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Abstract

We propose a hybrid approach for the modelling and the short-term forecasting
of electricity loads. Two building blocks of our approach are (i) modelling the
overall trend, seasonality and the effect of meteorological factors by fitting a
generalised additive model to the weekly averages of the loads, and (ii) modelling
the dependence structure across consecutive daily loads via curve linear regression.
For the latter, a new methodology is proposed for linear regression with both curve
response and curve regressors. The key idea behind the proposed methodology
is the dimension reduction based on a singular value decomposition in a Hilbert
space, which reduces the curve regression problem to several ordinary (i.e. scalar)
linear regression problems. We illustrate the hybrid method using the French
electricity loads between 1996 and 2009, on which we also compare our method

with other available models including the EDF operational model.
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1 Introduction

As electricity can be stored or discharged only at extra costs, it is an important task for
electricity providers to model and forecast electricity loads accurately over short-term
(from one day to one month ahead) or middle-term (from one month to five years ahead)
horizons. The electricity load is an essential entry of the optimisation tools adopted
by energy companies for power system scheduling. A small improvement in the load
forecasting can bring in substantial benefits in reducing the production costs as well as
increasing the trading advantages, especially during the peak periods.

The French energy company Electricité de France (EDF) manages a large panel of pro-
duction units in France and in Europe, which include water dams, nuclear plants, wind
turbines, coal and gas plants. Over the years, EDF has developed a very accurate load
forecasting model which consists of complex regression methods coupled with classi-
cal time series techniques such as the seasonal ARIMA (SARIMA) model. The model
integrates a great deal of physical knowledge on the French electricity consumption pat-
terns that has been accumulated over 20 years, such as the fact that the temperature
felt indoors is more relevant than the real temperature in modelling the electricity load.
Furthermore it includes exogenous information ranging from economic growth forecasts
to different tariff options provided by the company. The forecasting model in opera-
tion performs very well at present, attaining about 1% mean absolute percentage error
in forecasting over one day horizon. However, it has a drawback in terms of its poor
capacity in adapting to the changes in electricity consumption habits which may occur
due to the opening of new electricity markets, technological innovations, social and eco-
nomic changes, to name a few. Hence it is strategically important to develop some new
forecasting models which are more adaptive to ever-changing electricity consumption
environment and the hybrid method proposed in this paper, designed for short-term
forecasting for daily loads, represents a determined effort in this direction.

Electricity load exhibits interesting features at different levels. Figure 1 displays the
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Figure 1: Electricity load from 1996 to 2009 in France.

electricity load in France measured every half an hour from 1996 to 2009. First of
all, there is an overall increasing trend due to meteorological and economic factors. In
addition, an annual seasonal pattern repeats itself every year, which can be explained by
seasonal changes in temperature, day light duration and cloud cover. Engle et al. (1986)
and Taylor and Buizza (2002) discussed the impact of meteorological factors on the
electricity load, and singled out the temperature as the most important one, due to the
large demand of electrical heating in cold weather. Further studies on the meteorological
effect include Taylor and McSharry (2008), where seasonal patterns of electricity loads
over 10 European countries were reported. Also, there exist daily patterns which,
unfortunately, do not show off due to the large scale of Figure 1, attributed to varying
demands for electricity in the different periods within a day. Figure 6 below provides
an example of such daily patterns.

Based on the above observations, we propose to model the electricity loads at two
different levels using different methods, hence the name hybrid approach. First assuming
that the long-term trends do not vary greatly within a week, we extract those trends

from weekly average loads using a generalised additive model, where temperature and



other meteorological factors are included as additional explanatory variables. After
removing the long term trend component from the data, we view the daily loads as
curves and model the dynamic dependence among the electricity loads of successive days
via curve linear regression. For this, a new dimension-reduction technique based on a
singular value decomposition in Hilbert space is proposed, which reduces the regression
with a curve response and a curve regressor to several ordinary (i.e. scalar) linear
regression models. Regarding the daily loads as curves, our approach takes advantage of
the continuity of the consumption curves in statistical modelling, as well as embedding
some nonstationary features (such as daily patterns) into a stationary framework in
a functional space. Therefore, as we expected, the proposed method provides more
accurate predictions than more conventional methods such as those based on seasonal
ARIMA models or exponential smoothing. Although the EDF operation model provides
more accurate predictions than our method, our model is considerably simpler and does
not make use of the full subject knowledge which is accumulated over more than 20 years
of the development at the EDF and which is not available in the public domain. Hence
our approach is more adaptive to the changing electricity consumption environment
while retaining a competitive prediction capacity, and can be adopted as a generic
tool applicable to a wide range of problems including the electricity load forecasting in
countries other than France. Furthermore it has the potential to serve as a building
block for constructing a more effective operation forecasting model when incorporating
the full EDF subject knowledge.

There is a growing body of literature devoted to electricity load forecasting models.
Focusing on the main interest of this paper, we list below the recent papers in short-
term load forecasting; see Bunn and Farmer (1985) for a more comprehensive overview.
In the category of parametric approaches, Ramanathan et al. (1997) proposed linear
regression models with autoregressive errors for each hour of a day. Univariate methods

such as SARIMA models or exponential smoothing can be found in Hyndman et al.



(2002), Taylor et al. (2006) and Taylor (2010), and state-space models in Dordonnat
et al. (2008) and Dordonnat et al. (2011). Among the nonparametric and semiparamet-
ric methods, Engle et al. (1986) proposed to include the temperature effect in the load
modelling, and Harvey and Koopman (1993) proposed a time-varying spline model that
captured both the temperature effect and the seasonal patterns in a semi-parametric
way. Generalised additive models for electricity loads were studied in Fan and Hyn-
dman (2011) and Pierrot and Goude (2011), where the semi-parametric approaches
were shown to be well-adapted to non-linear behaviours of the electricity load signal.
In Antoniadis et al. (2006), a forecasting model based on functional data analysis was
proposed which treated the daily electricity loads as curves. This approach has been
further developed in Cugliari (2011). On the other hand, Cottet and Smith (2003)
proposed a Bayesian autoregressive model for short-term forecasts, where the meteoro-
logical effects were non-linear and estimated using semi-parametric regression methods.
They obtained good forecasting results with New South Wales dataset.

The rest of the paper is organised as follows. In Section 2, we present the modelling of
weekly average loads using a generalised additive model. Then Section 3 discusses the
modelling of the dependence structure between daily loads in a curve linear regression
framework. We conduct a comparison study in Section 4, where our new method as
well as other competitors are applied to predict the French daily loads in 2009. Section
5 contains some conclusive remarks. All the proofs are relegated to a supplementary

document.

2 Modelling weekly averages

Assuming that the overall trend and seasonality do not vary greatly within a week, we
propose to model the long-term trends with the weekly averages, i.e. we treat the trend
and seasonal component as being constant within each week. In this manner, we lose

little from the gradual changes of the trends within each week, while preserving the
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dependence structure across the electricity loads of different days. The weekly averages

of the EDF loads from 1996 to 2008 are plotted in Figure 2. In the literature, it has
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Figure 2: Weekly average electricity load in France from 1996 to 2008.

been noted that some meteorological factors, such as temperature and cloud cover, have
a significant impact on the electricity consumption patterns. While there are other de-
trending techniques that have been proposed for removing long-term trends and seasonal
cycles, we fit the weekly averages with a generalised additive model (GAM) for its ability
to model implicit nonlinear relationships between response and explanatory variables
without suffering from the so-called “curse of dimensionality”; see Hastie and Tibshirani
(1990) and Wood (2006) for further details on the GAM and Pierrot et al. (2009) and
Pierrot and Goude (2011) for its application in electricity load modelling. Denoting
the time index representing each week by ¢, the explanatory variables considered in
fitting the weekly average load process L; are: O, is the weekly median of the offset (a
temporal variable determined by the experts at EDF to represent the seasonal trend in
the data, taking values -3, -2, -1 and 0 to denote different winter holidays, 1 to denote
spring, 2-6 to denote summer and summer holidays, and 7 to denote autumn), 7; is the

weekly average of the temperature, C; is the weekly average of the cloud cover, and I;



is the weekly index ranging from 1 to 53.
Our first attempt at taking into account the meteorological effects as well as the tem-

poral trend is summarised in the following GAM with the Gaussian link function

Ly = fi(t) + fo(Or) + fs(Li—1) + fa(Ti) + f5(Ti-1) + f6(Ch), (1)

where each f; is a smooth function of the corresponding covariate with thin plate re-
gression splines as a smoothing basis. We use the R package mgcv introduced in Wood
(2006), where each smooth function f; is estimated by penalised regression splines. In
this implementation, the amount of penalisation is calibrated according to the gener-
alised cross-validation (GCV) score, see Wood (2004) and Wood (2011) for details.

We note that the basis used to estimate f; has knots at each first week of September,
which are imposed to model the time-varying trend in the electricity load at the yearly
level. The boxplot of the residuals from fitting the above GAM to the weekly average
load between 1996 and 2008 is provided in Figure 3, and the estimated curves for
fi,..., fein (1) are plotted in Figure 4, with shaded area representing the twice standard

error bands below and above the estimate. The fitted curve explains 98.7% of the
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Figure 3: Boxplots of the residuals from fitting the weekly average load between 1996
and 2008 using the model (1) (left) and the model (3) (right).



data, and the mean absolute percentage error (MAPE) and the root mean square error
(RMSE) from the estimated curve are 1.63% and 1014MW, respectively. The two error
measures, MAPE and RMSE, are defined as

T T 1/2
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where L, denotes the estimated (or predicted) load in the week t.
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Figure 4: Estimated f1,..., f¢ from model (1); shaded regions represent the confidence
bands.



We state below some observations based on the estimated functions in Figure 4. The
top left panel shows that the electricity load increases over time ¢, and the trend is
almost linear. The top right panel shows clearly the presence of the seasonality as the
load is lower during holidays and in summer than that in winter. As for the lagged load
effect, L; increases with respect to its lagged value L, ; (the second left panel) and the
rate of increase is greater when L;_; > 5 x 10* approximately, which implies that the
value 5 x 10* may be regarded as a “threshold” acting on the impact of L, on L,.
Since the increase in the usage of electricity is closely related to the climate, which in
turn is linked to the time of the year, we may include the joint effect of L; ; and I,
in the model to accommodate the dependence between those two variables. Also, the
impact of temperature is significant (the second right panel). The low temperatures
lead to high electricity consumptions due to electrical heating, resulting the initial sharp
decrease in ﬁ. Then as the temperature increases from about 17°C upwards, ]/”:1 also
increases slowly, which can be accounted by the use of cooling system in hot weather.
As the meteorological changes within a year is closely related to the time index, we
may include the joint effect of the variables T; and I; in the model. The bottom panels
show that, although not as prominent as other terms, the lagged temperature and the
cloud cover do have an impact on the weekly average load at large values of T;_; and
C;. The effect of cloud cover is significantly different from 0 for large values of C}, as
heavy cloud cover induces the increasing use of lighting (the bottom right panel). We
note that the estimated effect of the low cloud cover may be an artifact: there are only
few observations available for low cloud cover and thus the variance of the fitted curve
at such small values of C} is large.

Based on the above observations, we propose another model

Ly = f1(t) + f2(Or) + fs(Li—1, Iy) + fa(Ty, 1) + f5(Ti—1, 1y) + f6(Cy, 1), (3)

where f3,..., fg include the weekly index I; as a covariate. To study the bivariate



effects, we plot the estimated f; and f; in Figure 5. The impact of the lagged load
L; 1 on the load L, is similar as previously described with the model (1) in the sense
that, the rate of increase of L; changes when L; i is greater than a threshold value.
However, we also note that the relationship between L, ; and L; varies throughout a
year with the weekly index I;, and that the impact of L;_; is far stronger in winter than
in summer. As for the effect of temperature, there is a smooth transition observable
throughout a year from the winter heating effect to the summer cooling effect.

With the new model, there is an increase in the percentage of the data explained
(99.2%), and both the MAPE (1.28%) and the RMSE (801MW) of the fitted trend
have decreased. Further, the GCV score indicates that the new model is favourable
(8.4 x 10%) to the previous one (1.2 x 10°). Also, when comparing the forecasts from
the two models for the weekly average loads of 2009, (3) performed considerably better
(MAPE 1.72%, RMSE 1250MW) than the model (1) (MAPE 2.15%, RMSE 1532MW).
We note that the superior performance of the model (3) at the weekly level carries over
to that at the daily electricity load forecasting; when applied to forecast the daily loads
in 2009, the MAPE and RMSE from the model (3) were 1.35% and 869MW respectively,
whereas the model (1) led to 1.41% and 901MW, see Section 4 for more details. From
these observations and also from the residual boxplots in Figure 3, we choose model (3)

over model (1).

3 Regression of daily load curves

Once the long-term trend is fitted as in Section 2 and removed, we regard the residuals
on the i-th day as a curve Y;(-) defined on the index set Z;, and model the dependency

among the daily loads via curve linear regression as

Yi(u) = | Xi(v)B(u,v)dv +¢;(u) for we, (4)

Zs
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Figure 5: Estimated f5 (left) and fy (right) from model (3).

where X;(-) can be, for example, the residual curve on the (i—1)-th day (i.e. Y;_1()),
or the curve joining Y; 1(-) and the temperature curve on the i-th day. Therefore the
index set of X;(-), say Zy, may be different from Z;. In (4), 3 is a regression coefficient
function defined on Z; x Zy, and &;(+) is noise with mean 0.

Linear regression with curves as both response and regressor, has been studied by,
among others, Ramsay and Dalzell (1991), He et al. (2000), and Chiou et al. (2004)
and Yao et al. (2005). The conventional approach is to apply the Karhunen-Loeve
decomposition to both Y;j(-) and X;(-), and then to fit a regression model using the
finite number of terms obtained from such decompositions. The Karhunen-Loeve de-
composition has featured predominantly in functional data analysis; see also Fan and
Zhang (1998) and Hall and Horowitz (2007). This approach is identical to the dimen-
sion reduction based on principal component analysis in multivariate analysis. Since
the principal components do not necessarily represent the directions in which X;(-) and
Yi(+) are most correlated, we present below a novel approach where the singular value
decomposition (SVD) is applied to single out the directions upon which the projections

of Y;(+) are most correlated with X;(-). Our method is closely related to the canonical
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correlation analysis yet we focus on regressing Y;(-) on X;(+), and thus Y;(-) and X;(-)
are not treated on an equal footing, which is different from, and much simpler than,
the canonical correlation analysis. The literature on functional canonical correlation
analysis includes Hannan (1961), Silverman (1996), He et al. (2003), Cupidon et al.
(2008), Eubank and Hsing (2008) and Yang et al. (2011).

3.1 Curve linear regression via dimension reduction

Let {Yi(-),Xi(")}, ¢ = 1,...,n, be a random sample where Y;(-) € Lo(Zy), X;(-) €
L5(Z,), and let Z; and Z, be two compact subsets of R. We denote by L5(Z) the
Hilbert space consisting of all the square integrable curves defined on the set Z, which
is equipped with the inner product (f,g) = [, f(u)g(u)du for any f,g € Lo(Z). We
assume that E{Y;(u)} = 0 for all u € Z; and E{X;(v)} = 0 for all v € Z,, and denote
the covariance function between Y;(-) and X;(-) by X(u,v) = cov{Y;(u), X;(v)}. Under
the assumption

/I E{Y; ()} du + / E{X,(t)?}dv < oo, (5)

Is

¥ defines the following two bounded operators between L£4(Z;) and Lo(Zs):

filu) — Y(u,v) fi(u)du € Lo(Zy), fo(v) — Y(u,v) fo(v)dv € Lo(Zy)

Il I2

for any f; € L£5(Z;). Based on the SVD, there exists a triple sequence {(p;,1;,\;), 7 =
1,2,...} for which

X(u,v) = Z VA () ¥ (v), (6)

where {p;} is an orthonormal basis of £5(Z;), {¢;} is an orthonormal basis of L5(Z5),

and {\;} are ordered such that

12



Further, it holds that for u € Z;, v € Zo and 7 = 1,2,.. .,

Mi(u, 2) @;(2) dz = X; p;(u), My(v, 2) 1;(2) dz = A; ;(v), (8)

I1 I2

where M; is a non-negative operator defined on L£5(Z;) as

]\41(u,u’):/Z Y(u, 2) (v, 2) dz, Mg(v,v’):/I Y(z,0) X(z,0") dz.

It is clear from (8) that \; is the j-th largest eigenvalue of Ay and M, with ¢; and ©; as
the corresponding eigenfunctions, respectively. Since {¢;} and {t;} are the orthonormal

basis of L9(Z;) and L5(Z,), we may write
Yi(u) = Zgzj%’(u)a Xi(v) = ij%’(v), (9)
j=1 j=1
where &;; and 7;; are random variables defined as

£ = / Yi(wo;(w)du, i = / Xi(0)py (). (10)

It follows from (6) that

VA for j=kF,
cov (&, min) = E(&ijmie) = (11)
0 for 7 # k.
We refer to Smithies (1937) for further details on the SVD in a Hilbert space.
Now, we are ready to introduce the notion of the correlation dimension between the two
curves. See Hall and Vial (2006) and Bathia et al. (2010) for the definitions of curve
dimensionality in different contexts.

Definition 1. The correlation between curves Y;(-) and X;(-) is r-dimensional if A, > 0

and A,y = 01n (7).

13



When the correlation between Y;(-) and X;(+) is r-dimensional, it follows from (11) that
cov{{;;, X;(v)} = 0 for all j > r and v € Z,. Moreover, the linear curve regression
(4) admits an equivalent representation with r (scalar) linear regression models; see
Theorem 1 below. Before presenting the theorem, we further assume that the regression
coefficient B(u,v) is in the Hilbert space Lo(Zy x I,), and that ¢;(-) are i.id. with
E{e;(u)} =0 and E{X;(v)e;(u)} =0 for any u € Z;, v € I, and 4,5 > 1.

Theorem 1. Let the linear correlation between Y;(-) and X;(:) be r-dimensional. Then

the curve regression (4) may be represented equivalently by

§ij = ZZ‘; BjkNik + i for y=1,...,n,

&'j:é‘ij fOIj:T+1,T+2,...,

(12)

where g;; = [ ¢;j(u)ei(u)du, and B, = [ @;(u)r(v)B(u, v)dudv.
The proof of Theorem 1 is provided in the supplementary document. Some remarks are

listed in order.

(a) For each j =1,...,r, we may apply model selection criteria such as the AIC, to
select among {7, k > 1} the variables to be included in the first linear regression
model of (12), noting var(n;,) — 0 as kK — oo; see (5) and (9). We also note
that {¢;(u)Yx(v)};, form an orthonormal basis of £9(Z; x Zy). Since f(u,v) €

Lo(Zy x Ip), it holds that 377, Y77, 6% = B(u, v)*dudv < oc.

fIl XIQ

(b) In fact, Theorem 1 holds for any valid expansion of X;(v) as X;(v) = >, nixtr(v),
as long as {¢;;} are obtained from the SVD. For example, we may use the Karhunen-
Loeve decomposition of X;(+). Then resulting 7 is the projection of X;(-) on the

k-th principal direction, and those {n;;} are uncorrelated with each other.

(c) Let X;(-) be of finite dimension in the sense that its Karhunen-Loeve decomposi-
tion has ¢ terms only as X;(v) = > 1_, Gxye(v), where ¢(> r) is a finite integer,

{7 () }{-, are ¢ orthonormal functions in £9(Zs), and (1, . .., (;, are uncorrelated

14



with var((y,) > 0 for all k = 1,...,¢q. Without loss of generality, we may assume
that var((;z) = 1, which can be achieved by replacing X;(v) by its linear transfor-
mation fb I'(v, w)X;(w)dw, where I'(v,w) = >1_, %(U)%(w)/\/m- Then
for such X;(-), the second equation in (9) is reduced to X;(v) = >_1_, it (v)
with {n;,} satisfying var(n;;) = 1 and cov(n,n;;) = 0 for any k& # j. This, to-
gether with (11) and (12), implies that 5;;, = 0 in (12) for all j # k. Hence (12)
is reduced to

Eii = Biimii + € for y=1,...,r,
i = PigThij T Eij (13)

£ij:8ij fOTjZT’+1,T+2,...,
i.e. under the additional condition on the dimensionality of X;(-), the curve

regression (4) is reduced to r simple linear regression problems.

We provide a recap of the above results in the context of vector regression. Let y;
and x; be, respectively, p x 1 and ¢ x 1 vectors. Suppose that rk(X%,,) = r, where
3z = cov(yi, x;). Then the multiple linear regression problem y; = Bx; +¢; may

be reduced to the r scalar linear regression problems:
/ .
um:vugj—'—elj) jzla T (14)

Here, (uj,--- ,up) = Uy, and v; = (vig, -+, v59) = V'x;. Also, ¥, = UAV'is
the SVD of ¥, with UU’ =1,, VV' =1, and A is a p x ¢ diagonal matrix with
only the first 7(< min(p, ¢)) main diagonal elements being nonzero. If var(x;) =
0’1, is satisfied in addition, (14) reduces to r simple regression models u;; =

’Uijﬁj—f—éfij fOI‘jIL"' ,T.
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3.2 Estimation

We assume the availability of observed curves {Y;(-), X;()} for i = 1,--- ,n. Recalling
Y (u,v) = cov{Y;(u), X;(v)}, let

Z{Y u) H{Xi(v) = X(v)},

where Y (u) = n~' Y2, Vi(u) and X (v) = n~* 3, X;(v). Performing the SVD on % (u, v),
we obtain the estimators (:\\j, o;, 1@) for (A;, @;, 1) as defined in (6). Note that this

SVD is effectively an eigenanalysis of the non-negative operator

A~

Ny (u, ) = /I S, ), v)dv, (15)

which may be transformed into an eigenanalysis of a non-negative definite matrix.
Furthermore @;(-) and %() may be taken as linear combinations of, respectively, the
observed curves Y;(-) and X;(-). See, for example, Section 2.2.2 of Bathia et al. (2010).
Proposition 1 below presents the asymptotic properties for the estimators Xj. Its proof
is similar to that of Theorem 1 of Bathia et al. (2010) and is thus omitted.
Proposition 1. Suppose that {Y;(-), X;(-)} is strictly stationary and )-mixing with the
mixing coefficients ¢ (k) satisfying the condition Y, ki(k)"/? < co. Further, assume
E{fI u)?du + fZ (v)?dv}? <ooandlet Ay > - > A\ >0=Xy1 = \jp =+~

Then as n — oo,
(i) |Xk — M| =O0,(n~Y?) for 1 <k <r, and
(i) [Ae| = Op(n7Y) for k > r.

We refer to Section 2.6 of Fan and Yao (2003) for the further details on mixing con-
ditions. The fast convergence for the zero-eigenvalues A\; with j > 7 is due to the
quadratic form in (15), see the relevant discussion in Bathia et al. (2010) and Lam and

Yao (2011). It follows from Proposition 1 that the ratios XJ-H //)\\j for j < r are asymp-
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totically bounded away from 0, and XTH /Xr — 0 in probability. This motivates the
following ratio-based estimator. In Lam and Yao (2011), a more elaborate investigation

of this estimator can be found in a different context.

The ratio-based estimator for the correlation dimension r:

7= argmini<;<q XjH/Xj, where d > r is a fixed and pre-specified integer.

One alternative is to use properly defined information criteria for estimating r as in,
e.g. Hallin and Liska (2007), where a similar idea was adopted for high-dimensional

time series analysis. To this end, we define

d d
1 ~ 1 ~
IC\(q) = = § A +71¢-g(n), and IC5(q) = log (c* + 5 § >\k> + 72q - g(n),

k=q+1 k=q+1

where c,, 7,75 > 0 are constants, d > r is a pre-specified integer, and g(n) > 0 satisfies
n-g(n) —oo and g¢g(n)—0, asn— oo. (16)

Theorem 2 below shows that 7 = arg ming<,<4 /C;(¢) is a consistent estimator of r for
both ¢ = 1,2. The proof is given in the supplementary document.

Theorem 2. Let the conditions of Proposition 1 hold and both r and d be fixed as
n — oo. Then, for both i = 1,2, we have P{IC;(r) < IC;(q)} — 1 for any 0 < ¢ < d
and g # r.

The choice of ¢, is not critical as it is introduced to ensure that the term inside the
logarithm is positive. The proof of Theorem 2 indicates that the consistency holds for
any constants 7; and 7. However, they affect the finite sample performance of the
method and therefore in practice, the choice of the tuning parameters and 7 and 7,
and the penalty function g(n) requires more care. In our data analysis reported below,

1

we set g(n) = n~'/2 and elaborate the choice of 7; using the following majority voting

scheme.
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We start with two values 7, and 7" such that /C;(q) is minimised at ¢ = d for any
7; < T, and at ¢ = 0 for any 7; > 7*. Over the interval [7., 7*], the function h(7r) =
arg min, /C;(q) is non-increasing in 7. Then, assigning a grid of values from [7,, 7*] as
7;, we look for the ¢ that is returned over the longest interval of 7; within [7,, 7*], and
set such ¢ as the estimate of r. Figure 8 below shows an example of applying 1C5(q)
for the selection of r, where ICy(q) is computed over ¢ = 1,...,20 for 100 different
values of 7. In this example, ¢ = 4 was returned most frequently as the minimiser of
I1C5(q). We have further conducted a simulation study to check whether the proposed
scheme worked well on simulated datasets of varying dimensionalities, and the results

have confirmed its good performance over a range of 7.

3.3 An illustration

We illustrate the hybrid approach by predicting the load curve on 2 April 2009, which
is denoted by Z(-). Unfortunately, even after removing the long-term trend estimated
in Section 2, there exist some systematic discrepancies among the profiles of daily load
curves over different days in a week and different months in a year. Figure 6 shows
that, while the daily loads on Tuesdays in July are similar to each other, they are
distinctively different from those on Saturdays in July, and also from those on Tuesdays
in December. Those profile differences are reflected predominantly in the locations and
magnitudes of daily peaks. Typically in France, daily peaks occur at noon in summer
and in the evening in winter, due to the economic cycle as well as the usage of electrical
heating and lighting. Hence, the daily curves and presumably their dynamic structure
vary over different days within a week, and also over different months in a year; further
elaboration on those features is provided in Section 4 below.

To forecast the load curve on Wednesday, 2 April 2009, we take the joined curve of the
de-trended curve on Tuesday, 1 April 2009 (= X"(-)) and the temperature curve on 2
April 2009 (= XT(+)) as the regressor, i.e. X(-) = (X(-), XT(:)). We use all the pairs
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of curves on Tuesday and Wednesday in April from 1996 to 2008 as our observations
to fit a curve regression model, and the total number of observations is n = 53. Those
53 pair curves {X;(+), Yi(-)} are plotted in Figure 7 together with their de-meaned and

standardised counterparts. From those de-meaned curves, we form a sample covariance

matrix
~ 1 & . _
E(u,v) = 2 > iw) = V() H{Xi(v) = X (0)}, (17)
=1
where Y (u) = 231,53 Yi(u) is the average of all the de-trended daily curves on

Wednesdays in April between 1996 and 2008, and X (v) is obtained analogously. Ap-
plying the SVD to EA](U,U), we obtain the estimators (Xk,@g,@gk) To determine the
correlation dimension, we apply the information criterion /C5(g) with 100 different val-
ues of 7o, as discussed towards the end of Section 3.2. Figure 8 shows IC5(q) against ¢
for each of the 100 m-values. With this set of data, ¢ = 4 minimises C5(q) over the

longest interval of 75, which leads to the estimator 7 = 4.

5000 10000 15000

0

—-10000  -5000

time

Figure 6: De-trended daily curves for Tuesdays in July (black), Saturdays in July (red)
and Tuesdays in December (blue) between 1996 and 2008.

19



10000
|
10000

5000

5000
|

0
1
0

-5000
|
-5000

6000

4000

2000

= oS A

-2000 0

4000

Figure 7: The 53 curves X*(-) (top-left), XI(-) (top-middle) and Y;(-) (top-bottom),
together with their respective mean curves plotted together in black. The de-meaned
and standardised curves are plotted in the bottom panels.
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Figure 8: Plots of ICy(q) against ¢ for 100 different values of 7. The curves with the
minimum attained at ¢ = 4 are highlighted in red.
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Our predicted load curve is of the form
o~ —~ — 4 A~
Z(u) = Ly +Y(u) + > &@(w), (18)
j=1

where Ew is the predicted weekly trend for the week containing 2 April 2009 from the
GAM method in Section 2, Y (u) is the mean curve as in (17), and Ej, j=1,...,4 are
the predictors based on linear regression models defined as follows. Based on Theorem 1,

the curve linear regression Y;(-) on X;(-) may be recast into 7 = 4 ordinary regression

models
N 10
§i= Y Binllw+eiy, i=1--,53 j=1--- 4, (19)
k=1
where
&= | (Milw) =Y lg;(wdu, T = [ {Xi(v) = X(0)}or(v)do,
Il ZQ

see (10). In (19) we choose to use the first 10 singular value components of the regressor
only, see Section 4.2 below. Based on the least squares estimators ng from the regression
models (19), we obtain the predictors &; as & = S, sk, Where 7, = fI2{X(v) —
X (0)}n(v)dv.

We compare our method with the two alternative predictors: the oracle and the baseline

predictors. The oracle predictor is of the form
~ 4 ~
Z(u) = Ly + Y (u) + ) &@;(u), (20)
j=1
which is defined similarly as our predictor (18) except with §Aj being replaced by g] =

(Y() = Y(-),®;), where Y(-) denotes the de-trended load curve on 2 April 2009. Note

that Y'(+) is unavailable in practice, and hence the name “oracle”. The baseline predictor
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is defined as

Z(u) = Ly + Y (u), (21)

which is the sum of the first two terms in our predictor, ignoring the dynamic dependence
between days. We compare the performance of the three predictors in terms of the

following two error measures

148

N 1 48 N /
MAPE:E;\(fj—fj)/fj\ and RMSE:{E;(fj_fj)z}l 2

where ]/“; and f; denote the predicted and the true loads in the j-th half-hour inter-
val. The MAPE and RMSE for our predictor Z(-), the oracle predictor Z(-) and the
baseline predictor Z(-) are (0.91%, 634MW), (6.00%, 420MW) and (3.14%, 1911MW),
respectively. The three predicted curves are plotted in Figure 9 together with the true
curve. Our predictor Z (+), making good use of the dynamic dependence across different
days, is a significant improvement from the baseline predictor Z(-). While the oracle
predictor Z (+) is impractical as gj is unavailable in practice, its superior performance in
terms of both MAPE and RMSE indicates that the dimension reduction achieved via
SVD retains the relevant dynamic information in the system.

Finally, we discuss the extension to multi-step ahead predictions using the hybrid ap-
proach, which straightforwardly translates to producing multi-step ahead predictions
from the GAM at the weekly level, and from the ordinary (scalar) linear regression
steps at the daily level. Specifically, if the corresponding week of the multi-step ahead
forecast is different from that of the one-step ahead forecast, the forecast is obtained by
plugging the average temperature and cloud cover of the week into the fitted GAM. At
the daily level modelling, the forecast of the next day’s load replaces (part of) the re-
gressor curve to produce that of the following day, and this is repeated until the desired
multi-step ahead prediction is achieved. In the above example, when making a two-day

ahead prediction for Thursday, 3 April 2009 on 1 April 2009, the first part of the regres-
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Figure 9: The true daily load curve (grey, solid) of 2 April 2009, together with its
predicted curves by our method (black, filled circle), the oracle method (red, empty
square) and the base-line (blue, empty triangle).

sor curve becomes X(-) = Z(u), while the second part is the daily temperature curve
on 3 April 2009. Following the identical steps described in this section, the two-step
ahead forecast achieves MAPE 1.06% and RMSE 657TMW. In general, the performance

of multi-step ahead forecasts is worse than that of one-day ahead forecasts as the errors

in the latter carry over to the errors in the former.

4 Predicting daily loads in 2009

To compare different predictive models more systematically, and to gain further appre-
ciation of the performance of our method over different periods of a year, we predict
the daily load curves for all days in 2009. For each day in 2009, we use the data from 1
January 1996 to its previous day to build the prediction models in the same manner as
described in Section 3.3, i.e. first the trend component (i.c. as Ly, in (18)) is predicted

by the GAM model in (3), and then the residual process is divided into daily curves.
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Table 1: Day types furnished by the EDF experts.

index 0 1 2 3 4 5 6 7

day type | Mon | Tue-Thu | Fri | Sat | Sun (rest) | Sun (Jun-Jul) | Sun (Aug) | Sun (Dec)

4.1 Classification of daily curves

Discussions in Section 3.3 indicate that we need to treat the daily residual curves on
each day of a week differently. For the French electricity load dataset, we are furnished
with the day type of each day, i.e. a classification of the daily curves determined by the
experts at EDF. The day type is defined with respect to different days of a week, and
bank holidays are assigned to separate day types according to their profiles. See Table 1
for the summary of day types. Furthermore, to take into account the seasonal changes
which may be present in the shapes (E{Y;(-)} and E{X;(:)}) as well as the dependence
structure (X(u, v) = cov(Y;(u), X;(v))) of daily curves, we divide one year into 9 seasonal
segments: January to February, March, April, May, June to July, August to September,
October, November, and December. This segmentation was determined by inspecting
the decomposition of electricity loads with respect to adaptively chosen orthonormal
functions. More precisely, we performed principal component analysis on the pool of
de-meaned daily curves (according to the day type) and decomposed them with respect
to the first principal direction. By examining the changes in the decomposition over a
year (see Figure 10) we obtained the segmentation of a year as provided above.

While the above classification lacks a rigorous statistical ground, the prediction model
based on this classification performs well in practice. Besides, classification of electricity
load curves can stand alone as an independent research problem which has attracted
considerable attention, see e.g. Chiou and Li (2007), Ray and Mallick (2006), Serban
and Wasserman (2005) and James and Sugar (2003) for functional clustering and An-
toniadis et al. (2010) in the context of electricity loads classification. In summary, each
daily curve is classified according to the day of a week and the season of a year, and

there are about 67 pairs of classes for any two consecutive days. For each pair of classes,
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Figure 10: Decomposition of the daily curves from 2008 with respect to the first principal
component estimated from the pooled daily curves between 1996 and 2008: seasonal
segments are denoted by dotted, red lines.

we fit a prediction model separately in the same manner as described in Section 3.3.

4.2 Prediction comparisons

In applying the proposed hybrid method, we consider four different versions H1-H4
depending on the choice of regressor. H1 uses the load curve on the current day as the
regressor (i.e. X(-) = X%(-)). H2 uses the joined curve of the load curve on the current
day and the temperature curve on the next day (i.e. X(-) = (X%(-), XT(-))), as it has
been practiced in Section 3.3. H3 adopts the same regressor as H1 but with a half-day
curve such that, if we are forecasting the electricity load from 00:30 to 12:00 on the next
day, the load curve on the current day from 12:30 to 24:00 is used as the regressor curve;
if we are forecasting the curve from 12:30 to 24:00, the regressor curve is the load curve
from 00:30 to 12:00 on the same day. Similarly, H4 employs the same regressor as H2 but
also with half-day curves. To facilitate a more comprehensive comparison, we predict
the daily load curves by our proposed hybrid method (18), the oracle method (with the

same regressor as in H2, (20)) and the baseline method (21). We also include in the
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comparison study, the prediction results from the EDF operational model, the seasonal
ARIMA model (denoted as SARIMA) as in Taylor and McSharry (2008), a combination
of GAM and SARIMA (GSARIMA) method, and the exponential smoothing technique
(EST) discussed in Taylor (2010). In total, there are 10 different models used in our
comparison study.

Denote the number of observations for each class by n. Since we impose an upper bound
of 10 on the correlation dimension r, we include those classes with n greater than 15 in
our comparison study. Also, only the first 10 7;,s are used in the scalar linear regression
models (12), as having more than 10 terms does not improve the results dramatically
while n is allowed to be as small as 15. We further note that it is considered a more
challenging task to forecast electricity loads for holidays than those for working days,
and often additional prior information is used for holidays in practice. Instead of making
the whole exposition over complicated, we focus on the forecasting for the working days
only. There are 315 days in total where all the conditions stated above are satisfied.
Note that in the hybrid approach, we require the forecasts of the average temperature
of the following week, as well as the temperature curve of the next day. As such
information can easily be furnished by Météo-France for this particular dataset, we
may assume that the forecast of the next day’s temperature has been provided in the
form of a curve, and the weekly average temperature of the following week can be
replaced by the mean of such a forecast (in accordance with the assumption that the
long-term trend to vary little within each week). Since the resulting MAPE (1.38%)
and RMSE (891MW) from H2 are only slightly worse than those obtained with the
true temperature values (MAPE 1.35%, RMSE 869MW), we report in what follows the
results obtained assuming that all the necessary information is available. Forecasting
errors are measured by the MAPE and RMSE, and summarised in Table 2. We also
present the errors with respect to different seasons and day types in Figures 11-12.

The prediction based on any model considered is more accurate in summer than in
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winter, see Figure 11. The relative difficulty of load forecasting in winter has been noted
for the French dataset in Dordonnat et al. (2008), Dordonnat et al. (2011) and Cugliari
(2011). SARIMA and GSARIMA are consistently outperformed by other methods by
a large margin, and between the two, GSARIMA achieves smaller forecasting errors.
Between H1 (H3) and H2 (H4), the latter attains considerably smaller forecasting errors
as it makes use of more information on the temperature, although Figure 11 shows
that this observation is not held consistently throughout the year. We note that the
performance of our approach may further be improved by making an adaptive choice
of regressor curve dependent on the level of temperature.

From Figure 11, it is interesting to observe that the half-day based approaches, H3 or H4,
achieve better forecasting performance than H1 or H2 in some colder months (February—
April, October-November), while the opposite is true in warmer months. This may
be understood in relation with the variability among the curves, which is considerably
greater in winter than in summer (see e.g. Figure 6). On a similar note, while forecasting
errors from the EDF operational model are smaller than those from hybrid approaches
on average, the difference is noticeably reduced from May to September. Indeed, H1
and H2 return errors which are comparable to or even smaller than those from the
operational model in June, July and September. In terms of day type, the forecasting
errors from the hybrid methods are larger on Mondays than for the rest of a week
on average (see Figure 12), which may also be due to the greater variability in the
relationship between the curves from Sundays and Mondays. The oracle predictor
attains the minimum errors throughout the year except for in December, which suggests
that there is the scope for improvement in the hybrid approach by improving the linear
regression fit at the daily level.

There are certain factors which are known to have substantial influence on daily elec-
tricity loads yet have not been incorporated into our hybrid modelling. For example,

from November to March, EDF offers special tariff days to large businesses as financial
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Table 2: Summary of MAPE and RMSE of the electricity load forecasts for 01/01/2009-
31/12/2009 from our hybrid modelling (H1, H2, H3, H4), oracle, base, SARIMA,
GSARIMA, EST and operational model.

H1 H2 H3 H4 | oracle | base | SARIMA | GSARIMA | EST | operation

MAPE (%) 154 | 1.35 | 1.37 | 1.20 | 0.46 | 3.05 2.55 2.49 1.97 0.93
RMSE (MW) | 1018 | 869 | 918 | 787 317 | 1882 1607 1586 1330 625

incentives, which are activated to cut heavy electricity consumption in winter. Since
the scheme is known to affect not only the daily loads on the special tariff days but also
on the days before and after those days, we expect that including prior information on
such days, e.g. by creating new classes, can further improve the quality of the forecasts

especially in winter.

5 Conclusions

In this paper, we proposed a hybrid approach to electricity load modelling with the
aim of forecasting daily electricity loads. In the hybrid procedure, we model the overall
and seasonal trends of the electricity load data at the weekly level, by fitting a GAM
with temporal and meteorological factors as explanatory variables. At the daily level,
the serial dependence among the daily load curves is modelled under the assumption
that the curves from two successive days have a linear relationship, and we propose
a framework which effectively reduces the curve linear regression to a finite number
of scalar linear regression problems. To the best of our knowledge, it has not been
explored elsewhere to model the multi-layered features of electricity load dataset at
multiple levels separately. Compared to the current operational model at EDF, our
proposed method is more model-centred and developed without much of the specific
knowledge that have been included in the former, while it still retains a competitive
prediction capacity. We also note that our approach has the potential to be more
adaptive to changing electricity consumption environment, as well as being applicable

to a wider range of problems without much human intervention.
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Figure 12: Bar plots of MAPE (top) and RMSE (bottom) with respect to the day type determined
by experts; from left to right: Mondays, Tuesdays-Thursdays, Fridays, Saturdays, Sundays (except for
June-August and December), Sundays in June-July, Sundays in August and Sundays in December.
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When applying the hybrid approach to real-life dataset in Section 4.2, some factors
which may have substantial influence over daily electricity loads have not been taken
into account. This could have resulted in worsening the performance of our method
for winter days when compared to the operational model, and it remains as a task to
incorporate such relevant information in our method for practical applications. Also as
briefly mentioned in Section 4.2, an adaptive choice of the regressor curve, depending
e.g. on the level of temperature, may lead to better results in daily load forecasting.
Indeed, an automatic selection of the regressor in the curve linear regression framework
may benefit the prediction performance as a generic tool beyond the electricity load

forecasting, and we leave the problem for future research.
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