Jun – – Fri – –

83 736 974 Sep – – Tue – – Sep – – Wed Thu –

82 736 974 May – – Wed – – May – – Thu – –

81 735 977 Jun – – Thu Tue Wed Jul – – Tue Thu Wed

80 736 982 May – – Tue – – May – – Thu Wed –
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79 736 1004 Jun May – Fri – – Jul – – Fri – –

78 736 1002 Jun – – Mon – – Jul – – Mon – –

77 735 1003 May – – Sat – – Jun Jul – Sat – –

76 735 1000 Jul – – Sun – – Aug – – Sun – –

75 739 1001 May – – Tue Thu Wed Jul Jun – Thu Tue Wed

74 740 970 Jul Jun – Mon – – Aug – – Mon – –

73 740 970 Oct – – Wed – – Oct – – Thu – –

72 739 971 Oct – – Tue – – Oct – – Thu Wed –

71 738 987 Jun Jul May Sat – – Aug Jul – Sat – –

70 738 985 Apr – – Tue – – Apr – – Wed – –

69 737 971 Apr – – Mon – – NA – – NA – –

68 737 971 Apr – – Tue Wed – Apr – – Thu – –

67 736 978 Nov – – Wed – – Nov – – Thu – –

66 735 970 Oct – – Sat – – Sep – – Sat – –

65 736 973 Jul Jun May Thu Tue Wed Aug – – Tue Thu Wed

64 739 1011 May – – Sun – – Jun – – Sun – –

63 739 1026 May – – Mon – – NA – – NA – –

62 739 1026 Sep – – Fri – – Oct – – Fri – –

61 740 1030 Sep – – Sun – – Oct – – Sun – –

60 741 1038 Jun Jul May Fri – – Aug – – Fri – –

59 742 1037 May – – Mon – – Jul Jun Aug Mon – –

58 742 1036 Sep – – Tue Wed Thu Oct – – Thu Wed Tue

57 745 1040 Nov – – Sun – – Dec – – Sun – –

56 744 1026 Nov – – Tue – – Nov – – Thu Wed –

55 741 1029 Feb – – Sat – – Mar – – Sat – –

54 743 1037 Jan – – Wed – – Jan – – Thu – –

53 741 1033 Jan – – Tue – – Jan – – Wed Thu –

52 740 1035 Feb – – Thu – – Feb – – Tue – –

51 738 1015 Sep – – Mon – – Oct – – Mon – –

50 740 1017 Feb – – Tue Thu – Feb – – Wed – –

49 739 1013 Dec Nov – Sat – – Nov – – Sat – –

48 737 1012 Dec – – Tue – – Nov – – Tue Thu Wed

47 736 1036 Dec – – Wed – – Nov Dec – Tue Thu Wed

46 736 1034 Dec – – Fri – – Nov – – Fri – –

45 734 1038 Nov Dec – Tue Wed Thu Dec – – Thu – –

44 734 1042 Jan – – Tue Wed Thu Nov Dec – Tue Thu Wed

43 729 1031 Jan – – Fri – – Nov Dec – Fri – –

42 728 1030 Feb – – Fri – – Mar – – Fri – –

41 729 1031 Jan – – Mon – – Nov – – Mon – –

40 726 1031 Mar – – Wed – – Mar – – Thu – –

39 725 1026 Jan – – Sat – – Nov Dec – Sat – –

38 727 1010 Feb – – Sun – – Mar – – Sun – –

37 723 1004 Apr – – Sun – – Jun May – Sun – –

36 727 1005 Feb – – Tue Thu Wed Mar – – Thu Wed –

35 723 1000 Feb – – Mon – – Mar – – Mon – –

34 722 994 NA – – NA – – Jun Aug Jul Fri – –

33 725 994 NA – – NA – – Jun Apr May Sun – –

32 725 994 Feb Mar – Thu Wed Tue Mar – – Tue – –

31 726 990 Jun Jul Aug Sat – – Sep Oct – Sat – –

30 730 993 Jul Jun Aug Tue Thu Wed Sep Oct – Thu Tue Wed

29 739 1030 Jan Nov – Mon – – Dec – – Mon – –

28 739 1031 Jun Apr May Sun – – Sep Oct – Sun – –

27 747 1041 Sep Oct – Fri – – Jun Aug Jul Fri – –

26 749 1034 Sep Oct – Mon – – Jul Jun Aug Mon – –

25 753 1037 Apr – – Sat – – Sep Jun Oct Sat – –
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24 754 1155 Jan Nov Dec Tue Thu Wed Mar Feb – Thu Tue Wed

23 764 1202 NA – – NA – – Jul Aug – Sun – –

22 764 1202 Jan Nov Dec Sat – – Mar Feb – Sat – –

21 765 1199 Jan – – Sun – – Nov Dec – Sun – –

20 766 1193 Sep Oct Jul Mon – – Apr – – Mon – –

19 777 1210 Jan Nov Dec Fri – – Mar Feb – Fri – –

18 774 1210 Sep Oct Jun Sun – – NA – – NA – –

17 772 1210 Jul Aug – Sun – – Sep Oct Jun Sun – –

16 787 1227 Apr – – Fri – – Jun Sep Oct Fri – –

15 794 1231 Apr – – Thu Tue Wed Sep Oct Jul Thu Tue Wed

14 835 1313 Mar Feb Jan Sat – – Sep Jun Oct Sat – –

13 860 1338 Sep Oct Jun Sun – – Mar Feb – Sun – –

12 869 1287 Sep Mar Oct Sun – – Jan Nov Dec Sun – –

11 877 1406 Mar Feb Jan Thu Tue Wed Sep Oct Jul Thu Tue Wed

10 1002 1558 Jan Nov Dec Mon – – Mar Feb – Mon – –

9 1008 1569 Mar Feb Jan Fri – – Jun Sep Oct Fri – –

8 1028 1482 Mar Jan Feb Mon – – Sep Oct Jul Mon – –

7 1035 1582 Mar Jun Sep Fri – – NA – – NA – –

6 1036 1582 NA – – NA – – Mar Sep Jun Sat – –

5 1040 1582 Mar Sep Oct Thu Tue Wed Mar Jun Sep Fri – –

4 1801 2112 Mar Sep Oct Thu Fri Tue Mar Sep Jun Sat – –

3 1811 2115 Sep Mar Oct Mon – – Mar Sep Oct Thu Sat Fri

2 1842 2143 – – – – – – – – – – – –
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