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Abstract

In the literature on the estimation for spillover effects, prior knowledge
on the spillover structure is often incorporated as a constraint on the es-
timation. This paper proposes a new method to construct constraints
on the spillover effects using the latent factor structure of the variables
that generate the spillovers. The method improves the performance of the
existing methods such as LASSO. We have derived the Ly error bound
for the LASSO estimator under factor-induced constraints. Comparing it
with that of the unconstrained LASSO estimator, the new LASSO estima-
tor has an approximately sharper L, error bound when factors are strong.

Simulation results demonstrate our findings.
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1 Introduction

The spillover effect, also known as externality, is the effect of a treatment assigned to
one individual from the outcomes of others. It is prevalent in economic studies. Com-
mon examples include technological adoptions, peer effects of education, and return and
volatility spillovers in stock markets. Ignoring the spillover effects could lead to severe
bias in the estimation of the treatment effects, while the structure of interactions driving

the spillovers could also be of its own interest.

In the estimation of spillover effects, one of the challenges is due to the relative large
number of pair-specific parameters in comparison to the limited sample size. In such a
situation, a panel data structure can relieve the problem because the variations across
the additional time dimension can be used as a source of the knowledge on the spillover
structure. However, given the prevalence of the short panel, which is the case when there
are more cross-sectional units than the number of periods, the spillover effects could still
be under-identified. Therefore, as pointed out in Blume et al. (2015), prior knowledge on

the spillover structure is usually needed.

Most existing works focus on the case when the spillover structure is observed, see
De Paula (2017). There is a recent surge focusing on the cases when the spillover structure
is unobserved but known to be sparse, including, among others, Manresa (2013), and Lam
and Souza (2013). Specifically, they assume that each individual is only connected with a
limited number of others in the population. Compared to the observed spillover structure
assumption, the sparsity assumption is more restrictive on the number of spillovers but
less restrictive on the identity and intensity. Under the sparsity assumption, the estima-
tion can be facilitated by some adequate penalized regression methods, such as LASSO

of Tibshirani (1996), and adaptive LASSO of Zou (2006).

All the aforementioned work relies on the assumption of certain direct knowledge on the

spillover structure. This paper takes a different perspective. By imposing a latent factor



structure on the variables which generate spillovers, we show that such a factor structure
is in fact an indirect knowledge on the spillover structure. Similar to the direct knowl-
edge, the factor structure also implies constraints on the parameters characterizing the
spillovers. Therefore, we can improve the performance of existing spillover estimation
methods, like LASSO, by adding these factor-induced constraints. The motivation for
our setting can be understood from, for example, the fact that for technological spillovers
from the R&D investments to the productivities of different firms in the same market,
the R&D investments of different firms are typically driven by some macro factors of the

market.

The remainder of this paper is organized as follows. Section 2 introduces the model
used to characterize the spillovers and the factor structure, and provides the intuition on
how the factor structure could be treated as a knowledge about the spillover structure.
Section 3 discusses the general construction of the LASSO estimator based on the factor-
induced constraints. Section 4 derives the properties of the proposed estimator. Section 5

investigates the performance of the new estimation by simulation, and Section 6 concludes.

2 Spillovers and Factor-induced Constraints

Consider linear regression model

U = Bll’t‘i")/Zt‘i‘Gt, tzl?'”aT7 (]‘)
where 2y = (z14,---,2n¢) 18 an N-vector of the variables generating the spillovers,
z = (214, ,2k) 18 a k-vector of the additional controls, and e; is a regression er-

ror. In particular, we focus on the case when N > T, which makes (1) a high-dimensional
problem in the sense that the number of unknown parameters is larger than the num-
ber of the observations. For the estimation of spillover effects using a panel dataset,
in (1) can be interpreted as capturing the spillovers from a specific individual, that is

{yt, x¢, zt, €, 8,7} in (1) should all be indexed by i in general. To keep notations simple,



the discussion will focus on (1) rather than a general panel data model throughout the

rest of this paper.

For the factor structure of x;, we consider the factor model as follows.

Tt = Aft -+ Ug, (2)

where A is a N X r matrix of the factor loadings, f; is a r-vector of the factors, and u;
is a N-vector of the idiosyncratic shocks. To avoid the potential bias caused by omitting
relevant factors, we treat all factors f; as latent in this paper. In the case when f; is partly

observed, x; then could be treated as residuals from the regression on the observed factors.

To understand how (2) could be the indirect knowledge on /3, notice that substituting (2)

into (1) gives the reduced form as follows.

ye = ' fr + 7'z + e, (3)

where 1 = A8 and e; = 'us+¢;. If A and 1 were observed, 1) = A’ are actually r linear
constraints on 5. Even though A and ¢ may not be directly observed in practice, both
of them can be estimated at a minor cost, and the constraints can then be established by

substituting the estimates of A and .

3 Estimation

In this section, we construct the estimator of § making use of the latent factor structure
(2). Let A, 4, and 4 denote, respectively, the estimator of A, ¥, and . For expository
purposes, we first treat them as if they had been defined in Section 3.1. The details of

their construction are discussed later in Section 3.2.



3.1 LASSO under Factor-induced Constraints

If the spillover structure is sparse, penalized regression methods can be used to estimate
g in (1) when N > T. One popular method is LASSO, which places an L; penalty on £.
Specifically, let 3 denote the LASSO estimator of 8, which is defined as the solution to

the following minimization problem.

mbinHY—Xb—Z?yH%/2+>\HDbH1, (4)

where Y = (y1,---,yp), X = (z1,---,27), Z = (21,--- ,2r), and D is a diagonal
matrix introduced to normalize X. In comparison with the other penalized regression
methods, LASSO is featured by its ability of shrinking small regression coefficients to

exact zero.

Knowing the latent factor structure (2) in z;, which implies linear constraints on /3, we
can improve the performance of the LASSO estimator by adding these factor-induced
constraints. The LASSO estimator under these factor-induced constraints, denoted as B,

is then defined as the solution to the following minimization problem.

mbinHY—Xb—Z’Ay|]%/2+)\Hf)b|]1 st. o =Ab (5)

In the situation when the true parameters satisfy the constraints, James et al. (2012)
shows that the constrained LASSO outperforms the unconstrained one in the sense that
it has a sharper Lo error bound. This implies that the infeasible constrained LASSO
estimator, which is the LASSO estimator under the infeasible factor-induced constraints
as if A and 1) were observed, denoted as /3, should outperform the unconstrained LASSO
estimator 5. In our setting, even though the true value of 5 may not satisfy the constraints

in (5) exactly due to the estimation errors of A and 1&, the gap would decrease as the



sample size grows. In particular, if A and 1& converge sufficiently fast, we can show that
the Lo error bound of the feasible constrained LASSO estimator B is close to that of
the infeasible constrained LASSO estimator 3, which is strictly sharper than that of the

unconstrained LASSO estimator §.

3.2 Construction of Constraints

In the rest of this section, we provide details on A, &, and 4, which are needed in the
construction of the feasible constrained LASSO estimator B defined in (5). Specifically, we
will present the estimation of the factor model (2), which yields /1, and the corresponding

factor-augmented regression, which yields 1& and 7.

The estimation for the factor model (2), which is known as the large factor model due
to the fact that N > T, is well documented in the literature. Early attempts include
the principle components method (PC) in Bai and Ng (2002) and the generalized prin-
ciple components method (GPC) in Choi (2012) using the estimated covariance matrix
suggested by Bai and Liao (2013) as weights. When the data exhibits non-zero serial
correlation, Lam et al. (2011) develops a new approach based on the information from
the autocovariance matrix at non-zero lags, instead of the covariance matrix as in PC and
GPC. Compared with PC and GPC, Lam et al. (2011) has a better performance when
there exists strong cross-correlation over different component series. In this paper, we
deal with z; which exhibits strong autocorrelations. This makes the method of Lam et al.

(2011) a pertinent choice for our inference.

When the number of factors r is known, Lam et al. (2011) suggests the following estimators
of A and f;.
A:<§17"' 7§7") and ft:A/l’t? (6)

where (81,--,8,) are the orthonormal eigenvectors of H, corresponding to its r largest



eigenvalues, and

with kg > 1 being a prespecified integer.

Due to the rotational indeterminacy of the factor model !, instead of the estimator of a
specific loading matrix, A is an estimator for the factor loading space M(A), which is the
r-dimensional linear space spanned by the columns of A. However, it is worth noting that
different choices of A and f; lead to equivalent factor-induced constraints ¢» = A’S3, which
implies that the feasible constrained LASSO estimator B essentially does not depend on

the choice of A and corresponding f;.

In practice, we need to estimate the number of factors r to implement the method of
Lam et al. (2011). There exist mainly two types of estimation methods. One is based
on information criteria, for example see Bai and Ng (2002). The other is based on the
distribution of eigenvalues, including Onatski (2009), Lam et al. (2012), and Ahn and
Horenstein (2013). Following Lam et al. (2012), we estimate the number of factors r by

the relative magnitude of the ratios of eigenvalues, which is defined as follows.

ps

. _ +1
P =arg min 2 (8)
I<j<R )

where r < R < N and A\; > --- > Ay are the decreasingly ordered eigenvalues of H,.

To estimate 1) and v, we consider the factor-augmented regression as follows.

v = Ui+t e (9)

Note that the number of unknown parameters in (9) is r + k < 7. Thus, ¢ and 4 can be

YAf, = AHH'f; for any orthnormal matrix H € R"*".



obtained by least squares method. Specifically, zﬁ and 7 are defined as the solution to the

following minimization problem with respect to b; and bs.

T

min > (v — b fy — V=)’ (10)

b1, b2 P

4 Theoretical Results

In this section we develop the theoretical properties of the feasible constrained LASSO
estimator 3. We introduce some notations first. For a d-vector v = (v, ,vq), let
|v||p be its L, norm with p > 1, and supp(v) = {j : v; # 0}. Given a set of indices
I c {1,---,d}, let vr be the d-vector with the j-th component (vr); = v;1{j € I} for
j=1,...,d. For adj xdy matrix W let |W|y = \/m be its spectral norm and
|W{|min be the square root of the smallest non-zero eigenvalue of WW’', where Apax(-)
and Apin(+) denote, respectively, the largest and the smallest eigenvalues of the matrix.
Given a set of indices Iy C {1,---,da}, we denote by Wy, the columns of W associated
with I, and Wi corresponds to the remaining columns of W. We also use the notation
a < b to denote the situation when a = O(b) and b = O(a) hold simultaneously. To
simplify the exposition, we assume z; = 1 in (1). The results with more general z; can be

obtained in a similar manner.

The construction of B and its performance critically depend on the accuracy of A and
¢. Intuitively the closer A and ) are to A and t, the closer the constraints in (5) would
be to the infeasible factor-induced constraints ¢ = A’b, under which the infeasible con-
strained LASSO estimator § would have sharper Lo error bound than the unconstrained

LASSO estimator 3. To specify their accuracy, we study the convergence rate of A and zﬂ

The convergence rate of A has been shown in Theorem 1 and 2 of Lam et al. (2011).
Thus, we focus on 2[} To derive the convergence rate of 2[}, we need to impose assumptions

as follow.



Assumption 1

(i) AA = I, f is weakly stationary, us is a white noise with zero mean and variance

Yu, and cov(fi,us) =0 fort < s.

(ii) [Zr(B)ll2 =< N < 12 (F)lnin > [Zulle = O(NP), and [|Z5u(k)ll2 = O (N?) with
p<1—v for somev e l0,1] and k=0,1,--- ko, where (k) = cov|fiir, fi] and

Efu(k) = COV[fH_k, ut]; Amin (AEfu(O)) =0 (Nl_v).

(iii) {x},¢€,} is a stationary a-mizing process with E||(z},€,)||*T7 < oo elementwisely for

some vy > 0, and the mizing coefficients a(t) satisfying 27?;1 a(t)ﬁ < 00.

(iv) ||Xfell2 = O (NéT_é) and || Xyell2 = O (NéT_é), where Yge = cov[ft, €] and

Yue = covfuy, €.

Assumption 1 (i) is always fulfilled via a normalization on factor loadings, see Lam et al.
(2011). Due to the rotational indeterminacy of factor model (2), only the linear space
spanned by the columns of A, denoted as M(A), is identified.?. Following Lam et al.
(2011), we specify A as QV, where Q is a N x r matrix that comes from the thin Q-R
decomposition of A, and satisfies Q'Q = I, and V is a r-dimensional orthonormal ma-
trix that comes from the spectral decomposition Z’;Ll{zf(k:)qg' + Xru(k)HE(K)Q' +
Sru(k)}Y = VDV’ 3. Once we specify the target factor loading matrix as above, the
corresponding factor process follows by V'R f;, where R is a r x r matrix that comes from
the same thin Q-R decomposition of A that generates (). To distinguish the objects based
on the original factors from those based on the chosen factors, we add superscript "o" to
the objects based on the original factors, leaving the objects based on the chosen factors

with no superscript.

Assumption 1 (ii) follows by [|E%(k)[l2 =< [[2%(k)|lmin =< 1, X% ,(k) = O(1) elementwise,

and [|a;]|3 = N7 for i = 1,--- ;7 and 0 < v < 1, where a; is the ith column of A, see

2Even though A’A = I, has been restrictive, it still cannot pin down A because A’H'HA = I,
for any r x r orthonormal matrix H.

3Since the spectral decomposition does not pinned down the sign of V, we need to allow A
to adjust sign to adept to the sign of chosen V.

9



Lemma 1 of Lam et al. (2011). Assumption 1 (iii) is introduced in order to capture the
upper bounds of Hi‘}(k) — X%(k)[l2 and Hflou(k) — X% ,(K)[|2, which follows by using the
Frobenius norm as upper bound of the spectral norm, and using the central limit theorem
of a-mixing process elementwisely, for example Theorem 0 of Bradley (1985). Since we

deal with an otherwise linear regression model, putting restrictions on the correlation

between f; and €; is necessary, and this is specified in Assumption 1 (iv).

Under Assumption 1, the convergence rate of A in the spectral norm is given by Lam

et al. (2011), and is stated in Lemma 1 as follows.
Lemma 1 Under Assumption 1, HA — Alle = Op(N”T_l/Q),

The linear regression with the estimated factors such as (9) has been studied by Stock
and Watson (2002) and Bai and Ng (2006). Both works rely on the factors estimated by
the variance-covariance based method such as Bai and Ng (2002). In this paper, we use a
different approach to estimate the factor model (2). Thus, the result on the convergence
rate of ¢ is new. Specifically, under Assumption 1, the convergence rate of ¢ is obtained
and this result is summarized in Theorem 1 as follows. The proof of Theorem 1 is rele-

gated to Appendix A.

Theorem 1 Let Assumption 1 hold and NYT~Y/2 = o(1). Then it holds that

b — ¥lla = Op(N*T2).

Theorem 1 provides the convergence rate of 1@ when both N and T go to infinity. The
rate depends on the strength of factors v. When v = 0, which is the case when the factors
are strong, ¢ attains the root-7' rate, which is the same as if f; is directly observed. If
v > 0, which is the case when the factors are weak, the convergence rate of 1& is slowed

down by NY. In this sense, the behavior of zﬂ is very similar to that of A.

10



To derive the error bound of B, we need further assumptions. The key is to regularize the
Gram matrix M, = X'X/T. M, is singular when N > T and it is impossible to require
its smallest eigenvalue is bounded off zero. In such a situation, instead of the standard
eigenvalue, following the literature of the penalized regression, we impose the lower bound
assumption on the restricted eigenvalue of M,. To characterize the restricted eigenvalue,
let 7 be a subset of {1,---, N} such that A’ is invertible, 7°¢ = {1,--- ,N}\T, and

S = supp(f,.). Then, the restricted eigenvalue of M, is defined in (11) as follows.

§ Mo
Ke(Mg) = min ——— 11
c(M2) = min T332 ()
where
+1
A= {5 RN Iosords < S50 (Iork +Hisor i+l | (12
and

Oy = (A7)~ — (A7) 1 — (A7) A — (A7) 1 AT

In Appendix A, we show that the estimation errors of 3 belong to A, which justifies the
sufficiency of k¢ (M) > 0 in the study of the error bound of B Compared to James et al.
(2012), our restricted set A¢ is larger due to the estimation errors of A and 1@, which
are characterized by d;. If we know A and 1 exactly, 67 = 0 and A; coincides with the
restricted set defined in James et al. (2012). Moreover, if there is no restriction, 7 = ()
and ¢ = 2, which implies that A, degenerates to the restricted set of standard LASSO,
see Bickel et al. (2009).

Assumption 2
(i) r < s=o0(T), where r = rank(A) and s = ||¢*||o-

(ii) A% is non-singular for some T C supp(f).

11



(iii) For any ¢ > 0, there exists a finite constrant k > 0, which does not depend on T but

may depend on C, such that k¢(M,) > K with probability approaching 1 as T — oco.

(iv) {zjt, et} is a strong mizing sequence with Elzjie] = 0 for j = 1,--- | N with
mizing coefficient «(t) satisfying a(t) < exp(—ct™) for some n1 > 0 and ¢ > 0;
SUpy < j<p SUp; P(|zjeet| > x) < exp(1—2™) for someng > 0; 0 <1 < minj<j<y V; <

maxi<;j<y Vj < u < oo, where Vj = sup;<;<r (Ex?tef + 2 Zs>t |E($jsxjteset)|).
(v) log N = o(T"/?),

Assumption 2 (i) requires that the number of the factors is no greater than the number of
essentially relevant regressors. This is a reasonable condition, as in practice the number
of latent factors is usually small or very small. Assumption 2 (ii) requires the loadings of
the essentially relevant regressors are linearly independent with each other. Assumption
2 (iv) is a technical assumption to facilitate the Fuk-Nagaev inequality, which is used to
control the probability when the maximum score is beyond a specific penalty level. As-
sumption 2 (v) is mild and is a standard condition for the penalized regression methods
such as LASSO. In particular, it requires that the size of the cross-sectional dimension
is no greater than the exponential of the sample size. To simplify the exposition, we set
v =0 and D = I in the rest part of this section. The general results can be obtained in

a similar manner.

Theorem 2 Let Assumption 1 and 2 hold. If A = K+/T'log N with K > 4¢ % and

some constant ¢ > 1, it holds that

18 = BII3 < Tng + /T2, + Tna, (13)

where
V2(¢ 4 1) max{\/s — 7, /T I\
Tn,l = RQCT )
o 2ACH )Yl
n,2 — I{QCT .

12
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When factors are strong (i.e. v = 0), T2 is of order ¥=5=, and is dominated by

Tg 1 whose order is I%TN. In such a situation, the error bound of our constrained LASSO

estimator /3 is close to that of the infeasible constrained LASSO estimator 3, see Theorem
1 of James et al. (2012), which is known to be sharper than that of the standard LASSO
estimator 3, see Theorem 1 of Negahban et al. (2009). When factors are weak (i.e. v > 0),

T2 is of order N¥y/log N /T, which implies that 7}, o dominates T2 .. and the error bound

n,17

of our feasible constrained LASSO estimator B will not be close to that of the infeasible

constrained LASSO estimator 5 even when T is large.

5 Numerical Results

In this section, we report some simulation results which illustrate the finite sample prop-

erties of the estimators proposed in Section 3.

5.1 Simulation Design

Throughout this section, we consider three data generation processes as follow.

Example 1: For the factor model (2), let r = 1, A = (a1, - -+ , ay) with a; = 2 cos(2mi/N),
ft = 04fi—1 + w with wy ~ @.i.N(0,1), and u; ~ @.2.N(0,Iy). For (1), we set §; =
Blygj—123y, ot~ ii.N(0,5), 7y =5, z =1, and ¢ ~ i.i.N(0,1/v/2).

Example 2.1: For the factor model (2), let » = 3. The elements of A is generated ran-
domly from the U(—5,5) distribution. f1; = vt, for = vi—1, f3r = ve—2 for vy = 0.5wi—1 +wy
with w; ~ .4.N(0,1), and uy ~ @.i.N(0,Iy). For (1), we set 3; = 5ly_12345,
xy ~i.4.N(0,5),v=5, 2 =1, and ¢ ~ i.i.N(0,1/1/2).

Example 2.2: u; ~ i.i.N(0,%,), where the (i, j) element of ¥, is defined as

{(i— |+ 1) =20 — |2 + (Ji — j| — 1)2"}, i #5;

1=7.

0ij =

— Nl

with H = 0.9 is the Hurst parameter. Everything else is the same as Example 2.1.

13



5.2 Simulation Results

First, we provide results for A, 4, and ¢). Let N € {400,500} and T € {100,200, 400}.
For each data generation process, the rooted mean square errors (RMSE) are reported in
two situations: v = 0 and v = 0.5. The experiments are replicated 100 times for each

setting.

In Table 1 and 2, RMSE of fl, v, and 1& are reported separately when data is generated
from Example 1 under ;. = 0 and p = 0.5. In the case when v = 0, i.e. factors are strong,
Table 1 shows that RMSE of A4, 7, and ¥ decrease as T grows from 100 to 400, while the
increase of N from 400 to 500 does not have much effect when 7' is large. In the case
when v = 0.5, i.e. factors are weak, Table 2 shows that RMSE of /1, 4, and 1& decrease
much slower than the case when p = 0. Moreover, the increase of N from 400 to 500 does

slightly raise RMSE even when 7' is large.

Table 1: RMSE of A, 4, and 1 for Example 1 with v = 0.

1A — All2 19 = 7ll2 1 — ]2
N =400 N =500 N =400 N =500 N =400 N =500
T =100 17653 18660 12694 155114 2799 2419
T =200 12094 11399 9075 107g7 1619 1611
T = 400 849 8313 6756 TT64 129 119

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

Table 2: RMSE of /Al, v, and 1& for Example 1 with v = 0.5.

1A = Al 19 = 7ll2 4 — 2]l2
N =400 N =500 N =400 N =500 N =400 N =500
T =100 53073 55570 12795 156113 126102 105g7
T =200 42556 42646 9177 108g7 84¢7 8860
T = 400 33031 34040 6756 7664 5946 6146

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

14



Table 3 and 4 reports RMSE of A, 4, and 1& when data is generated from Example 2.1
and 2.2 under ;4 = 0 and pu = 0.5 respectively. The difference between Example 2.1 and
2.2 is the cross-correlations of the idiosyncractic shocks us in factor model (2), where
Example 2.2 has stronger cross-correlations than Example 2.1. When factors are strong
(i.e. v =0), Table 3 again shows that RMSE of A, %, and ¢ decrease as T grows, and the
increase of N does not have much effect. Moreover, comparing the results from Example
2.1 and Example 2.2, Table 3 also shows that the cross-correlations among the idiosyn-
cratic shocks do not have much effect on the convergence rates characterized by RMSE.
Similar results are reported in Table 4 when factors are weak (i.e. v = 0.5), except that

RMSE decrease much slower than the case when v = 0.

Table 3: RMSE of fl, 4, and @@ for Example 2.1 and 2.2 with v = 0.

1A — A2 19 =712 Id =]l
N =400 N =500 N =400 N =500 N =400 N =500

T =100 40817 450956 203148 169199 108g3 10197
DGP2.1 T =200 354196 349993 12691 147114 Tlss 84149

T =400 234106 266116 95¢7 8770 4939 4133

T =100 438305 402949 363980 298941 181989 121150
DGP2.2 T =200 343211 331188 212155 284201 8760 7961

T =400 229191 265195 189137 166117 5735 4935

Note: Means and standard deviations are reported for each case, and the reported
values are actual values multiplied by 1000.

Results for the feasible constrained LASSO estimator 3 using data generated as in Exam-
ple 1 are reported in Figure 1 and 2 as follow. For T' € {400,800} and N € {1.2T,2.4T'},
the simulated Lo errors of the standard LASSO estimator 3, infeasible constrained LASSO
estimator /3, and the feasible constrained LASSO estimator B are separately visualized
along the path of the tunning parameter A. In particular, we replicate the experiment
100 times in each setting and report the mean of the realized Lo error. To compute the
LASSO estimator under linear constraints, we employ the alternating direction method

of multipliers (ADMM) by Gaines and Zhou (2016).

15



Table 4: RMSE of fl, v, and @E for Example 2.1 and 2.2 with v = 0.5.

IA — A2 15 = ll2 [ — 2
N =400 N =500 N =400 N =500 N =400 N =500
T =100 653999 709955 205150 168130 2161923 217166
DGP2.1 T =200 626144 676970 12591 148114 168119 186191
T =400 552161 575992 95¢7 8770 127199 10764
T =100 84937 930400 339969 292998 740498 716408
DGP2.2 T =200 801335 824357 193148 278901 745460 639377
T =400 646935 784367 176136 164119 561370 571335

Note: Means and standard deviations are reported for each case, and the reported

values are actual values multiplied by 1000.

Figure 1: Simulated Ly Errors (v = 0)
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Figure 1 shows that when factors are strong (i.e. v = 0), the simulated Ly error of the fea-

sible constrained LASSO estimator B is close to that of the infeasible constrained LASSO

estimator ( along the path of the tunning parameter ), and is much smaller than the

simulated Lo error of the unconstrained LASSO estimator 5. However, in Figure 2, we

find that the performance of the feasible constrained LASSO estimator B is unsatisfactory,



Figure 2: Simulated Lo Errors (v = 0.5)
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and could be even worse than the unconstrained LASSO estimator 3 at some values of
the tunning parameter A. This finding, however, is expected, which is due to the presence
of weak factors as discussed in Section 4. When there are weak factors, the dominant
term of the error bound is the term capturing the estimation error of the factor model,
which has slower convergence rate than that of the term capturing the estimation error

of the LASSO estimator.

6 Conclusions

This paper proposes a method to improve the performance of existing spillover estimators
by using a latent factor structure in the variables that generate the spillovers. Specifically,
a latent factor structure implies linear constraints on the parameters characterizing the

spillovers, and these factor-induced constraints can be incorporated into the estimation

17



process to improve the estimation of spillovers. In particular, the Lo error bound of
the LASSO estimator under the feasible factor-induced constraints is derived. Compared
with the unconstrained estimator, the LASSO estimator under the feasible factor-induced
constraints is more accurate in the sense that it has approximately sharper error bound.
Also, we note that the strength of the latent factors is critical. In particular, strong
factors always provide better constraints than weak factors, which is due to the fact that
the estimated factor loadings and corresponding factors have faster convergence rate when

the factors are strong.
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Appendix A Proofs of Main Results

Let Y = (y1,---,yr) € RT, € = (e1,---,e7) € RT, X = (21, ,27) € RT*N,
F=(fi,,fr) € RTX" U = (uy,-- ,ur) € RT*N and e = UB +¢ € RT. We
can then rewrite (1) as X = FA'+ U and (3) as Y = ipy + F¢ + e. Moreover, let
F=(fi, -, fr) € RI*" My = Iy — T Vipil,, where I7 is the T x T identity matrix

and ¢ is the T-vector whose components are all one.

Proof of Theorem 1: By Y = ipy 4+ Fp + [(F — F)¢ + US + €], we have
A v —1 A A
b= = (F'MpF)  F'Mp|[(F—F)+UB+e.

Given the results in Lemma 2 (2), it is suffice to study the rate of ||[F' My (F — F)||o. Let
Ry = (A— AYX'Mp XA+ AX'MpX(A— A) + (A— A)/X'MpX(A — A), which gives
F'Mp(F —F) = —A'X'MpUA+ (A — AYX'MpF — Ry. Following similar arguments as

in the proof of Lemma 1, for some positive constant p < 1 — v, we have

|A’ X' MpUA|2 = Op(TN? + VTN),

(A= AYX'MpF — Ry|js = O,(VTN),

which implies ||F'Mp(F — F)|j2 = Op(TN? ++/TN). Thus, the conclusion follows by
Lemma 2 (1). |

~ ~

Proof of Theorem 2: lLet 0 = g — 5. Also, for a d-vector v and an index set
Ic{1,---,d}, let y(v) = vy.

Step 1: Under Assumption 2, § € A; if A > (|| X’¢||» for some constant ¢ > 1
and [ X7[3/A = 0.
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Since ||A — Allz & 0, we focus on the case when A’ which gives
by = (A) "1 (W — Alrebre),

for any b € RY satisfying ¢ = A’b. Thus, the constrained problem (5) with respect to

b € RV is equivalent to the unconstrained problem with respect to by € RN~" as follows.

A T
min  =[|Y — X7eba|[3 + A (|7 (b2) [l + 16211 , (A.1)
by €RN - 2

where Y =Y — X7 (AL) "W, X7e = X7e — X7(AL)"H(AL) |, and by (be) = (A5) 71 —
(/1’7-)_1121’7—662. Let by denote the solution to (A.1). The equivalence between (5) and (A.1)

thus implies 3 = (bT(Z;Q), Z;g) By the optimality of by, we have

2
2

L - 1 - .
0>— (Y = X7ef,.) Xre(ba — ) + 31 X7e(b2 = Bre)
+ A ([Ib7(b2) 1 = 167 (Bro)ll + 1b2ll1 — 11B7<11)

. 1 .
= — (e = X767) (X0 = X75) + 5[1X0 = X713

+ A (1811 = 1187 + 8¢l = [1Brellr)

o 1 1 A
> — X6+ ¢ Xpoy — S| X7os13 + X613

+ 2 (181l = 181 = 116¢1h)

where the equality follows by

Y/—XTcﬁTc = E—XT(Sf,
Xre(by = Bre) = X6 — X6y,

br(Br) = By +6r,

with 0y = (A}) 71 — (A}) "Ly — [(Alp) TAL. — (A ~1AL] B,
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By Holder’s inequality and A > (|| X'¢||s, we have

N N A
—€Xo > —\6'X5!Z—HG'XHooWHl2—31\5\!1,

A
eX7op > —l€X7op| > ~||€ X7lloolldfll > —E||5f||17
Thus, noting || X463 > 0 and || X7|3/A = 0, (A.2) implies
. Lo (41
02 A (131 = 191 = 3161 - <=2l ). (A3

Let S = supp(f,.). By Lemma 5 of James et al. (2012), we have

. 1 - 1
131~ 131~ 2151 ~ <L hoply
. 1 . N 1 - 1
:=@w@wrwmm—gmwa—@m)+@mm—wﬂ1—ww—m10 ol
1 1
Z“gf?—HbTan> Bl — S s 6 6Ton14f§———nnsc< ﬁT»nl—-C‘% 1611
(A1)

The conclusion follows by (A.3), (A.4), and A > 0 and ¢ > 1.
Step 2: Under Assumption 2, A > (|| X||o and || X7[3/) =0 w.p.a.l.

First statement follows by Lemma 3 and

T

Z €1 Xt

P ()\ < CHG/XHOO) < Nlir;agvP (
T t=1

> 2
¢

A log 2 2(4CTV;)?
< 4N 1%@5\7 {exp {_Woﬁv'] +4C¢TA  exp l——( i\d’ i) ]}
- J

*log 2 . 2(4CT1)?

< 4Nexp l—gzgﬂTu} +16CCNTA™ exp | ———5—
T T :
= 4e +01N P
g og() log(¥)
— 0,
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where the first inequality comes from the union bound, the second inequality follows by
Lemma 3 and Assumption 2 (4), the third inequality follows by [ < minj<;j<yV; <
maxi<;<y V; < u from Assumption 2 (4), and the equality follows by choosing A\ =
K\ /Tlog() with K = 4, /2, log(X) = o(T), and ¢ — 0 , and log(£) = O(log N),

log N = o(Tl/S) and ¢ > 1 from Assumption 2. By a similar argument, we can show
Z;:l ZAzT:l X%’]’ CL_S>

0, and the second statement follows.

Step 3: Note that

R 1 4
181 ~ 181 — 2161
> %Hbfr(im Bl - CZ—lnﬂs@z — 8,
_ A A (A.5)
> (e VS E VY () — o+ s )

> _ \/§(C + 1) maX{W? \/;} ||5H27

- ¢

where the first inequality follows by similar arguments as in (A.4) and ¢ > 1, the sec-
ond inequality follows by [|b7(b2) — B, |l1 < /Tllbr(b2) — B, |2 and ||[TIs(by — B,.)[1 <
Vs —r|s(by — Be)
Bro)llz < V2[|])2.

9, and the third inequality follows by ||b7(b2) — B, |2 + || s (by —

By similar argument as in (A.2), we have

. . Lo (41
0> || X013 — [IX7d7]3 + 2 <Hﬁll1 =181 = Zlolh - THMM)

2v/2(C 4 1) max{y/s — 7, /T}\ | 2 2(¢ + 1)y/TA
C ||5||2 - f”@"”%

> Tr?||6]|3 —

where the second inequality follows by (A.5), and the last inequality follows by Assumption
2 (3), 1X70713 < IX7I30013 with [ X7[3/A = 0 w.p.a.1, and V/7[[0f]l2 = [|0¢]l1. The

conclusion follows by solving (A.6) as an inequality with respect to ||d]|2. |
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Appendix B Proofs of Lemmas

Lemma 2 Under Assumption 1,

(i) TINVYE MpF 2 Mg, where Mp € R™7 s a positive definite matriz with Apin(Mp) >

¢ for some ¢ > 0.

(ii) ||[F'MrU|j2 = Op(TN? +NTN) for a positive constant p < 1 — v, and |F' Mre|| =
Op(VNT).

~

Proof of Lemma 2: For (i), let Ry = (A — AYX'Mp XA+ AX'MpX(A— A) + (A—
AYX'MpX(A—A). By F = XA, we have

F'MpF = A X' MrXA+ Ry.

Since [|Alj2 = 1 and [|A — A|j2 = Op(N*T~/2) = 0,(1), Ry is dominated by A’X'MpX A
as T — oo. By X = FA'+ U and A’A = I, we have

TINY A X' MpX A
= TINYF'MpF + TN MpUA + TNV YA'U' My F + TNV LA U MU A
= NS+ NV IS, A+ NIAS  + NTTAS, A+ Ry
where Ry = NV"1 (T F'MpF — Sp)+N"" (T'F'MpU — Sp,) A+NYPA (T7'U'MpF — Sy5) +
NY=TA (T MU — £,) A. By Lemma 2 of Lam et al. (2011), if NT~Y/2 = o(1),

| R2]l2 = o(1). Thus, (1) follows by

)\min (NV—lzf + NV—lzqu + Ny_lA,Euf + Ny_lA,EuA)

v

N Amin (27) + N Ain (A'S0A4) + 28" Ain (S0 A)

Vv

NS llmin + N7 lmin + (1)

v

¢,

for some ¢ > 0, where the first inequality follows by Apin (G1+G2) > Anin(G1) + Amin (G2),
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and the second inequality follows by Amin(G) = ||G||min for real symmetric matrix G,
1G1G2lmin > [|G1[lmin[|G2llmin, [|Allmin = 1, and Amin(AS 1) = o(N'7?) from Assump-

tion 1 (2), and the equality follows by || f|/min < N*77.

For (i), let Ry = (A — AYX'MpU, which gives F'MyU = A'X'MpU + Rs. Since
A’ X' M7U dominates R3, we focus on the rate of A’ X' MyU, which follows by

TYA X' MpU ||

IN

| T F' MpU||g + || T72U' M7pU |2

IN

1S pulle + 1Sulle + 1T F'MpU — Syylla + |70 MU — S 2
= O(N?)+ O(NP) + Op(N'"5T3) + O,(NT~?)

= O,(N?+ NT™?),

where the first inequality follows by X = FA' + U, A’A = I, |G1Ga|l2 < [|G1|2]|G2|2,
|All2 = 1, and the triangular inequality, the first equality follows by || Xs,[l2 = O (N?)
and ||Xy|l2 = O (NP) with p < 1 — v, and Lemma 2 of Lam et al. (2011).

For the remaining part of (2), let Ry = (A— A)' X' Mye, which gives F' Mpe = A’X' Mpe+

R3. Since A’X'Mre dominates R3, we focus on the rate of A’X’Mrpe, which follows by

T YAX Mpella < ||[T7YF Mrye|| + || 771U Mye|o

A

< NSfell2 + 1Suelle + 1T F Mpe — S5 cllo + | T71U" Mre — Suella

Op(N2T72) 4+ Op(N2T 2) + Op(N 2 T72) + Op(N2T"2)

= OP(N%T_%>7

where the first inequality follows by X = FA'+ U, A'A = I, ||G1G2ll2 < ||G1]|2]|G22,
|All2 = 1, and the triangular inequality, the second inequality follows by subtracting
Yre and ¥y, and the triangular inequality, and the first equality follows by ||Xfc[l2 =
O(N%T_%) and || Zyell2 = O(N%T_%) from Assumption 1 (ii), and similar arguments as

in Lemma 2 of Lam et al. (2011). |
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Lemma 3 Let {Ut}thl be a strongly mixzing sequence of real-valued and centered random
variables with mizing coefficient o(t). There are constants ¢1 and ¢ > 0 such that o(t) <

exp(—ct®), and there is a constant ¢ > 0 such that sup, P(|U;| > u) < exp(1 — u®?).
Then, for any A > (TV)Y/2, we have

r 2 2 b
log 2 T
P< g Uy > 4/\> < 4exp (—)\ To‘g/; ) +4CTX P exp (—C ()\;/) )
t=1

, where ¢ = % and V = supy << (EUE +2) ., |E(U5Ut)|).

Proof of Lemma 3: This is an immediate corollary of Theorem 6.2 in Rio (1999). W
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