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Abstract

In the literature on the estimation for spillover e�ects, prior knowledge

on the spillover structure is often incorporated as a constraint on the es-

timation. This paper proposes a new method to construct constraints

on the spillover e�ects using the latent factor structure of the variables

that generate the spillovers. The method improves the performance of the

existing methods such as LASSO. We have derived the L2 error bound

for the LASSO estimator under factor-induced constraints. Comparing it

with that of the unconstrained LASSO estimator, the new LASSO estima-

tor has an approximately sharper L2 error bound when factors are strong.

Simulation results demonstrate our �ndings.
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1 Introduction

The spillover e�ect, also known as externality, is the e�ect of a treatment assigned to

one individual from the outcomes of others. It is prevalent in economic studies. Com-

mon examples include technological adoptions, peer e�ects of education, and return and

volatility spillovers in stock markets. Ignoring the spillover e�ects could lead to severe

bias in the estimation of the treatment e�ects, while the structure of interactions driving

the spillovers could also be of its own interest.

In the estimation of spillover e�ects, one of the challenges is due to the relative large

number of pair-speci�c parameters in comparison to the limited sample size. In such a

situation, a panel data structure can relieve the problem because the variations across

the additional time dimension can be used as a source of the knowledge on the spillover

structure. However, given the prevalence of the short panel, which is the case when there

are more cross-sectional units than the number of periods, the spillover e�ects could still

be under-identi�ed. Therefore, as pointed out in Blume et al. (2015), prior knowledge on

the spillover structure is usually needed.

Most existing works focus on the case when the spillover structure is observed, see

De Paula (2017). There is a recent surge focusing on the cases when the spillover structure

is unobserved but known to be sparse, including, among others, Manresa (2013), and Lam

and Souza (2013). Speci�cally, they assume that each individual is only connected with a

limited number of others in the population. Compared to the observed spillover structure

assumption, the sparsity assumption is more restrictive on the number of spillovers but

less restrictive on the identity and intensity. Under the sparsity assumption, the estima-

tion can be facilitated by some adequate penalized regression methods, such as LASSO

of Tibshirani (1996), and adaptive LASSO of Zou (2006).

All the aforementioned work relies on the assumption of certain direct knowledge on the

spillover structure. This paper takes a di�erent perspective. By imposing a latent factor
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structure on the variables which generate spillovers, we show that such a factor structure

is in fact an indirect knowledge on the spillover structure. Similar to the direct knowl-

edge, the factor structure also implies constraints on the parameters characterizing the

spillovers. Therefore, we can improve the performance of existing spillover estimation

methods, like LASSO, by adding these factor-induced constraints. The motivation for

our setting can be understood from, for example, the fact that for technological spillovers

from the R&D investments to the productivities of di�erent �rms in the same market,

the R&D investments of di�erent �rms are typically driven by some macro factors of the

market.

The remainder of this paper is organized as follows. Section 2 introduces the model

used to characterize the spillovers and the factor structure, and provides the intuition on

how the factor structure could be treated as a knowledge about the spillover structure.

Section 3 discusses the general construction of the LASSO estimator based on the factor-

induced constraints. Section 4 derives the properties of the proposed estimator. Section 5

investigates the performance of the new estimation by simulation, and Section 6 concludes.

2 Spillovers and Factor-induced Constraints

Consider linear regression model

yt = β′xt + γ′zt + εt, t = 1, · · · , T, (1)

where xt = (x1t, · · · , xNt)′ is an N -vector of the variables generating the spillovers,

zt = (z1t, · · · , zkt)′ is a k-vector of the additional controls, and εt is a regression er-

ror. In particular, we focus on the case when N > T , which makes (1) a high-dimensional

problem in the sense that the number of unknown parameters is larger than the num-

ber of the observations. For the estimation of spillover e�ects using a panel dataset, β

in (1) can be interpreted as capturing the spillovers from a speci�c individual, that is

{yt, xt, zt, εt, β, γ} in (1) should all be indexed by i in general. To keep notations simple,

3



the discussion will focus on (1) rather than a general panel data model throughout the

rest of this paper.

For the factor structure of xt, we consider the factor model as follows.

xt = Aft + ut, (2)

where A is a N × r matrix of the factor loadings, ft is a r-vector of the factors, and ut

is a N -vector of the idiosyncratic shocks. To avoid the potential bias caused by omitting

relevant factors, we treat all factors ft as latent in this paper. In the case when ft is partly

observed, xt then could be treated as residuals from the regression on the observed factors.

To understand how (2) could be the indirect knowledge on β, notice that substituting (2)

into (1) gives the reduced form as follows.

yt = ψ′ft + γ′zt + et, (3)

where ψ = A′β and et = β′ut+εt. If A and ψ were observed, ψ = A′β are actually r linear

constraints on β. Even though A and ψ may not be directly observed in practice, both

of them can be estimated at a minor cost, and the constraints can then be established by

substituting the estimates of A and ψ.

3 Estimation

In this section, we construct the estimator of β making use of the latent factor structure

(2). Let Â, ψ̂, and γ̂ denote, respectively, the estimator of A, ψ, and γ. For expository

purposes, we �rst treat them as if they had been de�ned in Section 3.1. The details of

their construction are discussed later in Section 3.2.
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3.1 LASSO under Factor-induced Constraints

If the spillover structure is sparse, penalized regression methods can be used to estimate

β in (1) when N > T . One popular method is LASSO, which places an L1 penalty on β.

Speci�cally, let β̃ denote the LASSO estimator of β, which is de�ned as the solution to

the following minimization problem.

min
b
‖Y −Xb− Zγ̂‖22/2 + λ‖D̂b‖1, (4)

where Y = (y1, · · · , yT )′, X = (x1, · · · , xT )′, Z = (z1, · · · , zT )′, and D̂ is a diagonal

matrix introduced to normalize X. In comparison with the other penalized regression

methods, LASSO is featured by its ability of shrinking small regression coe�cients to

exact zero.

Knowing the latent factor structure (2) in xt, which implies linear constraints on β, we

can improve the performance of the LASSO estimator by adding these factor-induced

constraints. The LASSO estimator under these factor-induced constraints, denoted as β̂,

is then de�ned as the solution to the following minimization problem.

min
b
‖Y −Xb− Zγ̂‖22/2 + λ‖D̂b‖1 s.t. ψ̂ = Â′b (5)

In the situation when the true parameters satisfy the constraints, James et al. (2012)

shows that the constrained LASSO outperforms the unconstrained one in the sense that

it has a sharper L2 error bound. This implies that the infeasible constrained LASSO

estimator, which is the LASSO estimator under the infeasible factor-induced constraints

as if A and ψ were observed, denoted as β̌, should outperform the unconstrained LASSO

estimator β̃. In our setting, even though the true value of β may not satisfy the constraints

in (5) exactly due to the estimation errors of Â and ψ̂, the gap would decrease as the

5



sample size grows. In particular, if Â and ψ̂ converge su�ciently fast, we can show that

the L2 error bound of the feasible constrained LASSO estimator β̂ is close to that of

the infeasible constrained LASSO estimator β̌, which is strictly sharper than that of the

unconstrained LASSO estimator β̃.

3.2 Construction of Constraints

In the rest of this section, we provide details on Â, ψ̂, and γ̂, which are needed in the

construction of the feasible constrained LASSO estimator β̂ de�ned in (5). Speci�cally, we

will present the estimation of the factor model (2), which yields Â, and the corresponding

factor-augmented regression, which yields ψ̂ and γ̂.

The estimation for the factor model (2), which is known as the large factor model due

to the fact that N > T , is well documented in the literature. Early attempts include

the principle components method (PC) in Bai and Ng (2002) and the generalized prin-

ciple components method (GPC) in Choi (2012) using the estimated covariance matrix

suggested by Bai and Liao (2013) as weights. When the data exhibits non-zero serial

correlation, Lam et al. (2011) develops a new approach based on the information from

the autocovariance matrix at non-zero lags, instead of the covariance matrix as in PC and

GPC. Compared with PC and GPC, Lam et al. (2011) has a better performance when

there exists strong cross-correlation over di�erent component series. In this paper, we

deal with xt which exhibits strong autocorrelations. This makes the method of Lam et al.

(2011) a pertinent choice for our inference.

When the number of factors r is known, Lam et al. (2011) suggests the following estimators

of A and ft.

Â = (ŝ1, · · · , ŝr) and f̂t = Â′xt, (6)

where (ŝ1, · · · , ŝr) are the orthonormal eigenvectors of Ĥx corresponding to its r largest
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eigenvalues, and

Ĥx =

k0∑
k=1

Σ̂x(k)Σ̂x(k)′ , Σ̂x(k) =
1

T

T−k∑
j=1

(xt+j − x̄)(xt − x̄)′, x̄ =
1

T

T∑
t=1

xt (7)

with k0 ≥ 1 being a prespeci�ed integer.

Due to the rotational indeterminacy of the factor model 1, instead of the estimator of a

speci�c loading matrix, Â is an estimator for the factor loading spaceM(A), which is the

r-dimensional linear space spanned by the columns of A. However, it is worth noting that

di�erent choices of A and ft lead to equivalent factor-induced constraints ψ = A′β, which

implies that the feasible constrained LASSO estimator β̂ essentially does not depend on

the choice of A and corresponding ft.

In practice, we need to estimate the number of factors r to implement the method of

Lam et al. (2011). There exist mainly two types of estimation methods. One is based

on information criteria, for example see Bai and Ng (2002). The other is based on the

distribution of eigenvalues, including Onatski (2009), Lam et al. (2012), and Ahn and

Horenstein (2013). Following Lam et al. (2012), we estimate the number of factors r by

the relative magnitude of the ratios of eigenvalues, which is de�ned as follows.

r̂ = arg min
1≤j≤R

λ̂j+1

λ̂j
, (8)

where r < R < N and λ̂1 ≥ · · · ≥ λ̂N are the decreasingly ordered eigenvalues of Ĥx.

To estimate ψ and γ, we consider the factor-augmented regression as follows.

yt = ψ′f̂t + γ′zt + et (9)

Note that the number of unknown parameters in (9) is r + k < T . Thus, ψ̂ and γ̂ can be

1Aft = AHH ′ft for any orthnormal matrix H ∈ Rr×r.
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obtained by least squares method. Speci�cally, ψ̂ and γ̂ are de�ned as the solution to the

following minimization problem with respect to b1 and b2.

min
b1, b2

T∑
t=1

(yt − b′1f̂t − b′2zt)2 (10)

4 Theoretical Results

In this section we develop the theoretical properties of the feasible constrained LASSO

estimator β̂. We introduce some notations �rst. For a d-vector v = (v1, · · · , vd), let

‖v‖p be its Lp norm with p ≥ 1, and supp(v) = {j : vj 6= 0}. Given a set of indices

I ⊂ {1, · · · , d}, let vI be the d-vector with the j-th component (vI)j = vj1{j ∈ I} for

j = 1, . . . , d. For a d1×d2 matrixW , let ‖W‖2 =
√
λmax(W ′W ) be its spectral norm and

‖W‖min be the square root of the smallest non-zero eigenvalue of WW ′, where λmax(·)

and λmin(·) denote, respectively, the largest and the smallest eigenvalues of the matrix.

Given a set of indices I2 ⊂ {1, · · · , d2}, we denote by WI2 the columns of W associated

with I2, and WIc2 corresponds to the remaining columns of W . We also use the notation

a � b to denote the situation when a = O(b) and b = O(a) hold simultaneously. To

simplify the exposition, we assume zt ≡ 1 in (1). The results with more general zt can be

obtained in a similar manner.

The construction of β̂ and its performance critically depend on the accuracy of Â and

ψ̂. Intuitively the closer Â and ψ̂ are to A and ψ, the closer the constraints in (5) would

be to the infeasible factor-induced constraints ψ = A′b, under which the infeasible con-

strained LASSO estimator β̌ would have sharper L2 error bound than the unconstrained

LASSO estimator β̂. To specify their accuracy, we study the convergence rate of Â and ψ̂.

The convergence rate of Â has been shown in Theorem 1 and 2 of Lam et al. (2011).

Thus, we focus on ψ̂. To derive the convergence rate of ψ̂, we need to impose assumptions

as follow.

8



Assumption 1

(i) A′A = Ir, ft is weakly stationary, ut is a white noise with zero mean and variance

Σu, and cov(ft, us) = 0 for t ≤ s.

(ii) ‖Σf (k)‖2 � N1−ν � ‖Σf (k)‖min , ‖Σu‖2 = O(Nρ), and ‖Σfu(k)‖2 = O (Nρ) with

ρ < 1− ν for some ν ∈ [0, 1] and k = 0, 1, · · · , k0, where Σf (k) = cov[ft+k, ft] and

Σfu(k) = cov[ft+k, ut]; λmin

(
AΣfu(0)

)
= o
(
N1−v).

(iii) {x′t, ε′t} is a stationary α-mixing process with E‖(x′t, ε′t)‖2+γ <∞ elementwisely for

some γ > 0, and the mixing coe�cients α(t) satisfying
∑∞

t≥1 α(t)
γ

2+γ <∞.

(iv) ‖Σfε‖2 = O
(
N

1
2T−

1
2

)
and ‖Σuε‖2 = O

(
N

1
2T−

1
2

)
, where Σfε = cov[ft, εt] and

Σuε = cov[ut, εt].

Assumption 1 (i) is always ful�lled via a normalization on factor loadings, see Lam et al.

(2011). Due to the rotational indeterminacy of factor model (2), only the linear space

spanned by the columns of A, denoted as M(A), is identi�ed.2. Following Lam et al.

(2011), we specify Ã as QV , where Q is a N × r matrix that comes from the thin Q-R

decomposition of A, and satis�es Q′Q = Ir, and V is a r-dimensional orthonormal ma-

trix that comes from the spectral decomposition
∑k0

k=1{Σf (k)Q′ + Σf,u(k)}{Σf (k)Q′ +

Σf,u(k)}′ = V DV ′ 3. Once we specify the target factor loading matrix as above, the

corresponding factor process follows by V ′Rft, where R is a r× r matrix that comes from

the same thin Q-R decomposition of A that generates Q. To distinguish the objects based

on the original factors from those based on the chosen factors, we add superscript "o" to

the objects based on the original factors, leaving the objects based on the chosen factors

with no superscript.

Assumption 1 (ii) follows by ‖Σo
f (k)‖2 � ‖Σo

f (k)‖min � 1, Σo
f,u(k) = O(1) elementwise,

and ‖ai‖22 = N1−ν for i = 1, · · · , r and 0 ≤ ν ≤ 1, where ai is the ith column of A, see

2Even though A′A = Ir has been restrictive, it still cannot pin down A because A′H ′HA = Ir
for any r × r orthonormal matrix H.

3Since the spectral decomposition does not pinned down the sign of V , we need to allow Â
to adjust sign to adept to the sign of chosen V .
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Lemma 1 of Lam et al. (2011). Assumption 1 (iii) is introduced in order to capture the

upper bounds of ‖Σ̂o
f (k)− Σo

f (k)‖2 and ‖Σ̂o
f,u(k)− Σo

f,u(k)‖2, which follows by using the

Frobenius norm as upper bound of the spectral norm, and using the central limit theorem

of α-mixing process elementwisely, for example Theorem 0 of Bradley (1985). Since we

deal with an otherwise linear regression model, putting restrictions on the correlation

between ft and εt is necessary, and this is speci�ed in Assumption 1 (iv).

Under Assumption 1, the convergence rate of Â in the spectral norm is given by Lam

et al. (2011), and is stated in Lemma 1 as follows.

Lemma 1 Under Assumption 1, ‖Â− A‖2 = Op(N
νT−1/2).

The linear regression with the estimated factors such as (9) has been studied by Stock

and Watson (2002) and Bai and Ng (2006). Both works rely on the factors estimated by

the variance-covariance based method such as Bai and Ng (2002). In this paper, we use a

di�erent approach to estimate the factor model (2). Thus, the result on the convergence

rate of ψ̂ is new. Speci�cally, under Assumption 1, the convergence rate of ψ̂ is obtained

and this result is summarized in Theorem 1 as follows. The proof of Theorem 1 is rele-

gated to Appendix A.

Theorem 1 Let Assumption 1 hold and NνT−1/2 = o(1). Then it holds that

‖ψ̂ − ψ‖2 = Op(N
νT−

1
2 ).

Theorem 1 provides the convergence rate of ψ̂ when both N and T go to in�nity. The

rate depends on the strength of factors ν. When ν = 0, which is the case when the factors

are strong, ψ̂ attains the root-T rate, which is the same as if ft is directly observed. If

ν > 0, which is the case when the factors are weak, the convergence rate of ψ̂ is slowed

down by Nν . In this sense, the behavior of ψ̂ is very similar to that of Â.

10



To derive the error bound of β̂, we need further assumptions. The key is to regularize the

Gram matrix Mx = X ′X/T . Mx is singular when N > T , and it is impossible to require

its smallest eigenvalue is bounded o� zero. In such a situation, instead of the standard

eigenvalue, following the literature of the penalized regression, we impose the lower bound

assumption on the restricted eigenvalue of Mx. To characterize the restricted eigenvalue,

let T be a subset of {1, · · · , N} such that A′T is invertible, T c = {1, · · · , N}\T , and

S = supp(βT c ). Then, the restricted eigenvalue of Mx is de�ned in (11) as follows.

κζ(Mx) = min
δ∈∆ζ

δ
′
Mxδ

‖δ‖22
(11)

where

∆ζ =

{
δ ∈ RN : ‖δSc∩T c‖1 ≤

ζ + 1

ζ − 1

(
‖δT ‖1 + ‖δS∩T c‖1 + ‖δf‖1

)}
, (12)

and

δf = (Â′T )−1ψ̂ − (A′T )−1ψ − [(Â′T )−1Â′T c − (A′T )−1A′T c ]βT c .

In Appendix A, we show that the estimation errors of β̂ belong to ∆ζ , which justi�es the

su�ciency of κζ(Mx) > 0 in the study of the error bound of β̂. Compared to James et al.

(2012), our restricted set ∆ζ is larger due to the estimation errors of Â and ψ̂, which

are characterized by δf . If we know A and ψ exactly, δf = 0 and ∆ζ coincides with the

restricted set de�ned in James et al. (2012). Moreover, if there is no restriction, T = ∅

and ζ = 2, which implies that ∆ζ degenerates to the restricted set of standard LASSO,

see Bickel et al. (2009).

Assumption 2

(i) r ≤ s = o(T ), where r = rank(A) and s = ‖φ∗‖0.

(ii) A′T is non-singular for some T ⊂ supp(β).
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(iii) For any ζ > 0, there exists a �nite constrant κ > 0, which does not depend on T but

may depend on ζ, such that κζ(Mx) ≥ κ with probability approaching 1 as T →∞.

(iv) {xjt, εt}Tt=1 is a strong mixing sequence with E[xjtεt] = 0 for j = 1, · · · , N with

mixing coe�cient α(t) satisfying α(t) ≤ exp(−ctη1) for some η1 > 0 and c > 0;

sup1≤j≤r supt P (|xjtεt| > x) ≤ exp(1−xη2) for some η2 > 0; 0 < l ≤ min1≤j≤N Vj ≤

max1≤j≤N Vj ≤ u <∞, where Vj = sup1≤t≤T
(
Ex2

jtε
2
t + 2

∑
s>t |E(xjsxjtεsεt)|

)
.

(v) logN = o(T 1/3).

Assumption 2 (i) requires that the number of the factors is no greater than the number of

essentially relevant regressors. This is a reasonable condition, as in practice the number

of latent factors is usually small or very small. Assumption 2 (ii) requires the loadings of

the essentially relevant regressors are linearly independent with each other. Assumption

2 (iv) is a technical assumption to facilitate the Fuk-Nagaev inequality, which is used to

control the probability when the maximum score is beyond a speci�c penalty level. As-

sumption 2 (v) is mild and is a standard condition for the penalized regression methods

such as LASSO. In particular, it requires that the size of the cross-sectional dimension

is no greater than the exponential of the sample size. To simplify the exposition, we set

γ = 0 and D̂ = I in the rest part of this section. The general results can be obtained in

a similar manner.

Theorem 2 Let Assumption 1 and 2 hold. If λ = K
√
T logN with K > 4ζ

√
2u

log 2 and

some constant ζ > 1, it holds that

‖β̂ − β‖22 ≤ Tn,1 +
√
T 2
n,1 + Tn,2, (13)

where

Tn,1 =

√
2(ζ + 1) max{

√
s− r,

√
r}λ

κ2ζT
,

Tn,2 = −
2(ζ + 1)

√
rλ‖δf‖2

κ2ζT
.
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When factors are strong (i.e. ν = 0), Tn,2 is of order
√

logN
T , and is dominated by

T 2
n,1 whose order is logN

T . In such a situation, the error bound of our constrained LASSO

estimator β̂ is close to that of the infeasible constrained LASSO estimator β̌, see Theorem

1 of James et al. (2012), which is known to be sharper than that of the standard LASSO

estimator β̃, see Theorem 1 of Negahban et al. (2009). When factors are weak (i.e. ν > 0),

Tn,2 is of order N
ν
√

logN/T , which implies that Tn,2 dominates T
2
n,1, and the error bound

of our feasible constrained LASSO estimator β̂ will not be close to that of the infeasible

constrained LASSO estimator β̌ even when T is large.

5 Numerical Results

In this section, we report some simulation results which illustrate the �nite sample prop-

erties of the estimators proposed in Section 3.

5.1 Simulation Design

Throughout this section, we consider three data generation processes as follow.

Example 1: For the factor model (2), let r = 1, A = (a1, · · · , aN )
′
with ai = 2 cos(2πi/N),

ft = 0.4ft−1 + ωt with ωt ∼ i.i.N(0, 1), and ut ∼ i.i.N(0, IN ). For (1), we set βj =

51{j=1,2,3}, xt ∼ i.i.N(0, 5), γ = 5, zt = 1, and εt ∼ i.i.N(0, 1/
√

2).

Example 2.1: For the factor model (2), let r = 3. The elements of A is generated ran-

domly from the U(−5, 5) distribution. f1t = vt, f2t = vt−1, f3t = vt−2 for vt = 0.5ωt−1+ωt

with ωt ∼ i.i.N(0, 1), and ut ∼ i.i.N(0, IN ). For (1), we set βj = 51{j=1,2,3,4,5},

xt ∼ i.i.N(0, 5), γ = 5, zt = 1, and εt ∼ i.i.N(0, 1/
√

2).

Example 2.2: ut ∼ i.i.N(0,Σu), where the (i, j) element of Σu is de�ned as

σi,j =

 1
2

{
(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H

}
, i 6= j;

1, i = j.

with H = 0.9 is the Hurst parameter. Everything else is the same as Example 2.1.
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5.2 Simulation Results

First, we provide results for Â, γ̂, and ψ̂. Let N ∈ {400, 500} and T ∈ {100, 200, 400}.

For each data generation process, the rooted mean square errors (RMSE) are reported in

two situations: ν = 0 and ν = 0.5. The experiments are replicated 100 times for each

setting.

In Table 1 and 2, RMSE of Â, γ̂, and ψ̂ are reported separately when data is generated

from Example 1 under µ = 0 and µ = 0.5. In the case when ν = 0, i.e. factors are strong,

Table 1 shows that RMSE of Â, γ̂, and ψ̂ decrease as T grows from 100 to 400, while the

increase of N from 400 to 500 does not have much e�ect when T is large. In the case

when ν = 0.5, i.e. factors are weak, Table 2 shows that RMSE of Â, γ̂, and ψ̂ decrease

much slower than the case when µ = 0. Moreover, the increase of N from 400 to 500 does

slightly raise RMSE even when T is large.

Table 1: RMSE of Â, γ̂, and ψ̂ for Example 1 with ν = 0.

‖Â− A‖2 ‖γ̂ − γ‖2 ‖ψ̂ − ψ‖2
N = 400 N = 500 N = 400 N = 500 N = 400 N = 500

T = 100 17653 18660 12694 155114 2722 2419

T = 200 12024 11320 9078 10787 1612 1611

T = 400 849 8313 6756 7764 129 119

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

Table 2: RMSE of Â, γ̂, and ψ̂ for Example 1 with ν = 0.5.

‖Â− A‖2 ‖γ̂ − γ‖2 ‖ψ̂ − ψ‖2
N = 400 N = 500 N = 400 N = 500 N = 400 N = 500

T = 100 53073 55570 12795 156113 126102 10587

T = 200 42556 42646 9177 10887 8467 8860

T = 400 33031 34040 6756 7664 5946 6146

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.
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Table 3 and 4 reports RMSE of Â, γ̂, and ψ̂ when data is generated from Example 2.1

and 2.2 under µ = 0 and µ = 0.5 respectively. The di�erence between Example 2.1 and

2.2 is the cross-correlations of the idiosyncractic shocks ut in factor model (2), where

Example 2.2 has stronger cross-correlations than Example 2.1. When factors are strong

(i.e. ν = 0), Table 3 again shows that RMSE of Â, γ̂, and ψ̂ decrease as T grows, and the

increase of N does not have much e�ect. Moreover, comparing the results from Example

2.1 and Example 2.2, Table 3 also shows that the cross-correlations among the idiosyn-

cratic shocks do not have much e�ect on the convergence rates characterized by RMSE.

Similar results are reported in Table 4 when factors are weak (i.e. ν = 0.5), except that

RMSE decrease much slower than the case when ν = 0.

Table 3: RMSE of Â, γ̂, and ψ̂ for Example 2.1 and 2.2 with ν = 0.

‖Â− A‖2 ‖γ̂ − γ‖2 ‖ψ̂ − ψ‖2
N = 400 N = 500 N = 400 N = 500 N = 400 N = 500

DGP2.1

T = 100 408176 450256 203148 169129 10883 10191

T = 200 354196 349223 12691 147114 7158 84149

T = 400 234106 266116 9567 8770 4939 4133

DGP2.2

T = 100 438305 402249 363280 298241 181282 121150

T = 200 343211 331188 212155 284201 8760 7961

T = 400 229121 265125 189137 166117 5735 4935

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

Results for the feasible constrained LASSO estimator β̂ using data generated as in Exam-

ple 1 are reported in Figure 1 and 2 as follow. For T ∈ {400, 800} and N ∈ {1.2T, 2.4T},

the simulated L2 errors of the standard LASSO estimator β̃, infeasible constrained LASSO

estimator β̌, and the feasible constrained LASSO estimator β̂ are separately visualized

along the path of the tunning parameter λ. In particular, we replicate the experiment

100 times in each setting and report the mean of the realized L2 error. To compute the

LASSO estimator under linear constraints, we employ the alternating direction method

of multipliers (ADMM) by Gaines and Zhou (2016).
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Table 4: RMSE of Â, γ̂, and ψ̂ for Example 2.1 and 2.2 with ν = 0.5.

‖Â− A‖2 ‖γ̂ − γ‖2 ‖ψ̂ − ψ‖2
N = 400 N = 500 N = 400 N = 500 N = 400 N = 500

DGP2.1

T = 100 653220 709255 205150 168130 216123 217166

T = 200 626164 676270 12591 148114 168119 186191

T = 400 552161 57592 9567 8770 127120 10764

DGP2.2

T = 100 849370 930400 339269 292228 740428 716408

T = 200 801338 824357 193148 278201 745460 639377

T = 400 646285 784367 176136 164112 561370 571335

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

Figure 1: Simulated L2 Errors (ν = 0)
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Figure 1 shows that when factors are strong (i.e. ν = 0), the simulated L2 error of the fea-

sible constrained LASSO estimator β̂ is close to that of the infeasible constrained LASSO

estimator β̌ along the path of the tunning parameter λ, and is much smaller than the

simulated L2 error of the unconstrained LASSO estimator β̃. However, in Figure 2, we

�nd that the performance of the feasible constrained LASSO estimator β̂ is unsatisfactory,
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Figure 2: Simulated L2 Errors (ν = 0.5)
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and could be even worse than the unconstrained LASSO estimator β̃ at some values of

the tunning parameter λ. This �nding, however, is expected, which is due to the presence

of weak factors as discussed in Section 4. When there are weak factors, the dominant

term of the error bound is the term capturing the estimation error of the factor model,

which has slower convergence rate than that of the term capturing the estimation error

of the LASSO estimator.

6 Conclusions

This paper proposes a method to improve the performance of existing spillover estimators

by using a latent factor structure in the variables that generate the spillovers. Speci�cally,

a latent factor structure implies linear constraints on the parameters characterizing the

spillovers, and these factor-induced constraints can be incorporated into the estimation
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process to improve the estimation of spillovers. In particular, the L2 error bound of

the LASSO estimator under the feasible factor-induced constraints is derived. Compared

with the unconstrained estimator, the LASSO estimator under the feasible factor-induced

constraints is more accurate in the sense that it has approximately sharper error bound.

Also, we note that the strength of the latent factors is critical. In particular, strong

factors always provide better constraints than weak factors, which is due to the fact that

the estimated factor loadings and corresponding factors have faster convergence rate when

the factors are strong.
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Appendix A Proofs of Main Results

Let Y = (y1, · · · , yT )′ ∈ RT , ε = (ε1, · · · , εT )′ ∈ RT , X = (x1, · · · , xT )′ ∈ RT×N ,

F = (f1, · · · , fT )′ ∈ RT×r, U = (u1, · · · , uT )′ ∈ RT×N , and e = Uβ + ε ∈ RT . We

can then rewrite (1) as X = FA′ + U and (3) as Y = iTγ + Fψ + e. Moreover, let

F̂ = (f̂1, · · · , f̂T )′ ∈ RT×r, MT = IT − T−1iT i
′
T , where IT is the T × T identity matrix

and iT is the T -vector whose components are all one.

Proof of Theorem 1: By Y = iTγ + F̂ψ + [(F − F̂ )ψ + Uβ + ε], we have

ψ̂ − ψ =
(
F̂ ′MT F̂

)−1
F̂ ′MT [(F − F̂ )ψ + Uβ + ε].

Given the results in Lemma 2 (2), it is su�ce to study the rate of ‖F̂ ′MT (F − F̂ )‖2. Let

R0 = (Â − A)′X ′MTXA + A′X ′MTX(Â − A) + (Â − A)′X ′MTX(Â − A), which gives

F̂ ′MT (F − F̂ ) = −A′X ′MTUA+ (Â−A)′X ′MTF −R0. Following similar arguments as

in the proof of Lemma 1, for some positive constant ρ < 1− v, we have

‖A′X ′MTUA‖2 = Op(TN
ρ +
√
TN),

‖(Â− A)′X ′MTF −R1‖2 = Op(
√
TN),

which implies ‖F̂ ′MT (F − F̂ )‖2 = Op(TN
ρ +
√
TN). Thus, the conclusion follows by

Lemma 2 (1). �

Proof of Theorem 2: Let δ̂ ≡ β̂ − β. Also, for a d-vector v and an index set

I ⊂ {1, · · · , d}, let ΠI(v) = vI .

Step 1: Under Assumption 2, δ̂ ∈ ∆ζ if λ ≥ ζ‖X ′ε‖∞ for some constant ζ ≥ 1

and ‖XT ‖22/λ = 0.

21



Since ‖Â− A‖2
p→ 0, we focus on the case when Â′T , which gives

bT = (Â′T )−1(ψ̂ − Â′T cbT c),

for any b ∈ RN satisfying ψ̂ = Â′b. Thus, the constrained problem (5) with respect to

b ∈ RN is equivalent to the unconstrained problem with respect to b2 ∈ RN−r as follows.

min
b2∈RN−r

1

2
‖Ỹ − X̃T cb2‖22 + λ (‖bT (b2)‖1 + ‖b2‖1) , (A.1)

where Ỹ = Y −XT (Â′T )−1ψ̂ , X̃T c = XT c −XT (Â′T )−1(Â′T c) , and bT (b2) = (Â′T )−1ψ̂ −

(Â′T )−1Â′T cb2. Let b̂2 denote the solution to (A.1). The equivalence between (5) and (A.1)

thus implies β̂ = (bT (b̂2), b̂2). By the optimality of b̂2, we have

0 ≥− (Ỹ − X̃T cβT c )
′X̃T c(b̂2 − βT c ) +

1

2
‖X̃T c(b̂2 − βT c )‖22

+ λ
(
‖bT (b̂2)‖1 − ‖bT (βT c )‖1 + ‖b̂2‖1 − ‖βT c‖1

)
=− (ε−XT δf )′(Xδ̂ −XT δf ) +

1

2
‖Xδ̂ −XT δf‖22

+ λ
(
‖β̂‖1 − ‖βT + δf‖1 − ‖βT c‖1

)
≥− ε′Xδ̂ + ε′XT δf −

1

2
‖XT δf‖22 +

1

2
‖Xδ̂‖22

+ λ
(
‖β̂‖1 − ‖β‖1 − ‖δf‖1

)
,

(A.2)

where the equality follows by

Ỹ − X̃T cβT c = ε−XT δf ,

X̃T c(b̂2 − βT c ) = Xδ̂ −XT δf ,

bT (βT c ) = βT + δf ,

with δf = (Â′T )−1ψ̂ − (A′T )−1ψ −
[
(Â′T )−1Â′T c − (A′T )−1A′T c

]
βT c .
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By Hölder's inequality and λ ≥ ζ‖X ′ε‖∞, we have

−ε′Xδ̂ ≥ −|ε′Xδ̂| ≥ −‖ε′X‖∞‖δ̂‖1 ≥ −
λ

ζ
‖δ̂‖1,

ε′XT δf ≥ −|ε′XT δf | ≥ −‖ε′XT ‖∞‖δf‖1 ≥ −
λ

ζ
‖δf‖1,

Thus, noting ‖Xδ̂‖22 ≥ 0 and ‖XT ‖22/λ = 0, (A.2) implies

0 ≥ λ

(
‖β̂‖1 − ‖β‖1 −

1

ζ
‖δ̂‖1 −

ζ + 1

ζ
‖δf‖1

)
. (A.3)

Let S = supp(βT c ). By Lemma 5 of James et al. (2012), we have

‖β̂‖1 − ‖β‖1 −
1

ζ
‖δ̂‖1 −

ζ + 1

ζ
‖δf‖1

=

(
‖bT (b̂2)‖1 − ‖βT ‖1 −

1

ζ
‖bT (b̂2)− βT ‖1

)
+

(
‖b̂2‖1 − ‖βT c‖1 −

1

ζ
‖b̂2 − βT c‖1

)
− ζ + 1

ζ
‖δf‖1

≥ −ζ + 1

ζ
‖bT (b̂2)− βT ‖1 −

ζ + 1

ζ
‖ΠS(b̂2 − βT c )‖1 +

ζ − 1

ζ
‖ΠSc(b̂2 − βT c )‖1 −

ζ + 1

ζ
‖δf‖1.

(A.4)

The conclusion follows by (A.3), (A.4), and λ > 0 and ζ > 1.

Step 2: Under Assumption 2, λ > ζ‖ε′X‖∞ and ‖XT ‖22/λ = 0 w.p.a.1.

First statement follows by Lemma 3 and

P
(
λ < ζ‖ε′X‖∞

)
≤ N max

1≤j≤N
P

(∣∣∣∣∣
T∑
t=1

εtXt,j

∣∣∣∣∣ > λ

ζ

)

≤ 4N max
1≤j≤N

{
exp

[
− λ2 log 2

32ζ2TVj

]
+ 4CζTλ−1 exp

[
−
c2(4ζTVj)

φ

λφ

]}
≤ 4N exp

[
−λ

2 log 2

32ζ2Tu

]
+ 16CζNTλ−1 exp

[
−c

2(4ζT l)φ

λφ

]

= 4εp + C1N

√
T

log(Nεp )
exp

−C2

[
T

log(Nεp )

]φ
2


→ 0,
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where the �rst inequality comes from the union bound, the second inequality follows by

Lemma 3 and Assumption 2 (4), the third inequality follows by l ≤ min1≤j≤N Vj ≤

max1≤j≤N Vj < u from Assumption 2 (4), and the equality follows by choosing λ =

K
√
T log(Nεp ) with K = 4ζ

√
2u

log 2 , log(Nεp ) = o(T ), and εp → 0 , and log(Nεp ) = O(logN),

logN = o(T 1/3) and φ > 1 from Assumption 2. By a similar argument, we can show∑r
j=1

∑T
t=1X

2
Tt,j

λ
a.s.→ 0, and the second statement follows.

Step 3: Note that

‖β̂‖1 − ‖β‖1 −
1

ζ
‖δ̂‖1

≥ ζ + 1

ζ
‖bT (b̂2)− βT ‖1 −

ζ + 1

ζ
‖ΠS(b̂2 − βT c )‖1

≥ −(ζ + 1) max{
√
s− r,

√
r}

ζ
(‖bT (b̂2)− βT ‖2 + ‖ΠS(b̂2 − βT c )‖2)

≥ −
√

2(ζ + 1) max{
√
s− r,

√
r}

ζ
‖δ̂‖2,

(A.5)

where the �rst inequality follows by similar arguments as in (A.4) and ζ > 1, the sec-

ond inequality follows by ‖bT (b̂2) − βT ‖1 ≤
√
r‖bT (b̂2) − βT ‖2 and ‖ΠS(b̂2 − βT c )‖1 ≤

√
s− r‖ΠS(b̂2 − βT c )‖2, and the third inequality follows by ‖bT (b̂2) − βT ‖2 + ‖ΠS(b̂2 −

βT c )‖2 ≤
√

2‖δ̂‖2.

By similar argument as in (A.2), we have

0 ≥ ‖Xδ̂‖22 − ‖XT δf‖22 + 2λ

(
‖β̂‖1 − ‖β‖1 −

1

ζ
‖δ̂‖1 −

ζ + 1

ζ
‖δf‖1

)
≥ ‖Xδ̂‖22 −

2
√

2(ζ + 1) max{
√
s− r,

√
r}λ

ζ
‖δ̂‖2 − ‖XT δf‖22 −

2(ζ + 1)λ

ζ
‖δf‖1

≥ Tκ2‖δ̂‖22 −
2
√

2(ζ + 1) max{
√
s− r,

√
r}λ

ζ
‖δ̂‖2 −

2(ζ + 1)
√
rλ

ζ
‖δf‖2,

(A.6)

where the second inequality follows by (A.5), and the last inequality follows by Assumption

2 (3), ‖XT δf‖22 ≤ ‖XT ‖22‖δf‖22 with ‖XT ‖22/λ = 0 w.p.a.1, and
√
r‖δf‖2 ≥ ‖δf‖1. The

conclusion follows by solving (A.6) as an inequality with respect to ‖δ̂‖2. �
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Appendix B Proofs of Lemmas

Lemma 2 Under Assumption 1,

(i) T−1Nν−1F̂ ′MT F̂
p→MF , whereMF ∈ Rr×r is a positive de�nite matrix with λmin(MF ) ≥

c for some c > 0.

(ii) ‖F̂ ′MTU‖2 = Op(TN
ρ +
√
TN) for a positive constant ρ < 1 − v, and ‖F̂ ′MT ε‖ =

Op(
√
NT ).

Proof of Lemma 2: For (i), let R1 = (Â − A)′X ′MTXA + A′X ′MTX(Â − A) + (Â −

A)′X ′MTX(Â− A). By F̂ = XÂ, we have

F̂ ′MT F̂ = A′X ′MTXA+R1.

Since ‖A‖2 = 1 and ‖Â−A‖2 = Op(N
νT−1/2) = op(1), R1 is dominated by A′X ′MTXA

as T →∞. By X = FA′ + U and A′A = Ir, we have

T−1Nν−1A′X ′MTXA

= T−1Nν−1F ′MTF + T−1Nν−1F ′MTUA+ T−1Nν−1A′U ′MTF + T−1Nν−1A′U ′MTUA

= Nν−1Σf +Nν−1ΣfuA+Nν−1A′Σuf +Nν−1A′ΣuA+R2

whereR2 = Nν−1
(
T−1F ′MTF − ΣF

)
+Nν−1

(
T−1F ′MTU − Σfu

)
A+Nν−1A′

(
T−1U ′MTF − Σuf

)
+

Nν−1A′
(
T−1U ′MTU − Σu

)
A. By Lemma 2 of Lam et al. (2011), if NνT−1/2 = o(1),

‖R2‖2 = o(1). Thus, (1) follows by

λmin

(
Nν−1Σf +Nν−1ΣfuA+Nν−1A′Σuf +Nν−1A′ΣuA

)
≥ Nν−1λmin

(
Σf

)
+Nν−1λmin

(
A′ΣuA

)
+ 2Nν−1λmin

(
ΣfuA

)
≥ Nν−1‖Σf‖min +Nν−1‖Σu‖min + o(1)

≥ c,

for some c > 0, where the �rst inequality follows by λmin(G1+G2) ≥ λmin(G1)+λmin(G2),
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and the second inequality follows by λmin(G) = ‖G‖min for real symmetric matrix G,

‖G1G2‖min ≥ ‖G1‖min‖G2‖min, ‖A‖min = 1, and λmin(AΣfu) = o(N1−v) from Assump-

tion 1 (2), and the equality follows by ‖Σf‖min � N1−ν .

For (ii), let R3 = (Â − A)′X ′MTU , which gives F̂ ′MTU = A′X ′MTU + R3. Since

A′X ′MTU dominates R3, we focus on the rate of A′X ′MTU , which follows by

T−1‖A′X ′MTU‖2 ≤ ‖T−1F ′MTU‖2 + ‖T−1U ′MTU‖2

≤ ‖Σfu‖2 + ‖Σu‖2 + ‖T−1F ′MTU − Σfu‖2 + ‖T−1U ′MTU − Σu‖2

= O(Nρ) +O(Nρ) +Op(N
1− ν

2T−
1
2 ) +Op(NT

− 1
2 )

= Op(N
ρ +NT−

1
2 ),

where the �rst inequality follows by X = FA′ + U , A′A = Ir, ‖G1G2‖2 ≤ ‖G1‖2‖G2‖2,

‖A‖2 = 1, and the triangular inequality, the �rst equality follows by ‖Σfu‖2 = O (Nρ)

and ‖Σu‖2 = O (Nρ) with ρ < 1− ν, and Lemma 2 of Lam et al. (2011).

For the remaining part of (2), let R4 = (Â−A)′X ′MT ε, which gives F̂
′MT ε = A′X ′MT ε+

R3. Since A
′X ′MT ε dominates R3, we focus on the rate of A′X ′MT ε, which follows by

T−1‖A′X ′MT ε‖2 ≤ ‖T−1F ′MT ε‖2 + ‖T−1U ′MT ε‖2

≤ ‖Σf,ε‖2 + ‖Σu,ε‖2 + ‖T−1F ′MT ε− Σf,ε‖2 + ‖T−1U ′MT ε− Σu,ε‖2

= Op(N
1
2T−

1
2 ) +Op(N

1
2T−

1
2 ) +Op(N

1−ν
2 T−

1
2 ) +Op(N

1
2T−

1
2 )

= Op(N
1
2T−

1
2 ),

where the �rst inequality follows by X = FA′ + U , A′A = Ir, ‖G1G2‖2 ≤ ‖G1‖2‖G2‖2,

‖A‖2 = 1, and the triangular inequality, the second inequality follows by subtracting

Σf,ε and Σu,ε, and the triangular inequality, and the �rst equality follows by ‖Σfε‖2 =

O
(
N

1
2T−

1
2

)
and ‖Σuε‖2 = O

(
N

1
2T−

1
2

)
from Assumption 1 (ii), and similar arguments as

in Lemma 2 of Lam et al. (2011). �
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Lemma 3 Let {Ut}Tt=1 be a strongly mixing sequence of real-valued and centered random

variables with mixing coe�cient α(t). There are constants φ1 and c > 0 such that α(t) ≤

exp(−ctφ1), and there is a constant φ2 > 0 such that supt P (|Ut| > u) ≤ exp(1 − uφ2).

Then, for any λ ≥ (TV )1/2, we have

P

(∣∣∣∣∣
T∑
t=1

Ut

∣∣∣∣∣ ≥ 4λ

)
≤ 4 exp

(
−λ

2 log 2

2TV

)
+ 4CTλ−1 exp

(
−c

2(TV )φ

λφ

)

, where φ = φ1φ2

φ1+φ2
and V = sup1≤t≤T

(
EU2

t + 2
∑

s>t |E(UsUt)|
)
.

Proof of Lemma 3: This is an immediate corollary of Theorem 6.2 in Rio (1999). �
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