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ABSTRACT. ARCH and GARCH models directly address the dependency of
conditional second moments, and have proved particularly valuable in modelling
processes where a relatively large degree of fluctuation is present. These include fi-
nancial time series, which can be particularly heavy tailed. However, little is known
about properties of ARCH or GARCH models in the heavy-tailed setting, and no
methods are available for approximating the distributions of parameter estimators
there. In this paper we show that, for heavy-tailed errors, the asymptotic distri-
butions of quasi-maximum likelihood parameter estimators in ARCH and GARCH
models are non-normal, and are particularly difficult to estimate directly using stan-
dard parametric methods. Standard bootstrap methods also fail to produce con-
sistent estimators. To overcome these problems we develop percentile-t, subsample
bootstrap approximations to estimator distributions. Studentising is employed to
approximate scale, and the subsample bootstrap is used to estimate shape. The
good performance of this approach is demonstrated both theoretically and numeri-
cally.
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1. INTRODUCTION

In contrast to traditional time series analysis, which focuses on modelling the
conditional first moment, an ARCH or GARCH model takes the dependency of the
conditional second moments explicitly into consideration. See for example Engle
(1982), Bollerslev (1986) and Taylor (1986). The practical motivation for doing so
lies in the increasingly important need to explain and model risk and uncertainty
in, for example, financial time series. Early successes of ARCH/GARCH modelling
of financial time series were confined to the case of Normal errors, for which an
explicit conditional likelihood function is readily available to facilitate estimation
of parameters in the model. Investigation of non-Normal cases has been partly
driven by empirical evidence that financial time series can be very heavy-tailed
(e.g. Mittnik, Rachev and Paolella, 1998; Mittnik and Rachev, 2000).

This leads to semiparametric ARCH and GARCH models in which the error
distributions are unknown (Engle and Gonzalez-Rivera, 1991). Nevertheless, con-
ditional Gaussian likelihood functions still motivate parameter estimators, which
might be called quasi-maximum likelihood estimators. See for example Bollerslev
and Wooldridge (1992), and Chapter 4 of Gouriéroux (1997). Other methods include
adaptive estimation for ARCH models (Linton, 1991), and Whittle estimation for
a general ARCH(o0) process (Giraitis and Robinson, 2001).

It is known that, provided the error distribution has finite fourth moment,
quasi-maximum likelihood estimators are asymptotically Normally distributed in
the case of an ARCH model (Weiss, 1986), and also for a GARCH(1,1) model
(Lee and Hansen, 1994; Lumsdaine, 1996). However, little more than consistency
is available in other settings, least of all in the case of relatively heavy-tailed er-
ror distributions which are of particular interest in applications to finance. In this
paper we develop a very general account of theory for estimators in ARCH and
GARCH models, paying special attention to the heavy-tailed case. There the limit
distributions that arise are multivariate stable laws, and are particularly difficult to
estimate directly. While this is arguably the most interesting aspect of our work,
even in the case of finite fourth moment (for example, in the setting of GARCH(p, q)
models with (p,q) # (1,1)) our results are new. Moreover, it is possible to obtain

Normal limiting distributions without assuming finite fourth moment.

We suggest bootstrap methods for estimating parameter distributions. Now,



it is well known that in settings where the limiting distribution of a statistic is
not Normal, standard bootstrap methods are generally not consistent when used
to approximate the distribution of the statistic. See for example Mammen (1992),
Athreya (1987a, 1987b), Knight (1989) and Hall (1990). To some extent, subsam-
pling methods can be used to overcome the problem of inconsistency. See Bickel,
Gotze and van Zwet (1995) and Politis, Romano and Wolf (1999) for recent accounts
of the subsampling method. However, while this approach consistently approximates
the distribution of a statistic, it does so only for a value of sample size that is smaller
than the size of the actual sample. The surrogate that it uses for sample size is the
size of the subsample, which has to be an order of magnitude less than the sam-
ple size. As a result, the “scale” of the distribution that is approximated by the
subsample bootstrap is generally an order of magnitude larger than that for the
true sample size. Therefore, a confidence or prediction procedure based directly on
the subsample bootstrap can be very conservative. In the absence of an accurate

method for adjusting scale, subsampling can be unattractive.

To overcome this problem we suggest a new approach based on a percentile-
t form of the subsample bootstrap. The percentile-t method is usually employed
in order to attain a high order of accuracy in approximations where the limiting
distribution is Normal. That is not our main goal in the present setting. Instead, we
use a form of the percentile-t subsample bootstrap to ensure consistent distribution
estimation in a particularly wide range of settings, where the limiting distribution
can be either Normal or non-Normal. We studentise primarily to determine the scale
of the test statistic. The subsample bootstrap can then be employed to estimate just
the shape of the distribution, rather than both shape and scale. In this way we avoid
the difficulties noted in the previous paragraph.

In more regular cases, where relatively high-order moments of the error distri-
bution are finite, conventional percentile-t methods can be developed. They differ
from the techniques discussed in the present paper in that they use the standard
bootstrap rather than the subsample bootstrap, and they studentise using an esti-
mator of the square root of the covariance matrix of the vector of parameter esti-
mators. (In this paper we studentise using a scalar quantity; the covariance matrix
is generally not well defined in the heavy-tailed case.) When sufficiently high-order

moments can be assumed, the method for implementing conventional bootstrap ap-
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proximations closely parallels that used for the bootstrap in linear time series; see
for example Bose (1988). For the sake of brevity we shall not discuss such methods

further here.

Classical work on financial time series with non-normal errors includes that
of Mandelbrot (1963) and Fama (1965), although of course without the benefit of
critical recent developments, particularly in extreme value analysis. Even ARCH or
GARCH models with Normal errors can have heavy tails; see for example Kesten
(1973), Goldie (1991), Embrechts, Kliippelberg and Mikosch (1997), Davis and
Mikosch (1998) and Mikosch and Starica (2000). Statistical aspects of financial
modelling of heavy-tailed data are discussed by, for example, Shephard (1996) and
Rydberg (2000).

Our results are in the spirit of some of the findings of Mikosch and Strau-
mann (2001), who show that poor rates of convergence can occur if X; is a GARCH
process and E(X}) is infinite. Part (a) of Theorem 2.1 in section 2.3 below has also
been obtained by Berkes, Horvath and Kokoszka (2001) under different conditions;

see also Comte and Lieberman (2000).

2. MAIN THEORETICAL RESULTS

2.1. Model. Assume X; = o0;¢; for —oo < t < 0o, where the random variables ¢,
are independent and identically distributed with zero mean and unit variance, ¢; is

independent of {X; ;, i > 1},
D q
of:c—i-z ain_Z--l—ijatZ_j, (2.1)
=1 7=1

c>0,a; >0,b; >0, p>0and g > 0, the latter two quantities of course being
integers. If ¢ = 0 then the model is of autoregressive conditional heteroscedastic,
or ARCH, type. If ¢ > 1 it is of generalised ARCH, or GARCH, form. To avoid
pathological cases we shall assume throughout that p > 1 and a, > 0, and b, > 0
when ¢ > 1.

It is known that a necessary and sufficient condition for the process {Xj,

—00 < t < 0o} to be strictly stationary with finite mean square is

Y ai+ ) by <1; (2.2)

=1 j=1
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see Nelson (1990), Bougerol and Picard (1992) and Giraitis, Kokoszka and Lei-
pus (2000), and also Bollerslev (1986). In this case, E(X;) = 0 and
—1
E(X{)=c(1-%; 0= b;)
We shall assume (2.2) throughout, and that the process is in its stationary

distribution. In this case it may be shown that (2.1) implies

p p e o] q q
2 _ L v2 . . 2
(R Sy doai X+ ai ), D b b X,
J J =1 =1 k=1 _71:1 jk=1

(2.3)
where the multiple series vanishes if ¢ = 0. Since each a; and b; is nonnegative, and
since the expected value of the multiple series is finite, then the series converges
with probability 1. In this notation we may write oy = o¢(a, b, ¢), expressing o; as

a function of a = (a1,...,ap), b= (b1,...,by), c and the data X;.

In practice the data are observed only over a finite time interval, say 1 <t < n,
and o2 has to be approximated by a truncated series. For simplicity and clarity,
however, we shall assume for the present that insofar as calculation of o is concerned
we may use values of X, for —oo < u < n, even though in other respects our
inference will be confined to X; for 1 < ¢ < n. The contrary case will be discussed
in section 2.4. There we shall show that our main results do not change when an

appropriately truncated approximation is employed.

2.2. Estimators. Conditional maximum likelihood estimators in problems of this
type were discussed by Engle (1982) and Bollerslev (1986). They can be motivated
by temporarily assuming that the errors ¢; are Gaussian, which would imply that if
(a, b, ¢) took their true values then the variables X;/o(a, b, ¢) would be independent
and identically N(0, 1). Therefore, without requiring Gaussian errors from this point
on, it is suggested that we minimise

L(a,b,c) = Zn: {Xif +logoi(a,b 0)2} (2.4)

Y — o¢(a, b, c)? Y

with respect to the » = p+¢+1 variables in (a, b, ¢). There is an extensive literature
on using Normal-based methods for non-Normal data, including data with infinite

variance. See for example Cline (1989) and references cited therein.
The derivatives of L(a,b, c) may be deduced from the formulae
do} 1
dc 1-— Z j bj ’

(2.5)
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q q
X Z .« .. Z le .« e b]k XE_Z_J_JI__]k . (2.7)

To interpret (2.7) relative to (2.3), note that in the latter result we could have
dropped the second term on the right-hand side if we had summed from k£ = 0

to 0o, instead of from £ =1 to oo, in the multiple series.

2.3. General central limit theorem. Let U = U(a, b, c) denote the r-vector of first
derivatives of 0 = o1(a,b, c)? with respect to the components of a, b and c. Put
M = Ey(o7*UUT), an r x r matrix, where Ej denotes expectation when a, b and
c take their true values a®, b° and c°. It may be deduced from (2.3) and (2.5)—(2.7)
that if none of aq,...,a, vanishes, and if (for ¢ > 1) none of by, ..., b, vanishes,
then each component of o 2U has all its moments finite, and in particular that
there exists a constant C' > 0 such that E(o72||U|[)” < v!CY for all integers v > 1,
where || - || denotes the Euclidean norm. See section 2.5 for discussion. Hence, the
existence and finiteness of the components of M is guaranteed. We shall assume
M is nonsingular. Let (@, b, &) be any local minimum of L(a, b, ¢) that occurs within
radius 7 of (a®,b°,c%), for sufficiently small but fixed n > 0, and write 0 for the
column vector of length r whose components are those of (a, 13, ¢). Likewise let 6
denote the column vector of components of (a,b,c), and let 6% be the version of §

for the true parameter values.

Recall that we assume throughout that the distribution of ¢ has zero mean
and unit variance, and in particular that E(e?) < co.When E(e*) = oo, but the

distribution of €2 is in the domain of attraction of the Normal law, put
H\) =E{e*'I(® <))} and X, =inf{A>0:nH()) <I*}. (2.8)

The function H is slowly varying at infinity; see section IX.8 of Feller (1966).

Next consider the case where the distribution of €2 is in the domain of attrac-

tion of a stable law with exponent « € [1,2). Redefine A, by

An =inf{A>0:nP(e? > ) < 1}. (2.9)



The properties of a stable law imply that A, is regularly varying at infinity with
exponent 1/a. That is, A, = n'/® £(n) where £ is a slowly varying function, meaning
that an appropriate extension of £ to the real line satisfies £(cn)/£(n) — 1 asn — oo,
for each ¢ > 0. Examples of slowly varying functions include polynomials in the

logarithm function, or in iterates of that function.

Let Yi7,Ys,... represent the infinite extension of the multicomponent joint
extreme-value distribution of the first type, with exponent a. That is, for each k the
distribution of (Y7,...,Y%) is the limiting joint distribution of the k largest values
of a sample of size n drawn from a distribution in the domain of attraction of the
first type of extreme-value distribution, after appropriate normalisation for scale.
As is standard, we assume the normalisation is chosen so that Y7 has distribution
function exp(—y~®) for y > 0. Then it may be shown that for each k£ > 1 the

marginal distribution function of Yy is given by
k—1
Fr(y)=exp(—y%) > y7*/j!, y>0. (2.10)
§=0

Hall (1978a) formulated a representation of the distribution of the full process
Y1,Ya,. ...

Let Vi1, Va, ... be independent and identically distributed as o1 2M~1U, where
we take § = 0°, and let them be independent also of Y7,Y5, .. ..

When 1 < a < 2, put

Wo=>_ {YiVk — E(Yx) E(V1)}, (2.11)
k=1
and for a« =1 let
Wi=Y1 V) + f: {Yi Vi, — E(Yx) EV1)} (2.12)
k=2

and p, = nA;'E{e2I(¢> > \,)}. (Note that E(Y;) = oo when a = 1; hence the
need to work with both Wy and W;.) Convergence of the infinite series at (2.11)
and (2.12) is guaranteed; see part (e) of the theorem below. When o = 1, p,, is an

unbounded, slowly varying function of n. Let v denote Euler’s constant.

By Theorem 1.4.5 of Samorodnitsky and Taqqu (1994, pp. 28), the marginal dis-
tributions of Wy and W, are stable with exponent «. It follows from that property,
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and characterisations of multivariate stable laws, that the multivariate distributions
of Wy and Wi are multivariate stable, although the characteristic functions in this
setting are awkward to write down and the distributions are more difficult still to
estimate directly. The characteristic functions of the jth components of Wy and

W are respectively

E{exp (itWéj))} = exp [ — s [t|* {1—iB;sgnt tan(onr/Z)}} ,

E{exp (ith(j))} = exp [z ¢jt—s;|t| {1+1iB;(2/7)sgnt log |t|}] , (2.13)
where sgnt denotes the sign of ¢ (taken equal to 1 if ¢t = 0), s& = E\V@Ie/C,,
B; ElVW|e = E{|[VW|*sgn V)}, V) denotes a random variable with the distri-
bution of the jth component of Vi, C1 =2/7, Co = (1 — a)/{T'(2 — ) cos(arn/2)}
for 0 < a < 1, and ¢; may be deduced from Samorodnitsky and Taqqu (1994,
pp. 28-29). In interpreting s; and f; in the case of (2.13), note that o = 1 there.

Theorem 2.1. Assume M is nonsingular, that p > 1, that all of aq,...,a, are
nonzero, that if ¢ > 1 then all of by,...,b, are nonzero, that ¢ > 0, and that n
(employed in the definition of 9) is strictly positive and sufficiently small. (a) If
E(e*) < oo then n'/? (é — 6%) is asymptotically Normally distributed with zero
mean and variance matrix 72 M ~', where 72 = E(e*) — 1. (b) If E(e*) = oo but the
distribution of € is in the domain of attraction of the Normal law, then n);* (6—0°)
is asymptotically Normally distributed with zero mean and variance matrix M ~!.
(c) If the distribution of €* is in the domain of attraction of a stable law with
exponent o € (1,2), then nA>"' (A — 6°) converges in distribution to Wy. (d) If the
distribution of €? is in the domain of attraction of a stable law with exponent o = 1,

and if n=! A\, p2 — 0, then
n At (0 = 0% + pn E(V1) — v E(V7) (2.14)
converges in distribution to Wy. (e) For 1 < « < 2 the infinite series at (2.11)

converges with probability 1, and for « = 1 the infinite series at (2.12) converges

with probability 1.

A proof of the theorem is given in section 5.1.

The assumption n~t A\, u2 — 0, imposed in part (d) of the theorem, is sat-
isfied by some but not all distributions of €2 that lie in the domain of attrac-
tion of stable laws with exponent 1. When the assumption fails, relatively com-

plex results alternative to that in part (d) of the theorem may be proved using
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arguments similar to those we shall give in section 5. They require additional
location-correction terms, analogues of u, F(V;) at (2.14). The terms are of re-
spective sizes (A, /n)¥~1 puk where 1 < k < ko and kg is the least integer such that
(An/m)*o=1 ko — 0. (Under the constraint n=! A, 2 — 0 we may take ko = 2.) If

—1-4

P(e? > z) ~ const. 27! (log x) as x — oo, for some § > 0, then ko is the least

integer that strictly exceeds 1+ 6—1.

Results related to parts (¢) and (d) of the theorem, in the context of conver-
gence of sums of independent random variables to stable laws, have been obtained
by Darling (1952), Arov and Bobrov (1960), Dwass (1966), Hall (1978b), Samorod-
nitsky and Taqqu (1994) and Resnick (1986, 1987).

Limit theory for autoregressions, moving averages and related processes in
the setting of heavy-tailed error distributions, includes that of Kanter and Steiger
(1974), Hannan and Kanter (1977), Yohai and Maronna (1977), Gross and Steiger
(1979), Cline and Brockwell (1985), Davis and Resnick (1985a,b, 1989, 1996),
Bhansali (1988, 1995, 1997), Knight (1987, 1989, 1993), Chan and Tran (1989),
Chan (1990, 1993), Phillips (1990), Kokoszka and Taqqu (1994, 1996a,b, 1999),
Mikosch and Kliippelberg (1995), Mikosch et al. (1995), Kokoszka and Mikosch
(1997), Hsing (1999), Leipus and Viano (2000), and Koul and Surgailis (2001).
However, results in this setting do not display the same very wide range of possible
limit behaviour found in the context of ARCH and GARCH models.

2 cannot be computed using the

2.4. Truncated likelihood. In practice, o4(a,b,c)
multiple series at (2.3), since X? is observed only for 1 < ¢ < n. Therefore, the like-
lihood at (2.4) cannot be calculated exactly. However, o;(a, b, c)? can be computed

in an approximate, truncated form, as follows. For 2 <t < n, define

min(p,t—1)

P o] q q
6’t(a,b,0)2:ﬁ+ 2_; G X7+ aiy Yy b

=1 k=1 j1=1 Jr=1

x X2 It—i—g1—... _) (2.15)

t—i—J1—...—Jk

The indicator function here (denoted by I), and the truncation of the first series
over 4, ensure that the definition of 5¢(a, b, c)? uses only the data Xy, ..., X;. How-
ever, for small ¢ the accuracy of this approximation to o2 will be severely curtailed,

suggesting that when conducting inference we should avoid early terms in the series.



Thus, a practicable version of L might be defined by

~ n X2

L,(a,b,c) = tz_; {m + log 6+(a, b, 0)2} , (2.16)
where the integer v = v(n) diverges with n but at a rate sufficiently slow to ensure
v/n — 0 as n — oo. Our next result shows that for appropriate choice of v, the
results summarised by Theorem 2.1 continue to hold if estimators are computed

using the truncated likelihood L,.

Theorem 2.2. Assume the initial conditions of Theorem 2.1, as well as the addi-
tional conditions for any one of parts (a)—(c) of that theorem. Suppose too that
v = v(n) satisfies v/logn — oo and v/n — 0 as n — oco. Then, if the estimator 0
is defined by minimising L, defined at (2.16), instead of L at (2.4), the respective
conclusions of parts (a)—(c) of Theorem 2.1 hold.

There is also a version of part (d) of Theorem 2.1 in the context of truncated
likelihood. However, it involves a new centring constant that depends on v. For
brevity we do not give it here. Our development of bootstrap methods in section 3

will be founded on estimators calculated using truncated likelihood.

2.5. Moments of o] 2U. It is readily seen that the components of oy 2U that
correspond to derivatives of o1(a,b,c)? with respect to the components of a, or
with respect to ¢, are bounded. Therefore, to show that all moments of o7 2||U]| are
finite it suffices to show that the components of o 2U that correspond to derivatives
with respect to components of b have all moments finite. To this end, given a weight
function w, define
oo q q
W (w) = Z a; Z w(k) Z Z bj, ...bj, Xf_i_jl_____jk ,

i=1 k=1 =1 jp=1
and put V = W(w) for w(k) =1 and Vg = W (w) for w(k) = kI(k > K). Then it
is sufficient to prove that E{V;/(V 4+ 1)}* < v!CY for a constant C; > 0 and all
integers v > 1. This will follow if we show that

P{Vi > K(V+1)} <C,C¥ (2.17)

for constants C2 > 0 and C3 € (0,1), and all integers K > 1. Now, V3 > K (V +1)
implies Vx > K, and

KP(Vgk >K)<E(Vk)<Cs ¥ kCE<CsKCE,
k=K



where C4,Cs > 0 and Cs = }_; b; < 1. Therefore (2.17) holds with (Cs,C3) =
(06a05)‘

Similarly it may be proved that if U, denotes the vector of rth derivatives
of o1(a,b,c)? then E(o7?||U,||)¥ < oo for all v > 1. Likewise, all moments of the
supremum of o7 2||U,|| over values of (a,b,c) in a sufficiently small neighbourhood

of the true values of these parameters, are finite.

3. BOOTSTRAP METHODS

3.1. Determining scale by studentising. First we discuss the scales associated with
the limit results described by different parts of Theorem 2.1. It may be deduced
from the theorem that if the distribution of €2 lies in the domain of attraction of a
stable law (including the Normal law) having exponent strictly greater than 1, and
if we define £,, to be the infimum of values A > 0 such that n H(A\) < A2, where
H(\) = E{e*I(¢2 < \)} (the same definition as at (2.8)), then

né;t (0 — 6°) has a proper, nondegenerate limiting distribution . (3.1)

Indeed, if 72 = var(e?) < oo then £, ~ n'/2(r2 + 1)/2, and so by part (a) of
Theorem 2.1 the limit distribution claimed at (3.1) is Normal with zero mean and
variance matrix (1 + 772)"!M 1. If 72 = oo but €? is in the domain of attraction
of the Normal law then /,, is identical to A, defined at (2.8), and so by part (b) of
the theorem the limit is Normal N(0, M ~1). And if the stable law for the domain of
attraction has exponent a € (1,2) then £, is asymptotic to a constant multiple of
the quantity A, defined at (2.9), and so the limiting distribution claimed at (3.1) is
a rescaled form of that given in part (¢) of Theorem 2.1. In each of these cases we

shall let W denote a random variable with the limiting distribution of nf, ! (é —69).

Result (3.1) implies that in very general circumstances the scale of 6 — §°
is accurately described by n~'¢,. In particular, the assertion § — 6° = O,(n~'4,,)
gives an accurate account of the order of magnitude of 6 — 6°. However, the size
of /,, depends intimately on the particular law in whose domain of attraction the
distribution of €2 lies. The law is unknown, and so it is quite awkward to determine
the scale empirically; this is the root of the difficulty of accurately approximating

the distribution of § — #°.
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This difficulty can be overcome by observing that, if we define

n n

%2:1263—(1263)2, (3.2)
i "=

then n'/27 has scale £,. Indeed, we claim that in very general circumstances
n'/2¢~1# converges in distribution to a proper, nonzero limit as n — co. If 7 < oo
then the limiting distribution is clearly degenerate at a positive constant. The same
holds true if 7 = oo but the distribution of €2 lies in the domain of attraction of
the Normal law. The limiting constant here is in fact 1; this follows from the so-
called “weak law of large numbers with infinite mean” (e.g. Theorem 3, page 223 of
Feller, 1966). If 7 = oo and the distribution of €2 lies in the domain of attraction of
a stable distribution with exponent a € (1,2), then (n'/2£;17)? converges in dis-
tribution to a strictly positive stable law with exponent %a; this may be deduced

from section IX.8 of Feller (1966).

Not only do nf;; ! (§—6°) and n'/2£;1 7 both have proper limiting distributions,
but their weak convergence is joint, as our next result shows. There, and in the
other results in this section, it is assumed that all parameter estimators (including
bootstrap estimators) are constructed by minimising the negative log-likelihood
within a fixed but sufficiently small distance, 7 > 0, of the vector of true parameter

values.

Theorem 3.1. Assume the initial conditions of Theorem 2.1, as well as the addi-

tional conditions for any one of parts (a)—(c) of that result. Then
£ (n(0—-0°,nY2%) — (W, S) (3.3)
in distribution, where the random variable S satisfies P(0 < S < oc0) = 1.

In the contexts of cases (a) of (b) of Theorem 2.1, (3.3) follows trivially from
the theorem, since (as noted two paragraphs above) S is then degenerate at a
positive constant. In case (c) of the theorem it can be shown that we may write
(W,S) = (c1 Wo,c2Y), where ¢q,co are strictly positive constants, Wy is given
by (2.11), and Y2 =", Y2, with Y being the same as at (2.11). The method of
proof is similar to that of_ part (c) of Theorem 2.1. The distribution of Y2 is identical
to the limiting distribution of A, 2 >, €, where ), is defined at (2.9), and has a
stable law with exponent %a; see the corollary of Hall (1978b). The constants ¢; and



ca may differ from 1 only because the divisor £4,, at (3.3) may differ from the norming
constants used in Theorem 2.1. In particular, if in the context of part (c) of the
theorem we replace £, by A, at (3.3), then that result holds with (W, S) = (W,,Y)
and Y as defined just above.

Of course, (3.1) implies that

1200
7

— (3.4)

w
S
in distribution. Comparing (3.1) and (3.4) we see that in normalising by 7 we have
eliminated the unknown scale factor £, from the distribution of § —#°. The limiting
distribution in the case of (3.4) is unknown only in terms of shape, not scale. In
view of this result it would be straightforward to approximate the distribution of
the left-hand side of (3.4) using the subsample bootstrap, except that the errors
€; used to compute 7 are unknown. However, they may be replaced by residuals,

which we introduce in the next section.

3.2. Resampling from a GARCH process. Suppose we are given a sample X =
{X1,...,Xn}, generated by the model described in section 2.1. Define the trun-
cated version 62 of o2, and the truncated version L, of L, by (2.15) and (2.16)
respectively. Both are functions only of the data in X. Choose (&, b, &) to minimise
Zl,(a, b, c) over nonnegative parameter values. (Our theory permits the minimisa-
tion to take place only over (a,b,c) within some radius 5 of (a°, % c%), although
the same sufficiently small 7 may be used throughout the bootstrap algorithm. In
numerical practice, however, it appears that the minimisation may be done glob-
ally.) Put 6; = 6¢(a, b, ¢). In this notation the “raw” residuals are é; = X;/dy, for

v <t < n. They can be standardised for location and scale, by defining

~ €t — nl_1 Zu €u

& = —— _ < — , v<t<n, (3.5)
{nl ! Zu 6121, - (nl ! Zu, eu)2}1/2

where n1 = n — v + 1 and each sum over u is taken over v < u < n.

Draw €}, for —oo < t < 0o, by sampling randomly, with replacement, from the
centred residuals é,,...,é,. (The series of &’s has already been truncated, but it
could be further reduced if necessary, to remove suspected edge effects. Our theory
requires only that the number of €;’s exceed a positive constant multiple of n, for all

sufficiently large n. In practical implementation we draw €; for —K <t < n, where



K > 0 is a sufficiently large integer.) Consider the stationary process (conditional

on X) defined by X; = o €} for —oo < t < 0o, where, by analogy with (2.1),

P g
Zd (X} ,)? Z O'tJ , —oo<t<oo.

We know from Theorem 2.2 that (@, b, €) is consistent for (the true value of) (a, b, c).
Therefore, if ¢ > 0 and each component of a and b is nonzero (provided p > 1 and
q > 1 respectively), the same properties carry over to @, b and ¢, with probability

converging to 1. Likewise, for each n > 0 the probability that

P q P a

SRS SR O D BN IEY

=1 7j=1 =1 j=1

converges to 1 as n — oco. Therefore, provided the original process X; was stationary,
e. (2.2) holds, it will also be true that the probability, conditional on X, of X}

being stationary converges to 1 as n — co. Here we have used a conditional form of

a result of Giraitis, Kokoszka and Leipus (2000).

Next we introduce a version of the m-out-of-n bootstrap. Let m < n, and
compute estimators (@*, b*, &) of (a, b, ¢) using the dataset X* = {X¥ ..., X*} and
the truncated likelihood approach described in section 2.4. In particular, (a*, 5*, ¢*)
are defined in the same way as functions of X*, as were (a, b, ¢) as functions of X.
We can use the same value of v as before, provided v/m — 0. Let 6 and §* denote
the vectors formed by concatenating the components of (@,b,é) and (a*,b*, &),

respectively, and put m; =m — v + 1,

2 1 Z": & (nil i 63)2, (7)2 = mil i(ét)“— {m% g(?t?;)z}z,

m t=v t=v t=v

these being the empirical and bootstrap versions, respectively, of 72 defined at (3.2).

3.3. Bootstrap approximation. The distribution of m!/? (7*)~' (§* — ), condi-
tional on X, is our bootstrap approximation to the unconditional distribution of
n/2771(9 — 6°). Both distributions enjoy the limit property at (3.4); this follows
from Theorem 3.2 below. Here it is necessary to assume that the size m of the
bootstrap subsample X* is strictly smaller than the sample size n, although still

diverging to infinity with n.



Theorem 3.2. Assume the conditions of Theorem 3.1. Suppose too that m = m(n)
satisfies m — oo and m/n — 0 as n — oo, and that the truncation point v used to

construct the likelihood L,, at (2.16) satisfies v/logn — oo and v/m — 0. Then
£ (n(0—0%,nY27) — (W, S)
in distribution, and

P{é;l (m (0* — ), m*/? 7*) € [wy, wa] X [s1, 52] ‘ X}
— P{(W, S) € [wl,w2] X [81,82]}

in probability for each —oo < wy < ws < 0o and all continuity points 0 < s7 <

s2 < oo of the distribution of S, where the random vector (W, S) is as at (3.3).

Corollary. Assume the conditions of Theorem 3.2. Then for all convex subsets C,
‘P{ml/2 #) 1@ —0) ec|x}— P{n 271 (§—0°) € c}‘ 0
in probability as n — oo.

An outline proof of Theorem 3.2 will be given in section 5.3. The corollary

follows from Theorem 3.2 on noting that the distribution of W/S is continuous.

When the distribution of €2 is in the domain of attraction of the Normal
distribution (i.e. in cases (a) and (b) of Theorem 2.1), Theorem 3.2 holds without
requiring m/n — 0. In particular, in that setting it holds for m = n. However, the
condition m/n — 0, along with m — oo, is essential in the heavy-tailed case, where
the error distribution is in the domain of attraction of a non-Normal stable law.
Hall (1990) has given necessary and sufficient conditions for the standard, n-out-
of-n bootstrap to produce consistent distribution estimators in the simpler case of
estimating the distribution of a sample mean, and analogous results may be derived

in the present setting.

Of course, these remarks address only asymptotic results. The way in which the
bootstrap approximation depends on m for finite sample sizes n is not explicitly clear
from Theorem 3.2 and its corollary. Section 4 will take up this issue directly, and
show that performance of the bootstrap approximation is robust against variation

in m.



In conclusion we explain intuitively why, in the heavy-tailed case, the n-out-
of-n bootstrap gives inconsistent results. In effect, it fails to accurately model rela-
tionships among extreme order statistics in the sample. For example, for each fixed
k > 2 the probability that the k largest values in a resample are equal does not
converge to 0 in the case of the n-out-of-n bootstrap. The probability does converge
to 0 for the m-out-of-n bootstrap, provided m/n — 0. And of course, it converges
to 0 for the sample itself. In the case of heavy-tailed error distributions the limit
properties of parameter estimators are dictated by the behaviour of extreme order
statistics. In particular this is why, in the heavy-tailed case, the distributions of the

limit variables W and S are expressed in terms of extreme-value distributions.

3.4. Confidence regions. In principle, simultaneous multivariate confidence regions
for the components of #° can be developed using the asymptotic approximation
suggested by the Corollary. However, such regions can be difficult to interpret, and
moreover their construction requires a determination of region shape. In the present
general setting it is unclear how to do this. Therefore we shall consider only one-sided
confidence intervals for individual parameter components. Two-sided intervals may

be obtained in the usual way, on taking the intersection of two one-sided intervals.

The vectors 6°, 0 and 6* are each of length 7 = p+4 g+ 1. Use the superscript
notation ) to denote the kth component, where 1 < k < r. Given 7 € [0,1], for
example m = 0.90 or 0.95, put

iy = inf {u L P[mM2 (7)1 (6% — 0)®) <u|X] > 7r} .

We may of course compute 4, to arbitrary numerical accuracy by Monte Carlo sim-
ulation of the bootstrap distribution. Let Z,, = [é(k) —n Y274, 00) be a potential
confidence region for (6°)(®). It follows from the corollary that Z, has nominal cov-
erage 7, and that this coverage is asymptotically correct in the sense that, under

the conditions assumed in the corollary, P{(#°)*) € 7,} — 7 as n — .

Our approach can be employed to construct consistent confidence regions even
when the error distribution does not lie in any domain of attraction. Compare, for
example, Hall and LePage (1996). However, on the present occasion such a degree

of generality would be a significant distraction, and we do not pursue it.



4. NUMERICAL PROPERTIES

We report results of a simulation study of ARCH(2) and GARCH(1, 1) models.
The latter are the most commonly found GARCH models in the literature, and enjoy
significant application in the finance setting. In both cases we took the errors ¢; to
have Student’s ¢ distribution with d degrees of freedom, for d = 3, 4 or 5. Note that
Ele;|* = oo. For ARCH(2) models we employed ¢ = 1, a; = 0.5 and as = 0.4. We
used the same ¢ and a; for GARCH(1, 1) models, and took b; = 0.4. It follows that
our ARCH and GARCH processes both have the same variance.

We draw 1000 samples of size n = 500 and 1000, respectively, in each setting.
We truncated likelihood functions at ¥ = p+1 = 2 in the case of the ARCH model,
and v = 20 for the GARCH model. Parameters were estimated by maximising the
likelihood L at (2.4). Boxplots of the average absolute errors (AAEs) are presented
in Figure 1. The AAE is defined as 3(|é — ¢/ + |a1 — a1| + |2 — as|) for ARCH(2),
and 1(|¢— ¢+ |a1 — a1| + |by — b1]) for GARCH(1, 1). The AAE is larger when the
tail of the error distribution is heavier (i.e. d is smaller), although the deterioration
is only slight. Moreover, the deterioration of estimator performance as we pass from

the ARCH model to the relatively complex GARCH case is also only slight.

Bootstrap confidence intervals were constructed for each parameter in each
model. For the sake of simplicity we give results only for the one-sided intervals
[0%) — n=1/22q, o0) introduced in section 3.4, in the case = = 0.9. Here, i, is
the 10% quantile of a bootstrap sample drawn from the conditional distribution
of m/2(* — 9)/#* for sample size m. We took m = 250, 300, 350, 400 and 500
when n = 500, and m = 500, 600, 700, 800 and 1000 when n = 1000. Thus, we
included the case m = n in our simulations. Each bootstrap sampling step was
repeated B = 1000 times, and 1000 samples were drawn for each configuration of
parameters. The relative frequency of the event that a bootstrap interval covers the
true value of the parameter was taken as our approximation to the true confidence

level of the bootstrap interval.

Figure 2 displays approximate coverage levels for parameters ¢, a; and ag
in the ARCH(2) model. In each case the level is close to its nominal value, 0.90,
although accuracy is noticeably greater for the larger sample size. It can be seen
that in the ARCH(2) case, distributions with lighter tails tend to produce relatively

conservative confidence intervals. Nevertheless, only when n = 500, and for the pa-
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rameter a1, would the anticonservatism of the extreme heavy-tailed case (i.e. d = 3)
be a potential problem. Note particularly that coverage error is quite robust against
changes in m. The finite sample properties in the case m = n, as demonstrated in

the figure, are broadly similar to those for m < n.

Figure 3 shows coverage levels in the case of the GARCH(1,1) model. The
method is having somewhat greater difficulty in this more complex setting, although
serious problems occur only when constructing confidence intervals for b;. As in
the ARCH case, lighter-tailed distributions tend to produce relatively conservative

confidence regions, and coverage error is again robust against varying m.

The method is less robust against choice of m when the error distribution is
asymmetric. To illustrate this point we simulated samples with n = 500 and 1000
from ARCH(2) and GARCH(1, 1) models when the error distribution was Pareto,
with density 3/(1+xz)* for > 0 except that it was centred at its mean. The results
are depicted in Figure 4. For either model, minimal coverage error was obtained

with m approximately 350 when n = 500, and with m ~ 700 or 800 when n = 1000.

Results for one-sided confidence intervals of the opposite parity, i.e. of the form
[0,0®) — n=1/224,_.], are broadly similar. For the ARCH(2) model they show a
tendency towards relatively less conservatism. By way of contrast, in the case of the
GARCH(1, 1) model, lower-tailed confidence intervals for b; have greater coverage,
and substantially greater coverage accuracy, than those in the upper tail (the latter
are addressed in Figure 3). However, lower-tailed intervals for ¢ and a; have reduced

coverage relative to their upper-tailed counterparts.

5. TECHNICAL ARGUMENTS
5.1. Proof of Theorem 2.1.

Step (i): Preliminary expansion. Recall that (a, b, c) has been concatenated into a
vector 6 of length r = p+ g + 1. Let p;(#) denote the r-vector whose ith compo-
nent is 04(0)~* do¢(0)?/06;. In this notation the likelihood equations, defining the

extremum of the negative log-likelihood at (2.4), are

Z {XZ - 04(0)?} p(0) = 0. (5.1)

Let A¢(f) and B¢(0) be the r-vector and r X r matrix, respectively, of derivatives of

o(0)? and p;(0), respectively, with respect to . Using the fact that p > 1, that none



of a1,...,a, vanish, and that if ¢ > 1 then none of by, ..., b, vanish; and noting

(2.5)—(2.7) and the results in section 2.5; it may be shown by Taylor expansion that

a1(0)* = 0¢(6°)* + Ar(0°)T (0 — 0°) + 1|0 — 0°||* R1¢(0) 0 (6°)?,

(5.2)
ps(0) = pi(0°) + B1(6°) (0 — 60°) + [|6 — 6°]|> Ras(0) 04(6°) 2,

where R14(0) and Ry (6) are an r-vector and an r X r matrix, respectively, and for
a constant C' > 0 not depending on 7 provided the latter is sufficiently small, and
with Rt = th and Rt = R2t7

Pin™' )" sup  |R(0)|<Cp -1, (5.3)
i—1 16—60°(I<n
with (5.3) interpreted component-wise in each case. The maximum value of 7 de-

pends on the difference between the right-hand side and left-hand side at (2.2).

The uniformity claimed at (5.3) may be derived by expressing each of the
formulae at (5.2) as a Taylor expansion with exact remainder, the latter in the form
of a quadratic in 6 — #° having its coefficients expressed as functions evaluated at a
point w which satisfies w = p@+ (1 —p) 6° for some 0 < p < 1. Using the fact that w
can be made arbitrarily close to ° by choosing 7 sufficiently small, an explicit upper
bound to each of the coefficients can be derived, valid uniformly in || —0°|| < n and
indexed by t. Then, arguing as in section 5.2 it can be shown that each moment of

each coefficient is bounded, uniformly in ¢. In particular, defining

Se= sup |Ry(0)],
[16—6°]|<n

we have sup, F(|S;|) < oo. This implies (5.3).
Hence, since X2 — 04(0°)? = (2 — 1) 04(6°)%, equation (5.1) may be written as

n

D (e = 1)0(6°)2 pe(6°) + Y {(e7 — 1) 04(6°) B (6°)

t=1 t=1

— pe(6°) A(0°)T} (0 - 6°) + 10 = 0°|IPn R(9) = 0, (5.4)

where, by (5.3) and for a constant C' > 0 not depending on 7 provided the latter is

sufficiently small,

P{ ||9—S;]E’1|)|§7] |R(0)| < C’} — 1. (5.5)



It may be proved from the ergodic theorem, using the property E(e?) < oo, that

_1 Z — 1 O't 00 t(90) — 0, (56)

n Yy pt(eo A (0°)T — M = E{p:(0°) A1 (69T} (5.7)

t=1

as n — 00, where both convergences are in probability.

From (5.4)—(5.7) we may deduce that

{M +0,(1)} (6 —6°) + 110 "> R(O) =n"" Y (ef — 1) wy, (5-8)

t=1
where the “o0,(1)” term does not depend on 6, w; = 04(6°)? p¢(6°), and R satis-
fies (5.5). Since 1 > 0 is arbitrarily small, although fixed, then this implies that

n

{M+0,(1)}(O-0")=n"")" (& —1)w. (5.9)
t=1
To derive (5.9) from (5.8), let My = M + 0,(1) be identical to the term within
braces on the left-hand side of (5.8). Multiply both sides of (5.8) on the left by M; !;
denote the resulting right-hand side by ¢ = O,(n~/2); and put S(6) = M; 'R(9).
Let C; equal the constant C at (5.5) multiplied by twice the inverse of the absolute
value of the smallest eigenvalue of M; observe that by (5.5),

p{ sup |5(a)|scl}%1

16—6°]I<n

as n — oo; and note, from the discussion immediately preceding (5.5), that C;
does not depend on 7, provided the latter is sufficiently small. Put ¢ = 6 — #° and
T(¢) = S(0). If |T(¢)| < Cy then the norm of any solution of ¢ + ||¢||2 T(¢) = ¢
either is not less than C;' + 0,(1), or equals O,(n~'/2). If we insist that 0 < n <
2C1, and restrict ¢ so that ||¢|| < 7, then the probability that the former type of
solution arises converges to 0 as n — oo. Therefore, § — 0 = Op(n~1/2). In this

case, returning to (5.8), we deduce (5.9).

Result (5.9) implies that, in order to establish the limit results claimed for
§ — 6° in parts (a)—(c) of the theorem, it suffices to show that they apply to
nTt MY, (62 — 1) wy.

Part (d) of the theorem is more complex, however, since the centring constant

P in (2.14) diverges to infinity. We now outline a method that can be used in this



case. Put My = E{B;(6°)}. Arguing as in step (iii) of the present proof we may
show that in the context of part (d) of the theorem, (5.6) may be refined by showing

that the random variable

n

A Z (7 — 1) 04(6°)® By(6°) + pin My
t=1

has a proper limiting distribution. Therefore,
nt Y (e = 1) 04(6°)° Bu(6°) = =1~ A ptn Ma + Op(An /).
It can be shown that (5.7) may be sharpened to:

nt Y p(0°) A(0°)T = M + Op (") (5.10)

t=1
for some 1 > 0. (The method of proof involves approximating the summands by
their counterparts in which we set to zero all values of ¢,, for which u < t—v, where v
denotes the integer part of n¢ and 0 < ¢ < 1. Then the summands with indices ¢ and
u are independent if [t — u| > v, whence it follows that the variance of the series on
the left-hand side of (5.10), after the summands have been modified, equals O(nv).
Moreover, the differences between the original series and its modified counterpart,
and between the expected values of those two series, both equal O(n~°) for all C' >
0. Result (5.10) follows on combining these properties.) Therefore, by (5.4) and

since A, /n is a slowly varying function of n,
n AL {I A i MY M, + op(,\n/n)} (@ — 69

=M Alz —Dwe+ Op(n A 16— 0°11%) +0p(1).  (5.11)

Result (5.11), in company with the assumption that n=* A, u2 — 0, and the

property

M~ 1A 1 —1 ’wt-l-,U,nE(Vl)—’)/E(Vl)

converges in distribution to W7 as n — oo, (5.12)

which we shall establish in step (iii) of the present proof, implies that 6 —0° =
Op(An /). Again using the fact that n=' A\, p2 — 0 we may now deduce first
that n -1 || — 6°||2 — 0 in probability, and thence, from (5.11), that

n

nA; (@ -0 =M"1A? Z (€2 — 1) w; + 0p(1).
t=1
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The result claimed in part (d) of the theorem follows from the latter expansion

and (5.12).

Step (ii): Parts (a) and (b) of theorem. Case (a) in the theorem follows directly
from (5.9); the series at (5.9) may be expressed as a multivariate square-integrable
martingale, and a martingale central limit theorem such as the multivariate form
of that of Brown (1971) may be used to obtain the result. Alternatively, case (a) is

effectively covered by our treatment of case (b), which we give next.

Define D; to equal any linear combination of the components of the vector
we at (5.9). We shall prove that under the conditions for case (b), or indeed if

E(et) < oo,
At Y, (€7 —1) Dy is asymptotically Norm-

5.13
ally distributed with variance var(e?) E(D3?). (5:13)

Part (b) of the theorem follows from this property via the Cramér-Wold device.

Let A, be as at (2.8) and define Iy, = I(|e — 1] < \,),
Jin=1=ILip, 06n=FE{(c —1) L}, (5.14)

Sl = Zt (6? —_ ].) Dt,

Note that S; = Sy + S3 + d,, S4. Since H, defined at (2.8), is slowly varying at
infinity then
MP(le—-1>X)/H\) =0 (5.15)

as A — oo. See (8.5), page 303 of Feller (1966). It therefore follows from the definition
of A\, at (2.8) that

nP(|e =1 > X)) ~ A2 H(A\) " P(l€ = 1] > A\y) =0 (5.16)

as n — oo, and so P(S3 = 0) — 1. Analogously to (5.15) it may be proved that
ANE{|e2 —1|I(|e2 = 1] > \)}/H()A) = 0 as A — oo, and so analogously to (5.16),

nlon| <nE{|e —1[I(|e =1 > )} =o{n A,  H(A)} = o(An).

Therefore, |0, S| = Op(n |0n]) = 0p(Arn). Combining the results in this paragraph
we deduce that
Sl = Sg + Op()\n) . (517)



Let D;(k) be the random variable obtained by setting to 0 each ¢, for u < t—k,
in the formula for D;. Now, {D:(k), —oo < t < oo} is a stationary time series, and
for a constant Cy > 0, |D;| and |D1(k)| are both less than Cy with probability 1 for
all k > 1. Define Qy = (62 —1) Ity — 6, Stn (k) = Q4 Di(k), ven (k) = Q¢ {Dy—Dy(k)},
Se =Y, Stn(k) and Sy =), ven (k). Then

So = S+ S~ (5.18)
Given & > 0, choose kg so large that E{D; — D1 (k)}? < £ for all k > ko. Note

that for a constant Cy > 0 not depending on k or n, E(Q?%) < Cy H(\,). Observe
too that F(vg, Vyn) = 0 if t # u. Therefore if k > ko,

E(52) =nE{vin(k)’} =nE(Q3}) E{D1 — D1(k)}> < CanH(\,) & ~ Ca A2 €.
Since this holds for each & > 0 then

lim limsup E(S7/\)*=0. (5.19)

k—oo nooo

Next we prove a central limit theorem for Sg. Distribute the summands s, (k),
1 <t < n, among blocks of alternating lengths k& and £. Let the sums of s, (k)
within the respective blocks be T, and Ts,, in the cases of blocks of lengths k& and
£ respectively. Thus, excepting a possible residual block at the very end, each Ty, or
T, is a sum of k or £, respectively, adjacently indexed values of s, (k). Denote by
ny and ny the numbers of indices u for Ty, and Ty, respectively. Then |n; —ng| < 1,

both n; and ngy are asymptotic to n/(k + £), and

ni no
Se = Z:l Thu + Z:l Tou . (5.20)

Note too that for a constant C3(k) > 0,
E(T}) <K E{s1(t)*} <2k*C E{(€} — 1)> 11} < C3(k) H(\,).
If £ > k then the variables Ty,, for u > 1, are independent, and so

EMY Y, Tw)’ = A2 Y, B(T2) ~n A2 (k+ £~  E(T?)
~HM) N k+20)"E(TE).



Therefore, for each fixed k > 1,
Eli)IcIDlo harzri)solip EM\Y, Tlu) =0. (5.21)
The summands sy, (k) are k-dependent, and so the variables Ty, for 1 < u < ng,
are independent. Excepting a possible residual block at the end, they are also identi-
cally distributed with finite variance, although the distribution and variance depend
on n. Lindeberg’s central limit theorem may be applied to the series \! > ou Tou
to show that it is asymptotically Normally distributed with zero mean and variance
B(k,£)?, say. (When showing that Lindeberg’s condition is satisfied, note that the
function H is slowly varying.) It may be proved by elementary calculus that for
each fixed k > 1, B(k,£)? — % = E(D3?) as £ — oo. Therefore, writing Z for a
variable with the standard Normal random distribution, we have for each fixed k,

lim lim sup |P(A\;'Y, Tou<2z)—P(ZB<z)|=0.

£—00 n—0o0 — 0L <Lo0

Combining this result with (5.20) and (5.21) we deduce that for each fixed k > 1,
A, 1 S is asymptotically Normal N(0, 32). Result (5.13) follows from this property
and (5.17)—(5.19).

Step (iii): Parts (c)—(e) of theorem. We shall show only that each component of
nA, ! (é — 69) converges weakly to the corresponding component of the distribution
of Wy or Wi (after the appropriate location change if & = 1). Our argument has a
straightforward multivariate version, in which a multivariate metric between distri-
butions is used in place of the Lévy distance that we employ. The longer argument
differs only in notational complexity. Part (e) of the theorem may be proved as in

Samorodnitsky and Taqqu (1994, Theorem 1.4.5). In particular,
S(2) =Y (Yivr — EYy ED) (5.22)
k=1

converges almost surely when 1 < o < 2.

Let D, equal any one of the components of the vector M~ w,, where w; is as

t (5.9). Take I, = I(|eZ2 — 1| < Cy\,), where ), has the meaning it assumes in

parts (c¢) and (d) of the theorem and C4 > 0 will be taken small and fixed. In this
new notation, define Ji, and 6, by (5.14), and let S; =Y, (€ — 1) Dy,

:Z —1 JtnDt7 SB—Z{ _1Itn_5}Dt’ S4_ZDt

t=1



Then,

S1 =89+ 8S3+6,54. (5.23)
We shall first prove that
lim limsup E(S3/A,)% =0, (5.24)
Cs—=0 nosoo
On Sa/An = —A+0p(1), (5.25)
where, defining
1 ~l—a -
_ ) — ala—1)"1C; ifl<a<?2
p = pln, Ca) {,un—log04 ifa=1,

we put A = 8 E(D;). Combining (5.23)—(5.25) we see that if L(Q1,Q2) represents

the Lévy distance between the distributions of random variables (); and ()3, then

lim limsup |L(S1/An, S2A, " — A)| =0. (5.26)

Cs—0 pnooo

To prove (5.24), note that with Q; = (¢2 — 1) I}, — §,, we have by Karamata’s
theorem (denoted by KT, say; see Bingham, Goldie and Teugels (1987, section 1.6))
that

EQ}) ~ E{e*I( < Cidn)} ~a(2— ) 1 C; A2 /n,
and so E(S3/A)% ~ a(2 —a) ' C27*E(D?) as n — oco. Since a < 2 then this
implies (5.24).

Repeated use of KT and the uniform convergence theorem for slow variation
(denoted by UCT, say; see Bingham, Goldie and Teugels (1987, section 1.2)) allows

us to prove that

E{I(Cih, < € < Cudy + 1)} = 0o(An/n),
—0p = E{ I(e® > Ca)p)} + o(An/n). (5.27)

When 1 < a < 2, n E{e? (e > C4\,)} ~ B, by KT and UCT, and so in view
of (5.27), —nd, /A, — B; call this property (P). The variables D; and D; are
asymptotically uncorrelated as |[t| — oo, and the process {D;} is stationary and

essentially bounded, so

n~1S, — E(D;) in probability. (5.28)



Result (5.25), for 1 < a < 2, follows from this property and (P). (Result (5.28)
can be derived using the argument leading to (5.10); see the parenthetical remarks

below that formula.)

To complete the proof of (5.25) when a = 1, note that by KT and UCT,
E{I(Cshn < € < An)} = —(An/n) logCs + o(A/n) .
Hence by (5.27),
—bn/An = E{e®I(€® > A\y)} —n~ " logCs+o(n™").

Result (5.25) follows from this formula, the fact that E{e?I(e? > \,)} is slowly
varying in n, and (5.27).

For large n, Ji, = I(e2 > Cy\, + 1) for all 1 < ¢ < n. Furthermore, for each
04 > 0,

lim liminf P(no more than k out of €2, ..., €2 exceed CyA,) = 1. (5.29)
k—oo mn—oo0

Therefore the number of nonzero terms in Sy equals O, (1) as n — co. Hence, if we

take e%n) > ... > 6%1) to be the ordered values of €3,..., €2, if we let D(,),... D)

VAR (%)

be the concomitant values of D1,..., Dy, and if we put Z) = e%t) /An, then

SQ/)\n = Z Z(t) D(t) I(Z(t) > 04) + Op(l) . (530)

t=1

Recall that D, denotes a particular component of M ~1w,, say the sth; let v; be
the sth component of V. Then v, and D; have the same distribution, and in partic-
ular, E(vy) = E(Dy). The joint limiting distribution of (Z(,), D(n)); - - - (Z(n—k+1),
D(n_k+1)) is the joint distribution of (Y1,v1),..., (Y, vx), for each fixed k. (Call
this result (R); we shall outline a proof in the next paragraph.) Note too that the
variables Z(;) are nonincreasing with ¢. Combining these properties and (5.29), and
applying Lemma 5.1 below to the series on the right-hand side of (5.30), we deduce
that

[e.0]
S2/An = S(1) =) Veve I(Yi > Cy), (5.31)
k=1
where the convergence is in distribution as n — oc. The infinite series here converges

because, reflecting (5.29), with probability 1 it contains only a finite number of
nonzero terms. By (5.26) and (5.31),
lim limsup L{S1/An,S(1) — A} =0. (5.32)
Cy4—0

n—00



Next we outline a derivation of result (R). Let r;, a random integer, denote
the index r such that eq,_;41) = €. If (R) did not hold then there would exist
a subsequence of values of n along which the joint distribution of (Z(,), D(»)),
oo s (Zm=k+1)s D(n—k+1)) converged, as n — oo, but to a sub-distribution limit
that did not have the form claimed under (R). Then, noting that the separations
of the integers r; diverge with sample size, we could choose a sub-subsequence
N, say, for which there existed a sequence of positive integers v, diverging to
infinity and with the property that, as n increased along the sub-subsequence, |r;, —
Tj,|/Vn diverged to infinity with probability 1 whenever 1 < j; # jo < k. Call this
property (P). Consider the version of the problem in which each D; is replaced
by its approximant D;, the latter defined by replacing by 0 each ¢s for which s <
t —v,. Let Dzn_ i) denote the corresponding concomitant of Z(,_;). Note that
D; and Dj, are independent if [t; — t3| > c,. It may be shown using this result
and property (P) that (Z,), DEn)), ooy (Z(n—k+1)5 DEn—k—i—l)) converges to the limit
distribution claimed for (Z(,), D(n)); - - -, (Z(n—k+1)s D(n—k+1)) under (R). However,
D’(n_ i~ D(,,_;) converges in probability to zero for each 0 < j < k — 1, and so
(R) must be true at least along the sub-subsequence {n,,}. This contradiction

completes the proof of (R).

The proof of Lemma 5.1 is given in the appendix.

Lemma 5.1. Let (Uyi, Vi), for 1 < ¢ < n < oo, denote a triangular array of
random 2-vectors, and let (U1, V1), (Ua, V3),. .. be an infinite sequence of 2-vectors.
Assume that for each k > 1 the joint distribution of the ordered sequence (Up;, Vi),
1 < i < k, converges weakly to the joint distribution of (U;,V;), 1 < i < k, as
n — oo. Suppose too that for each k, (Vi,...,Vy) has a continuous distribution,

and that for each C > 0,

lim liminf P(no more than the first k of V,,1,. .., Vya, exceed C) =1,

k—oco mn—oo

lim P(no more than the first k of V1, Va, ... exceed C) = 1.

k—o0

(5.33)

Then for each C' > 0,

=1 =1

in distribution as n — oo.



s

Reverting to the case 1 < a < 2, and with S(1) and S(2) given by (5.31)

and (5.22), we may write

S(1) = S(2) — S(3) + S(4) , (5.34)
where
- f: [Yk vk 1(Yy < C4) — E{Y;, (Yi < Co)}Y E(Dy)] (5.35)
k=1
S(4) = E(Dy) i E{Vi (Vi > Cy)} . (5.36)
k=1

The argument used to establish convergence of the infinite series S(2) may be em-
ployed to prove that S(3) also converges (as an infinite series) with probability 1.
Note too that E{S(3)} = 0 and var S(3) — 0 as Cy — 0. Therefore S(3) — 0 in
probability as C4 — 0. Combining these results with (5.32) we deduce that

hm limsup L{S1/\n,S(2) + S(4) — A} =0. (5.37)

=0 nosoo

Continuing to assume 1 < a < 2, and defining Fj as at (2.10), we have

S(4)/E(Dy) Z/C y dFy(y

/C[Z{l—Fk(y }dy+042{1—Fk(04)}. (5.38)
! k=1

k=1
Now, Y <111 — Fx(y)} = y~“. It may therefore be shown that if 1 < a < 2
then S(4)/FE(Dy) = . Hence, (5.37) is equivalent to: limy,_, o L{S1/A\n,S(1)} =0,
which implies that S; /A, converges in distribution to S(1). This proves part (c) of

the theorem, in a component-wise sense.

Next we treat o = 1. Continue to define S(2), S(3) and S(4) by (5.22), (5.35)
and (5.36), except that now the series should be taken only over k > 2. (We also
define S(1) by (5.31), in this case continuing to take the sum over £k > 1.) Then
instead of (5.34),

S(1) = S(2) — S(3) + S(@) + Yi v [(Vy > Cl).

We have as before that S(3) — 0 in probability as Cy — 0. Therefore, from (5.32)
we deduce in place of (5.37) that

hm limsup L{S1/A,,S(2) +S(4) —A+Yiv1} =0, (5.39)

-0 nooo



where v denotes Euler’s constant.

Result (5.38) continues to hold when « = 1, provided now that both series on

the right-hand side are taken over k > 2. Since (in the case oo = 1)

> -F@=F@ +y ' -1=exp(—y ) +y -1,
k=2

and
v = / {exp(=y™") + min(y~! —1,0)} dy,
0

then

/OO [ {1—Fk(y)}] dy + Cy Z{l—Fk(C4)}:'y—logC4+o(1)
Cs Lp_o k=2

as C4 — 0. Therefore,
S(4) = (y —logCy) E(Dq) + 0(1) (5.40)

as Cy — 0. Noting (5.39), (5.40) and the fact that A = (u, —logCy4) E(D;) in the

case a = 1, we deduce that
lim L{S1/An, S(2) + Y101+ 7 E(D1) — pn E(D1) } = 0,

which implies that (S1/A\n)+pn E(D1)—7 E(D1) converges in distribution to S(2)+
Y7 v1. This proves the component-wise form of (5.12), and as argued at the begin-
ning of the current step, a proof of the vector form is virtually identical. We showed,

at the end of step (i), how part (d) of the theorem follows from (5.12).

5.2. Outline proof of Theorem 2.2. Recall the definitions (2.4) and (2.15) of o2
and 2. The property v/logn — oo, and the fact that E(X?) < oo, ensure that for
all ¢ > 0,

sup sup |&t(a, b,c)? — o4(a, b, c)2| =0, (n_c) , (5.41)
(a,b,0)EN v<t<n

where N denotes a sufficiently small, but fixed, open neighbourhood of the true
parameter values (a®,b%,c?). Let L, denote the version of L, defined at (2.4), that
is obtained when the sum over 1 < ¢ < n on the right-hand side of (2.4) is replaced by
the sum over v < t < n. It may be proved from (5.41) that for all C' > 0, z,,(a, b, c)—
L,(a,b,c) = O,(n=°), uniformly in (a,b,c) € N. The difference between the

vectors of derivatives of the likelihoods is likewise of the same order, uniformly in



(a,b,c) € N. The proof of Theorem 2.2 may now be completed by incorporating
terms of order O, (n~°), for all C > 0, in all expansions, and noting that they are too
small to have any first-order influence on the limiting distributions. In the reworked
proof, sums that previously were over 1 <t < n are now over v < t < n. However,

since v/n — 0 then this alteration, too, does not affect the limiting distributions.

5.3. Outline proof of Theorem 3.2. Recall that &, = &4(a, b, ¢). Starting from (2.15),
in which we take (a,b,c) equal to (a® b° c%) in one instance and to (a, b, ¢) in
another; and noting that each component of the estimators a, 5, ¢ differs from its

true value by O, (n=¢), for some £ > 0 (see Theorem 2.2); it may be proved that
6¢/6:(a’, 0%, %) =1+ 0O, (n_g) (5.42)

uniformly in v < ¢t < n, for some £ > 0. The argument uses the assumption that (if
p > 1) at least one of a,...,a, is nonzero, and (if ¢ > 1) at least one of by, ..., bq

is nonzero. It also requires ¢ > 0.

Note too that, in view of the results obtained in section 5.2, and writing o; to

denote a4(a b, c?), we have
0:/5:(a%,8%,c%) =1+ 0O, (n_c) (5.43)

uniformly in v <t < n, for all C > 0. Combining (5.42) and (5.43) we deduce that
6¢/os =1+ Op(n~¢) uniformly in v < ¢t < n. Equivalently, |(&;/e;) — 1| = Op(n™%)
uniformly in v < ¢ < n. From this property, and the definition of & at (3.5), it may
be deduced that for some & > 0,

& =e {1+ 0,(n" )} + 0,(n~%), (5.44)

where both “O,” terms are of the stated orders uniformly in » <t <n.

Using (5.44) we may rework the proof of Theorem 2.1 in the bootstrap case, to
obtain Theorem 3.2. When error variance is finite the argument hardly alters; when
error variance is infinite but the error distribution is in the domain of attraction
of the Normal law we borrow an argument from Hall (1990); and when the error
distribution is in the domain of attraction of a stable law with exponent a € (1,2)
we note that, in view of (5.44), large values of €2 are identified with large values of é2.
For example, for each fixed k£ we may show that with probability converging to 1

as n — oo, the indices tq,...,t; at which the k largest values of ef (for 1 <t <n)



occur are identical to the indices at which the k largest values of €2 (for v < t < n)

occur.
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APPENDIX: PROOF OF LEMMA 5.1.

Let L(-,-) denote the Lévy metric, interpreted as in step (iii) of section 5.1.
Suppose § > 0 is given. Using properties (5.33), choose k(d) > 1 so large that for

all sufficiently large n,

P{no more than the first k(5) of V,,1, ...,V exceed C} >1-94,

Al
P{no more than the first £(J) of V1, V3, ... exceed C} >1-9. (A1)

The assumptions in the lemma imply that, if we define

k k
Qr(n) = Unil(Vni >C) and Qr=)Y» U;I(Vi>C),

i=1 i=1
then for each fixed k,
Qr(n) = Qr in distribution (A.2)

as n — oo. Result (A.1) implies that for sufficiently large n,
P{Qri)(n) #Qn(n)} <0 and P{Qyu) # Qoo} <6,

and hence that for the same values of n,
L{Qx(s)(n); @n(n)} <n(d), L{Qks), R} < n(d), (A.3)
where 7(4) does not depend on n and converges to zero as 6 — 0. In view of (A.2),
L{Qk(n),Qx} — 0 (A.4)

as n — 0o. Combining (A.3) and (A.4) we deduce that

L{Qn(n), Qoo } < L{Qn(n), Qr(s)(n) } + L{Qks5)(n), Qr(s)} + L{Qk(s)> Qoo }
<2n(6) +o(1),

where the first inequality holds for all sufficiently large n and the second as n — oc.
Letting first n — oo and then § — 0 we deduce that L{Q,(n),Q-} — 0, or

equivalently, @, (n) - Q in distribution, as claimed in the lemma.
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Captions for figures

Figure 1: Simulated quasi-maximum likelihood estimates. Panels (a) and (b) show
boxplots of average absolute errors of estimators in the cases of (a) ARCH(2) and
(b) GARCH(1, 1) models, respectively, with errors distributed as Student’s ¢ with
d = 3,4,5 degrees of freedom, and sample sizes n = 500 and 1000.

Figure 2: Confidence levels of bootstrap intervals for ARCH(2) models with sym-
metric errors. The estimated confidence levels are plotted against m. The labels
“3”7, “4” and “5” correspond to the number of degrees of freedom, d, of the error
distribution. The dotted line indicates the nominal confidence level, 0.9.

Figure 3: Confidence levels of bootstrap intervals for GARCH(1,1) models with
symmetric errors. Legend is as for Figure 2.

Figure 4: Confidence levels of bootstrap intervals for ARCH(2) and GARCH(1,1)
models with asymmetric errors. Symbols “a” and “g” indicate results in ARCH
and GARCH cases, respectively. The dotted line indicates the nominal confidence
level, 0.9.



