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Abstract

We propose a new omnibus test for vector white noise using the maximum absolute autocorrelations
and cross-correlations of the component series. Based on an approximation by the L∞-norm of a normal
random vector, the critical value of the test can be evaluated by bootstrapping from a multivariate normal
distribution. In contrast to the conventional white noise test, the new method is proved to be valid for
testing the departure from white noise that is not independent and identically distributed. We illustrate the
accuracy and the power of the proposed test by simulation, which also shows that the new test outperforms
several commonly used methods including, for example, the Lagrange multiplier test and the multivariate
Box–Pierce portmanteau tests, especially when the dimension of time series is high in relation to the sam-
ple size. The numerical results also indicate that the performance of the new test can be further enhanced
when it is applied to pre-transformed data obtained via the time series principal component analysis pro-
posed by Chang, Guo and Yao (arXiv:1410.2323). The proposed procedures have been implemented in an
R package.

Keywords: Autocorrelation; Normal approximation; Parametric bootstrap; Portmanteau test; Time series
principal component analysis; Vector white noise.

1 Introduction

Testing for white noise or serial correlation is a fundamental problem in statistical inference, as many testing
problems in linear modelling can be transformed into a white noise test. Testing for white noise is often pur-
sued in two different manners: (i) the departure from white noise is specified as an alternative hypothesis in
the form of an explicit parametric family such as an autoregressive moving average model, and (ii) the alter-
native hypothesis is unspecified. With an explicitly specified alternative, a likelihood ratio test can be applied.
Likelihood-based tests typically have more power to detect a specific form of the departure than omnibus tests
which try to detect arbitrary departure from white noise. The likelihood approach has been taken further in
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the nonparametric context using the generalized likelihood ratio test initiated by Fan et al. (2001); see Section
7.4.2 of Fan & Yao (2003) and also Fan & Zhang (2004). Nevertheless many applications including model di-
agnosis do not lead to a natural alternative model. Therefore various omnibus tests, especially the celebrated
Box–Pierce test and its variants, remain popular. Those portmanteau tests are proved to be asymptotically
χ2-distributed under the null hypothesis, which makes their application extremely easy. See Section 3.1 of Li
(2004) and Section 4.4 of Lütkepohl (2005) for further information on those portmanteau tests.

While portmanteau tests are designed for testing white noise, their asymptotic χ2-distributions are es-
tablished under the assumption that observations under the null hypothesis are independent and identically
distributed. However, empirical evidence, including that in Section 4 below, suggests that this may represent
another case in which the theory is more restrictive than the method itself. Asymptotic theory of portman-
teau tests for white noise that is not independent and identically distributed has attracted a lot of attention.
One of the most popular approaches is to establish the asymptotic normality of a normalized portmanteau
test statistic. An incomplete list in this endeavour includes Durlauf (1991), Romano & Thombs (1996), Deo
(2000), Lobato (2001), Francq et al. (2005), Escanciano & Lobato (2009) and Shao (2011). However, the
convergence is typically slow. Horowitz et al. (2006) proposed a double blockwise bootstrap method to test
for white noise that is not independent and identically distributed.

In this paper we propose a new omnibus test for vector white noise. Instead of using a portmanteau-
type statistic, the new test is based on the maximum absolute auto- and cross-correlation of all component
time series. This avoids the impact of small correlations. When most auto- and cross-correlations are small,
the Box–Pierce tests have too many degrees of freedom in their asymptotic distributions. In contrast the
new test performs well when there is at least one large absolute auto- or cross-correlation at a non-zero lag.
The null distribution of the maximum correlation test statistic can be approximated asymptotically by that of
|G|∞, where G is a Gaussian random vector, and |u|∞ = max1≤i≤s |ui| denotes the L∞-norm of a vector
u = (u1, . . . , us)

T. Its critical values can therefore be evaluated by bootstrapping from a multivariate normal
distribution.

An added advantage of the new test is its ability to handle high-dimensional series, in the sense that the
number of series is as large as, or even larger than, their length. Nowadays, it is common to model and
forecast many time series at once, which has direct applications in, among others, finance, economics, envi-
ronmental and medical studies. The current literature on high-dimensional time series focuses on estimation
and dimension-reduction aspects. See, for example, Basu & Michailidis (2015), and Guo et al. (2016) and
the references within for high-dimensional vector autoregressive models, and Bai & Ng (2002), Forni et al.
(2005), Lam & Yao (2012) and Chang et al. (2015) for high-dimensional time series factor models. The model
diagnostics has largely been untouched, as far as we are aware. The test proposed in this paper represents an
effort to fill in this gap.

We compare the performance of the new test with those of the three Box–Pierce types of portmanteau
tests, the Lagrange multiplier test and a likelihood ratio test in simulation, which shows that the new test
attains the nominal significance levels more accurately and is also more powerful when the dimension of time
series is large or moderately large. Its performance can be further enhanced by first applying time series
principal component analysis, proposed by Chang, Guo and Yao (arXiv:1410.2323).

Let ⊗ and vec denote, respectively, the Kronecker product and the vectorization for matrices, Is be the
s× s identity matrix, and |A|∞ = max1≤i≤`,1≤j≤m |aij | for an `×m matrix A ≡ (ai,j). Denote by dxe and
bxc, respectively, the smallest integer not less than x and the largest integer not greater than x.
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2 Methodology

2.1 Tests

Let {εt} be a p-dimensional weakly stationary time series with mean zero. Denote by Σ(k) = cov(εt+k, εt)
and Γ(k) = diag{Σ(0)}−1/2Σ(k)diag{Σ(0)}−1/2, respectively, the autocovariance and the autocorrelation
of εt at lag k, where diag(Σ) denotes the diagonal matrix consisting of the diagonal elements of Σ only. When
Σ(k) ≡ 0 for all k 6= 0, {εt} is white noise.

With the available observations ε1, . . . , εn, let

Γ̂(k) ≡ {ρ̂ij(k)}1≤i,j≤p = diag{Σ̂(0)}−1/2Σ̂(k)diag{Σ̂(0)}−1/2 (1)

be the sample autocorrelation matrix at lag k, where

Σ̂(k) =
1

n

n−k∑
t=1

εt+kε
T
t (2)

is the sample autocovariance matrix.
Consider the hypothesis testing problem

H0 : {εt} is white noise versus H1 : {εt} is not white noise. (3)

Since Γ(k) ≡ 0 for any k ≥ 1 under H0, our test statistic Tn is defined as

Tn = max
1≤k≤K

Tn,k, (4)

where Tn,k = max1≤i,j≤p n
1/2|ρ̂ij(k)| and K ≥ 1 is a prescribed integer. We reject H0 if Tn > cvα, where

cvα > 0 is the critical value determined by

pr(Tn > cvα) = α (5)

under H0, and α ∈ (0, 1) is the significance level of the test.
To determine cvα, we need to derive the distribution of Tn under H0. Proposition 1 below shows that

the Kolmogorov distance between this distribution and that of the L∞-norm of a N(0,Ξn) random vector
converges to zero, even when p diverges at an exponential rate of n, where

Ξn = (IK ⊗W )E(ξnξ
T
n)(IK ⊗W ), (6)

ξn = n1/2(vec{Σ̂(1)}T, . . . , vec{Σ̂(K)}T)T, W = diag{Σ(0)}−1/2 ⊗ diag{Σ(0)}−1/2.

This paves the way to evaluate cvα simply by drawing a bootstrap sample from N(0, Ξ̂n), where Ξ̂n is an
appropriate estimator for Ξn.

Proposition 1. Let Conditions 1–4 in Section 3 below hold and G ∼ N(0,Ξn). There exists a positive
constant δ1 depending only on the constants appeared in Conditions 1–4 for which log p ≤ Cnδ1 for some
constant C > 0. Then it holds under H0 that

sup
s≥0

∣∣pr(Tn > s)− pr(|G|∞ > s)
∣∣→ 0, as n→∞.
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By replacing Ξn in (6) by Ξ̂n, where Ξ̂n is defined in Section 2.2 below, the critical value cvα in (5) can
be replaced by ĉvα which is determined by

pr(|G|∞ > ĉvα) = α, (7)

where G ∼ N(0, Ξ̂n). In practice, we can draw G1, . . . , GB independently from N(0, Ξ̂n) for a large integer
B. The bBαc-th largest value among |G1|∞, . . . , |GB|∞ is taken as the critical value ĉvα. We then reject H0

whenever Tn > ĉvα.

Remark 1. When p is large or moderately large, it is advantageous to apply the time series principal com-
ponent analysis proposed in arXiv:1410.2323 to the data first. We denote by T ∗n the resulted test. More
precisely, we compute an invertible transformation matrix Q using the R function segmentTS in the pack-
age PCA4TS available at CRAN. Then T ∗n is defined in the same manner as Tn in (4) with {ε1, . . . , εn}
replaced by {ε∗1, . . . , ε∗n}, where ε∗t = Qεt. As Q does not depend on t, {εt, t ≥ 1} is white noise if and only
if {ε∗t , t ≥ 1} is white noise. The time series principal component analysis makes the component autocorre-
lations as large as possible by suppressing the cross-correlations among different components at all time lags.
This makes the maximum correlation greater, and therefore the test more powerful. See also the simulation
results in Section 4.

2.2 Estimation of Ξn
By Lemma 3.1 of Chernozhukov et al. (2013), the proposed test in Section 2.1 is valid if the estimator Ξ̂n
satisfies |Ξ̂n−Ξn|∞ = op(1). We construct such an estimator now even when the dimension of time series is
ultra-high, i.e. p� n. Let ñ = n−K and

ft = {vec(εt+1ε
T
t ), . . . , vec(εt+Kε

T
t )}T (t = 1, . . . , ñ). (8)

The second factor E(ξnξ
T
n) on the right-hand side of (6) is closely related to var(ñ−1/2

∑ñ
t=1 ft), the long-

run covariance of {ft}ñt=1. The long-run covariance plays an important role in the inference with dependent
data. There exist various estimation methods for long-run covariances, including the kernel-type estimators
(Andrews, 1991), and the estimators utilizing the moving block bootstraps (Lahiri, 2003). See also Den Haan
& Levin (1997) and Kiefer et al. (2000). We adopt the kernel-type estimator for the long-run covariance of
{ft}ñt=1

Ĵn =
ñ−1∑

j=−ñ+1

K
(
j

bn

)
Ĥ(j), (9)

where Ĥ(j) = ñ−1
∑ñ

t=j+1 ftf
T
t−j if j ≥ 0 and Ĥ(j) = ñ−1

∑ñ
t=−j+1 ft+jf

T
t otherwise, K(·) is a symmet-

ric kernel function that is continuous at 0 with K(0) = 1, and bn is the bandwidth diverging with n. Among
a variety of kernel functions that guarantee the positive definiteness of the long-run covariance estimators,
Andrews (1991) derived an optimal kernel, i.e. the quadratic spectral kernel

KQS(x) =
25

12π2x2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
(10)

by minimizing the asymptotic truncated mean square error of the estimator. For the numerical study in Sec-
tion 4, we always use this kernel function with an explicitly specified bandwidth selection procedure. The
theoretical results in Section 3 apply to general kernel functions. As now Ĵn in (9) provides an estimator for
E(ξnξ

T
n), Ξn in (6) can be estimated by

Ξ̂n = (IK ⊗ Ŵ )Ĵn(IK ⊗ Ŵ ),
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where Ŵ = diag{Σ̂(0)}−1/2 ⊗ diag{Σ̂(0)}−1/2 for Σ̂(0) defined in (2). Simulation results show that the
proposed test with this estimator performs very well.

2.3 Computational issues

To draw a random vector G ∼ N(0, Ξ̂n), the standard approach consists of three steps: (i) perform the
Cholesky decomposition for the p2K × p2K matrix Ξ̂n = LTL, (ii) generate p2K independent N(0, 1)
random variables z = (z1, . . . , zp2K)T, (iii) perform transformation G = LTz. Computationally this is an
(np4K2 + p6K3)-hard problem requiring a large storage space for {ft}ñt=1 and matrix Ξ̂n. To circumvent the
high computing cost with large p and/or K, we propose a method below which requires to generate random
variables from an ñ-variate normal distribution instead.

Let Θ be an ñ× ñ matrix with the (i, j)-th element K{(i− j)/bn}. Let η = (η1, . . . , ηñ)T ∼ N(0,Θ) be
a random vector independent of {ε1, . . . , εn}. Then it is easy to see that conditionally on {ε1, . . . , εn},

G = (IK ⊗ Ŵ )

(
1√
ñ

ñ∑
t=1

ηtft

)
∼ N(0, Ξ̂n). (11)

Thus a random sample from N(0, Ξ̂n) can be obtained from a random sample from N(0,Θ) via (11). The
computational complexity of the new method is only O(n3), independent of p and K. The required storage
space is also much smaller.

3 Theoretical properties

Write εt = (ε1,t, . . . , εp,t)
T for each t = 1, . . . , n. To investigate the theoretical properties of the proposed

testing procedure, we need the following regularity conditions.

Condition 1. There exists a constant C1 > 0 independent of p such that var(εi,t) ≥ C1 uniformly holds for
any i = 1, . . . , p.

Condition 2. There exist three constantsC2, C3 > 0 and r1 ∈ (0, 2] independent of p such that supt sup1≤i≤p pr(|εi,t| >
x) ≤ C2 exp(−C3x

r1) for any x > 0.

Condition 3. Assume that {εt} is β-mixing in the sense that βk ≡ suptE{supB∈F∞t+k

∣∣pr(B | F t−∞) −
pr(B)

∣∣} → 0 as k → ∞, where Fu−∞ and F∞u+k are the σ-fields generated respectively by {εt}t≤u and
{εt}t≥u+k. Furthermore there exist two constants C4 > 0 and r2 ∈ (0, 1] independent of p such that βk ≤
exp(−C4k

r2) for all k ≥ 1.

Condition 4. There exists a constant C5 > 0 and ι > 0 independent of p such that

C−1
5 < lim inf

q→∞
inf
m≥0

E

(∣∣∣∣ 1

q1/2

m+q∑
t=m+1

εi,t+kεj,t

∣∣∣∣2+ι)

≤ lim sup
q→∞

sup
m≥0

E

(∣∣∣∣ 1

q1/2

m+q∑
t=m+1

εi,t+kεj,t

∣∣∣∣2+ι)
< C5, (i, j = 1, . . . , p; k = 1, . . . ,K).
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Condition 1 ensures that all component series are not degenerate. Condition 2 is a common assump-
tion in the literature on ultra high-dimensional data analysis. It ensures exponential-type upper bounds for
the tail probabilities of the statistics concerned. The β-mixing assumption in Condition 3 is mild. Causal
autoregressive moving average processes with continuous innovation distributions are β-mixing with expo-
nentially decaying βk. So are the stationary Markov chains satisfying certain conditions. See Section 2.6.1
of Fan & Yao (2003) and the references within. In fact stationary generalized autoregressive conditional
heteroskedasticity models with finite second moments and continuous innovation distributions are also β-
mixing with exponentially decaying βk; see Proposition 12 of Carrasco & Chen (2002). If we only require
supt sup1≤i≤p pr(|εi,t| > x) = O{x−2(ν+ε)} for any x > 0 in Condition 2 and βk = O{k−ν(ν+ε)/(2ε)} in
Condition 3 for some ν > 2 and ε > 0, we can apply Fuk–Nagaev type inequalities to construct the upper
bounds for the tail probabilities of the statistics for which our testing procedure still works for p diverging at
some polynomial rate of n. We refer to Section 3.2 of arXiv:1410.2323 for the implementation of Fuk–Nagaev
type inequalities in such a scenario. The β-mixing condition can be replaced by the α-mixing condition under
which we can justify the proposed method for p diverging at some polynomial rate of n by using Fuk–Nagaev
type inequalities. However, it remains open to establish the relevant properties under α-mixing for p diverg-
ing at some exponential rate of n. Condition 4 is a technical assumption for the validity of the Gaussian
approximation for dependent data.

Our main asymptotic results indicate that the critical value ĉvα defined in (7) by the normal approximation
is asymptotically valid, and, furthermore, the proposed test is consistent.

Theorem 1. Let Conditions 1–4 hold, |K(x)| � |x|−τ as |x| → ∞ for some τ > 1, and bn � nρ for some
0 < ρ < min{(τ −1)/(3τ), r2/(2r2 + 1)}. Let log p ≤ Cnδ2 for some positive constants δ, C, and δ depend
on the constants in Conditions 1–4 only. Then it holds under H0 that

pr(Tn > ĉvα)→ α, n→∞.

Theorem 2. Assume that the conditions of Theorem 1 hold. Let % be the largest element in the main diagonal
of Ξn, and λ(p, α) = {2 log(p2K)}1/2 + {2 log(1/α)}1/2. Suppose that

max
1≤k≤K

max
1≤i,j≤p

|ρi,j(k)| ≥ %1/2(1 + εn)n−1/2λ(p, α)

for some positive εn satisfying εn → 0 and ε2n log p→∞. Then it holds under H1 that

pr(Tn > ĉvα)→ 1, n→∞.

4 Numerical properties

4.1 Preliminary

In this section, we illustrate the finite sample properties of the proposed test Tn by simulation. Also in-
cluded is the test T ∗n based on the pre-transformed data as stated in Remark 1 in Section 2.1. We always
use the quadratic spectral kernel KQS(x) specified in (10). In addition, we always use the data-driven band-
width bn = 1.3221{â(2)ñ}1/5 suggested in Section 6 of Andrews (1991), where â(2) = {

∑p2K
`=1 4ρ̂2

` σ̂
4
` (1 −

ρ̂`)
−8}{

∑p2K
`=1 σ̂

4
` (1− ρ̂`)−4}−1 with ρ̂` and σ̂2

` being, respectively, the estimated autoregressive coefficient
and innovation variance from fitting an AR(1) model to time series {f`,t}ñt=1, where f`,t is the `-th component
of ft defined in (8). We draw G1, . . . , GB independently from N(0, Ξ̂n) with B = 2000 based on (11) and
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take the bBαc-th largest value among |G1|∞, . . . , |GB|∞ as the critical value ĉvα. We set the nominal signif-
icance level at α = 0.05, n = 300, p = 3, 15, 50, 150, and K = 2, 4, 6, 8, 10. For each setting, we replicate
the experiment 500 times.

We compare the new tests Tn and T ∗n with three multivariate portmanteau tests with test statistics: Q1 =
n
∑K

k=1 tr{Γ̂(k)TΓ̂(k)} (Box & Pierce, 1970), Q2 = n2
∑K

k=1 tr{Γ̂(k)TΓ̂(k)}/(n− k) (Hosking, 1980), and
Q3 = n

∑K
k=1 tr{Γ̂(k)TΓ̂(k)}+p2K(K+1)/(2n) (Li & Mcleod, 1981), where Γ̂(k) is the sample correlation

matrix (1). Also, we compare Tn and T ∗n with the Lagrange multiplier test (Lütkepohl, 2005), as well as a
likelihood ratio test proposed by Tiao & Box (1981). The test of Tiao & Box (1981) is designed for testing for
a vector autoregressive model of order r against that of order r + 1 and is therefore applicable for testing (3)
with r = 0. In particular, different from all the other tests included in the comparison, the test of Tiao & Box
(1981) does not involve the lag parameterK. For those tests relying on the asymptotic χ2-approximation, it is
known that the χ2-approximation is poor when the degree of freedom is large. In our simulation, we perform
those tests based on the normal approximation instead when p > 10. Further discussions on those tests are
referred to Section 3.1 of Li (2004) and Section 4.4 of Lütkepohl (2005). The new tests Tn and T ∗n , together
with the aforementioned other tests, have been implemented in an R package HDtest currently available
online at CRAN.

4.2 Empirical sizes

To examine the approximations for significance levels of the tests, we generate data from the white noise
model εt = Azt, where {zt} is a p × 1 white noise. We consider three different loading matrices for A as
following.

Model 1: Let S = (sk`)1≤k,`≤p for sk` = 0.995|k−`|, then let A = S1/2.

Model 2: Let r = dp/2.5e, S = (sk`)1≤k,`≤p where skk = 1, sk` = 0.8 for r(q − 1) + 1 ≤ k 6= ` ≤ rq for
q = 1, . . . , bp/rc, and sk` = 0 otherwise. Let A = S1/2 which is a block diagonal matrix.

Model 3: Let A = (ak`)1≤k,`≤p with ak`’s being independently generated from U(−1, 1).

We consider the two types of white noise: (i) zt, t ≥ 1, are independent and N(0, Ip), and (ii) zt consists of
p independent autoregressive conditionally heteroscedastic processes, i.e. each component process is of the
form ut = σtet, where et are independent and N(0, 1), and σ2

t = γ0 +γ1u
2
t−1 with γ0 and γ1 generated from,

respectively, U(0.25, 0.5) and U(0, 0.5) independently for different component processes. Experiments with
more complex white noise processes are reported in the Supplementary Material.

Tables 1–2 report the empirical sizes of tests Tn and T ∗n , along with those of the three portmanteau tests,
the Lagrange multiplier test, and the test of Tiao & Box (1981). As Tiao & Box’ test does not involve the lag
parameter K, we only report its empirical size once for each p in the tables. Also the Lagrange multiplier test
is only applicable when pK < n, as the testing statistic is calculated from a multivariate regression.

Tables 1–2 indicate that Tn and T ∗n perform about the same as the other five tests when the dimension
p is small, such as p = 3. The portmanteau, Lagrange multiplier and Tiao & Box’s tests, however, fail
badly to attain the nominal significance level as the dimension p increases, as the empirical sizes severely
underestimate the nominal level when, for example, p = 50. In fact the empirical sizes for the portmanteau
tests and Tiao & Box’s test are almost 0 under all the settings with p = 150, while the Lagrange multiplier
test, not available when p = 150, deviates quickly from the nominal level when pK is close to n. In contrast,
the new test Tn performs much better, though still underestimates the nominal level when p is relatively large,
particularly for Model 3. Noticeably, T ∗n , the procedure combining the new test with the time series principal
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Table 1: The empirical sizes (%) of the tests Tn, T ∗n , Q1, Q2, Q3, Lagrange multiplier test (LM) and Tiao &
Box’ test (TB) for testing white noise εt = Azt at the 5% nominal level, where zt, t ≥ 1, are independent
and N(0, Ip).

Model 1 Model 2 Model 3
p K Tn T ∗n Q1 Q2 Q3 LM TB Tn T ∗n Q1 Q2 Q3 LM TB Tn T ∗n Q1 Q2 Q3 LM TB
3 2 5.2 5.8 5.2 5.6 5.6 5.2 5.2 3.2 6.6 3.8 3.8 3.8 3.8 4.8 4.0 6.4 4.0 4.0 4.0 5.2 3.8

4 4.6 7.4 3.6 4.4 4.2 4.4 4.0 7.4 3.2 3.4 3.4 3.6 3.8 5.4 4.8 5.0 5.0 5.4
6 5.6 8.6 4.4 5.2 5.0 5.4 2.8 7.2 3.2 3.6 3.4 3.0 4.0 5.4 6.0 6.4 6.2 5.2
8 4.4 8.4 3.6 5.0 4.4 3.0 3.8 6.2 2.6 3.0 2.8 3.2 3.8 6.4 5.0 6.8 6.2 4.6
10 4.2 7.8 3.6 4.4 4.2 4.0 3.0 6.0 1.4 3.0 2.4 2.4 3.6 5.6 5.4 7.4 7.2 4.6

15 2 3.8 5.2 4.2 4.8 4.8 5.0 4.8 2.8 4.4 4.2 5.0 5.0 5.4 7.6 3.0 3.8 3.4 4.0 4.0 3.8 5.2
4 4.0 5.4 2.8 5.0 5.0 3.8 2.6 4.2 2.8 4.6 4.6 3.6 2.4 4.8 2.2 3.0 3.0 3.2
6 3.6 6.2 3.2 5.2 5.2 3.8 2.2 5.2 3.4 5.2 5.0 3.4 2.0 5.8 1.6 3.2 3.2 2.4
8 3.6 6.6 2.0 5.2 5.0 1.0 2.4 6.0 0.8 5.0 4.6 2.0 2.2 7.2 0.8 2.8 2.8 1.4
10 3.0 7.0 1.4 5.6 5.2 0.4 2.2 6.2 1.0 5.0 4.8 1.6 2.6 6.6 1.0 4.0 3.8 0.8

50 2 2.4 4.0 1.6 2.4 2.4 1.2 8.8 3.0 4.2 1.4 2.4 2.4 1.4 7.8 1.8 4.8 1.6 2.8 2.8 1.2 7.8
4 4.0 4.4 0.6 3.0 2.8 0.0 2.6 4.6 0.6 2.2 2.2 0.0 2.2 5.2 0.8 2.6 2.6 0.0
6 3.6 4.8 0.0 3.8 3.6 1.8 5.2 0.2 2.8 2.6 2.0 6.4 0.2 2.2 2.2
8 3.8 4.4 0.0 3.8 3.6 2.0 5.4 0.0 2.2 2.2 1.6 7.2 0.0 2.8 2.4
10 4.6 4.8 0.0 3.0 3.0 1.4 5.4 0.0 2.8 2.2 1.4 6.2 0.0 2.0 1.8

150 2 3.0 4.4 0.0 0.0 0.0 0.0 3.0 3.8 0.0 0.2 0.0 0.0 1.4 3.6 0.0 0.2 0.2 0.0
4 1.4 4.2 0.0 0.0 0.0 2.0 4.2 0.0 0.0 0.0 1.4 3.4 0.0 0.0 0.0
6 1.8 2.8 0.0 0.0 0.0 2.4 3.2 0.0 0.0 0.0 1.2 4.2 0.0 0.0 0.0
8 2.2 3.8 0.0 0.0 0.0 1.8 3.2 0.0 0.2 0.2 0.6 4.8 0.0 0.0 0.0
10 3.2 4.6 0.0 0.2 0.0 1.6 4.2 0.0 0.0 0.0 0.4 5.4 0.0 0.0 0.0

Table 2: The empirical sizes (%) of the tests Tn, T ∗n , Q1, Q2, Q3, Lagrange multiplier test (LM) and Tiao &
Box’ test (TB) for testing white noise εt = Azt at the 5% nominal level, where zt consists of p independent
autoregressive conditionally heteroscedastic processes.

Model 1 Model 2 Model 3
p K Tn T ∗n Q1 Q2 Q3 LM TB Tn T ∗n Q1 Q2 Q3 LM TB Tn T ∗n Q1 Q2 Q3 LM TB
3 2 4.0 5.4 3.0 3.0 4.2 4.0 4.4 6.4 8.6 7.0 7.0 9.4 8.4 6.4 3.8 7.2 5.4 5.6 8 6.6 7.2

4 4.4 7.6 4.4 4.6 5.2 5.0 5.6 8.2 5.2 6.0 7.4 6.2 5.0 7.8 5.4 6.0 8.2 7.2
6 3.0 6.6 4.8 5.6 6.4 4.6 5.0 6.6 5.8 6.2 7.2 4.8 4.8 6.8 4.0 4.4 6.6 4.8
8 3.2 6.4 4.4 5.8 7.4 5.6 4.6 6.8 5.8 7.0 7.8 6.4 4.8 6.6 4.2 5.0 5.4 3.4
10 3.6 6.0 5.0 5.8 7.8 5.6 4.4 6.2 5.4 6.4 7.2 4.2 4.8 5.8 4.6 5.0 5.4 4.0

15 2 4.2 5.6 4.0 3.8 4.6 5.0 7.0 4.8 5.0 3.2 3.2 3.6 3.4 5.6 2.4 4.8 5.0 5.4 6.6 5.2 6.8
4 4.0 5.8 5.0 5.0 5.2 4.0 3.8 5.0 4.0 4.0 4.0 2.2 2.6 7.0 2.8 2.8 2.8 3.2
6 4.2 5.0 4.2 4.0 4.2 3.0 2.8 6.2 5.6 5.0 5.6 2.0 2.4 6.8 3.0 3.0 3.2 2.6
8 3.8 6.0 4.8 4.8 4.8 1.4 2.2 5.8 4.8 4.8 4.8 2.0 2.8 6.2 1.8 2.8 3.8 2.2
10 4.6 4.8 5.6 5.4 5.4 1.2 3.4 5.4 4.0 3.8 4.4 1.4 2.4 8.2 0.8 4.2 4.4 0.8

50 2 4.4 4.2 2.2 2.2 2.2 0.6 6.2 3.2 4.0 1.4 2.4 2.8 1.0 8.2 2.2 3.2 2.2 2.0 2.0 0.4 7.6
4 3.8 4.6 2.8 2.8 3.0 0.0 2.2 5.4 2.0 2.0 2.0 0.0 2.2 4.0 2.0 1.8 1.8 0.0
6 4.6 6.2 1.4 1.4 1.8 3.6 5.2 1.8 2.8 1.8 1.2 4.8 2.0 2.0 2.0
8 3.6 7.2 3.0 3.0 3.0 2.4 6.0 1.4 1.2 1.6 1.6 5.8 0.0 0.0 1.6
10 3.6 5.8 3.2 3.2 2.8 2.2 5.6 1.8 1.8 1.8 1.4 6.6 0.0 0.0 1.6

150 2 4.8 3.6 0.0 0.0 0.0 0.0 1.2 2.8 0.0 0.0 0.0 0.2 1.6 2.8 0.0 0.0 0.0 0.0
4 2.8 3.2 0.0 0.0 0.0 2.2 3.4 0.0 0.0 0.0 1.0 3.2 0.2 0.0 0.2
6 2.0 4.2 0.0 0.0 0.0 2.6 3.6 0.0 0.0 0.0 1.0 3.2 0.0 0.0 0.0
8 1.6 5.0 0.0 0.0 0.0 1.6 4.4 0.0 0.0 0.0 0.8 3.4 0.2 0.0 0.2
10 2.6 4.8 0.2 0.2 0.2 2.0 5.0 0.4 0.2 0.4 1.0 4.6 0.0 0.0 0.0
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component analysis, produces empirical sizes much closer to the nominal level than all other tests across
almost all the settings with p = 50 and 150.

We also observe that both the portmanteau tests Q2 and Q3 perform similarly, and outperform Q1 when p
is large. This is in line with the fact that the asymptotic approximations for Q2 and Q3 are more accurate than
that for Q1. In addition, Tables 1–2, as well as the results in the Supplementary Material, indicate that the
proposed tests are more robust with respect to the choice of the prescribed lag parameter K. The test Tn, and
the portmanteau tests, perform better under Models 1 and 2 than under Model 3 when p is large. As the entries
in the loading matrix A in Model 3 can be both positive and negative, the signals zt may be weakened due
to possible cancellations. Nevertheless, with the aid of time series principal component analysis, T ∗n perform
reasonably well across all the settings including Model 3.

In summary, the proposed tests, especially T ∗n , attain the nominal level much more accurate than existing
tests when p is large. For small p, all the tests are about equally accurate in attaining the nominal significance
level.

4.3 Empirical power

To conduct the power comparison among the different tests, we consider two non-white noise models. Put
k0 = min(dp/5e, 12).

Model 4: εt = Aεt−1 + et, where et, t ≥ 1, are independent, each et consists of p independent t8 random
variables, and the coefficient matrix A ≡ (ak`) is generated as follows: ak` ∼ U(−0.25, 0.25) inde-
pendently for 1 ≤ k, ` ≤ k0, and ak` = 0 otherwise. Thus only the first k0 components of εt are not
white noise.

Model 5: εt = Azt, where zt = (z1,t, . . . , zp,t)
T. For 1 ≤ k ≤ k0, (zk,1, . . . , zk,n)T ∼ N(0,Σ), where

Σ is an n × n matrix with 1 as the main diagonal elements, 0.5|i − j|−0.6 as the (i, j)-th element for
1 ≤ |i − j| ≤ 7, and 0 as all the other elements. For k > k0, zk,1, . . . , zk,n are independent and t8
random variables. The coefficient matrix A ≡ (ak`) is generated as follows: ak` ∼ U(−1, 1) with
probability 1/3 and ak` = 0 with probability 2/3 independently for 1 ≤ k 6= ` ≤ p, and akk = 0.8 for
1 ≤ k ≤ p.

Figs. 1–2 display the empirical power curves of the seven tests under consideration against the lag pa-
rameter K. As Tiao & Box’ test involves no lag parameter K, its power curves are flat. Also note that the
Lagrange multiplier test is only available for p = 3, 15 and p = 50 while K = 2, 4, 6. When p = 150, the
proposed tests, especially T ∗n , maintain substantial power while all the other five tests are powerless. Under
Model 4, where the autocorrelation decays relatively fast, the proposed tests Tn and T ∗n are substantially more
powerful than the portmanteau tests and the Lagrange multiplier test even when p is small. In addition, Fig. 1
and the results in the Supplementary Materials also indicate that the existing tests compromise more in power
than the new tests when the loading matrix A is relatively sparse. When the autocorrelation is strong, as in
Model 5, the portmanteau tests and the Lagrange multiplier test perform well when p is small, e.g., p = 3; see
Fig. 2. Finally, as expected, T ∗n is more powerful than Tn when p is large, and the improvement is substantial
when, for example, p = 150. Overall, our proposed tests Tn and T ∗n are more powerful than the traditional
tests when the dimension p is large or moderately large. This pattern is also observed in a more extensive
comparison reported in the Supplementary Material.
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Figure 1: Plots of empirical power against lag K for the new tests Tn (solid and � lines) and T ∗n (solid and
• lines), the portmanteau tests Q1 (dashed and M lines), Q2 (dashed and + lines) and Q3 (dashed and @
lines), the Lagrange multiplier test (dashed and ◦ lines), and Tiao and Box’ test (dashed and ×). The data are
generated from Model 4 with sample size n = 300. The nominal level is α = 5%.

5 Applications in model diagnosis

Let {yt} and {ut} be observable p× 1 and q × 1 time series, respectively. Let

yt = g(ut; θ0) + εt, (12)

where g(·; ·) is a known link function, and θ0 ∈ Θ is an unknown s × 1 parameter vector. One of the most
frequently used procedures for model diagnosis is to test if the error process {εt} is white noise. Since {εt}
is unknown, the diagnostic test is instead applied to the residuals

ε̂t ≡ yt − g(ut; θ̂), t = 1, · · · , n, (13)

where θ̂ is an appropriate estimator for θ0.
Model (12) encompasses a large number of frequently used models, including both linear and nonlin-

ear vector autoregressive models with or without exogenous variables. It also includes linear invertible
and identifiable vector autoregressive and moving average models by allowing q = ∞ and s = ∞. Let
g(·; ·) = {g1(·; ·), . . . , gp(·; ·)}T, and U be the domain of ut. Let the true value θ0 of model (12) be an inner
point of Θ. We assume that the link function g(·; ·) satisfies the following condition.

Condition 5. Denote by Θ0 a small neighborhood of θ0. For some given metric
|·|∗ defined on Θ, it holds that |gi(u; θ∗)−gi(u; θ∗∗)| ≤Mi(u)|θ∗−θ∗∗|∗+Ri(u; θ∗, θ∗∗) for any θ∗, θ∗∗ ∈ Θ0,
u ∈ U and i = 1, . . . , p, where {Mi(·)}pi=1 and {Ri(·; ·, ·)}pi=1 are two sets of non-negative functions that
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Figure 2: Plots of empirical power against lag K for the new tests Tn (solid and � lines) and T ∗n (solid and
• lines), the portmanteau tests Q1 (dashed and M lines), Q2 (dashed and + lines) and Q3 (dashed and @
lines), the Lagrange multiplier test (dashed and ◦ lines), and Tiao and Box’ test (dashed and ×). The data are
generated from Model 5 with sample size n = 300. The nominal level is α = 5%.
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satisfy sup1≤i≤p n
−1
∑n

t=1M
2
i (ut) = Op(ϕ1,n) and sup1≤i≤p supθ∗,θ∗∗∈Θ0

n−1
∑n

t=1R
2
i (ut; θ

∗, θ∗∗) =
Op(ϕ2,n) for some ϕ1,n > 0 (which may diverge) and ϕ2,n → 0 as n→∞.

In fact, the first part of Condition 5 can be replaced by the Lipschitz continuity |gi(u; θ∗)− gi(u; θ∗∗)| ≤
Mi(u)|θ∗ − θ∗∗|φ∗ + Ri(u; θ∗, θ∗∗) for some φ ∈ (0, 1]. Since the proofs for Theorem 3 under these two
types of continuity are identical, we only state the result for φ = 1 explicitly. The remainder term Ri(·; ·, ·) is
employed to accommodate the models with infinite-dimensional parameter θ0. When θ0 has finite num-
ber of components, we can let | · |∗ be the standard L2-norm. If the link function gi(u; θ) is continu-
ously differentiable with respect to θ, it follows from a Taylor expansion that |gi(u; θ∗) − gi(u; θ∗∗)| ≤
|∇θgi(u; θ̄)|2|θ∗− θ∗∗|2 for some θ̄ lies between θ∗ and θ∗∗. If there exists an envelop function Mi(·) satisfy-
ing supθ∈Θ |∇θgi(u; θ̄)|2 ≤Mi(u) for any u ∈ U , the first part of Condition 5 holds with Ri(u; θ∗, θ∗∗) ≡ 0.
When θ0 is an infinite dimensional parameter, we can select | · |∗ as the vector L1-norm. Put θ = (θ1, θ2, . . .)

T.
If ∂gi(u; θ)/∂θj exists for any j = 1, 2, . . ., it follows from a Taylor expansion that gi(u; θ∗) − gi(u; θ∗∗) =∑∞

j=1(θ∗j − θ∗∗j )∂gi(u; θ̄)/∂θj for some θ̄ lies between θ∗ and θ∗∗. For some given diverging d, letting
Mi(u) = sup1≤j≤d supθ∈Θ |∂gi(u; θ)/∂θj | and Ri(u; θ∗, θ∗∗) = |

∑∞
j=d+1(θ∗j − θ∗∗j )∂gi(u; θ̄)/∂θj |, we

have

|gi(u; θ∗)− gi(u; θ∗∗)| ≤ sup
1≤j≤d

∣∣∣∣∂gi(u; θ̄)

∂θj

∣∣∣∣ d∑
j=1

|θ∗j − θ∗∗j |+
∣∣∣∣ ∞∑
j=d+1

(θ∗j − θ∗∗j )
∂gi(u; θ̄)

∂θj

∣∣∣∣
≤Mi(u)|θ∗ − θ∗∗|1 +Ri(u; θ∗, θ∗∗).

Theorem 3. Let Condition 5 and the conditions of Theorems 1 and 2 hold. Let |θ̂ − θ0|∗ = Op(ζn) for some
ζn → 0. Assume that ζ2

nϕ1,n → 0 as n → ∞. Then Theorems 1 and 2 still hold if {ε1, · · · , εn} is replaced
by {ε̂1, · · · , ε̂n} defined in (13).
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Supplementary material

Supplementary material available at Biometrika online contains more extensive comparison by simulation of
the seven tests employed in Section 4.

Appendix

A.1 Technical lemmas

Let
µ̂ = [vec{Γ̂(1)}T, . . . , vec{Γ̂(K)}T]T, Ŵ = diag{Σ̂(0)}−1/2 ⊗ diag{Σ̂(0)}−1/2.
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Then the testing statistic Tn = n1/2|µ̂|∞. It follows from (1) that

µ̂ ≡ (µ̂1, . . . , µ̂p2K)T = (IK ⊗ Ŵ )[vec{Σ̂(1)}T, . . . , vec{Σ̂(K)}T]T.

Let
µ ≡ (µ1, . . . , µp2K)T = (IK ⊗W )[vec{Σ̂(1)}T, . . . , vec{Σ̂(K)}T]T,

Ẑ = n1/2 max
1≤`≤p2K

µ̂`, Z = n1/2 max
1≤`≤p2K

µ`, V = max
1≤`≤p2K

G`,

where G = (G1, . . . , Gp2K)T ∼ N(0,Ξn) with Ξn specified in (6). Throughout the Appendix, C ∈ (0,∞)
denotes a generic constant that does not depend on p and n, and it may be different at different places.

Lemma 1. Assume that Conditions 1–3 hold. Let γ satisfy γ−1 = 2r−1
1 + r−1

2 , and log p = o{nγ/(2−γ)}.
Then |Ŵ −W |∞ ≤ Cn−1/2(log p)1/2 with probability at least 1− Cp−1.

Proof. Put diag{Σ̂(0)} = diag(σ̂2
1, . . . , σ̂

2
p) and diag{Σ(0)} = diag(σ2

1, . . . , σ
2
p). By Condition 1,

|Ŵ −W |∞ = max
1≤i,j≤p

|σ̂−1
i σ̂−1

j − σ
−1
i σ−1

j | ≤
(

max
1≤i≤p

|σ̂−1
i − σ

−1
i |
)2

+ C max
1≤i≤p

|σ̂−1
i − σ

−1
i |. (14)

To bound the term on the right-hand side of (14), we first consider the tail probability of max1≤i≤p |σ̂i − σi|.
Following the same arguments of Lemma 9 in arXiv:1410.2323, it holds that

pr

(
max
1≤i≤p

|σ̂2
i − σ2

i | > ε

)
≤ Cpn exp(−Cεγnγ) + Cpn exp(−Cεγ̃/2nγ̃)

+ Cp exp(−Cε2n) + Cp exp(−Cεn)

for any ε > 0 such that nε→∞, where γ̃−1 = r−1
1 +r−1

2 . Therefore, if log p = o{nγ/(2−γ)}, with probability
at least 1 − Cp−1, max1≤i≤p |σ̂2

i − σ2
i | ≤ Cn−1/2(log p)1/2. Since σ̂2

i − σ2
i = (σ̂i − σi)2 + 2σi(σ̂i − σi),

it holds with probability at least 1 − Cp−1 that max1≤i≤p |σ̂i − σi| ≤ Cn−1/2(log p)1/2. Finally, it follows
from the identify σ̂−1

i − σ
−1
i = −(σ̂i − σi)σ̂−1

i σ−1
i that max1≤i≤p |σ̂−1

i − σ
−1
i | ≤ Cn−1/2(log p)1/2 holds

with probability at least 1− Cp−1. Now the lemma follows from (14) immediately.

Lemma 2. Assume that Conditions 1–3 hold. Let γ−1 = 2r−1
1 + r−1

2 and γ̃−1 = r−1
1 + r−1

2 . Then

pr

[
max

1≤k≤K
|vec{Σ̂(k)} − vec{Σ(k)}|∞ > s

]
≤ Cp2n exp(−Csγnγ) + Cp2n exp(−Csγ̃/2nγ̃)

+ Cp2 exp(−Cs2n) + Cp2 exp(−Csn)

for any s > 0 and ns→∞.

Proof. Notice that |vec{Σ̂(k)} − vec{Σ(k)}|∞ = max1≤i,j≤p |σ̂i,j(k) − σi,j(k)|. For given k = 1, . . . ,K,
Lemma 9 in arXiv:1410.2323 implies that

pr
[
|vec{Σ̂(k)} − vec{Σ(k)}|∞ > s

]
≤ Cp2n exp(−Csγnγ) + Cp2n exp(−Csγ̃/2nγ̃)

+ Cp2 exp(−Cs2n) + Cp2 exp(−Csn)

for any s > 0 and ns→∞. Consequently, the lemma follows directly from the Bonferroni inequality.

13



Lemma 3. Assume that Conditions 1–3 hold. Let γ−1 = 2r−1
1 + r−1

2 and log p = o{nγ/(2−γ)}. Then it holds
under null hypothesis H0 that |Ẑ − Z| ≤ Cn−1/2 log p with probability at least 1− Cp−1.

Proof. Note that |Ẑ−Z| ≤ |Ŵ−W |∞max1≤k≤K n
1/2|vec{Σ̂(k)}|∞.By Lemma A2, we have max1≤k≤K |vec{Σ̂(k)}|∞ ≤

Cn−1/2(log p)1/2 with probability at least 1 − Cp−1 under H0. This, together with Lemma A1, implies the
required assertion.

Lemma 4. Assume that Conditions 1–4 hold. Let log p ≤ Cnδ for some δ > 0. Then it holds under H0 that
sups∈R |pr(Z ≤ s)− pr(V ≤ s)| = o(1).

Proof. It follow from (2) that µ = n−1
∑ñ

t=1 ut + Rn, where ñ = n −K, each element of ut has the form
xi,t+kxj,t/(σiσj), and Rn is the remainder term. Let β̃k (k ≥ 1) be the β-mixing coefficients generated by
the process {ut}. Obviously, it holds that β̃k ≤ β(k−K)+ . Define ū = ñ−1

∑ñ
t=1 ut ≡ (ū1, . . . , ūp2K)T and

Z̃ = ñ1/2 max1≤`≤p2K ū`. In addition, let dn = sups∈R |pr(Z ≤ s)−pr(V ≤ s)| and d̃n = sups∈R |pr(Z̃ ≤
s) − pr(V ≤ s)|. We proceed the proof for dn = o(1) in two steps: (i) to show dn ≤ d̃n + o(1), and (ii) to
prove d̃n = o(1).

To prove (i), note that for any s ∈ R and ε > 0,

pr(Z ≤ s)− pr(V ≤ s) ≤ pr(Z̃ ≤ s+ ε)− pr(V ≤ s+ ε) + pr(|Z − Z̃| > ε) + pr(s < V ≤ s+ ε)

≤ d̃n + pr(|Z − Z̃| > ε) + pr(s < V ≤ s+ ε).

Similarly, we can obtain the reverse inequality. Therefore,

dn ≤ d̃n + pr(|Z − Z̃| > ε) + sup
s∈R

pr(|V − s| ≤ ε). (15)

By the anti-concentration inequality of Gaussian random variables, sups∈R pr(|V−s| ≤ ε) ≤ Cε{log(p/ε)}1/2.
It follows from the triangle inequality and Condition 1 that

|Z − Z̃| ≤ (n1/2 − ñ1/2) max
1≤`≤p2K

|µ`|+ ñ1/2 max
1≤`≤p2K

|µ` − ū`|

≤ C

n1/2
max

1≤k≤K
|vec{Σ̂(k)}|∞ +

C

n1/2
|ū|∞ + n1/2|Rn|∞.

Following the arguments of Lemma 9 of arXiv:1410.2323, we can show that under H0,

pr

(
C

n1/2
|ū|∞ >

ε

3

)
≤ Cp2n exp(−Cεγn3γ/2) + Cp2n exp(−Cεγ̃/2n5γ̃/4)

+ Cp2 exp(−Cε2n2) + Cp2 exp(−Cεn3/2) ,

provided n3ε2 →∞. It can also shown in the same manner that under H0, pr(n1/2|Rn|∞ > ε/3) can be also
controlled by the same upper bound specified above. Now by Lemma A2, it holds under H0 that

pr(|Z − Z̃| > ε) ≤ Cp2n exp(−Cεγn3γ/2) + Cp2n exp(−Cεγ̃/2n5γ̃/4)

+ Cp2 exp(−Cε2n2) + Cp2 exp(−Cεn3/2).

Let ε = Cn−1(log p)1/2. Then (15) implies that dn ≤ d̃n + o(1).
The proof of (ii) is the same as that to show d1 = o(1) in the proof of Theorem 1 of an unpublished

technical report of Chang, Qiu, Yao and Zou (arXiv:1603.06663). Therefore, if log p ≤ Cnδ for some δ > 0,
we have d̃n = o(1). This completes the proof of Lemma A4.
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A.2 Proof of Proposition 1

Following the arguments in the proof of Proposition 1 in the supplementary file of an unpublished technical
report of Chang, Zhou and Zhou (arXiv:1406.1939), it suffices to show sups∈R |pr(Ẑ > s) − pr(V > s)| =
o(1), where Ẑ and V are defined in the first paragraph of Appendix. Recall dn = sups∈R |pr(Z ≤ s)−pr(V ≤
s)|. By the similar arguments of (15), it can be proved that sups∈R |pr(Ẑ > s) − pr(V > s)| ≤ dn +

pr(|Ẑ − Z| > ε) + Cε{log(p/ε)}1/2. Set ε = Cn−1/2 log p, Lemmas A3 and A4 yield that sups∈R |pr(Ẑ >
s)− pr(V > s)| = o(1). This completes the proof of Theorem 1.

A.3 Proof of Theorem 1

Based on Lemma 4 of arXiv:1603.06663 and Proposition 1, we can proceed the proof in the same manner as
the proof for Theorem 2 of arXiv:1603.06663.

A.4 Proof of Theorem 2

Let Xn = {ε1, . . . , εn}. Since G ∼ N(0, Ξ̂n) conditionally on Xn, it holds that

E(|G|∞ | Xn) ≤ [1 + {2 log(p2K)}−1]{2 log(p2K)}1/2 max
1≤`≤p2K

Ξ̂
1/2
` ,

where Ξ̂1, . . . , Ξ̂p2K are the elements in the diagonal of Ξ̂n. On the other hand, it holds pr{|G|∞ ≥ E(|G|∞ |
Xn) + u | Xn} ≤ exp{−u2/(2 max1≤`≤p2K Ξ̂`)} for any u > 0. Let Ξ1, . . . ,Ξp2K be the elements in the

main diagonal of Ξn. In addition, for any v > 0, let E0(v) = {max1≤`≤p2K |Ξ̂
1/2
` /Ξ

1/2
` −1| ≤ v}. Restricted

on E0(v), it holds that

ĉvα ≤ (1 + v)([1 + {2 log(p2K)}−1]{2 log(p2K)}1/2 + {2 log(1/α)}1/2) max
1≤`≤p2K

Ξ
1/2
` .

Let (i0, j0, k0) = arg max1≤k≤K max1≤i,j≤p |ρi,j(k)|. Without loss of generality, we assume ρi0,j0(k0) > 0.
Then, restricted on E0(v), it holds that

Tn ≥ n1/2ρ̂i0,j0(k0) ≥ n1/2σ̂−1
i0
σ̂−1
j0
{σ̂i0,j0(k0)− σi0,j0(k0)}+ n1/2ρi0,j0(k0)(1 + v)−2.

Choose u in such a way that (1 + v)2[1 + {log(p2K)}−1 + u] = 1 + εn, for εn > 0 satisfying that εn → 0
and εn(log p)1/2 →∞. Consequently,

n1/2ρi0,j0(k0) ≥ (1 + v)2[1 + {log(p2K)}−1 + u]λ(p, α) max
1≤`≤p2K

Ξ
1/2
` .

Following the same arguments of Lemma A2, we can choose suitable v → 0 such that pr{E0(v)c} → 0.
Therefore,

pr(Tn > ĉvα) ≥ pr

(
n1/2ρ̂i0,j0(k0) > [1 + {log(p2K)}−1]λ(p, α) max

1≤`≤p2K
Ξ

1/2
`

)
≥ pr

[
n1/2{σ̂i0,j0(k0)− σi0,j0(k0)}

σ̂i0 σ̂j0
> −uλ(p, α) max

1≤`≤p2K
Ξ

1/2
` , E0(v) holds

]
≥ 1− pr

[
n1/2{σ̂i0,j0(k0)− σi0,j0(k0)}

σ̂i0 σ̂j0
≤ −uλ(p, α) max

1≤`≤p2K
Ξ

1/2
`

]
− pr{E0(v)c}.

Notice that u ∼ εn. Thus uλ(p, α) max1≤`≤p2K Ξ
1/2
` → ∞, which implies that pr(Tn > ĉvα) → 1. This

completes the proof of Theorem 2.
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A.5 Proof of Theorem 3

Let Ŵ ∗, Σ̂∗(0), Ĵ∗n and Ξ̂∗n be, respectively, the analogues of Ŵ , Σ̂(0), Ĵn and Ξ̂n with εt replaced by
ε̂t. By Lemma 3.1 of Chernozhukov et al. (2013), we only need to show |Ξ̂∗n − Ξ̂n|∞ = op(1). Recall
Ξ̂n = (IK ⊗ Ŵ )Ĵn(IK ⊗ Ŵ ) and Ξ̂∗n = (IK ⊗ Ŵ ∗)Ĵ∗n(IK ⊗ Ŵ ∗), it suffices to prove |Ŵ ∗ − Ŵ |∞ = op(1)

and |Ĵ∗n − Ĵn|∞ = op(1). Since the proofs for those two assertions are similar, we only present the proof for
|Ŵ ∗−Ŵ |∞ = op(1) below. As Ŵ = [diag{Σ̂(0)}]−1/2⊗[diag{Σ̂(0)}]−1/2 and Ŵ ∗ = [diag{Σ̂∗(0)}]−1/2⊗
[diag{Σ̂∗(0)}]−1/2, it suffices to show |Σ̂∗(0) − Σ̂(0)|∞ = op(1). Put ε̂t = (ε̂1,t, . . . , ε̂p,t)

T and εt =

(ε1,t, . . . , εp,t)
T. For any i, j, the (i, j)-th element of Σ̂∗(0) − Σ̂(0) is given by ∆i,j = n−1

∑n
t=1(ε̂i,tε̂j,t −

εi,tεj,t). Notice that ε̂i,t = yi,t − gi(ut; θ̂) and εi,t = yi,t − gi(ut; θ0). It holds that

∆i,j =
1

n

n∑
t=1

{gi(ut; θ̂)− gi(ut; θ0)}{gj(ut; θ̂)− gj(ut; θ0)}

− 1

n

n∑
t=1

{gi(ut; θ̂)− gi(ut; θ0)}εj,t −
1

n

n∑
t=1

εi,t{gj(ut; θ̂)− gj(ut; θ0)}.

It follows from Cauchy–Schwarz inequality that

∆2
i,j ≤ 3

[
1

n

n∑
t=1

{gi(ut; θ̂)− gi(ut; θ0)}2
][

1

n

n∑
t=1

{gj(ut; θ̂)− gj(ut; θ0)}2
]

+ 3

[
1

n

n∑
t=1

{gi(ut; θ̂)− gi(ut; θ0)}2
](

1

n

n∑
t=1

ε2
j,t

)

+ 3

[
1

n

n∑
t=1

{gj(ut; θ̂)− gj(ut; θ0)}2
](

1

n

n∑
t=1

ε2
i,t

)
.

(16)

By Condition 5, it holds uniformly for any i = 1, . . . , p that

1

n

n∑
t=1

{gi(ut; θ̂)− gi(ut; θ0)}2 ≤ |θ̂ − θ0|2∗
{

2

n

n∑
t=1

M2
i (ut)

}
+

2

n

n∑
t=1

R2
i (ut; θ̂, θ0)

= Op(ζ
2
nϕ1,n + ϕ2,n).

On the other hand, Lemma A2 implies that sup1≤i≤p n
−1
∑n

t=1 ε
2
i,t = Op(1). This together with (16) imply

that ∆2
ij = Op(ζ

2
nϕ1,n + ϕ2,n) uniformly for any i, j = 1, . . . , p. Thus |Σ̂∗(0) − Σ̂(0)|∞ = Op(ζnϕ

1/2
1,n +

ϕ
1/2
2,n ) = op(1). This completes the proof of Theorem 3.
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