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Abstract

It is increasingly important in financial economics to estimate volatilities of asset

returns. However most the available methods are not directly applicable when the num-

ber of assets involved is large, due to the lack of accuracy in estimating high dimensional

matrices. Therefore it is pertinent to reduce the effective size of volatility matrices in

order to produce adequate estimates and forecasts. Furthermore, since high-frequency

financial data for different assets are typically not recorded at the same time points,

conventional dimension-reduction techniques are not directly applicable. To overcome

those difficulties we explore a novel approach that combines high-frequency volatility

matrix estimation together with low-frequency dynamic models. The proposed method-

ology consists of three steps: (i) estimate daily realized co-volatility matrices directly

based on high-frequency data, (ii) fit a matrix factor model to the estimated daily co-

volatility matrices, and (iii) fit a vector autoregressive (VAR) model to the estimated

volatility factors. We establish the asymptotic theory for the proposed methodology

in the framework that allows sample size, number of assets, and number of days go to

infinity together. Our theory shows that the relevant eigenvalues and eigenvectors can

be consistently estimated. We illustrate the methodology with the high-frequency price

data on several hundreds of stocks traded in Shenzhen and Shanghai Stock Exchanges

over a period of 177 days in 2003. Our approach pools together the strengths of model-

ing and estimation at both intradaily (high-frequency) and interdaily (low-frequency)

levels.

Some key words: dimension reduction; eigen-analysis; factor model; high frequency data;

matrix process; realized volatilities; vector autoregressive model.

Running title: Large Volatility Matrix Inference
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1 Introduction

Modeling and forecasting the volatilities of financial returns are vibrant research areas in

econometrics and statistics. For financial data at daily or longer time horizons, which are

often referred to as low-frequency data, there exists extensive literature on direct volatil-

ity modeling using GARCH, discrete stochastic volatility, and diffusive stochastic volatility

models as well as indirect modeling using implied volatility obtained from option pricing

models.

With the availability of intraday financial data, which are called high-frequency data,

there is an surging interest on estimating volatilities using high-frequency returns directly.

The field of high-frequency finance has experienced a rapid evolvement in past several years.

One of the focus points at present is to estimate integrated volatility over a period of time,

say, a day. Estimation methods for univariate volatilities include realized volatility (RV),

bi-power realized variation (BPRV), two-time scale realized volatility (TSRV), wavelet re-

alized volatility (WRV), realized kernel volatility (KRV), pre-averaging realized volatility,

and Fourier realized volatility (FRV). For the cases with multiple assets, a so called non-

synchronized problem arises, which refers to the fact that transactions for different assets

often occur at distinct times, and the high-frequency prices of different assets are recorded

at mismatched time points. Hayashi and Kusuoka (2005) and Zhang (2011) proposed to

estimate integrated co-volatility of the two assets based on overlap intervals and previous

ticks, respectively. Barndorff-Nielsen et. al. (2010) employed a refresh time scheme to syn-

chronize the data and then apply a realized kernel to the synchronized data for estimating

integrated co-volatility. Christensen et. al. (2010) studied integrated co-volatility estimation

by the pre-averaging approach. Nevertheless most existing works on volatility estimation us-

ing high-frequency data are for a single asset or a small number of assets, and therefore are

only directly applicable when the integrated volatility concerned is either a scalar or a small

3



matrix.

In reality we often face with scenarios involving a large number of assets. The integrated

volatility concerned then is a matrix of a large size. In principle, a large volatility matrix

may be estimated as follows: estimating each diagonal element, representing an integrated

volatility of a single asset, by univariate methods such as RV and BPRV, and estimating each

off-diagonal element, representing an integrated co-volatility of two assets, by the method of

Hayashi and Kusuoka (2005) or Zhang (2011). However, due to the large number of elements

in the volatility matrix, such a naive estimator often behaves poorly. It is widely known that

as dimension (or matrix size) go to infinity, the estimators such as sample covariance matrix

and usual realized co-volatility estimators are inconsistent in the sense that the eigenvalues

and eigenvectors of the matrix estimators are far from the true targets (Johnstone (2001),

Johnstone and Lu (2009), and Wang and Zou (2010)). Banding and tresholding are proposed

by (Bickel and Levina (2008 a, b)) to yield consistent estimators of large covariance matrices,

and a factor model approach is used in Fan et al. (2008) to estimate large covariance matrices.

To illustrate this point, we conduct a simulation as follows: consider p assets over unit time

interval with all log prices following independent standard Brownian motions. Observations

were taken without noise at the same time grids ti = i/n for i = 0, 1, · · · , n. Then the true

integrated volatility matrix V is the identity matrix Ip. The estimator for V based on the

RV and the co-RV methods is

V̂ = (V̂jk), with V̂jk =
1

n

n∑
i=1

Zij Zik for 1 ≤ j, k ≤ p.

where Zij, i = 1, · · · , n, j = 1, · · · , p, are effectively independent N(0, 1) random variables.

Setting p = 100, we drew 50 samples of size n = 100. For each of 50 samples, we computed

the 100 eigenvalues of V̂ and evaluated their maximum and minimum eigenvalues. Of the 50

sets of 100 eigenvalues, we found that all sets range approximately from zero to four with an

average minimum eigenvalue 0.0001 and an average maximum eigenvalue 3.9. This clearly
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indicates the serious lack of accuracy in estimating V since all its eigenvalues are equal to 1.

The inaccuracy of the estimator V̂ is further manifested by the wide range of its eigenvalues

displayed in Figure 1. This numerical experiment indicates that it is essential to reduce the
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Figure 1: Plots of eigenvalues V̂ from a simulation with 50 repetitions. (a) Each of the 50

curves represents the ordered 100 eigenvalues of each sampled V̂. (b) the minimum and

maximum eigenvalues of V̂ across 50 repetitions.

number of estimated parameters in such a high-dimensional problem.

This paper considers high-frequency prices observed on a large number of assets over

many days. We propose a matrix factor model for daily integrated volatility matrix pro-

cesses. The matrix factor model facilitates combining high-frequency volatility estimation
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with low-frequency dynamic models as well as reducing an effective dimension in large volatil-

ity matrices. It is important to note that the proposed matrix factor model is directly for

integrated volatility matrices. Since prices for different assets are typically observed at differ-

ent times, it is often impossible to apply an ordinary factor model to the original price data

directly. Nevertheless the available abundance of the information in high-frequency data

should make modeling daily volatilities easier. Indeed the inference for our matrix factor

model is more direct than that for the ordinary factor volatility models for price data.

Our estimation procedure consists of three steps. First we estimate integrated volatility

matrix for each day by thresholding average realized volatility matrix (TARVM) estimators.

We then perform an eigen-analysis to fit a matrix factor model for the estimated daily

integrated volatility matrices and obtain estimated daily factor matrices. Finally we fit a

vector autoregressive (VAR) model for the estimated daily volatility factor matrices. The

proposed methodology pools together strengths in modeling and estimation at both low-

frequency and high-frequency levels. In the univariate case where dimension reduction is

not an issue, Andersen, Bollerslev and Diebold (2003) and Corsi (2003) demonstrated that

the forecasting for volatilities may be improved from fitting a heterogeneous AR model to

RV and BPRV based estimators of integrated volatilities. The approach is termed as the

HAR-RV model. Our proposal may be viewed as a high dimensional version of the HAR-RV

approach based on new idea on matrix factor modeling.

We have established novel asymptotic theory for the proposed methodology in the frame-

work that allows p (number of assets), n (average sample size), and L (number of days) all go

to infinity. The established convergence rates for TARVM estimators and the matrix factor

model under matrix norm provide a theoretical justification for the proposed methodology.

These results indicate that the relevant eigenvalues and eigenvectors in the proposed factor

modeling can be consistently estimated for large p. We also show that fitting the VAR model
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with the estimated daily volatility factor matrices from high-frequency data is asymptotically

as efficient as that with true daily volatility factor matrices.

The rest of the paper is organized as follows. The proposed methodology is presented

in Section 2. Its asymptotic theory is established in Section 3. Numerical illustration is

reported in Section 4. Section 5 features conclusions. All proofs are collected in Section 6.

2 Methodology

2.1 Price model and observed data

Suppose that there are p assets and their log price process X(t) = {X1(t), · · · , Xp(t)}T obeys

an Itô process governed by

dX(t) = µt dt+ σt dWt, t ∈ [0, L], (1)

where L is an integer, Wt is a p-dimensional standard Brownian motion, µt is a drift taking

values in IRp, and σt is a p× p matrix. Both µt and σt are assumed to be continuous in t.

Let a day be a unit time. The integrated volatility matrix for the ℓ-th day is defined as

Σx(ℓ) =

∫ ℓ

ℓ−1

σsσ
T
s ds, ℓ = 1, · · · , L.

Suppose that high-frequency prices for the i-th asset on the ℓ-th day are observed at times

tij ∈ (ℓ− 1, ℓ], ℓ = 1, · · · , L. We denote by Yi(tij) the observed log price of the i-th asset at

time tij. Due to the so-called non-synchronized problem, typically ti1j ̸= ti2j for any i1 ̸= i2.

Furthermore the high-frequency prices are typically masked by some micro-structure noise

in the sense that the observed log price Yi(tij) is a noisy version of the corresponding true

log price Xi(tij). A common practice is to assume

Yi(tij) = Xi(tij) + εi(tij), (2)
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where εi(tij) are i.i.d. noise with mean zero and variance ηi, and εi(·) and Xi(·) are inde-

pendent with each other.

Let ni(ℓ) be the sample size for asset i on the ℓ-th day, i.e. ni(ℓ) = the number of

tij ∈ (ℓ− 1, ℓ], n(ℓ) =
∑p

i=1 ni(ℓ)/p, the average sample size of the p assets on the ℓ-th day,

and n =
∑L

ℓ=1 n(ℓ)/L, the average sample size across the p assets and over all L days.

2.2 Realized volatility matrix estimator

To highlight the basic idea in realized volatility matrix estimation, we first consider estimat-

ing Σx(1), the integrated volatility matrix on day one, by averaging realized volatility matrix

(ARVM) estimator proposed in Wang and Zou (2010). Suppose that τ = {τr, r = 1, · · · ,m}

is a pre-determined sampling frequency. For asset i, define previous-tick times

τi,r = max{tij ≤ τr, j = 1, · · · , ni(1)}, r = 1, · · · ,m.

Based on τ we define realized co-volatility between assets i1 and i2 by

Σ̃y(1, τ )[i1, i2] =
m∑
r=1

[Yi1(τi1,r)− Yi1(τi1,r−1)] [Yi2(τi2,r)− Yi2(τi2,r−1)], (3)

and realized volatility matrix by

Σ̃y(1, τ ) = (Σ̃y(1, τ )[i1, i2])1≤i1,i2≤p. (4)

We take the pre-determined sampling frequency τ as the following regular grids. Given a

fixed m, there are K = [n(1)/m] classes of non-overlap regular grids given by

τ k = {(r−1)/m, r = 1, · · · ,m}+(k−1)/n(1) = {(r−1)/m+(k−1)/n(1), r = 1, · · · ,m}, (5)

where k = 1, · · · , K, and n(1) is the average sample size on day one. For each τ k, using (3)

and (4) we define realized co-volatility Σ̃y(1, τ
k)[i1, i2] between assets i1 and i2 and realized
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volatility matrix Σ̃y(1, τ
k). The ARVM estimator is given by

Σ̃y(1)[i1, i2] =
1

K

K∑
k=1

Σ̃y(1, τ
k)[i1, i2]− 2m η̂i1 1(i1 = i2), (6)

Σ̃y(1) = (Σ̃y(1)[i1, i2]) =
1

K

K∑
k=1

Σ̃y(1, τ
k)− 2m η̂, (7)

where

η̂i =
1

2ni(1)

ni(1)∑
j=1

[Yi(ti,j)− Yi(ti,j−1)]
2, (8)

are estimators of noise variances ηi, and η̂ = diag(η̂1, · · · , η̂p) is the estimator of η =

diag(η1, · · · , ηp). The averaging in (6) and (7) is to reduce the impact of microstructure

noise on realized volatility matrices Σ̃y(1, τ
k) and yield a better ARVM estimator.

When p is small, Σ̃y(1) provides a good estimator for Σx(1). But for large p, it is well

known that Σ̃y(1) is inconsistent. In fact, statistics theory for small n and large p or large n

but much larger p problems shows that the eigenvalues and the eigenvectors of, for example,

a sample covariance matrix or a realized volatility matrix are inconsistent estimators for the

corresponding true eigenvalues and eigenvectors. The proposed methodology in this paper

relies on consistent estimation of eigenvalues and eigenvectors of large volatility matrices. In

order to estimate Σx(1) consistently for large p, we need impose some sparsity structure on

Σx(1) (see (18) in Section 3) and threshold Σ̃y(1) by retaining its elements whose absolute

values exceed a given value and replacing others by zero. See Bickel and Levina (2008a,b),

Johnstone and Lu (2009), Wang and Zou (2010). We threshold Σ̃y(1) and obtain an estimator

Σ̂y(1) = Tϖ[Σ̃y(1)] =
(
Σ̃y(1)[i1, i2]1(|Σ̃y [i1,i2]|≥ϖ)

)
, (9)

where ϖ is a threshold. The (i1, i2)-th element of Σ̂y(1) is equal to Σ̃y(1)[i1, i2] if its absolute

value is greater than or equal to ϖ and zero otherwise. The threshold ARVM estimator

Σ̂y(1) is called TARVM estimator.
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Similarly, based on high-frequency data on the ℓ-th day we construct ARVM estimator

Σ̃y(ℓ) and define TARVM estimator Σ̂y(ℓ) to provide an estimator for the integrated volatility

matrix Σx(ℓ), ℓ = 2, · · · , L.

2.3 A matrix factor model

To reduce the effective number of entries in Σx(ℓ) and connect high-frequency volatility

matrix estimation with low-frequency volatility dynamic models, we propose a factor model

as follows,

Σx(ℓ) = AΣf (ℓ)A
T +Σ0, ℓ = 1, · · · , L, (10)

where r is a fixed small integer (much smaller than p), Σ0 is a p×p positive definite constant

matrix, Σf (ℓ) are r×r positive definite matrices and treated as factor volatility process, and

A is a p×r factor loading matrix. This effectively assumes that the daily dynamical structure

of the matrix process Σx(ℓ) is driven by that of a lower-dimensional latent process Σf (ℓ),

while Σ0 represents the static part of Σx(ℓ). Although the form of the above model is similar

to the factor volatility models proposed by, for example, Engle and Rothschild (1990), the

key difference here is that we have the ‘observations’ Σ̂y(·) directly on the volatility process

Σx(·). Since the high-frequency prices are measured at the different times for different assets,

we cannot apply a factor model directly to the observed high-frequency data Yi(tij).

The availability of the estimators for Σx(·) from high-frequency data makes it easier

to estimate both the factor loading matrix A and the factor volatility Σf (·). In fact the

estimation problem now reduces to a standard eigen-analysis and can be easily performed for

p as large as a few thousands. This is in marked contrast to the more standard circumstances

when only the observations on Xt are available; see, for example, Pan and Yao (2008). To

fix the idea, let us temporarily assume that we observe Σx(ℓ). Note that there is no loss of

generality in assuming A in (10) satisfying the condition AT A = Ir. In fact, A is still not
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completely identifiable even under this constraint, however the linear space spanned by the

columns of A is. Note that there exists a p × (p − r) matrix B for which BT A = 0 and

BT B = Ip−r, i.e. (A,B) is a p× p orthogonal matrix. Now multiplying BT on both sides of

(10), we obtain that

BTΣx(ℓ) = BTΣ0. (11)

Put

Σ̄x =
1

L

L∑
ℓ=1

Σx(ℓ), S̄x =
1

L

L∑
ℓ=1

{Σx(ℓ)− Σ̄x}2. (12)

Equation (11) implies that for all ℓ = 1, · · · , L, BTΣx(ℓ) = BT Σ̄x, and

BT S̄xB =
1

L

L∑
ℓ=1

{BT Σx(ℓ)−BT Σ̄x}{Σx(ℓ)B− Σ̄x B} = 0. (13)

This suggests that the columns of B are the p − r orthonormal eigenvectors of S̄x, cor-

responding to the (p − r)-fold eigenvalue 0. The other r orthonormal eigenvectors of S̄x,

corresponding to the r non-zero eigenvalues, may be taken as the columns of the factor

loading matrix A.

Of course Σx(ℓ) is unknown in practice. We use Σ̂y(ℓ) as a proxy. Let

Σ̄y =
1

L

L∑
ℓ=1

Σ̂y(ℓ), S̄y =
1

L

L∑
ℓ=1

{Σ̂y(ℓ)− Σ̄y}2, (14)

where Σ̂y(ℓ) are TARVM estimators computed from high-frequency data; see Section 2.2

above. Then the estimator Â is obtained using the r orthonormal eigenvectors of S̄y, cor-

responding to the r largest eigenvalues, as its columns. Consequently the estimated factor

volatilities are

Σ̂f (ℓ) = ÂT Σ̂y(ℓ)Â, ℓ = 1, · · · , L, (15)

and the estimator for Σ0 in model (10) may be taken as

Σ̂0 = Σ̄y − ÂÂT Σ̄yÂÂT . (16)
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2.4 VAR modeling for factor volatilities

With estimated factor volatility matrices in (15), we build up the dynamical structure of

Σx(ℓ) by fitting a VAR model to Σ̂f (ℓ). One alternative is to adopt more sophisticated

multivariate volatility models to fit Σ̂f (ℓ) or Σ̂
1/2

f (ℓ) (see Wang and Yao (2005) and Remark

5 after Lemma 6 in Section 6). We opt to a simple VAR model in the spirit of the HAR-RV

approach advocated by Andersen, Bollerslev and Diebold (2003) and Corsi (2003). They

demonstrate that fitting an AR model to realized (one-dimensional) volatilities may lead to

significant improvement in volatility forecasting.

For a r × r matrix Σ, let vech(Σ) be the r(r + 1)/2 × 1 vector obtained by stacking

together the truncated column vectors of Σ, where the truncating means to remove all the

elements above the main diagonal. Then the VAR model for Σf (ℓ) is of the form

vech{Σf (ℓ)} = α0 +

q∑
j=1

αjvech{Σf (ℓ− j)}+ eℓ, (17)

where q ≥ 1 is an integer, α0 is a vector, α1, · · · ,αq are square matrices, and eℓ is a vector

white noise process with zero mean and finite fourth moments. Since Σf (ℓ) are estimated

by Σ̂f (ℓ), with a fixed q, we adopt the least squares estimators α̂j for the coefficients αj,

which are the minimizer of

L∑
ℓ=q+1

||vech{Σ̂f (ℓ)} −α0 −
q∑

j=1

αivech{Σ̂f (ℓ− j)}||2,

where || · || denotes the Euclidean norm of a vector. The order q may be determined by, for

example, the standard criteria such as AIC or BIC.
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3 Asymptotic Theory

First we introduce some notations. Given a p-dimensional vector x = (x1, · · · , xp)
T and a p

by p matrix U = (Uij), define matrix norm as follows,

∥U∥2 = sup{∥Ux∥2, ∥x∥2 = 1}, ∥x∥2 =

(
p∑

i=1

|xi|2
)1/2

.

Then ∥U∥2 is equal to the square root of the largest eigenvalue of UT U, where UT is the

transpose of U, and for symmetric U, ∥U∥2 is equal to its largest absolute eigenvalue.

Second we state the following assumptions for the asymptotic analysis.

(A1). We assume all row vectors of AT and Σ0 in factor model (10) obey the sparsity con-

dition (18) below. For a p-dimensional vector x = (x1, · · · , xp)
T , we say it is sparse if

it satisfies
p∑

i=1

|xi|δ ≤ C π(p), (18)

where δ ∈ [0, 1), C is a positive constant, and π(p) is a deterministic function of p that

grows slowly in p with typical examples π(p) = 1 or log p.

(A2). Assume factor model (10) has fixed r factors, with AT A = Ir, and matrices Σ0 and

Σf in (10) satisfy

∥Σ0∥2 < ∞, max
1≤ℓ≤L

|Σf (ℓ)[j, j]| = OP (logL), j = 1, · · · , r.

(A3). We impose the following moment conditions on diffusion drift µt = (µ1(t), · · · , µp(t))
T

and diffusion variance σt = (σij(t))1≤i,j≤p in price model (1) and micro-structure noise

εi(tij) in data model (2): for some β ≥ 4,

max
1≤i≤p

max
0≤t≤L

E[|σii(t)|β] < ∞, max
1≤i≤p

max
0≤t≤L

E[|µi(t)|2β] < ∞, max
1≤i≤p

max
0≤tij≤L

E[|εi(tij)|2β] < ∞.
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(A4). Each of p assets has at least one observation between τ kr and τ kr+1. That is, in the

construction of ARVM estimator we assume m = o(n), and

C1 ≤ min
1≤i≤p

min
1≤ℓ≤L

ni(ℓ)

n
≤ max

1≤i≤p
max
1≤ℓ≤L

ni(ℓ)

n
≤ C2, max

1≤i≤p
max
1≤ℓ≤L

max
1≤j≤ni(ℓ)

|tij−ti,j−1| = O(n−1).

(A5). The characteristic polynomial of VAR model (17) has no roots in the unit circle so

that it is a casual VAR model.

Remark 1. Condition (A1) together with factor model (10) imply that Σx(ℓ) are sparse,

which is required to consistently estimate Σx(ℓ) for large p and will be shown by Lemma 2

in Section 6. When δ = 0 in (18), sparsity refers to that there are at most C π(p) number

of non-zero coordinates in x = (x1, · · · , xp)
T , and matrix sparsity means that each row has

at most C π(p) number of non-zero elements. Sparsity is often a reasonable assumption for

large volatility matrices. We may further improve sparsity for the volatility matrices by

transformations such as removing the overall market effect and the sector effect. Condition

A2 imposes realistic bounded eigenvalues on Σ0 and a logarithm temporal growth on Σf (ℓ)

over [0, L]. As Σ0 is a constant matrix and Σf (ℓ) are small matrices of fixed size r, Condition

(A2) together with factor model (10) guarantee that the maximum eigenvalue of Σx(ℓ) is free

of p and has only order log L, which will be proved in Lemma 1 in Section 6. The logarithm

rate in (A2) is rather weak and reasonable, as the maxima of sequences of independent

and typically dependent random variables are of a logarithm order. The assumption is to

relieve from specifying temporal and cross-section dependence structures on the volatilities

over time and across assets. Condition (A3) is the minimal moment requirements for the

price process and microstructure noise. (A4) is a technical condition that ensures adequate

number of observations between grids and establishes the asymptotic theory for the proposed

methodology. (A5) is a standard condition for stationary AR time series.

We establish the asymptotic theory for the proposed models and the associated estimation

methods. Since p, n and L stand for dimension (number of assets), average daily observations,
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and the number of days, we let p, n and L all go to infinity in the asymptotics. The two

theorems below give the eigenvalue and eigenvector convergence for the difference between

S̄x and S̄y defined in (12) and (14), respectively.

Theorem 1 Suppose Models (1), (2) and (10) satisfy Conditions (A1)-(A4). As n, p, L all

go to infinity, we have

||S̄y − S̄x||2 = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

where en ∼ n−1/6 for the noise case and en ∼ n−1/3 for the no noise case [i.e. εi(tij) = 0 in

(2)], and threshold ϖ used in (9) is of order en(p
2L)

1
β logL.

Theorem 2 Suppose Models (1), (2) and (10) satisfy Conditions (A1)-(A4). Denote the

ordered eigenvalues of S̄x by λ1 ≥ · · · ≥ λp. Assume that there is a positive constant c such

that λj −λj+1 ≥ c for j = 1, · · · , r. Let a1, · · · , ar be the eigenvectors of S̄x corresponding to

the r largest eigenvalues λ1, · · · , λr. Also set λ̂1 ≥ · · · ≥ λ̂r be the r largest eigenvalues of S̄y

and â1, · · · , âr the corresponding eigenvectors. Let A = (a1, · · · , ar) and Â = (â1, · · · , âr).

Then as n, p, L go to infinity, we have

AT Â− Ir = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

Σ̂f (ℓ)−Σf −AT Σ0A = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

where en and ϖ are the same as in Theorem 1, and since the matrices are of fixed size r,

the convergence holds under any matrix norms.

Remark 2. Since en(p
2L)

1
β is powers of n, p, L while π(p) log2 L depends on p and L

through logarithm and thus is negligible in comparison with [en(p
2L)

1
β ]1−δ. So the conver-

gence rate is nearly equal to [en(p
2L)

1
β ]1−δ. In order to consistently estimate the r largest

eigenvalues and their corresponding eigenvectors of S̄x we need to make en(p
2L)

1
β go to zero.

15



As en ∼ n−1/3 for the noiseless case and n ∼ n−1/6 for the noise case, en(p
2L)

1
β goes to zero

if p2 L grows more slowly than nβ/3 for the noiseless case and nβ/6 for the noise case. For

reasonably large β in moment assumption A3, the consistent requirement can accommodate

the scenario when p is comparable to or larger than n. Thus, Theorems 1 and 2 establish

the valid theoretical foundation for the proposed methodology in the sense that it yields

consistent estimators of the r largest eigenvalues and their corresponding eigenvectors for

the factor-based analysis under the large p scenario.

Next we establish asymptotic theory for parameter estimation in the VAR model (17)

based on high-frequency data.

Theorem 3 Suppose that α̂i are least squares estimators of αi based on data Σ̂f (ℓ) from the

VAR model (17) and we denote by α̃i the least squares estimators of αi based on oracle data

Σf (ℓ) from the same VAR model (17). Then under Conditions (A1)-(A5) and the eigenvalue

assumption of Theorem 2,

α̂0 − α̃0 − vech{ATΣ0A} = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

α̂i − α̃i = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
, i = 1, · · · , q.

In particular, as n, p, L → ∞, if π(p) [en(p
2L)

1
β ]1−δ L1/2 log2 L → 0, then

L1/2 {α̂0 −α0 − vech(ATΣ0A), α̂1 −α1, · · · , α̂q −αq}

has the same limiting distribution as L1/2 (α̃0 −α0, α̃1 −α1 · · · , α̃q −αq).

Remark 3. Theorem 3 shows that the proposed data-driven method of model fitting

based on Σ̂f (ℓ) estimated from high-frequency data can asymptotically achieve the same

result as an oracle that uses true Σf (ℓ) for model fitting. In other words, fitting the VAR

model with the estimated daily volatility factor matrices from high-frequency data can be

asymptotically as efficient as that with true daily volatility factor matrices.
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Remark 4. We may replace the ARVM estimator used in the first stage by other

volatility matrix estimators, for example in Barndorff-Nielsen et al. (2010), Christensen et.

al. (2010), Griffin and Oomen (2011), and Zhang (2011). However, these estimators enjoy

good properties only for the fixed matrix size p that is very small relative to sample size.

When p is allowed to grow with sample size and its magnitude is comparable to sample

size, all the estimators become inconsistent. Regularization adjustment such as thresholding

is needed to make them consistent. For example, to improve the convergence rate of the

ARVM estimator we may use the multi-scale scheme in Fan and Wang (2007, section 4.3)

and Zhang (2006) to construct the following multi-scale realized volatility matrix (MRVM)

estimator,

Σ̃
∗
y(1) =

κ∑
m=1

amΓ̂
Km

+ ζ(Γ̂
K1 − Γ̂

Kκ

),

where κ is the integer part of
√
n, Γ̂

Km

is defined via (3) and (4) as follows,

Γ̂
Km

=
1

Km

Km∑
k=1

Σ̃y(1, τ
k) =

(
1

Km

Km∑
k=1

Σ̃y(1, τ
k)[i1, i2]

)
1≤i1,i2≤p

,

Km = m+ κ, am =
12(m+ κ)(m− κ/2− 1/2)

κ(κ2 − 1)
, ζ =

(2κ)(κ+ 1)

(n+ 1)(κ− 1)
.

For fixed p and noisy data, the ARVM estimator Σ̃y(1) in (7) has convergence rate n−1/6,

while the MRVM estimator Σ̃
∗
y(1) can achieve the optimal convergence rate n−1/4 [Tao et.

al. (2011)]. However, as p goes to infinity and p and n are comparable, Σ̃
∗
y(1) becomes

inconsistent. Similar to (9) we need to threshold Σ̃
∗
y(1) and obtain

Σ̂
∗
y(1) = Tϖ[Σ̃

∗
y(1)] =

(
Σ̃∗

y(1)[i1, i2]1(|Σ̃∗
y [i1,i2]|≥ϖ)

)
,

where ϖ is a threshold. Similarly we can define Σ̂
∗
y(ℓ) for ℓ = 2, · · · , L. If daily integrated

volatility matrices Σx(ℓ) are estimated by Σ̂
∗
y(ℓ) instead of Σ̂y(ℓ) for performing eigen-

analysis and fitting the matrix factor and VAR models described in Sections 2.3 and 2.4, we

expect to obtain the same conclusions as in Theorems 1-3 but with en ∼ n−1/4 for the noisy

data case.
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4 Numerical examples

We illustrate the proposed methodology with two sets of high-frequency data, the tick by

tick prices of the 410 stocks traded in Shenzhen Stock Exchange and the 630 stocks traded

in Shanghai Stock Exchange over a period of 177 days in 2003. The daily average intraday

observations over the 177 days range from 194 to 1384 with overall average 578 for the stocks

traded in the Shenzhen market and from 210 to 1620 with overall average 575 for the stocks

traded in the Shanghai market.

4.1 Eigen-analysis based on estimated daily integrated volatility

matrices

For each of the 177 days, we compute the estimated daily integrated volatility matrices

using TARVM estimator in (9) with grids being selected in accord of 5 minute returns and

thresholds being the top five percent of the largest absolute entries. This yields a sequence

of 177 matrices of Σ̂y(ℓ), ℓ = 1, · · · , L = 177, where the daily integrated volatility matrices

for Shenzhen and Shanghai data sets are of sizes 410 by 410 and 630 by 630, respectively.

The eigenvalues and eigenvectors of the sample variance matrix S̄y are then evaluated, and

the 20 largest eigenvalues, multiplied by 1000, are plotted in Figures 2 and 3 for Shenzhen

and Shanghai data sets, respectively. The plots show that the largest eigenvalue for the

Shenzhen data and the two largest eigenvalues for the Shanghai data are much larger than

the corresponding other eigenvalues, which are in a much smaller magnitude and decrease

slowly.

18



5 10 15 20

Index

0.
00

0.
05

0.
10

0.
15

E
ig

en
va

lu
e

(a) The 20 largest eigenvalues
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(b) The 2nd largest to the 20th largest eigenvalues

Figure 2: Plots of the 20 largest eigenvalues of S̄y for the data set from Shenzhen Stock

Exchange. (a) The plot of all 20 largest eigenvalues. (b) The plot of the second largest to

20th largest eigenvalues.
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Figure 3: Plots of the 20 largest eigenvalues of S̄y for the data set from Shanghai Stock

Exchange. (a) The plot of all 20 largest eigenvalues. (b) The plot of the third largest to

20th largest eigenvalues.
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(a) The 20 largest eigenvalues over 100 samples for r=1

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Sample

E
ig

en
va

lu
e

(b) The 20 largest eigenvalues over 100 samples for r=2

Figure 4: Plots of the 20 largest eigenvalues of S̄y over 100 simulated samples. The horizontal

axis indicates 100 simulated samples, and the 20 largest eigenvalues of S̄y for each sample

are plotted vertically as 20 points. (a) and (b) correspond to the cases of r = 1 and r = 2,

respectively.

21



4.2 A simulation study on volatility factor selection

Theorems 1 and 2 imply that the eigenvalue difference between S̄y and S̄x converges in

probability to zero, where S̄x has r positive eigenvalues and p− r zero eigenvalues. Thus we

may select r such that the smallest p− r eigenvalues of S̄y are close to 0 while the r largest

eigenvalues are significantly larger. Figures 2 and 3 suggest r = 1 and r = 2 for the data sets

from the Shenzhen and Shanghai Exchanges, respectively. We conduct a simulation study

below to provide some support for such empirical selection of r.

In the simulation study we consider two scenarios with r = 1 and r = 2, where p = 410

and L = 177. The simulation proceeds as follows. For the case of r = 1, we generate Σf (ℓ)

from an AR(1) model with mean, AR coefficient and noise variance being (6, 0.65, 0.3) and

then simulate Σx(ℓ) from the matrix factor model (10) with loading matrix A formed by

the eigenvector corresponding to the largest eigenvalue of S̄y obtained from the Shenzhen

data. For the case of r = 2, we take Σf (ℓ)[1, 2] = Σf (ℓ)[2, 1] = 0, and generate Σf (ℓ)[1, 1]

and Σf (ℓ)[2, 2] from two AR(1) models with mean, AR coefficient and noise variance being

(6, 0.65, 0.3) and (4, 0.5, 0.3), respectively, and we simulate Σx(ℓ) from the matrix factor

model (10) with loading matrix A formed by the two eigenvectors corresponding to the two

largest eigenvalues of S̄y obtained from the Shenzhen data.

We simulate high-frequency price data from model (1) with zero drift by discretizing the

diffusion equation,

X(tk) = X(tk−1) + σtk−1
[Wtk −Wtk−1

],

where tk = ℓ−1+k/3n, k = 1, · · · , 3n, n = 200, ℓ = 1, · · · , 177, during the period of the ℓ-th

day, we take σtk to be A [Σf (ℓ)+0.32Zk]
1/2AT , Zk = (Zk[j1, j2])1≤j1,j2≤r are r by r matrices

whose entries Zk[j1, j2] are standard normal random variables with temporal correlation

corr(Zk[j1, j2], Zk′ [j1, j2]) = exp(−|k − k′|), and zero correlation for different entries, i.e.

corr(Zk[j1, j2], Zk′ [j
′
1, j

′
2]) = 0 for (j1, j2) ̸= (j′1, j

′
2). Finally, data Yi(tk) are obtained from
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model (2) by adding to X(tk) i.i.d. normal noise with mean zero and standard deviation

0.064. We generate non-synchronized data as follows. Grouping together three consecutive

time points we divide the 600 time points tk during each day into 200 groups {t3j−2, t3j−1, t3j},

j = 1, · · · , 200. For each asset, we select one time point at random from each group; from the

simulated 600 values of Yi(tk) we choose 200 values corresponding to the selected time points;

we use the 200 chosen values to form noisy non-synchronized high-frequency data Yi(tj).

We calculate ARVM estimator Σ̃y(ℓ) based on the data in the ℓ-th day and the threshold

estimator Σ̂y(ℓ) as described in Section 2.2. According to the description in Section 2.3 we

compute S̄y from Σ̂y(ℓ) and then the eigenvalues and eigenvectors of S̄y. We repeat the

whole simulation procedure 100 times. As in Wang and Zou (2010), estimators Σ̂y(ℓ) are

tuned to minimize its estimated mean squares error based on 100 repetitions. Figure 4 plots

the 20 largest eigenvalues of S̄y over the 100 simulated samples for the cases of r = 1 and

r = 2. The plots show that for the case of r = 1, the largest eigenvalues are clustered around

0.5, and for the case of r = 2, the two largest eigenvalues are fluctuated around 0.5 and

0.4, respectively, and these large eigenvalues are much larger than other eigenvalues in the

corresponding cases, where these small eigenvalues are close to zero. Moreover, the clusters

in Figure 4 for the 100 simulated samples are apparently quite tight and separate. The

simulation results indicate that the largest eigenvalue and the two largest eigenvalues for the

respective cases of r = 1 and r = 2 are significant and hence the selection of volatility factors

based on large eigenvalues matches very well with the true values of r in the corresponding

cases.

The daily average intraday observations over the 177 days for the stocks traded in the

Shenzhen and Shanghai markets are from around 200 to over 1000. As the simulation results

reported above are for the case with 200 intraday observations, we have tried to increase

intraday observations from 200 to 600 and 1000 in the simulation study and found the similar
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cluster patterns for the eigenvalues. In fact, the eigenvalue clusters become tighter as the

number of intraday observations increases.

The procedure in Hansen and Lunde (2005) is used to calculate the noise to signal ratios

for the simulated and real data. The average noise to signal ratio over 177 days is found to

be 0.009 and 0.002 for the stocks traded in the Shenzhen and Shanghai markets, respectively.

Noise standard deviation 0.064 used in the simulation amounts to average noise to signal

ratio 0.009. To replicate the noise to signal ratio scenarios in the real data, we reduce the

noise to signal ratio in the simulation study by decreasing noise standard deviation from

0.064 to 0.02, which corresponds to average noise to signal ratio from 0.009 to 0.001. Again

we have discovered that the eigenvalues exhibit the resembling patterns. Moreover, we find

that the smaller the noise standard deviations are, the tighter the eigenvalue clusters are.

We propose a data-dependent method to select m for ARVM estimator defined in (6)

and (7) as follows. Let m be the grid number of pre-sampling frequencies τ k in (5). To

denote the dependence on m, we add superscript m to daily ARVM estimators given by (6)

and (7) and denote them by Σ̃
m

y (ℓ) = (Σ̃m
y (ℓ)[i1, i2]) for the ℓ-th day, ℓ = 1, · · · , L. Since

for each (i1, i2), Σ̃
m
y (ℓ)[i1, i2] is a daily realized co-volatility between assets i1 and i2, we

predict one day ahead daily realized co-volatility by current daily realized co-volatility and

use predication errors as a criterion to select m. Let

Ψ(m) =
1

p2 L

p∑
i1=1

p∑
i2=1

L∑
ℓ=2

{
Σ̃m

y (ℓ− 1)[i1, i2]− Σ̃m
y (ℓ)[i1, i2]

}2

.

The value of m is selected by minimizing Ψ(m), and we use the selected value to define

ARVM estimator Σ̃
m

y (ℓ) and evaluate the estimated daily integrated volatility matrices.

4.3 Matrix factor model and VAR model fitting

The patterns exhibited in Figures 2 and 3 and the simulation study lead us to select r = 1 and

r = 2 for the Shenzhen and Shanghai data sets, respectively. We proceed our analysis for the
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Shenzhen Stock Exchange data with r = 1. Let Â be the eigenvector of S̄y corresponding to

the largest eigenvalue. We then evaluate the factor volatility sequence Σ̂f (ℓ) = ÂT Σ̂y(ℓ)Â,

ℓ = 1, · · · , L = 177, which is now a univariate time series. An AR(3) model, selected from

PACF together with AIC and BIC, is fitted to the time series Σ̂f (ℓ). Figure 5 displays the

time series plots and the ACF plots of both the original time series Σ̂f (ℓ) and the residuals

resulted from the AR(3) fitting. It shows that the factor model and also the AR(3) model

for factors provide reasonably good fittings to the data.

Now we move to the analysis of the Shanghai Stock Exchange data with r = 2. The

estimator Â of factor loadings A is taken to be the 2 × 630 matrix consisting of the two

eigenvectors of S̄y corresponding to the two largest eigenvalues. Now the daily factor volatil-

ities Σ̂f (ℓ) = ÂT Σ̂y(ℓ)Â, ℓ = 1, · · · , L = 177, is a series of 2× 2 matrices.

Take the two diagonal elements and one off-diagonal element from Σ̂f (ℓ) to form trivariate

time series vech{Σ̂f (ℓ)}, which is plotted in Figure 6. We fit vech{Σ̂f (ℓ)} to the VAR model

and use AIC and BIC criteria to select its order q.

The fitting yields a VAR model of order q = 2 with the estimated coefficients

α̂0 =


0.008

0.003

0.008

 , α̂1 =


0.016 0.099 0.162

−0.232 −0.396 0.822

−0.407 −0.747 1.218

 , α̂2 =


0.523 1.295 −0.981

0.109 0.262 −0.203

0.387 0.961 −0.649


and the estimated innovation covariance matrix

0.0045 −0.0011 0.0010

−0.0011 0.0006 0.0002

0.0010 0.0002 0.0007

 .

The ACFs of vech{Σ̂f (ℓ)} plotted in Figure 7 show that the factor volatility series are

highly correlated. Figure 8(a-c) displays the residuals resulted from above model fitting,

whose ACFs are plotted in Figure 9. These plots indicate that the VAR(2) model provides
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Figure 5: Fitting Shenzhen data: (a) time plot of factor volatility series, (b) ACF of factor

volatility series, (c) PACF of factor volatility series, (d) time plot of the residuals from the

AR(3) fitting, (d) ACF of the residuals, and (e) PACF of the residuals.
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adequate fit to the data.
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(a) Component 1 of factor volatility
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Figure 6: Time plots for vech(Σ̂f ) for the Shanghai Stock Exchange data. (a) and (b)

correspond to the first and second diagonal elements of Σ̂f , respectively, with (c) for the

off-diagonal element of Σ̂f .

5 Conclusions

In this paper, we have proposed a novel approach to model the volatility and co-volatility

dynamics of daily returns for a large number of financial assets based on high-frequency

intraday data. The core of the proposed method is to impose a matrix form of factor model
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Figure 7: ACF plots of the corresponding factor volatility vech(Σ̂f ) displayed in Figure 6

for the data set from Shanghai Stock Exchange. The three plots on diagonal correspond to

the ACFs of three factor volatility components with off-diagonal plots for their cross ACFs.
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Figure 8: Time plots of the residuals resulted from a VAR(2) fitting to vech(Σ̂f ) for the

Shanghai Stock Exchange data. (a) and (b) correspond to the first and second diagonal

elements of Σ̂f , respectively, and (c) to the off-diagonal element of Σ̂f .
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Figure 9: ACF plots of the corresponding three residual components in Figure 8 for the data

set from Shanghai Stock Exchange. The three plots on diagonal correspond to the ACFs of

three residual components with off-diagonal plots for their cross ACFs.

30



on the sparse versions of realized volatility estimators obtained via thresholding. The fitting

of the factor model boils down to an eigen-analysis for a non-negative definite matrix, and

therefore is feasible with an ordinary PC when the number of assets is in the order of a few

thousands. The asymptotic theory is developed in the manner that the number of assets,

the numbers of intraday observations and the number of days concerned go to infinity all

together. Numerical illustration with intraday prices from both Shenzhen and Shanghai

markets indicates that the factor modeling strategy works effectively as the daily volatility

dynamics of all the assets in those two markets was driven by one (for Shenzhen) or two (for

Shanghai) common factors.

As far as we are aware, this work represents the first attempt to use high-frequency data

to model ultra-high dimensional volatility matrices and combine high-frequency volatility

matrix estimation with low-frequency volatility dynamic models. While the approach yields

new volatility estimation and prediction procedures that are better than methods only based

on either high-frequency volatility estimation or low-frequency volatility dynamic modeling,

we leave some open issues as well as a number of important future research topics. For

example, volatility factors are important both statistically and economically, it is desirable

to have data driven methods to select the number of significant factors for fitting the VAR

model. The ARVM estimator is used to estimate daily volatility matrices and perform

eigen-analysis in Sections 2.2 and 2.3, it is very interesting and challenging to investigate

the performance of the methodology when other volatility matrix estimators instead of the

ARVM estimator are employed. Large volatility matrix prediction is another important

research topic. For example, the fitted matrix factor and VAR(2) models obtained from

Shanghai market data can be used to forecast future integrated volatility matrix by first

predicting h-step ahead factor volatility Σf (L + h) from the derived VAR(2) model and

then using matrix factor model (10) to evaluate h-step ahead forecast of integrated volatility
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matrixΣx(L+h). However, for the prediction of large volatility matrices, we need to properly

gauge the predict error and investigate the impact of matrix size on the prediction.

6 Appendix: Proofs of Theorems

Besides matrix norm, we need other two ℓd norms. Given a p-dimensional vector x =

(x1, · · · , xp)
T and a p by p matrix U = (Uij), define their ℓd-norms as follows,

∥x∥d =

(
p∑

i=1

|xi|d
)1/d

, ∥U∥d = sup{∥Ux∥d, ∥x∥d = 1}, d = 1, 2,∞.

Note the facts that ∥U∥2 is equal to the square root of the largest eigenvalue of UT U,

∥U∥1 = max
1≤j≤p

p∑
i=1

|Uij|, ∥U∥∞ = max
1≤i≤p

p∑
j=1

|Uij|,

and

∥U∥22 ≤ ∥U∥1 ∥U∥∞.

For symmetric U, ∥U∥2 is equal to its largest absolute eigenvalue, and ∥U∥2 ≤ ∥U∥1 =

∥U∥∞. Denote by C generic constant whose value may change from appearance to appear-

ance.

Before proving theorems we need to establish six lemmas. Lemmas 1 and 2 show that

Condition A2 gives an order for ∥Σx(ℓ)∥2 while Condition A1 together with A2 guarantee

sparsity for all Σx(ℓ).

Lemma 1 Assumption A2 implies that the maximum eigenvalue of Σx(ℓ) are bounded uni-

formly over ℓ = 1, · · · , L, that is,

max
1≤ℓ≤L

∥Σx(ℓ)∥2 = OP (logL).
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Proof. From factor model (10) and sub-multiplicative property of norm ∥ ·∥2 (i.e. ∥UV∥2 ≤

∥U∥2∥V∥2 for matrices U and V), we have

∥Σx(ℓ)∥2 ≤ ∥AΣf (ℓ)A
T +Σ0∥2 ≤ ∥A∥2 ∥Σf (ℓ)∥2 ∥AT∥2 + ∥Σ0∥2

≤ r2
r∑

j=1

Σf (ℓ)[j, j] + ∥Σ0∥2,

where we use the facts that since ∥AT∥2, ∥A∥2 ≤ trace(AAT ) = trace(AT A) = r, and

∥Σf (ℓ)∥2 ≤ trace(Σf (ℓ)) =
∑r

j=1 Σf (ℓ)[j, j]. The lemma is a direct consequence of Assump-

tion A2. �

Lemma 2 Assumptions A1 and A2 imply sparsity for Σx(ℓ) uniformly over ℓ = 1, · · · , L,

that is,
p∑

j=1

|Σx(ℓ)[i, j]|δ ≤ Mπ(p, L), i = 1, · · · , p, ℓ = 1, · · · , L, (19)

where M is a positive random variable, π(p, L) = π(p) logδ L, and δ and π(p) are given as

in Assumption A1.

Proof. First we give an inequality that for any y1, · · · , ym,(
m∑
j=1

|yj|

)δ

≤
m∑
j=1

|yj|δ. (20)

Take wj = |yj|/
∑m

j=1 |yj|. Then
∑m

j=1 wj = 1, 0 ≤ wj ≤ 1, and wδ
j ≥ wj. The inequality is

proved as follows,
m∑
j=1

wδ
j ≥

m∑
j=1

wj = 1.

Inequality (20) indicates that the sum of two sparse matrices are also sparse. Thus with

condition A1 and (10) it is enough to show that AΣf (ℓ)A
T is sparse for ℓ = 1, · · · , L.

LetA = (aij),Σf (ℓ) = (Σf (ℓ)[i, j]),U = AΣf (ℓ)A
T = (uij), andG = max{|Σf (ℓ)[i, j]|, ℓ =

1, · · · , L, i, j = 1, · · · , r}. Since Σf (ℓ) are positive definite, A2 implies that G = OP (logL).
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Hence,

|uij|δ =

∣∣∣∣∣
r∑

h=1

r∑
k=1

aihΣf (ℓ)[h, k] ajk

∣∣∣∣∣
δ

≤
r∑

h=1

r∑
k=1

|aihΣf (ℓ)[h, k] ajk|δ ≤ Gδ

r∑
h=1

r∑
k=1

|aih ajk|δ,

p∑
j=1

|uij|δ ≤ Gδ

r∑
h=1

r∑
k=1

|aih|δ
p∑

j=1

|ajk|δ ≤ r2 C Gδ π(p), (21)

where the last inequality is from the facts that the elements of A are bounded by 1 and the

column vectors of A obey (18). As G = OP (logL), the bound r2 C Gδ π(p) on the right hand

side of (21) can be expressed as M π(p, L). �

The next lemma derives the summation results under the established sparsity in Lemma 2.

Lemma 3 The sparsity established in Lemma 2 for all Σx(ℓ) infers that for any fixed a > 0,

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|1(|Σx(ℓ)[i, j]| ≤ aϖ) = OP (π(p, L)ϖ
1−δ), (22)

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| ≥ aϖ) = OP (π(p, L)ϖ
−δ). (23)

Proof. With simple algebraic manipulations we obtain

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|1(|Σx(ℓ)[i, j]| ≤ aϖ)

≤ (aϖ)1−δ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|δ1(|Σx(ℓ)[i, j]| ≤ aϖ)

≤ (aϖ)1−δ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|δ ≤ (aϖ)1−δMπ(p, L) = OP (π(p, L)ϖ
1−δ),

which proves (22). (23) is proved as follows,

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| ≥ aϖ) ≤ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

(
|Σx(ℓ)[i, j]|

aϖ

)δ

1(|Σx(ℓ)[i, j]| ≥ aϖ)

≤ (aϖ)−δ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|δ ≤ (aϖ)−δMπ(p, L) = OP (π(p, L)ϖ
−δ). �

Next two lemmas are results about ARVM estimator Σ̃y(ℓ) that we need later to establish

convergence rate for TARVM estimator Σ̂y(ℓ).

34



Lemma 4 Under Models (1)-(2) and Conditions A3-A4 we have for all 1 ≤ i, j ≤ p and

1 ≤ ℓ ≤ L,

E(|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]|β) ≤ C eβn, (24)

where C is a generic constant free of n, p and L, and the convergence rate en is specified as

en ∼ n−1/6 for the noise case and en ∼ n−1/3 for the noiseless case [i.e. εi(tij) = 0 in (2)].

Proof. The lemma is a consequence of applying Theorem 1 in Wang and Zou (2010) to the

current set-up. �

Lemma 5 Under conditions A1-A4, we have

max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| = OP (en(p
2L)

1
β ) = oP (ϖ), (25)

P

(
max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1{|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| ≥ ϖ/2} > 0

)
= o(1), (26)

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| < ϖ) = OP (π(p)ϖ
−δ), (27)

where ϖ is as in Theorem 1.

Proof. Taking d = d1en(p
2L)

1
β and applying Markov inequality and (24), we have

P

(
max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| > d

)
≤

L∑
ℓ=1

p∑
i,j=1

P
(
|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| > d

)
≤ Cp2Leβn

dβ
=

C

dβ1
→ 0,

as p, n, L → ∞ and then d1 → ∞. This proves (25), using which we can obtain

P

(
max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1{|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| ≥ ϖ/2} > 0

)

≤ P

(
max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| ≥ ϖ/2

)
≤ 2βp2LCeβn

ϖβ
=

2βC

logβ L
→ 0,
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as n, p, L → 0, which proves (26). Then we apply (23) and (26) to show (27) as follows.

max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| < ϖ)

≤ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| ≤ ϖ/2)

+ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]| ≥ ϖ,ϖ/2 < |Σx(ℓ)[i, j]| < ϖ)

≤ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| ≥ ϖ/2) + max
1≤l≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| > ϖ/2)

≤ oP (1) + 2δMπ(p, L)ϖ−δ = OP (π(p, L)ϖ
−δ). �

Next lemma provides the convergence rate for TARVM estimator Σ̂y(ℓ) under matrix

norm uniformly over all ℓ.

Lemma 6 Under conditions A1-A4 we have

max
1≤ℓ≤L

||Σ̂y(ℓ)−Σx(ℓ)||2 = OP (π(p, L)ϖ
1−δ) = OP (π(p)[en(p

2L)
1
β ]1−δ logL),

where en and ϖ are as in Theorem 1.

Proof. Using the relationship between ℓ2 and ℓ∞ norms and triangle inequality, we have

max
1≤ℓ≤L

||Σ̂y(ℓ)−Σx(ℓ)||2 ≤ max
1≤ℓ≤L

||Σ̂y(ℓ)−Σx(ℓ)||∞

≤ max
1≤ℓ≤L

||Σ̂y(ℓ)− Tϖ[Σx(ℓ)]||∞︸ ︷︷ ︸
I

+ max
1≤ℓ≤L

||Tϖ[Σx(ℓ)]−Σx(ℓ)||∞︸ ︷︷ ︸
II

.

Lemma 3 implies

II = max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|1(|Σx(ℓ)[i, j]| ≤ ϖ) = OP (π(p, L)ϖ
1−δ).

This lemma is proved by showing that I is also of order π(p, L)ϖ1−δ in probability. Indeed,
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we have

I ≤ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]|1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| ≥ ϖ)

+ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σ̃y(ℓ)[i, j]|1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| < ϖ)

+ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|1(|Σ̃y(ℓ)[i, j]| < ϖ, |Σx(ℓ)[i, j]| ≥ ϖ)

≤ max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| ≥ ϖ)

+ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

|Σx(ℓ)[i, j]|1(|Σx(ℓ)[i, j]| < ϖ)

+ max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σ̃y(ℓ)[i, j]| ≥ ϖ, |Σx(ℓ)[i, j]| < ϖ)

+ϖ max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| ≥ ϖ)

+ max
1≤ℓ≤L

max
1≤i,j≤p

|Σ̃y(ℓ)[i, j]− Σx(ℓ)[i, j]| max
1≤ℓ≤L

max
1≤i≤p

p∑
j=1

1(|Σx(ℓ)[i, j]| ≥ ϖ)

= oP (ϖ)Op(π(p, L)ϖ
−δ) +Op(π(p, L)ϖ

1−δ) + oP (ϖ)Op(π(p, L)ϖ
−δ) +ϖOp(π(p, L)ϖ

−δ)

= Op(π(p, L)ϖ
1−δ) = OP (π(p)[en(p

2L)
1
β ]1−δ logL),

where the orders in the second to last equality are due to (22), (23), (25) and (27). �

Remark 5. As we have discussed in Remark 2 after Theorems 1 and 2 in Section 3, the

convergence rate in Lemma 6 indicates that for reasonably large β in moment assumption

A3, Σ̂y(ℓ) provide consistent estimators of Σx(ℓ) under matrix norm for large p and n. As a

consequence, Σ̂f (ℓ) defined in (15) are consistent estimators of Σf (ℓ) under the matrix norm

and in particular, with probability tending to one, Σ̂f (ℓ) are semi-positive definite. For finite

samples, to ensure the semi-positive definiteness of Σ̂y we may simply replace the negative

eigenvalues of Σ̂y by zero, and hence Σ̂f (ℓ) are semi-positive definite. Thus, we may build a

VAR model for Σ
1/2
f (ℓ) instead of Σf (ℓ) and fit the model to Σ̂

1/2

f (ℓ).
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Proof of Theorem 1. Due to the triangle inequality and sub-multiplicative property

of norm ∥ · ∥2, we have

∥S̄y − S̄x∥2 = ∥ 1
L

L∑
ℓ=1

{Σ̂y(ℓ)− Σ̄y}2 −
1

L

L∑
ℓ=1

{Σx(ℓ)− Σ̄x}2∥2

= ∥ 1
L

L∑
ℓ=1

[Σ̂y(ℓ)]
2 − Σ̄

2
y −

1

L

L∑
ℓ=1

Σ2
x(ℓ) + Σ̄

2
x∥2

≤ ∥ 1
L

L∑
ℓ=1

[Σ̂y(ℓ)]
2 − 1

L

L∑
ℓ=1

Σ2
x(ℓ)∥2 + ∥Σ̄2

y − Σ̄
2
x∥2

≤ 1

L

L∑
ℓ=1

∥Σ̂y(ℓ)−Σx(ℓ)∥2 · {∥Σ̂y(ℓ)∥2 + ∥Σx(ℓ)∥2}

+

(
1

L

L∑
ℓ=1

∥Σ̂y(ℓ)−Σx(ℓ)∥2

)(
1

L

L∑
ℓ=1

{∥Σ̂y(ℓ)∥2 + ∥Σx(ℓ)∥2}

)
,

≤ 2 max
1≤ℓ≤L

∥Σ̂y(ℓ)−Σx(ℓ)|2
(
max
1≤ℓ≤L

∥Σ̂y(ℓ)−Σx(ℓ)∥2 + 2 max
1≤l≤L

∥Σx(ℓ)∥2
)
,

which can be easily shown to have order

π(p, L)ϖ1−δ logL = π(p)ϖ1−δ log1+δ L ∼ π(p)[en(p
2L)

1
β ]1−δ log2 L

in probability from an application of Lemmas 1, 2 and 6. The proof is completed. �

Proof of Theorem 2. First we show

max
1≤j≤r

|λ̂j − λj| = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
, (28)

max
1≤j≤r

∥âj − aj∥2 = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
. (29)

Since ∥ · ∥2 is equal to the largest absolute eigenvalue, and the top r eigenvalues of S̄x are

separated by a constant c, thus

max
1≤j≤r

|λ̂j − λj| ≤ ||S̄y − S̄x||2,

and (28) is a consequence of Theorem 1. The second result (29) follows directly from Theorem

1 and the same argument in the proof of Theorem 5 in Bickel and Levina (2008 a) [or Theorem
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6.1 of Kato (1966)]. Now we will use (28) and (29) to prove the two results in Theorem 2.

From (29) we have for diagonal entry j of AT Â,

aT
j âj = 1− ∥âj − aj∥2/2 = 1 +OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

and for off-diagonal entry (k, j) (k ̸= j),

∣∣aT
k âj

∣∣ = ∣∣aT
k (âj − aj)

∣∣ ≤ ∥aT
k ∥2 ∥âj − aj∥2 = ∥âj − aj∥2 = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
.

To prove the second result in Theorem 2, we use factor model (10) and estimator Σ̂f in (15)

to obtain

Σ̂f (ℓ)−Σf (ℓ)−ATΣ0 A = ÂT{Σ̂y(ℓ)−Σx(ℓ)}Â+ ÂTΣx(ℓ)Â−Σf (ℓ)−ATΣ0A

= ÂT [Σ̂y(ℓ)−Σx(ℓ)]Â+
{
(AT Â)TΣf (ℓ)A

T Â−Σf (ℓ)
}
+
{
ÂTΣ0Â−ATΣ0A

}
.(30)

For the first term on the right hand side of (30), since

∥ÂT [Σ̂y(ℓ)−Σx(ℓ)]Â∥2 ≤ ∥ÂT∥2∥Σ̂y(ℓ)−Σx(ℓ)∥2∥Â∥2,

and the columns of Â are orthonormal vectors, we have

∥ÂT∥22, ∥Â∥22 ≤ trace(ÂÂT ) = trace(ÂT Â) = r.

From Theorem 1, we conclude

∥ÂT [Σ̂y(ℓ)−Σx(ℓ)]Â∥2 ≤ ∥Σ̂y(ℓ)−Σx(ℓ)∥2 = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
.

As ÂT [Σ̂y(ℓ) − Σx(ℓ)]Â is r by r matrix, matrix norm convergence implies convergence in

element, so the first term is proved to be of a desired order. Note Σf (ℓ) are r by r matrices,

from Condition A2 we easily conclude that the second term on the right hand side of (30) is

39



of the order AT Â− Ir, which has the requested order. For the third term on the right hand

side of (30) we have

∥ÂTΣ0Â−ATΣ0A∥2 ≤ ∥(Â−A)TΣ0Â+ATΣ0(Â−A)∥2

≤ ∥(Â−A)TΣ0Â∥2 + ∥ATΣ0(Â−A)∥2

≤ ∥(Â−A)T∥2∥Σ0∥2∥Â∥2 + ∥AT∥2∥Σ0∥2∥(Â−A)∥2

= ∥Â−A∥2 ∥Σ0∥2 [∥Â∥2 + ∥A∥2∥].

Condition A2 guarantees that ∥Σ0∥2 is bounded, it has been shown that ∥A∥2 ≤ r and

∥Â∥2 ≤ r, and

∥Â−A∥22 ≤ trace(Â−A) (Â−A)T = trace(Â−A)T (Â−A)

= 2 trace
(
Ir −AT Â

)
= OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
.

Therefore, the third term in (30) is also of correct order. With all three terms on the right

hand side of (30) of order π(p) [en(p
2L)

1
β ]1−δ log2 L in probability, we establish the second

result in the theorem. �

Proof of Theorem 3. As α̃i are the standard least squares estimators of αi in the VAR

model (17) based on oracle data Σf (ℓ), asymptotic theory for the VAR model shows that as

L → ∞,

L1/2 (α̃0 −α0, · · · , α̃q −αq) (31)

converges in distribution to a zero mean multivariate normal distribution [Reinsel (1997,

chapter 4)]. With

Σ̂f (ℓ) = ÂT Σ̂y(ℓ)Â,

from Theorem 2, we have

Σ̂f (ℓ) = Σf (ℓ) +ATΣ0A+OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
.

40



Since ATΣ0A is a constant matrix free of ℓ, Σ̂f (ℓ) obeys the same VAR model (17) for

Σf (ℓ) with an extra constant vech[ATΣ0A] adding to α0 and a negligible error term of

order π(p) [en(p
2L)

1
β ]1−δ log2 L. Plugging Σ̂f (ℓ) into the expressions of the least squares

estimators of coefficients αi in the VAR model we immediately show that the least squares

estimators based on Σ̂f (ℓ) and oracle data Σf (ℓ) satisfy

α̂0 − α̃0 − vech(ATΣ0A) = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
,

α̂i − α̃i = OP

(
π(p) [en(p

2L)
1
β ]1−δ log2 L

)
, i = 1, · · · , q.

The common limiting distribution stated in the theorem is a sequence of above results

and (31). �
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