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BOUNDARY-CROSSING PROBABILITIES OF SOME RANDOM FIELDS
RELATED TO LIKELIHOOD RATIO TESTS FOR EPIDEMIC ALTERNATIVES

QIWEI YAQ,* Southeast University, Nanjing

Abstract

We consider the likelihood ratio tests to detect an epidemic alternative in the
following two cases of normal observations: (1) the alternative specifies a square
wave drift in the mean value of an i.i.d. sequence; (2) the alternative perrmits a square
wave drift in the intercept of a simple linear regression model. To develop the
approximations for the significance levels leads us to consider boundary-crossing
problems of some two-dimensional discrete-time (Gaussian fields. By the method
which was proposed originally by Woodroofe (1976} and adapted to study maxima
of some random fields by Siegmund (1 988), some large deviations for the conditional
nan-linear boundary-crossing probabilities are developed. Some results of Monte
Carlo experiments confirm the accuracy of these approximations.

LARGE DEVIATION; GALSSIAN FIELDS

AMS 199t SUBJECT CLASSIFICATION: PRIMARY 60F|0
SECONDARY 60GtS, 62F99

1. Introduction

In 1976 Woodroofe proposed a method of developing large deviation approximations
for boundary-crossing probabilities of one-dimensional discrete-time random processes,
which is to split the probability into a sum by means of the first crossing time, in which
every summand is the probability that the first crossing occurs at a fixed time. Siegmund
(1988) showed that this method could be modified to study maxima of same random
fields with two-dimensional time. In this paper, we try to adapt this method to develop
the large deviations for some complicated conditional boundary-crossing probabilities
of Gaussian fields, which are related to the likelihood ratio tests for some epidemic
alternatives in an independent identically distributed normal random variable se-
quence, and also in a simple normal linear regression model.

The problem of testing a change-point or an epidemic alternative has been widely
discussed in different formulations with a variety of applications. One of the most
distinguished topics is the likelihood ratio test {or the slightly generalized likelihood
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Boundary-crossing probabilities of some random fields 33

ratio tests in case that the model contains some nuisance parameters, cf, James et al,
(1987)). To evaluate its significance level leads to some boundary-crossing probabilities,
which can be precisely calculated on rare occasions. For most of the applications, some
asymptotic approximation, for example, the large deviation, is unavoidable. Let
Y.+ -+, ¥, be independent random variables, F and & be two different distribution
functions. The change-point testing problem is to test the null hypothesis

H: ¥,,- .., Y, are identically distributed with F;

against the alternative

K,: there exist 1 = n < m for which ¥,,- - -, ¥, are identically distributed
with Fwhile Y, .- - -, ¥, are identically distributed with 7,

The testing of an epidemic alternative is to test the null hypothesis H versus the
alternative

K, thereexist 1 =/ <j=mforwhich ¥,,---, Y, ¥;,\,- - -, ¥, are identically
distributed with F while ¥, |,- - -, ¥, are identically distributed with G.

The hypothesis K, has been called an epidemic alternative because an epidemic state &
runs from time / + 1 through j after which the normal state F is restored (cf. Levin and
Kline (1985)). When F and G are completely specified, the problem is relatively easy
since the related boundary-crossing problems are of constant boundaries (cf. Siegmund
(1986), (1988), Hogan and Siegmund (1986), James et al. (1987)). However the case in
which the distribution functions are of known form but contain some unknown
parameters is more interesting and important in practice. In such a case, the significance
level of the likelihood ratio test presents a non-linear boundary-crossing probability. A
most widely utilized assumption for such a case is that F =N(u,¢?) and G =
N{u + 8, a?) with unknown 4 and 4. Siegmund (1986) developed the large deviation
approximation for the significance level for the likelihood ratio test for a change point
when o2 is known. James et al. (1988) got the parallel result with unknown o2, Kim and
Siegmund (1989) extended the above results to a simple normal linear regression model,
although the testing of an epidemic alternative is relatively unexplored. Siegmund
{1988) and Yao (1989) developed large deviation approximations for the level of the
likelihood ratio test when o is known.,

In Section 2, we study the generalized likelihood ratio test for hypothesis H against K,
with F =Ny, 0% and G = N(u + 4, &%), where all g, §, ¢* are unknown. To get an
approximation for the level of the test, the large deviations for same conditional non-
linear boundary-crossing probabilities are developed (see Theorem 1). Some results of
Monte Carlo experiments illustrate the accuracy of these approximations. The proof of
the Theorem 1 is somewhat cumbersome, and we deal with it separately in Section 3.
Section 4 is devoted to a simple linear model: y; is assumed to be a N{a + fx;, 03
variable for i = 1, - -, m under the null hypothesis, and the alternative specifies a drift
with height 4 in & from time i + 1 to j for some | = <j = m. For the cases of hoth
known a* and unknown &2, the large deviations for the levels of generalized likelihood
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ratio tests are presented in Theorem 2. The accuracy of these approximations is also
assessed by some Monte Carlo experiments. The proof of Theorem 2 is omitted. It is
similar ta the proof of Theorem 1 in principle but more complicated in detail.

2. Testing an epidemic alternative in a normal sequence

Let ¥, i =1,---, m, be independent normal random variables with mean g, and
unknown variance a2 > (. Consider the problem of testing

Hot = =ty = 4;
against

H;: forsomel =i <j=m, u = --=y =4u,
Pipo ==y =ptdandy, = =gy =4,

where 4 and & # 0 are nuisance parameters.
Let S, =2 Yo, n=1,---,m, Q={1/m)Z] (¥, — S,,/m)*. Some algebraic calcula-
tions show that the log likelihood ratio statistic is

oy (sosn s flu-a(-E o

Since it is intrinsically difficult to do statistical inference en (/, /) when one of j — f and
m — {j — i} 1s sufficiently small (cf. Siegmund (1986)), we assume that hoth j — i and
m — (j — i} are effectively infinitely large when the sample size »2 tends to infinity, more
precisely my = j — i = m, with my/nm — t,, m/m — ¢ forsome 0 = 1, <, = 1. Hence the
generalized likelihood ratio test of H, against H, rejects H, for large values of

i-n{i-o.

(1) max |§,— S——S

mpEf—fSm

Under H, the distribution of the process

(S}-—S‘,——-J-:{Sm)/\/@‘ f,j=l,-~,m,
m
does not depend on 4 and a* and hence by Basu’s theorem (Lehmann (1959), Theorem

5.2), the process is independent of the complete sufficient statistic (S,,, U/,,), where
U, = Z" Y}. Therefore the test level can be expressed as follows:

pm,lEPHn{|S:i —Silzb \/(J' - f}(l “%)

forsomemy =j—i =m|S, =0, Um=m}:

(2)

where b is a positive constant which is determined by the assigned test level. Theorem 1
presents its large deviation approximation, which involves the special function
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3 v(x)=2x‘zexp{—2§£¢(—x\/ﬁ!2)} (x >0),

where & denotes the standard normal distribution function. For numerical purposes it
often suffices to use the approximation for small x {cf. Siegmund (19835), §10.4)
v{x) = exp( — 0.583x) + o{x?).

Theorem 1. Suppose m — oo, My— 00, M, —* 0 in such a way that for some 0 = ¢, <
t =1, my/m — tyand m/m —¢,. Then for b = ¢, /m with ¢ €(0, 1) fixed,

3 2mi2-3 ™ “ A2
4 P~ 2\/—5(1 c*) fm = [v(cf,/z(l (1~ e2))dr.

Remark 1. For the ane-side drift alternative hypothesis, namely to assume 4 > 0 in
H,, the likelihood ratio statistic can be taken as

N e NAVCEI G

Hence the level of the test is

ﬁm.—Puo{S Szb \/u—s)( -

forsome my=j—i =m]|S, =0, Um=m}'

(5)

From the proof of Theorem 1, one can see that j,, , is asymptotically equivalent to one
half of the right-hand side of (4) as m — «o. That means p,, , ~ 27, ,.

Remark 2. There is also a version of Theorem | in the case that a2 is known. The
significance level of the likelihood ratio test for H, against H, is

me_PHo{ |S Sl—b\/(.}'_z)( J_l)

forsomemu§j~f§m||s,,=0}>.

(6)

As in Remark 1, if we restrict d positive in H,, the level of the test becomes

) -
ﬁ""lspﬂ"{c_r(‘s} -8)zbh \/U—f)(l —~'%) for some my =j —i 2 m,|S, =O}.

They have the following asymptotic approximations:

) 2sz~-b’ (b}

[v(ci. (1~ )3,

toém (1
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TasLE |
m=25 my=1,m =24

#? unknown o! known
A Approximation Monte Carlo Approximation Monte Carlo

(4) pm,l ﬁm,l (T) pm,E ﬁm,l
3.06 0133 0.132 0.073 0.176 0.169 0.097
313 0. 100 0.103 0.057 0.145 0.140 0.079
3.26 (.056 0.039 0.033 0.100 (.100 0.055
3.28 (.051 0.053 0.030 0.094 0.093 0.051
3.48 0.018 0.021 Q.011 0.050 0.053 0.028
3158 0.010 0.011 0.005 0.034 0.032 0.017
3194 0.001 0.001L 0.001 0.010 0.010 0.005

TABLE 2

m=25%6=1313

o unknown g* known
(Mg, 1) Appraximation Monte Carlo Approximation Monte Carla

(4) pm,l 5»1,[ (7) Pm.z ﬁm.l
{1, 24) 0.100 0.097 0.052 0.145 0.133 0.075
{1,21) 0.097 0.095 (4.052 0.139 0.129 0.073
{4, 24) 0.063 0.063 0.034 0.082 0.084 0.047
{4,21) 0.059 0.060 0.033 0.076 0.079 0.045
{4, 18} 0.053 0.056 0.031 0.069 0.074 0.042
(7,21} 0.039 0.044 0.023 0.049 0.058 0.032
(7, 18} 0.034 (.040 0.021 0.042 0.052 (.029

under the same assumptions as Theorem 1, where ¢ denotes the standard normal density
function (see Siegmund (1988), Yao (1989)).

Tables 1 and 2 give some indication of the accuracy of (4) and (7). For both cases of
unknown and known a2, two 10 000 repetition Monte Carlo experiments with s = 23
offer some estimates p,, (, B, and p,, 5, B, ». Table | shows that when the p-values are
near 0.10, 0.05, and 0.01, the large deviations given in (4) and (7) offer quite good
approximations. From Table 2 one can see that the approximations are also good for
different values of myand m, with a given value of m, In addition, a simulant probability
fot P, \, B2 15 always about one half of the corresponding simulant value for p,, |, 2 2
which agrees with the arguments in Remark [, or 2. Other simulation results, not
reparted here, show that the essential conclusions are unchanged over a range of the
p-value and sample size, although the magnitude of the difference can be more or less.

3. Proof of Theorem 1

Throughout this section we assume that Y,,- - -, ¥,, are Li.d. N{Q, 1) variables, and
Sy=0,8,=3Y, U, =3"Y: n=1,---,m. We also assume that m — =, m,— x,
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m,— oo in such a way that for some 0 = t,<<t, 2 |, mo/m —t, m/m—1t, and b =
¢./m with ¢ €(0, 1). We use the notations

t,=nim, #n=%c’f\.-"£n(l_rn:

JHp,qy={,)):m=j—i=m,and f <gq}
(8)
U{,q)g—m <i=(g—mepnrp}

formg=n=m,l<p<g<m,and
PO (AY= P4 |8, =&, Uy = 4)
for A€a(Y,,- -+, Y,). Hence

p,,,,l=P(§'.",,I{|S}—S,-I =h \/(j—z')(l—"—;—l)forsomeméj—féml},

ﬁm.|=P<§f:: {Sj—& zb \/(j—i)(l—’:)forsomemoéj—igml}.
m

The following lemmas are technical and will be used in the proof of Theorem 1.

Lemma 1. Assumemy=n =m,0=x <logm. As m — o0,

() Pon{S, Eb./n(l — nim)+ dx}idx
~Q2r)~ (1 — nfm)] "Y1 — ™= Wlexp{ — 2u,x/1 — ¢?)}
uniformly for x and x;
(il) PII(S, 2 b /n(l — nim) + log m} = o(m=(1 — c)m2);
(it) Pom (U, — mlty + cX(1 — 20, )]| > m**| S, = b /n(1 — nim) + x} = o(m~'").

Lemma 1 follows from JTames et al, (1988), Lemma 1.

Lemma 2. Asm — m,

P{S}—S,- <h \/U'— i)(l —j—_—l),forall l=j—i=m, —(logi*ﬂ)’|S,,,l
m
)
=b~,ﬂ'm|(1 - tl)+x, Um=m[£l +C2(1 _2t|)]+y} - 1‘
Proof. From the equality (2.3) of James et al. (1988), one obtains

I'i{(m — 1y/2)
I'm/2—1)

v/ m ~1 _n
y= n(m_n)(i—{zlm} 2(.)c m{)

From this one can show that for every my <j = m, — (log m)?,

PE’:}(S" de) =g 12 (l - y’)(’"“’”dy,

where
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P(S;zb. /i1 —jim)|S,, =bm{(l — )+ x, Uy, = m[t, + ¢¥(1 — )] + y}

B l"((m1 1/2)
172
I'tm, /2 —1) .J- (-

A

n yH"T Yyl + o(1)),

where

_logm = sy
d, mc![(lJr\/l t )/l — Dl

For any a €(0, 1}, it is easy to prove that
1
[ = vy = -y 2sam — 21

Consequently,

{{m, — 1)/2)

| — LHS of g1
of )= { T(m/2 — 1)

(1 — dz )™= [d,, (m, — 2)]} (I1+ao(1)—0,

as m — w, which completes the proof.

Lemma 3. Letpz./mn=qg—pzmg+ \/E,and L, =nim—>t'€(, L asm—
co. Then uniformly in such { p, 4) and x €(0, log m), |y | < m*?, the following relation
halds when m — ao:

P {S -S,<b \/U-:}( ) for all (i, YEJ(p, q)| S, — S,
(10) =b./n(l —nim)+x, Uq—U,,=m[z,,+c2(1—2:,,)]+y}

~P{r;11n.§'k >x}>P{mmSk +m1nSk >x}
z1

kzl

where S, = (1 — )Y, + ku,) for k=0, {S},k=0) is an independent copy of
{S¢, k =0}, and g, and J{ p, q) are defined in (8).

Progf. Tosimplify the notation, let Pt#9' denote the conditional prebability measure
on the left-hand side of (10).

Since /k(1 — k/m) is a convex function of %, the following inequality holds for
Ljzl,ntizsmandn—j=l.

VG Voo
N e

Consequently
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{Sj -8 <b \/U' —f}(l —E),forall (L, DES(p, q)}
m

={SQ—S,-<!J \/(q—z‘)(l—g:—z),forallq—m,<z‘§(q—mg)ap}>
m
(11)
N {SJ-—S,-<b \/U—i)(l—’:),forallpgi <qu,andm(,<;‘—1‘<ml}
m

n{&—s,<b \/U—z‘)(l—’:),forall1§£{j§p,andmﬂ<j—j<m1}.
m

By Lemma 2, one can see that under the measure P(*9 the inequalities on the right-hand
side of the above expression are asymptotically almost surely valid for some indices,
especially for all | =i <<j £ p. Therefore

LHS of (15} = pt»:@ <|'S,, =5, <b \/(n + i)(l _n_-l-t) forall 1 =i <(log m)%
m

and S, , —S,_, <b \/(n —j+:‘)(l —u*—’)
m

foralli =0,j = 1,and0<j—i<(logm)2}+o(l)

(12)
=pPNS, =5, >x— (]l —2)orall 1 =i < (logm)* and

Se =S+ 8-, — 8 >x+({— i1 —2¢)forall
[=0,jz land 0<j — i <<{log m)?} + o(1).

The last equality follows the asymptotic relation

b\ /n(l—%)—b \/(n—k)(1—”—m_—5)=kp,,(1 —2,) + o)

for 1 =k = (log m)%
On the other hand, one can show (directly, or by Lemma 1 in Chapter 4 of Hu (1985))
that as m — oo, the ratio of the P¢*4)-joint density of random variables

Sp—l'_Sp+iﬂn(1_2tn}s [= 1:"':(103m)1;

or
Sg—=Se— — i1 —=28), =1, (log m)}
or
Sp—i—Sp+faun(l_2tn): i=— 1:"':_(10gm)2
to the joint density of S, k = 1, - -, (log m)?, converges to 1, and furthermore asympto-

tically these three collections of random variables are stochastically independent. Hence
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the right-hand side of (12) is asymptotically equivalent to the right-hand side of (10). The
proof is completed.

Lemma 4. Let (S,, k 20} and {$}, k Z 0} be the same as in Lemma 3. Then

= 2 ~ N N
J‘ cxp(— #,.XI)P{minSk>x}P{:g1inSk+rf31inS,’c>x} dx
a z1 z40

1—c kz1

=2(1 — N T v2u /(1 — 7))
Lemma 4 follows from Siegmund (1988) Lemma 7 and Siegmund (1985) §8.5.

Proof of Theorem |.  The proof proceeds in two steps. At first one proves that g, | is
asymptotically one half of the right-hand side of (4). The second is to show g, [ ~ § p, 1.
We split g, , into the following sum:

m m, [+ fm]—1
ﬁm,.=( z ¥+ ¥ I+ X )
n=ima+/mlg—p=n  n=[met Sm]g—p=n a=pg  g—p=n
o< fm

a2z /m

"

121
vu,f)em,q)}

=p + pht D

First of all, we try to calculate the main part p,. For any (p, g) with p = . /m, and
g — p = n between m, and m,,

P {Sq -8, 2 b /n(l— nim), S, ~ 5, <b \/u - f)(l —j—_I), V(i )EI(p, q)}
m
= PI(S, Eb/n(l — nint) + dx)
Amn

(13) X P{a{U, €Emt, + c¥(1 — 20,)] + dv | S, = b/n(1 — nim) + x}

=b/n(l —nim)+x, U, — U,Ems, + cX(1 —21,)] +P](

where

A ={(, 1) x 20,y 20,b/n(l —n/im)+x

< Jumle, + X1 —2t)] + ny aJ(m — n){(m — mlt, + X1 —24)] — v} }.

Lemma ! (ii) indicates that the Pf,f’:,’-probability of S, Zb/n{l —n/m)+logmis of
higher order, which can be neglected. Hence it seems plausible that the range of the value
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of x in the integral in (13) can be restricted to the interval [0, log 7]. Similarly by Lemma
1 (i1i), we can also restrict the range of the value of y to, say, |v{ < m?¥*, Furthermore
using Lemmas 1 (i), 3, and 4, we have

,_,_":3\/E A hymi2-1 . — 1
. 4\/2—?[(1 e?) Y e/ = )1 — D))

ﬂ-[m+J_](1 — )31

3m3.l’]

=M anmn-a i _ _ 2
e [ o e DT = e,

which is just half of the right-hand side of (4).
On the ather hand, it follows from Lemma 1 easily that

p=/m 2 Pom (S, Z by/n(l — n/m)} = O(m(1 — cH)™);

H =g

(mg+/m]
pEm L PUa{S, z2b/n(l=nim)} = O(m(l — c)m),

H=my

that means that g, , is asymptotically equivalent to p,.
To show p,,,, ~ 25, |, one only needs to prove that

(14) 2Pmi = Py = 0(m¥Y(1 — c ™),

since obviously 24, , > p,, .. For any ( p, g) with ¢ — p = n between my and m,

2P {Sq -8, 2 b/n(l — nim); and

s-s<6\/u-n(1-=F) vanero, o}

(15) - p{) {iSq -8, zb./n(1 —n/m); and

s-s<6\/u-n1-=1), V.)EN 5. 0)

_zf Ful D, DPE (S, E /(T =nim) + dx, U, Emlt, + X1 — 21,)] + dy),

where

I, q)—Pé"L’{S S——b\/o—:)( ’;‘),

for some (i, YEJ(p, 9)| S, — S, =b/n(1 — nim)} + x,

U, —U,Em[t, +c*3(1—21)] +y}.

Using equality (11) with — & instead of b, one can see that 1 — fx(p, ¢)is equal to
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P{S,,<b,m(1—nfm)+x+b \/(H—k}(l_” —k),
m

Visk<n—m|S,=b/n{l—nim)+x, U,}=m[c,}+c2(l—2r,,)]+y}

xP{Sk<b,/n(l—nfm)+x+b \/(n+k)(l_n+k),
1
V1§k<m1—nl.5‘m_,‘=bm+x,

Upen = il + 0= 2n =}
With some similar arguments as in the proof of Lemma 2, one can easily show that both
of the probabilities in the above praduct tend to | uniformly for 0 = x <<log m, and

(¥ <m? It follows from Lemma 1 that the left-hand side of (l5) is
a{m VY1 — ¢1y™2), which entails the validity of relation (14). This completes the proof.

4, Testing an epidemic alternative in a simple linear model

Suppose that ¥|,- - -, ¥, are independent and normally distributed with common
variance o, This section concerns the likelihood ratio tests of the null hypothesis

Hul EYk=a+ﬁxk, k':l,“‘,m
against the alternative
H,: there exist | ={ < j = m such that
a+ fx,, k=1, - b, j+1, - m,
EY, =
a+d + fixg, k=i+1,---,},

where x,---, x,, are given constants, and «, 8, § ( # 0) play the role of nuisance
parameters. The hypothesis H, specifies a usual straight-line regression model, and
under this model the maximum likelihood estimators for «, #, and a? are

=Y — px:

F=S (¥, — P)xe —x‘)/}ﬁ(xk ~ )

gt = m-! {)”fm C P AT, - VY —f)}
1 1

respectively, where ¥ =(1/m)Z]" Y,, and ¥ =(1/m) I x,. Some tedious calcula-
tion shows that the generalized likelihood ratio test rejects H, for large values of
MAX oz, O Un(Z, j) when a* isknown, or for large values of MaxX,,<; ;= m, 8 ' U, (4, 7)
when o? is unknown, where
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—i)d — ﬂ E Xk

PR AV = e
PP R .

and §, denotes the partial sum of ¥;’s. By Basu's theorem, the same arguments as in
Section 2 entail that the process U, (i, j), I,j=1,- - -, m, is independent of a complete
sufficient statistic, which is (4, #) when o? is known, or (&, £, ¢%) when ¢? is unknown.
Hence, for the two cases the significance level can be expressed as

1 __
pas=rafs1s — 5126\ Ju-0(1-12) wa,

forsomemcéj—iéml]é=0,ﬁ=0};

pm—Pﬂu{m Slzh \/u—s)( - g,

forsomemuéj—féml|c§=0,ﬂ‘=0152=1}

Ui, j) =

respectively, where b is a positive constant. Theorem 2 presents some large deviation
approximations for these probabilities in a special case, say x, = k/m, which can be
thought of as the time at which the kth of equally spaced observations is made.

Theorem 2. Suppase m — o0, my— oo, M, — ¢o in such a way that for some 0 = £, <
6 =1, myim — 1y and m,/m —¢,. Then for b = ¢,/ m with ¢ > 0 fixed,
(i) if o is known,

1 myim |-t
(16) Pra~30%®) [t [ e, e Jute s,

(i1) if #* is unknown, and ¢ €(0, 1),

b3(1 —_ Cz)[m -2

1
Pma ™y J2n
x " dtf [u(t, swic Jult, s)y(1 — c}))]*ds,

mgim

(17

where v(x) is given in (3), and
a2, 5) II:I(I - [)(I —1—3{—1(1 —t _2_5.)2)]F| )

Remark 3. [If we restrict d to be positive in H,, the level of the likelihood ratio test
would be
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TapLE 3
m=25nmy=1,m =24

a! known & unknown
b Approximation Monte Carlo Approximation Monte Carlo

(16} pm.l ﬁm,] (1?) pm.4 p‘m‘d
318 0.152 0.134 0.074 0.123 0.109 0.059
122 0.135 0.118 0.066 0.103 0.093 0.049
3.30 0.106 0.100 0.051 0.07! 0.065 0.034
3.37 0.085 0.074 0.042 0.051 0.047 0.026
351 0.054 0.044 0.026 0.024 0.023 0.012
3.67 0.032 0.027 0014 0.009 0.007 0.004
397 0.010 0.009 0.005 0.001 0.001 0.000

| _
R R R ELAVOR (B RS
J m

forsomemqéj—iém11é=0,ﬂ=0}

when a2 is known; and

B o= Pa, {s _Szb \/0 - f)(l —%) Ui ).

forsomcmngj—igml|é=0,ﬁ=0,éi=1}

when ¢? is unknown. Similar to Remark [ and 2, one can show that under the same
assumptions as in Theorem 2, 25, ; ~ p,, ;, and 2§, ,~ p,, , when m — .

Remark 4. The proof of Theorem 2 is omitted here since it is in principle similar to
the proof of Theorem 1. One thing which is worth mentioning is that when the
hypothesis H, holds and also 4 =0, # = 0,

¥,

v=| | |=q-pyV,
Y,

where I'is the m X midentity matrix, P denotes the projection matrix on the linear space
spanned by 1=(1,- - -, 1) and x=(x,,- - -, x,,,)’. Consequently under such conditions,
Y is a m-dimensional normal random vector with mean zero and variance %I — P)
when g% is known. When g2 is unknown, 6% = m~! || ¥ ||?, from which one can easily get
the conditional distribution of ¥.

Tables 3 and 4 present some results of two (0000 repetition Monte Carlo ex-
periments, which assess the accuracy of Theorem 2, and are also agreeable to the
asymptotic relations 25, 1~ Dy 1, and 25, 4 ~ P s.



Boundary-crossing probabilities of some random fields &5

TABLE 4
m=25b=3.30

a known &?* unknown
(my, 1) Approximation Monte Carlo Approximation Mante Carlo

(16) Py Py (7 Din e Pin,4
(1, 24) 0.106 0.100 0.051 0.071 0.065 0.034
(1,21} 0.102 0.094 0.051 0.069 0.064 0.033
(4, 24} 0.066 0.059 0.033 0.048 0.043 0.023
4,21) 0.062 0.057 0.032 0.045 0.041 0.023
(4, 18) 0.057 0.055 0.031 0.042 0.040 0.022
{1,21} 0.043 0.042 0.023 0.031 0.029 0.015
(7, 18) 0.037 0.039 0.022 0.028 0.027 0.014
Acknowledgements

A part of the results was derived during the author’s stay at the Institute of
Mathematical Statistics in the University of Freiburg and the Sonderforschungsbereich
123 in the University of Heidelberg. The hospitality of the institutes, especially the help
and encouragement of Professor H. R. Lerche, is gratefully mentioned. The author is
also indebted to Professor D. Siegmund for many helpful suggestions.

References

HogaN, M. AND SIEGMUND, D, {1986) Large deviations for the maxima of some random fields. Adu.
Appl. Math. 1, 1-22.

Hu IncHI (1983) Repeated significance tests for exponential families. PhD dissertation, Stanford
University.

TamEes, B, JaMEs, K. L. aND SieamunD, D. {1987) Tests for a change-point. Biometrika 74, 71-83.

TamEs, B, JaMES, K. L. aAND SiEGMUND, D, {1988) Conditional boundary crossing prababilities with
applications to change-point problems. Aun. Frob, 16, 825-839.

Kim, H. . AND SIEGMUND, D. (1989) The likelihood ratio test for a change-point in simple linear
regression. Biometrika 76, 409-423.

Leumann, E. L. (1959) Testing Statistical Hypotheses. Wiley, New York,

LevIN, B. AND KLINE, J. (1985) The cusum test of harnogeneity with an application to spontaneous
abortion epidemiology. Statist. Med, 4, 469-488.

S1EGMUND, D. {[985) Sequential Analysis. Springer-Verlag, New York.

SieGMuNp, D, (1986) Boundary crossing probabilities and statistical applications. Ann, Statist. 14,
361-404.

StEGMUND, D. (1988) Approximate tail probabilities for the maxima of some random fields, Ann.
Prob. 16, 487-501.

Waooproore, M. (1976} A rencewal theorem for curved boundaries and moments of first passage
times. Ann, Proh. 4, 67-80.

Yao, Q. (1989} Large deviations for boundary crossing probabilities of some random fields. J. Mazh.
Res. Exposition 9, 181-192,



