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APPROXIMATING CONDITIONAL DISTRIBUTION FUNCTIONS
USING DIMENSION REDUCTION

BY PETER HALL AND QIWEI YAO

Australian National University and London School of Economics

Motivated by applications to prediction and forecasting, we suggest
methods for approximating the conditional distribution function of a random
variable Y given a dependent random d-vector X. The idea is to estimate not
the distribution of Y |X, but that of Y |θTX, where the unit vector θ is selected
so that the approximation is optimal under a least-squares criterion. We show
that θ may be estimated root-n consistently. Furthermore, estimation of the
conditional distribution function of Y , given θTX, has the same first-order
asymptotic properties that it would enjoy if θ were known. The proposed
method is illustrated using both simulated and real-data examples, showing
its effectiveness for both independent datasets and data from time series.
Numerical work corroborates the theoretical result that θ can be estimated
particularly accurately.

1. Introduction. Estimating a conditional distribution function is an impor-
tant feature of many statistical problems, including, for example, regression analy-
sis [see Yin and Cook (2002) and references therein], where a significant problem
is prediction of a response for a given value of a multivariate explanatory variable.
Specific applications include those in economics and finance [e.g., Foresi and
Paracchi (1992), Bond and Patel (2000) and Watanabe (2000)], in signal process-
ing and data mining [e.g., Adali, Liu and Sonmez (1997)] and a wide range of
problems where forecasts are to be made from linear or nonlinear time-series [see,
e.g., Chapter 10 of Fan and Yao (2003), and examples in Section 4 below].

In most of these applications one is interested in estimating the conditional
distribution of a scalar random variable Y , given a random d-vector X. Even
for small values of d ≥ 2, a conventional nonparametric estimator can suffer
poor accuracy, reflected in slow convergence rates. We suggest a solution to
this difficulty, based on approximating the conditional distribution function of Y

given X by that of Y given θTX, where the unit d-vector θ is selected so that the
approximation is optimal under an appropriate least-squares criterion. In particular,
we avoid the problem of directly estimating the conditional distribution function
of Y given X.
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Although we are dealing with a dimension-reduction problem, the object
(i.e., the conditional distribution function) to be estimated is a function of both
θTx and y, while the index θ is a global parameter. This rules out the possibility of
direct application of conventional dimension-reduction ideas, such as projection
pursuit [e.g., Friedman and Stuetzle (1981), Friedman, Stuetzle and Schroeder
(1984) and Huber (1985)] and single-index modeling techniques [e.g., Powell,
Stock and Stoker (1989), Härdle, Hall and Ichimura (1993), Ichimura (1993)
and Klein and Spady (1993)], which would lead to an estimator of θ depending
on y. Instead we define a new criterion in terms of an accumulation of squared
differences between the joint probabilities of (Y,X) and the expected conditional
probabilities of Y given θTX, over a large class of subsets; see (2.2) and (2.4) in
Section 2 below. Our search for the global parameter θ is based on leave-one-out
local linear regression estimators for conditional distribution functions. Under very
mild assumptions the resulting estimator θ̂ is root-n consistent and asymptotically
normally distributed.

Of course, our main purpose in computing θ̂ is so it can be used in a conditional
distribution estimator. The root-n convergence rate achieved by our estimator is so
fast that the estimator of the conditional distribution function of Y , given θ̂TX, is
first-order equivalent to its counterpart that would be used if the true value of θ

were known.
The innovation and novelty of our methodology lie in the fact that we use

dimension-reduction ideas to solve an important class of nonstandard multivariate
nonparametric problems. We achieve this end by proposing new types of
objective functions, with which are associated new theoretical and numerical
properties. There exists an extensive literature on nonparametric estimation of
conditional distributions. It includes work of Bhattacharya and Gangopadhyay
(1990), Sheather and Marron (1990), Yu and Jones (1998) and Cai (2002) on
conditional quantile regression; Rosenblatt (1969), Hyndman, Bashtannyk and
Grunwald (1996), Fan, Yao and Tong (1996), Bashtannyk and Hyndman (2001)
and Hyndman and Yao (2002) on conditional density estimation; and Hall, Wolff
and Yao (1999) on estimation of conditional distribution functions. Dimension
reduction has been discussed extensively in the context of regression and density
approximation; in addition to the references cited earlier we mention the work of
Friedman (1987), Jones and Sibson (1987), Li (1991) and Posse (1995).

This article is organized as follows. In Section 2 we introduce our method for
estimating θ . Asymptotic properties of estimators θ̂ and F̂ (·|θTX) are presented
in Section 3. Numerical examples involving both simulated models and a real-data
application are given in Section 4. Technical arguments are outlined in Section 5.

2. Methodology.

2.1. Motivation. Assume we observe data (Xi, Yi), for 1 ≤ i ≤ n, from the
distribution of (X,Y ). Here X is a d-vector and Y is a scalar. Let � denote the
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set of d-variate unit vectors θ with first nonzero component positive, write f for
the density of X and let FY |θTX(·|z) represent the distribution of Y conditional on
θTX = z. Given subsets A and B of d-dimensional space and of the real line,
respectively, define

πθ(A,B) =
∫
A

FY |θTX(B|θTx)f (x) dx, π(A,B) = P(X ∈ A, Y ∈ B).

If, for some θ and all x, FY |θTX(·|θTx) is identical to the distribution of Y given
that X = x, then for this θ , πθ(A,B) = π(A,B) for all A,B. We suggest taking
the sets A to be d-variate spheres with differing centers and radii, and the sets B
to be semi-infinite intervals.

We can estimate FY |θTX using nonparametric methods, permitting us to
estimate πθ(A,B). Of course, we can estimate π(A,B) as the proportion of
pairs (Xi, Yi) that lie in A × B. Hence, for each triple (θ,A,B) we can estimate
πθ(A,B) and π(A,B) under minimal conditions. (We shall denote estimators of
πθ and π by π̂θ and π̂ , resp.) Therefore we can check (or, more formally, test) the
hypothesis that FY |θTX(·|θTx) is identical to the distribution of Y conditional on
X = x, for all x, by examining the average value of {π̂θ (A,B) − π̂(A,B)}2 over
a range of sets A and B.

Although exact equality of π and πθ is unlikely in practice, the difference-
based criterion noted above can be used to empirically select θ such that, in a
global sense, the distribution of Y given θTX = θTx is a good approximation to the
distribution of Y given that X = x. Indeed, the argument in the previous paragraph
suggests that methodology of this type could be based on the difference measure,

S1(θ) =
∫ ∫

{π̂θ (Aα,Bβ) − π̂(Aα,Bβ)}2w(α,β)dα dβ,(2.1)

where w is a weight function and the integral is taken over a parameteriza-
tion (α,β) of (A,B).

The spheres A = Aα should be such that the density fθTX of θTX is
bounded away from zero at all points θTx with θ ∈ � and x ∈ Aα . Otherwise,
design sparseness problems can arise when nonparametrically estimating FY |θTX .
Considerations of this type suggest taking the Aα’s to be d-variate spheres
whose centers confine them to lie inside a larger, bounded region where f is
bounded away from zero. Such restrictions are unnecessary when considering the
intervals B, except that there is little point in giving emphasis to sets for which
P(Y ∈ B) is low.

For these reasons, when permitting Bβ to be the interval (−∞, β) it is
appropriate to take w(α,β) in (2.1) to be proportional to the density of Y at β ,
and to not depend on α. We shall achieve this end empirically, by replacing the
double integral in (2.1) by a sum of integrals,

S(θ) =
n∑

j=1

∫ {
π̂θ

(
Aα,BYj

) − π̂
(
Aα,BYj

)}2
dα,(2.2)
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where Bβ denotes (−∞, β] and the integral is taken over an appropriate set of
sphere centers and radii. In the future we shall use the notation y instead of β .

When constructing our estimator of FY |θTX , which is central to our com-
putation of π̂θ , we shall use a “leave-one-out” technique, or more accurately,
“leave-two-out.” Our method will employ the empirical distribution of θTXi as
a surrogate for the true distribution of θTX, and so, when θTXi appears in the ar-
gument of F̂Y |θTX , we shall omit Xi from the latter. The second omission occurs
because, as formula (2.2) suggests, we shall validate on Yj when constructing our
least-squares criterion. Therefore we shall omit both the ith and the j th pairs when
calculating F̂Y |θTX; see (2.3) below.

2.2. Estimator of θ . With these principles in mind, let h be a bandwidth and
let K be a kernel function, and define

T
[k]
−i,−j (θ) = 1

(n − 2)h

∑
i1 : i1 �=i,j

K

{
θT(Xi − Xi1)

h

}{
θT(Xi − Xi1)

h

}k

,

wi1;−i,−j (θ) = K

{
θT(Xi − Xi1)

h

}

×
{
T

[2]
−i,−j (θ) − θT(Xi − Xi1)

h
T

[1]
−i,−j (θ)

}
,(2.3)

F̂−i,−j (y|θTXi) =
{ ∑

i1 : i1 �=i,j

wi1;−i,−j (θ)I (Yi1 ≤ y)

}

×
{ ∑

i1 : i1 �=i,j

wi1;−i,−j (θ)

}−1

.

Write simply F(y|z) for P(Y ≤ y|θTX = z), and let A be a subset of d-variate
space. In this notation, F̂−i,−j (y|θTXi) is a local linear estimator of F(y|θTXi),
based on data pairs other than the ith and the j th; and

1

n − 1

∑
i : i �=j,Xi∈A

F̂−i,−j (y|θTXi)

is an estimator of πθ(A,B) when B = (−∞, y].
As a rule we take α to be a (d + 1)-vector, its first d components denoting

the center of Aα and the last component, r say, its radius. We suppose that
r ∈ J = [r1, r2], where 0 ≤ r1 ≤ r2 ≤ ∞ and not both r1 and r2 vanish. In the
case r1 = r2 the spheres all have the same radius, and here α should be interpreted
as a d-vector, with integrals over r , in our discussion below, ignored. With this
interpretation, our account of methodology applies to the case where r takes values
in the continuum as well as to that where r is fixed. Clearly the latter instance can
be generalized to the case of a finite number of discrete radii.
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One approach is to average over all spheres Aα that lie entirely within a given,
fixed set R. With this in mind, let Q = {α :Aα ⊆ R} be the set of sphere centers
(and radii, if J is not degenerate). Write F̂−j (A, y) for the proportion of the n− 1
values of (Xi, Yi), for i �= j , that satisfy (Xi, Yi) ∈ A × (−∞, y]. Put

S(θ,A) =
n∑

j=1

{
F̂−j (A, Yj ) − 1

n − 1

∑
i : i �=j,Xi∈A

F̂−i,−j (Yj |θTXi)

}2

,

(2.4)
S(θ) =

∫
Q

S(θ,Aα) dα.

The latter represents a particular form of S(θ) in (2.2). In practice, the integration
over α in (2.4) is typically replaced by a sum over a class of selected balls; see (4.1)
below. In fact the asymptotic theory in Section 3 still holds with this discrete
version of S(θ) if the same replacement is applied wherever appropriate, including
in condition (3.3).

We choose θ̂ to minimize S(θ) over θ ∈ �. Thus, θ̂ may be viewed as an
estimator of θ0, the minimizer (over θ ∈ �) of

S0(θ) =
∫
Q

dα

∫
{F(Aα, y) − Gθ(Aα, y)}2fY (y) dy,(2.5)

where F(A, y) = P {(X,Y ) ∈ A × (−∞, y]}, fY denotes the density of Y and

Gθ(A, y) =
∫
A

F(y|θTx)f (x) dx.(2.6)

A low-dimensional approximation to FY |X(y|X = x) is therefore F̃
θ̂
(y|θ̂Tx),

where F̃θ (y|z) is an estimator of P(Y ≤ y|θTX = θTx). Denoting by F̂ a local
linear version of F̃ , we define

F̂θ (y|θTx) =
{

n∑
i=1

wi(x, θ)I (Yi ≤ y)

}/{
n∑

i=1

wi(x, θ)

}
,(2.7)

where

wi(x, θ) = K

{
θT(x − Xi)

h

}{
T [2](x, θ) − θT(x − Xi)

h
T [1](x, θ)

}
,

T [k](x, θ) = 1

nh

n∑
i=1

K

{
θT(x − Xi)

h

}{
θT(x − Xi)

h

}k

.

Our empirical, low-dimensional approximation to FY |X(y|X = x) is taken to
be F̂

θ̂
(y|θ̂Tx), and is of course an estimator of P(Y ≤ y|θT

0 X = θT
0 x).
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2.3. Empirical bandwidth choice—a rule of thumb. Two bandwidths need to
be chosen: h for estimating θ , and H for estimating F

θ̂
(y|θ̂Tx) with θ̂ given.

In such nonstandard problems, conventional bandwidth selection methods for
nonparametric regression are either tedious to apply (as in the case of plug-in
methods), or do not facilitate obvious analogies (e.g., cross-validation and its
variants). Note that with θ̂ given, estimation of F

θ̂
(y|θ̂Tx) has been investigated

by, among others, Hall, Wolff and Yao (1999). They proposed a bootstrap method
based on an approximating parametric model to determine the bandwidth, which
we will adopt for estimating H . Furthermore, we outline a similar empirical
procedure below for determining h.

First we fit the linear model

Yi = β0 + βTXi + εi.(2.8)

Let β̌0 and β̌ be the estimators derived by, for example, least squares, and let
ε̂1, . . . , ε̂n denote the centered residuals. We shall compute a bootstrap sample
{Y ∗

1 , . . . , Y ∗
n } from the model

Y ∗
i = β̌0 + β̌TXi + ε∗

i ,(2.9)

where {ε∗
i } denotes a conventional bootstrap resample drawn by sampling with

replacement from {ε̂i}. Then the conditional distribution of Y ∗
i , given Xi , depends

on Xi through β̌TXi alone. Let β̂∗ = β̂∗(h) be the estimator obtained in the
same manner as θ̂ but with the data (Xi, Yi) replaced by their resampled
counterparts (Xi, Y

∗
i ); see Section 2.2. We choose h to minimize

M1(h) = E[‖β̂∗ − β̌‖2|{(Xi, Yi)}].(2.10)

It is important that the two bandwidths h and H should be different. As we
shall show in Section 3, optimal performance is achieved if h is of smaller order
than H . The simulation results reported in Section 4 indicate that the bandwidths
selected by the bootstrap methods discussed above produce estimators with good
performance.

3. Theory. For simplicity we discuss only the case where the data (Xi, Yi)

are independent. Analogues of our main results, Theorems 3.1 and 3.2, may be
derived for dependent data, in particular for sequences of pairs (Xi, Yi) that satisfy
sufficiently strong mixing conditions. The case of dependence will be explored
numerically in Section 4.

Let us first define the vector of derivatives, ȧ, of a function a of θ ∈ �.
Let ω1, . . . ,ωd−1 be orthonormal vectors all perpendicular to θ , put ωiδ = (1 −
δ2)1/2θ + δωi for a scalar δ and set

bi = lim
δ→0

δ−1{a(ωiδ) − a(θ)},
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assuming the limit exists and is finite. Then

ȧ(θ) ≡ ∑
1≤i≤d−1

biωi,

a vector in the plane perpendicular to θ . Similarly we may define the matrix, ä, of
second derivatives of a.

Let (X,Y ) have the distribution of a generic pair (Xi, Yi). We shall assume that

the density of (X,Y ) has four bounded derivatives,
and all moments of Y are finite.

(3.1)

The bandwidth h will be permitted to vary within a range, effectively from n−1/3

to n−1/4; see (3.4) below. If we were confining attention to the lower end of this
range, then we could reduce the smoothness assumption in (3.1) from four bounded
derivatives to three derivatives plus a Hölder continuity condition. In this sense, the
smoothness required by (3.1) is excessive.

Recall that if sphere radii vary in the continuum, then Q denotes a set of sphere
centers and radii, while if there is a single, fixed radius, then Q is a set just of
sphere centers. In either case, all spheres in Q are completely contained within R;
see the definition of Q in Section 2.2. We shall suppose that

R is an open, bounded set; the density of X is bounded
away from zero on R; and the content of Q is nonzero.

(3.2)

In particular, this and (3.1) ensure that the density of the distribution of θTX

is bounded away from zero on the set of points θTx with x ∈ A ⊆ R.
Assumption (3.2) may therefore be viewed as the analogue of the condition,
imposed in more standard problems of nonparametric regression, that the design
density is bounded above zero.

Conditions (3.1) and (3.2) imply a range of smoothness properties of the marg-
inal density fθTX and the conditional distribution F(y|z) = P(Y ≤ y|θTX = z).
For example, the k1th derivative with respect to θ , of the k2th derivative with
respect to z, of either fθTX(z) or F(y|z), is well defined and bounded in
k1 + k2 ≤ 4, y, θ ∈ � and z = θTx for x ∈ R.

Recall the definition of Gθ(A, y) in (2.6), and let Ġθ (A, y) and G̈θ (A, y)

denote, respectively, the vector of first derivatives and the matrix of second
derivatives of Gθ(A, y) with respect to θ , with (A, y) held fixed. Note that
θ0 = arg minθ S0(θ), where S0 is defined in (2.5).

Put

M(θ) =
∫
Q

dα

∫
[Ġθ (Aα, y)Ġθ (Aα, y)T

− {F(Aα, y) − Gθ(Aα, y)}G̈θ (Aα, y)]fY (y) dy,
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a d × d matrix. By assuming that

θ = θ0 gives a unique global minimum of S0(θ), and
ωTM(θ0)ω > 0 for each nonvanishing vector ω ⊥ θ0,

(3.3)

we require an equivalent condition that S0(θ) → S0(θ0) at exactly the rate
‖θ − θ0‖2 as θ → θ0. Of the kernel K and bandwidth h we shall assume that

K is nonnegative, symmetric and compactly supported, and
has a bounded derivative; and, for some ε > 0, h = h(n)

satisfies h = O(n−ε−(1/4)) and n−(1/3)+ε = O(h) as n → ∞.
(3.4)

The most important aspect of this assumption is that it implies h should lie
between n−1/3 and n−1/4, and so should be an order of magnitude smaller than
a conventional bandwidth for estimating a univariate function by nonparametric
regression. A conventional bandwidth would be of size n−1/5.

Let φθTX|A denote the density of θTX conditional on X ∈ A, and define

ψ(A, x1, y1, y, θ) = {I (y1 ≤ y) − F(y|θTx1)}
(3.5)

×
{
I (x1 ∈ A) − φθTX|A(θTx1)P (X ∈ A)

fθTX(θTx1)

}
.

[The ratio in this definition is guaranteed well defined, since P(X ∈ A)φθTX|A ≤
fθTX .] Let V denote the Gaussian d-vection with zero mean and covariance matrix
equal to that of

W =
∫
Q

dα

[∫
ψ(Aα,X,Y, y, θ)Ġθ0(Aα, y)f (y) dy

+ {
F(Aα,Y ) − Gθ0(Aα,Y )

}
Ġθ0(Aα,Y )

]
dα.

Let ‖ · ‖ denote the Euclidean metric in d-variate space, and recall that θ̂ is defined
to be the global minimizer of S(θ) in (2.4).

THEOREM 3.1. Assume conditions (3.1)–(3.4). Then θ̂ → θ0 with probabil-
ity 1, and n1/2M(θ0)(θ̂ − θ0) converges in distribution to V as n → ∞.

To appreciate the implications of this result, let θ̂⊥ denote the projection of θ̂

into the plane �⊥ that is perpendicular to θ0. (Equivalently, θ̂⊥ is the projection
of θ̂ − θ0 into �⊥.) The first part of Theorem 3.1 implies that ‖θ̂ − θ0‖ → 0 with
probability 1, from which it follows (since θ̂ and θ0 are both unit vectors) that

θ̂ − θ0 = θ̂⊥ + o(‖θ̂ − θ0‖)(3.6)

with probability 1. That is, in first-order asymptotic terms, θ̂ − θ0 is completely
describable through the projection of this vector into the plane perpendicular to θ0.
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Note that, by definition of differentiation with respect to θ , the vector Ġθ

is perpendicular to θ . It therefore follows from the definition of V that, with
probability 1, V lies completely in �⊥. Observe too that, in view of (3.3), there
is a generalized inverse of M0 = M(θ0) (call it M−

0 ) that is well defined in �⊥.
It has the property that

M0M
−
0 v = M−

0 M0v = v for all v ∈ �⊥.

These results, Theorem 3.1 and (3.6) imply that n1/2(θ̂ − θ) converges in
distribution to M−

0 V .
Of course, our main purpose in computing θ̂ is so it can be used in a conditional

distribution estimator, such as F̂θ introduced in (2.7). Theorem 3.2 below shows
that the root-n consistency achieved by the estimator θ̂ makes that quantity
so accurate that, from the viewpoint of first-order performance, the estimator
F̂

θ̂
(y|θ̂Tx) is equivalent to its counterpart which would be employed if the value

of θ0 were known. This result has analogues for general choice of the bandwidth
used for F̂θ ; they describe a range of circumstances where the leading bias and
variance terms do not include the effect of estimating θ . However, for the sake of
simplicity and brevity we shall treat only the optimal size of bandwidth.

The latter size is n−1/5, and when that is employed, F̂θ0(y|θT
0 x) converges to

its limit at rate n−2/5. We shall show in Theorem 3.2 that the difference between
F̂

θ̂
(y|θ̂Tx) and F̂θ0(y|θT

0 x) is then of strictly smaller order than n−2/5.
These considerations motivate the following assumption:

the bandwidth H used to construct F̂θ has the property that
n1/5H is bounded away from zero and infinity as n → ∞; and
the kernel is nonnegative, symmetric, compactly supported
and has a bounded derivative.

(3.7)

Note that H and h are of different orders, the former being of size n−1/5 and the
latter of smaller order. We shall reduce the stringency of (3.1), assuming instead
that

the density of (X,Y ) has two continuous derivatives,
and all moments of Y are finite.

(3.8)

As the following theorem shows, we do not need the full force of the result that
θ̂ − θ0 = Op(n−1/2); the convergence rate op(n−2/5) suffices.

THEOREM 3.2. Assume (3.2), (3.7), (3.8), that x ∈ R, and that θ̂ − θ0 =
op(n−2/5) as n → ∞. Then for each y,

F̂
θ̂
(y|θ̂Tx) = F̂θ0(y|θT

0 x) + op(n−2/5).
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It follows from the asymptotic normality of local linear regression estimation
[see, e.g., Theorem 1 of Fan, Heckman and Wand (1995), and Remark 4 of Hall,
Wolff and Yao (1999)] that the estimator F̂θ0(y|θT

0 x) is asymptotically normally
distributed with convergence rate n−2/5. By Theorem 3.2 above, F̂

θ̂
(y|θ̂Tx)

and F̂θ0(y|θT
0 x) have the same asymptotic distribution.

4. Numerical properties. We approximate the integral in (2.4) by a series,

S(θ) = 1

B

B∑
i=1

S(θ,Ai),(4.1)

where the Ai’s are spheres of radius r contained within R. In practice one would
select a value of B that permitted the calculations to be completed within a
reasonable time, and compute estimates for that value as well as for substantially
smaller ones, say half and three-quarters of the initial B . Provided there was little
variation in the results, the larger B would be appropriate. The results reported in
this section show that choice of B has little effect on final results.

In the numerical examples below we searched for θ (with h fixed) using the
downhill simplex method; see Section 10.4 of Press, Teukolsky, Vetterling and
Flannery (1992). Using the Epanechnikov kernel, the bandwidths were sought
among values hi = 0.1 × 1.2i−1 for i = 1, . . . ,15, based on the bootstrap methods
outlined in Section 2.3. We used sample sizes n = 200 and 400. Each setting was
replicated 50 times. Throughout Examples 1 and 2 below we took Xij and εi to be
totally independent N(0,1) random variables.

EXAMPLE 1. Here we consider the model

Yi = θ1Xi1 + θ2Xi2 + θ3Xi3 + θ4Xi4 + εi,

where θT ≡ (θ1, . . . , θ4) = (1,2,0,3)/
√

14. Thus, the conditional distribution
of Y , given X ≡ (X1, . . . ,X4)

T, is N(θTX,1). We let the radius be r = 1, and
sphere centers be points (x1, x2, x3, x4), where each xj ranged over either five or
seven grid points between −1.5 and 1.5, with spacing 0.75 or 0.5, respectively,
resulting in B = 625 or B = 2401.

Figure 1(a)–(c) presents boxplots of the inner product θTθ̂ , where, respectively,
the bandwidth h was computed by minimizing (2.10), or taken equal to the latter
value multiplied by 1.5 or 0.7. Since both θ and θ̂ are unit vectors, θTθ̂ = 1 if
and only if θ = θ̂ . We see from Figure 1(a)–(c) that the estimates of θ become
steadily more accurate as sample size increases. Moreover, the algorithm is largely
insensitive to the bandwidths used in the search; the estimates of θ with the
three different bandwidths differ only a little. Furthermore, the algorithm is also
insensitive to the value of B .
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FIG. 1. Simulation results for Example 1. Boxplots of the inner product θ̂Tθ , with bandwidth h

taken equal to (a) ĥ, (b) 1.5ĥ, and (c) 0.7ĥ; and of (d) ĥ, (e) Ĥ , and (f ) average absolute errors of
estimated conditional distribution of Y given θTX with either θ = θ̂ (denoted by “E”) or θ equal to
its true value (denoted by “T”).

Figure 1(d) and (e) displays boxplots of the bandwidths h, obtained by
minimizing M1 in (2.10), and H , defined by the method of Hall, Wolff and Yao
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(1999). As expected, empirical bandwidth is a decreasing function of sample size.
Note too that selected h’s are in general noticeably smaller than the chosen H ,
which is in agreement with the asymptotic orders of h and H .

We also calculated values of the local linear estimator defined in (2.7) with
bandwidth H . Figure 1(f ) gives average absolute errors, computed using a regular
grid (with adjacent points distant 0.05 apart) in the (θTX,Y )-plane. For the sake of
comparison we also report the errors for the estimators based on the true θ . Clearly,
accuracy increases with sample size, and estimators based on θ̂ are less accurate
than those based on the true θ . However, the deficit due to errors in estimating θ

is not great when n = 200, and is negligible when n = 400. Choice of radius r is
not critical either; results with r = 0.5 and 1.5 are similar to those for r = 1, and
therefore are not reported here.

EXAMPLE 2. Next we consider the model

Yi = 1
2(sinXi1 + sinXi2 + sinXi3 + sinXi4) + εi.

Now the conditional distribution of Y given X = (X1, . . . ,X4)
T no longer depends

on a linear combination of X. The true value of θ is (0.5,0.5,0.5,0.5)T; note the
symmetry of the model. We selected the spheres in the same way as in Example 1.
The numerical results are presented in Figure 2, which displays a similar pattern
to Figure 1 although the estimates in general are not as accurate as in Example 1.
This is due to the fact that we were estimating the least-squares approximation, in
the sense of minimizing (4.1), of the conditional distribution of Y given X, rather
than the conditional distribution itself. Figure 2(a)–(c) shows that the estimation
for θ is still accurate, even for the sample size n = 200, and is steadily improved
when n is increased to 400.

EXAMPLE 3. Finally we illustrate our method with {Yt , 1 ≤ t ≤ 176} the
quarterly growth rates of US real GNP between February 1947 and January 1991.
The data series is plotted in Figure 3. This dataset has been analyzed by, for
example, Tiao and Tsay (1994). Let Xt = (Yt−1, Yt−2)

T. We estimated the value
of θ = (θ1, θ2)

T for which the conditional distribution of Yt , given θTXt , was the
best approximation for the conditional distribution of Yt given Xt , in the sense
that S(θ), defined at (4.1), was minimized. We first standardized the data Xt .
Sphere centers were taken to be the points Xt (so that B = n), with radius r = 1.
The resulting estimate is θ̂ = (0.580,−0.815)T.

Once θ̂ was obtained we constructed the adjusted Nadaraya–Watson es-
timator F̂ (·|z) [see Hall, Wolff and Yao (1999)] of the conditional distri-
bution of Yt , given θ̂TXt = z. The resulting quantile prediction interval is
[F̂−1(1

2α|z), F̂−1(1 − 1
2α|z)], for α ∈ (0,1). To check on performance we used

the first 166 data points to estimate θ̂ and F̂ (·|z), and employed the last ten data
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FIG. 2. Simulation results for Example 2. Panels show the same information as in Figure 1.

points to validate the predicted values. Results with α = 0.1 are reported in Table 1.
Note that with θ̂ = (0.580,−0.815)T, the predictor is 0.580Yt−1 − 0.815Yt−2. For
comparison we also report prediction intervals using a single predictor Yt−1, and
a two-dimensional predictor (Yt−1, Yt−2).
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FIG. 3. Prediction intervals for US quarterly GNP growth Xt based on, respectively, three different
predictors 0.580Xt−1 − 0.815Xt−2, Xt−1 and (Xt−1,Xt−2).

All the intervals in the table contain the corresponding true values. Prediction
intervals based on two predictors Yt−1 and Yt−2 are more accurate, in general,
than those based on a single predictor Yt−1, since the average length of the
prediction intervals is reduced from 3.51 to 3.21. It is interesting to see that
the average length of the prediction intervals based on the selected single
predictor 0.580Yt−1 − 0.815Yt−2 is 3.22, which is almost the same as that based
on (Yt−1, Yt−2). Note too that our method does not use multivariate smoothing
techniques, which are susceptible to the “curse of dimensionality.” Predictions
based on d = 3 and 4 did not lead to significant improvements, and therefore
are omitted. The absence of improvement is in agreement with results of Tiao
and Tsay (1994), who proposed nonlinear, second-order autoregressive models for
this dataset.

TABLE 1

True value 0.580Xt−1 − 0.815Xt−2 Xt−1 (Xt−1,Xt−2)

0.67 [ −0.99,2.32] [ −0.99,2.32] [ −0.62,3.11]
0.89 [ −0.91,2.32] [ −0.88,2.34] [ −0.59,2.28]
0.40 [ −0.99,2.20] [ −1.56,2.54] [ −0.86,2.34]
0.43 [ −0.91,2.34] [ −0.99,2.32] [ −0.62,3.11]
0.09 [ −0.91,2.28] [ −0.88,2.34] [ −0.59,2.21]
0.42 [ −0.99,2.20] [ −1.56,2.54] [ −1.17,2.34]
0.11 [ −0.88,2.32] [ −0.99,2.32] [ −0.62,2.32]
0.36 [ −0.91,2.34] [ −0.88,2.34] [ −0.59,2.12]

−0.40 [ −0.99,2.34] [ −1.56,2.54] [ −0.86,2.54]
−0.65 [ −0.81,2.32] [ −0.91,2.32] [ −0.91,2.32]

Average length 3.22 3.51 3.21
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5. Outlines of technical arguments.

OUTLINE PROOF OF THEOREM 3.1. Our argument has two main stages,
showing, respectively, that

‖θ̂ − θ0‖ = Op

(
nε−(1/2)) for each ε > 0,(5.1)

S(θ) = T + (θ − θ0)
TM0(θ − θ0) − 2(θ − θ0)

T(V1 + V2)
(5.2)

+ op(‖θ − θ0‖2) + Op

(∑‖θ − θ0‖un−v−ζ
)
,

where T does not depend on θ , ζ > 0 is fixed,

V1 =
∫

dF̂ (y)

∫
Rr

Ġθ0(Aα, y)ξn(Aα, y, θ0) dα,

V2 =
∫

dF̂ (y)

∫
Rr

Dθ0(α, y)Ġθ0(Aα, y) dα,

ξn(A, y, θ) = 1

n

n∑
i=1

[ψ(A,Xi, Yi, y, θ) − E{ψ(A,X,Y, y, θ)}],

ψ is as in (3.5), and Op(
∑‖θ − θ0‖un−v−ζ ) denotes a quantity which uniformly

in θ is of order no more than that of the sum of ‖θ − θ0‖un−v−ζ over a fixed, finite
set of pairs (u, v), where in each case, u, v ≥ 0 and 1

2u + v ≥ 1.
To give an appreciation of the origin of the terms which make up the Op(· · ·)

remainder in (5.2), we note that the contributions to the remainder come from
different steps in a Taylor expansion of S(θ). In particular, terms of the following
orders arise in that way:

‖θ − θ0‖h2, ‖θ − θ0‖(nh3/2)−1nε, ‖θ − θ0‖n−t−(1/2),
(5.3)

‖θ − θ0‖2(nh3)−1, (nh3)ε−2, n−t−1,

where in each case the bound is valid for all ε > 0 and some t > 0. Noting that,
by (3.4), nζ1−(1/3) ≤ h ≤ n−ζ2−(1/4) for constants ζ1, ζ2 > 0, and using the upper
of these bounds when h appears with a positive exponent in (5.3), and the lower
when h appears with a negative exponent, we see that each of the quantities in (5.3)
may be written as ‖θ − θ0‖un−v−ζ for some ζ > 0 and some (u, v) such that
1
2u + v ≥ 1.

More detailed proofs of (5.1) and (5.2) can be found in Hall and Yao (2002). To
illustrate the use of the regularity conditions (3.1)–(3.4), we mention that (3.1)
is employed to guarantee adequate smoothness of F when Taylor-expanding
F(Yj |θTx) and related functions; that (3.1) and (3.2) together ensure that the
effective design density is bounded away from zero, which allows us to deal with
the denominator of F̂−i,−j (Yj |θTXi) via a stochastic Taylor expansion; that (3.3)
guarantees that the minimum of S(θ) is attained in the usual quadratic way, or
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equivalently that the matrix M(θ0) is of full rank in the (d − 1)-dimensional
space of vectors perpendicular to θ0; and that one of the applications of (3.4) was
described in the previous paragraph.

Taking θ = θ̂ in (5.2), and noting (5.37), we see that the remainder term
in (5.2) may be written as Op(

∑
n−(u/2)−v−ζ ). Since 1

2u + v ≥ 1 for each
pair (u, v) contributing to the series, and since ζ > 0, then this Op(· · ·) remainder
equals op(n−1). Theorem 3.1 follows from this form of (5.2), and from the fact
that n1/2(V1 + V2) converges in distribution to V , the latter defined a little before
the statement of the theorem. �

OUTLINE PROOF OF THEOREM 3.2. Let �n denote the set of all θ ∈ � that
satisfy ‖θ − θ0‖ ≤ δ(n)n−2/5, where δ(n) ↓ 0 as n → ∞. The theorem follows
from the following result.

LEMMA. Assume (3.2), (3.7), (3.8) and that x ∈ R. Then for each y

sup
θ∈�n

∣∣F̂θ (y|θTx) − F̂θ0(y|θT
0 x)

∣∣ = op(n−2/5).

We outline the proof of the lemma. Treat F̂θ as the ratio expressed in (2.7),
although multiply top and bottom there by (nh)−1 [here (nH)−1, since we take
the bandwidth to be H ] in order to ensure that neither the numerator nor
the denominator converges to zero or diverges to infinity. The numerator and
denominator are now each in the form T1T2 − T3T4, where each Tj is linear
in functions of the data Xi and has a proper limit as n diverges. Additively
decompose each Tj into its expected value (or mean), and the difference between
it and its mean. Each mean is of course purely deterministic. In the remainder of
this section we shall outline the technique, starting from this decomposition, for
treating T1 and T2; a similar argument may be given in the case of T3 or T4.

The expected value of T1 or T2 may be written as its “H → 0 limit,” plus a term
that equals H 2 multiplied by a function of θ , plus a remainder that equals o(H 2)

uniformly in θ . The “H → 0 limit,” evaluated at θ , equals the same quantity
evaluated at θ0 rather than at θ , plus a remainder of order O{δ(n)n−2/5} =
o(n−2/5), uniformly in θ ∈ �n; and similarly, the coefficients of H 2 (for θ and θ0,
resp.) are identical, up to a term that converges to 0 uniformly in θ ∈ �n as n → ∞.
These arguments require only Taylor expansion, and prove that the mean of each
of the Tj ’s equals its counterpart when θ is replaced by θ0, plus terms that are of
size o(n−2/5) uniformly in θ ∈ �n. A longer argument [see Hall and Yao (2002)]
can be used to show that the same property is enjoyed by each Tj −E(Tj ), not just
by each E(Tj ). The theorem follows from these properties. �
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