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Abstract
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1 Introduction

In any serious attempt to forecast, a point prediction is only a beginning. A predictive interval
or, more generally, a predictive region is much more informative. In the context of linear time
series models with normally distributed errors, the predictive distributions are normal. Therefore,
the predictive intervals are easily obtained using mean plus and minus a multiple of the standard
deviation. The width of such an interval, even for multi-step ahead prediction, is constant over
the whole state space unless the model has conditional heteroscedastic noise. Predictive intervals
constructed in this way have also been used in some special nonlinear models (e.g. threshold
autoregressive models, see Tong and Moeanaddin 1988, Davies, Pemberton and Petruccelli 1988).
However, the above method is no longer pertinent when the predictive distribution is not normal,
which, unfortunately, is the case for most nonlinear time series models (Chan and Tong 1994).
Recent studies on pointwise prediction of nonlinear time series have revealed that the prediction
accuracy does depend on the current position in the state space (Yao and Tong 1994a, and the
references therein). Yao and Tong (1995a) proposed to construct predictive intervals using condi-
tional quantiles (percentiles) for nonlinear time series. However, interval predictors so constructed
are not always appropriate when the predictive distributions are asymmetric or multi-modal.

Asymmetric distributions have been widely used in modeling economic activities (Brannés and De
Gooijer 1992, and the references therein). Further, skewed predictive distributions may occur in
multi-step ahead prediction even though the errors in the models have symmetric distributions.
Multi-modal phenomena often indicate model uncertainty. The uncertainty may be caused by
factors beyond the variables specified in the prediction. (See §2 below for some examples.) In order
to cope with the possible skewness and multi-modality of the underlying predictive distribution,
we propose to use a (conditional) minimum volume set, which we call the (conditional) minimum
volume predictor (MV-predictor), among all the candidate regions in a given class (e.g. intervals).
The MV-predictor depends on the current position in the state space. It forms a region where the
predictive distribution has highest mass concentration, in the sense that it has minimal Lebesgue
measure among all the sets in a given class with the nominal coverage probability. Especially,
the MV-predictor of all the predictive intervals is the one with the shortest length. In fact, the
MV-predictor has the aforementioned properties among all the sets with the nominal coverage
probability, provided the model implied by the given class is correct. (See the discussion below

Definition 2.2 in §2.2.) For a symmetric and unimodal predictive distribution, an MV-predictor



reduces to a quantile interval.

The minimum volume approach has a long history in the statistical literature, and a well-known
example in its early time is the so-called shorth (Andrews et al. 1972). Additional literature on
minimum volume sets can be found in Polonik (1997). A closely related concept ezcess mass
was introduced independently by Hartigan (1987), and Miiller and Sawitzki (1987,1991). See
also Nolan (1991), and Polonik (1995). Hyndman (1995) seemed to be the first paper to use
the minimum volume approach (under a different name) for time series prediction. Under the
assumption that the predictive distribution is of a known parametric form, Hyndman (1995)
estimated the MV-predictor based on a simulation method. However until now there has been a
lack of appreciation of the general methodology and its properties, although empirical development
of using it for time series prediction can be found in Yao and Tong (1995b), Hyndman (1996) and
De Gooijer and Gannoun (1997).

In this paper, we establish various asymptotic properties of the predictive regions relying on the
asymptotic results on conditional empirical processes reported in Polonik and Yao (1998). Under
a general setting which admits time series modeling as a special case, we construct an estimator for
the MV-predictor directly based on a Nadaraya-Watson estimator of the predictive distribution.
Under the assumption that the observed data are from a strictly stationary and strong mixing
process, we have established consistency for the estimated MV-predictor using an Li-distance,
and the asymptotic normality for both coverage probability and Lebesgue measure. We have also
derived an explicit rate at which the estimated MV-predictor converges. Comparing with the
results on the global (i.e. unconditional) minimum volume sets reported in Polonik (1997), the
convergence rates for conditional MV-predictors are typically slower, although in similar form (see
e.g. Remark 3.3(b) in §3 below). This reflects the distinction between local and global fittings.
We also propose a bootstrap scheme to choose the state-dependent bandwidths for the purpose
of estimating MV-predictors.

We use the Nadaraya-Watson estimator for the predictive distribution simply to keep the theory
as simple as possible. It is conceivable that similar results hold if the predictive distribution is
estimated by local linear regression (Tsybakov 1986, Fan 1992, Fan, Hu and Truong 1994, Yu and
Jones 1998) or adjusted Nadaraya-Watson method (Hall, Wolff and Yao 1999).

The paper is organized as follows. §2 introduces the minimum volume predictor and its estimator.
The advantages of using the proposed method are demonstrated through two simple time series

models. We present all the theoretical results in §3. §4 reports the simulation results with a



nonlinear AR(2) model. The application to a rainfall-flow data from a catchment in Wales is also

reported. The Appendix contains the key technical proofs.

2 Methodology

Suppose that X is an observable d-dimensional random vector, and Y is a d’-dimensional random
vector which is unobservable. It is of interest to predict Y from X. In univariate time series
context, d = 1 and X typically denotes a vector of lagged values of Y. A predictive region

Q| X) C R? for Y from X with a nominal coverage probability o € [0, 1] satisfies the condition
P{YecQlz)|X=2} > a zcR%L (2.1)

Often we tend to choose Q(a|z) to be a connected set (e.g. an interval in the case that d' = 1).
However, the consideration in accuracy of prediction leads us to search for a set which has the
minimum volume (i.e. Lebesgue measure) among all the sets fulfilling condition (2.1). The
resulting set is not necessarily connected. To illustrate the basic ideas of our approach, we give
some numerical illustration via two toy models before the presentation of the formal definition of

the minimum volume predictor.

2.1 Two toy models

We start with a simple quadratic model
Y: = 0.23Y;-1(16 — Y;—1) + 0.4¢4, (2.2)

where {¢;} is a sequence of independent random variables each with the standard normal distri-
bution truncated in the interval [—12, 12]. The conditional distribution of Y; given X; = Y;_,,
is symmetric for m = 1, but not necessarily so for m > 1. For example, the conditional density
function at X; = 8 with m = 3 is depicted in Fig.1(a), which is obviously skewed to the left. The
curve was estimated using the 10,000 independent samples, each of them generated by iterating
equation (2.2) three times with the starting point at 8. The kernel density estimator was used
with Gaussian kernel and bandwidth 0.389. Based on this density function, two types of pre-
dictive intervals with three different coverage probabilities are specified in Table 1. The quantile
interval I(a|z) is the interval with the (0.5 — a/2)-th and the (0.5 4+ «/2)-th percentiles as its two

end-points. The minimum volume interval M (a|z) is the shortest interval among all the intervals



with coverage probability not smaller than «. For example, I(«a|z) = [5.11,14.96] for o = 0.95
and £ = 8. It contains some lower density points near its left end-point due to the skewness
of the distribution; see Fig.1(a). The predictor M;(a|z) = [6.50,15.30] could be regarded as a
compressed shift to the right of the quantile interval with 10.57% reduction in its length. Obvi-

ously, the accuracy of prediction has been substantially improved by using the minimum volume

interval.
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Figure 1: (a) The conditional density function of Y; given Y; 3 = 8 for model (2.2). (b) The
conditional density function of Y; given Y;_1 = 0 for model (2.3).

Now we consider the model
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where {¢;} and {Z;} are two independent i.i.d. sequences with ¢; ~ N(0,1) and P(Z; = 0) =

Y; = 3 cos ( (2.3)

0.65 = 1 — P(Z1 = 5). For the sake of illustration, we assume that the ‘exogenous’ variable Z; is
unobservable. We predict Y; from X; = Y;_; only. Thus the (theoretical) least square conditional
point predictor is 3 cos(0.17Y;_1) + 1.75, which is obviously not satisfactory. It is easy to see that
the conditional distribution of Y; given Y;_; is a mixture of two normal distributions. Fig.1(b)
depicts the conditional density function at Y;_1 = 0. For the three different values of «, Table 1
records the three types of predictive regions: the quantile interval I(a|z), the minimum volume
intervals M;(«a|z), and the minimum volume region with at most two intervals Ma(alz). We
can see that the percentile interval fails to do a reasonable job simply because the predictive
intervals are too wide. The improvement by using M («|z) is not substantial unless the coverage

probability « is small enough such that the probability mass within one mode exceeds a. The



region My(a|z) is much shorter in length (i.e. Lebesgue measure), and therefore offers a much
more accurate prediction. All three Ma(«|z)’s consist of two disconnected intervals, which clearly
reveals the uncertainty in Y; caused by the ‘hidden’ variable Z;. The coverage probabilities of the
two intervals centered at 3 and 8 are 0.61 and 0.34, 0.38 and 0.32, and 0.20 and 0.30 in order

when the global coverage probability is 0.95, 0.70 and 0.50 respectively.

Table 1: Three predictive regions with coverage probability a: the quantile intervals I(a|z), the
minimum volume interval M;(«|z), and the minimum volume region with at most two intervals
Ma(a|z). The percentage decreases in volume (i.e. Lebesgue measure) relative to I(a|z) are
recorded in parentheses.

o Predictor Predictive regions for Y; from Predictive regions for Y; from
Y;_3 at Y;_3 = 8 for model (2.2) Y;—1 at Y;_1 = 0 for model (2.3)

I(alz) [5.11, 14.96] [1.23, 8.30]

0.95 | M;i(ca|z) [6.50, 15.30] (10.57%) [1.50, 8.42] (2.12%)
My (| z) [1.15, 4.84]U[7.54, 8.46] (34.79%)
I(a|z) [8.66, 13.95] [2.26, 8.04]

0.70 | M;i(«o|z) [9.64, 14.15] (8.72%) [2.80, 8.29] (5.02%)
Ma(a|z) [2.18, 3.82]U[7.66, 8.34] (59.86%)
I{a|z) [9.83, 12.95] [2.71, 7.89]

0.50 | M;(ca|z) [10.69, 13.56] (8.01%) [1.80, 4.20] (53.67%)
My (| z) [2.60, 3.40]U[7.71, 8.29] (73.36%)

In summary, we should seek for the minimum volume predictive regions when the conditional
distribution of Y given X is skewed or/and multi-modal. The number of intervals used in the
predictor should be equal, or at least close, to the number of modes of the conditional distribution,

subject to practical feasibility.

2.2 Minimum volume predictive region

We use F(:|z) to denote the conditional distribution (i.e. the conditional measure) of Y given
X = z, which is also called predictive distribution. We use the same F' to denote the conditional
distribution function in the sense that F'(y|z) = F((—o0,y]|z). We use g(-|z) to denote its density

function if it exists. We define the minimum volume predictor as follows.
Definition 2.1 Let @ denote a class of measurable subsets of RY . Then any

Me(a|z) € argmin{Leb(C) : F(C|z) > a}, a€[0,1], z € RY, (2.4)
cec



is called a (conditional) minimum volume predictor (MV-predictor) in € at level «, where Leb(C)

denotes the Lebesgue measure of C. We denote its volume as
ne(alz) = Leb(Me(alz)). (2.5)

The above definition is based a prescribed class € which should contain all the interesting candidate
predictors. The prior knowledge on the ‘shape’ of F(-|z) plays an important role in determining
@; see §2.1. On the other hand, @ cannot contain, for example, all the subsets of RY, which
will make both theoretical exploration and practical implementation unnecessarily difficult. The
MV-predictor is not always unique, and it may not even exist for some €. However it exists and

is unique if the density g(.|z) exists and g(-|z) € Me(a) which is defined as follows.

Definition 2.2 For any probability density function ¢ on RY, the level set at level X > 0 is
defined as Ty(X) = {y : ¢(y) > A}. For completeness we define I'y(0) to be the support of ¢. For
a € [0,1] define that ¢ € Me(a) if and only if there exists a Ay > 0 for which

Fp(Aa) €€ and @(Ty(Aa)) = o,

I have changed F to ® in the above formula — QY ?9? where ® denotes the probability

measure corresponding to ¢.

Under the assumption that g(-|z) € Me(a), the set T'g(.3)(Aa) is a MV-predictor (at level ),
which is unique up to Leb-nullsets. In fact, this condition ensures that T'y(.;)(Aa) has the smallest
Lebesgue measure among all predictive regions with coverage probability at least a. Ideally the
class € should be rich enough to contain Fg(.|$)()\a) for all interesting values of «.. In fact, selecting
C can be viewed as selecting a statistical model, namely, the class of all the probability density
functions with level sets in C. (See also Remark 2.3 (b).) For a more thorough discussion about

the modeling aspect, we refer to Polonik (1995, 1997).

Remark 2.3 We list some interesting features of MV-predictors in the case d’ = 1 below. Let Z
denote the class of sets which are unions of at most & intervals. We write Mz, (a|z) = My(a|z),
iz, (alz) = p(efz) and Mz, (@) = My(a).

(a) Suppose g(+|z) is symmetric and unimodal in the sense that there exists a point mg such that
g(-|z) is strictly increasing to the left of mg and strictly decreasing to the right. Then My (a|z),
for all k& > 1, reduces to the quantile interval I(a|z) = [¢(0.5 — a/2|z), ¢(0.5 + a/2|z)], where

g(a|z) is the conditional quantile satisfying the equation F(q(ca|z)|z) = a.



(b) If the conditional density g(:|z) is p-modal, then g(-|z) € Mp(a). We should use the MV-
predictor of 7 with kK = p. On the other hand, we always tend to choose a small k in practice.
In fact, the shortest predictive interval M (a|z) is often appealing since it is a connected set.

(c) Similar to the unconditional i.i.d. case (Einmahl and Mason 1992, and Polonik 1997), the
volume of the MV-predictor, pe(a|z), can be regarded as a generalized (conditional) quantile.
To this end, we let Co, = {(—00,y], ¥y € R} in (2.4), and replace the Lebesgue measure by the
function v defined as v((—oc,y]) = y. Then the resulting ‘MV-predictor’ is (—oo, g(a|z)] with the

‘volume’ v((—o0, ¢(a|z)]) = q(a|z).

2.3 Estimation

We assume that {(X;,Y;)} is a strictly stationary process, and it has the same marginal distri-
bution as (X, Y) € R? x R%. Of interest is to estimate Me(a|z) for a given class C based on
observations {(X¢,Y:),1 <t < n}.

Note that for any given measurable set C ¢ R?, E{liycc)|X = z} = F(C|z). This regression

relationship suggests the following Nadaraya-Watson estimator for the conditional distribution

Fo(Clz) = ZI{Ytec}K< ) ZK( )

where K(-) > 0 is a kernel function on R%, and h > 0 is a bandwidth. F,(-|z) is called the

empirical conditional distribution.
Replacing F(-|z) by F,(-|z) in (2.4), we obtain an estimator for the MV-predictor

Me(alz) € argglein{Leb(C) . F(Clz) > al. (2.6)

We denote its volume and actual (unknown) coverage probability as

fic(alz) = Leb(Me(afz)), de = F{Me(alz)|z}. (2.7)

Remark 2.4 (a) Since we apply the kernel smoothing on a d-dimensional variable X in estimating
F(-|z), the estimation suffers from the so-called ‘curse-of-dimensionality’, as all the other local
estimation methods. For large d, it is an interesting and challenging problem to compress the
information on Y contained in X into a lower dimensional variable before applying the proposed
method, which is obviously beyond the scope of this paper.

(b) An obvious alternative to our minimum volume approach is to adopt a level set approach to

construct a predictive region based on an estimated conditional density function (Fan, Yao and



Tong 1996). No need to specify € in the level set approach could be convenient; see, for example,
Hyndman (1995). But we argue that there are added advantages to use the MV-predictor from
a properly selected class C. For example, we can always obtain a predictor consisting of at most
k intervals with k£ prescribed by letting € = Z,. Further, the volumes of the MV-predictors with
different k's provide valuable information on the shape of the predictive distribution; see Fig.4
in §4 below. Finally, the estimation for conditional density function involves local smoothing for
d+d' (instead of d) variables, which will further increase the difficulties associated with the ‘curse
of dimensionality’.

(c) Simple classes such as balls, rectangles are always appealing candidates for €. In fact, more
complicated is €, the slower is the convergence rate of the estimator; see Theorem 3.2 and Re-

mark 3.3(a) in §3 below.

2.4 Bootstrap bandwidth selector

Like all other kernel smoothers, the quality of our estimator depends crucially on the choice of the
bandwidth h. However, the conventional data-driven bandwidth selectors such as cross-validation
do not appear to have obvious analogues in the context of estimating MV-predictors. Deriving
asymptotically optimal bandwidths is a tedious matter. Using plug-in methods requires explicit
estimation of complex functions. Such complexity is arguably not justified, not least because the
conditional measure F(C|z) is often approximately monotone in z (e.g. z behaves like a location
parameter) and so has only limited opportunity for complex behavior.

Instead, we suggest a bootstrap scheme to select the bandwidth, which is similar to the bandwidth
selector for estimation of conditional distribution functions suggested by Hall, Wolff and Yao
(1999). To simplify the presentation, we outline the scheme for the case that ' =1 and k =1

only. We fit a parametric model

where G(z,q) denotes a polynomial function of z and ¢ is a set of indices indicating the terms
included in G. We assume that {¢;} are independent with a common distribution N(0,0?) and
02 > 0 unknown. The parameters in G and ¢? are estimated from the data. We form a parametric
estimator 1\7[1(oz|:1:) based on the above model. By Monte Carlo simulation from the model, we
compute a bootstrap version {Y{,...,Y} from (2.8) based on given observations {X1,...,X,},

and with that a bootstrap version M (a|z) of Mi(a|z) with {(X;,Y;)} replaced by {(X;, V") }.



Define
D(h) = E[Leb{Mj(a]z) A Mi(alz)}{X;, V)],

where AA B = (A— B)U (B — A) is the symmetric difference of sets A and B. Choose h = h to

minimize D(h).

In principle there are no difficulties to extend the above idea for estimation of My (a|z) with k > 2.
We may, for example, choose the distribution of ¢ to be a mixture of £ normal distributions.
However, the bootstrap searching for M\,’;(am) with k > 2 is computationally expensive if still
feasible. In this paper, we simply use the bandwidth selected for k£ = 1 in the case of k = 2 as well.
Our experience suggests that the choice between the two predictors M (oz) and Ma(a|z) does not
depend on the bandwidth sensitively unless a bifurcation occurs to the conditional distribution
F(:|z) around z. Note that our problem is different in nature from that concerned in Silverman’s
test for multimodality (Silverman 1981). If we were interested in determining the number of

modes in the curve P(z) = F(C|z), the bandwidth used in estimation would play a critical role.

3 Theoretical properties

In this section, we always assume that x € R? is given and f(z) > 0, where f(-) denotes the
marginal density of X, and ¢ denotes some generic constant, which may be different at differ-

ent places. Furthermore, all stochastic quantities are assumed to be measurable, and we write

dr(|z) (A,B) = F(AAB|z).

Theorem 3.1 (Uniform consistency)
Suppose that Me(a|z) is uniquely defined (up to Leb-nullsets) by (2.4), and the following two
conditions hold.
(i) pe(alz) is continuous in « € [a,b] for some 0 < a <b<1,
(it) supcee |F,(Clz) — F(C|z)| — 0 in probability (or almost surely) as n — oo.
Then as n — oo,

sup dp(.|z) (/Me(abv), Me(a|z)) = 0 in probability (or almost surely).

a€la,b]

The above theorem is formulated in general terms. Condition (ii) is the key, which can be verified

for d' =1 and € = 7 by appealing to the standard results of conditional empirical processes; see,



for example, Bosq (1996). Polonik and Yao (1998) justified the condition for d' > 1 and more
general C777.

All the results in this section could be formulated in a similar way, relying on certain properties
of the set-indexed empirical conditional distribution. (See also Polonik 1997 for the uncondi-
tional i.i.d. case.) However, it is of interest to justify those properties under appropriate mixing
conditions. Therefore, we present the results below in a more explicit manner. To this end, we

introduce some regularity conditions first.

(A1) The kernel function K is bounded and symmetric, and lim,_,q ||u||2K (u) = 0.

(A2) f € Cy4(b), where Cy4(b) denotes the class of bounded real-valued functions

with bounded second order partial derivatives.

(A3) F(:|z) has a Lebesgue-density g(:|z) € Cyq(b). Moreover, for each C' € € we
have F(C|-) € Cy,4(b) such that supcce

5255 F(Cl2)| <00 V1<i,j <d.
(A4) || [ vl K(v) dv|| < .

(A5) The process {(X¢,Y:)} is strong mixing, i.e.

aj) = sup |P(AB) — P(A)P(B)| - 0, asj — oo, (3.1)
AeF° , BeF

where F! denotes the o-algebra generated by {(X;,Y;),s < i < t}. Further we
assume that (k) < b(¢* for some b > 0and 0 < ¢ < 1.

(A6) For all s <t < g <r the joint density function of (X, X;, X, X) exists and is

bounded by a constant independent of (s,t,q,7).

Now we introduce the notion of metric entropy with bracketing which provides a measure of the
richness (or complexity) for a class €. This notion is closely related to covering numbers. We
adopt Li-type covering numbers using the bracketing idea. The bracketing reduces to inclusion
when it is applied to classes of sets rather than classes of functions. For each € > 0, the covering

number is defined as

Ni(e,C, F(:|z)) = inf{n >1:3C4,...,C, € €C such that

VCeC 31<4,j<nwithC; CCCC; and F(C; —Cj|z) <e}. (3.2)

The quantity log Ni(e, €, F'(-|z)) is called the metric entropy with inclusion of € with respect to
F(:]z). A pair of sets C;,C; with C; C C C Cj is called a bracket for C. Estimates for such

10



covering numbers are known for many classes. (See, e.g. Dudley 1974, 1984.) We will often
assume below that either log N (e, C, F(-|z)) or Ni(e, @, F(-|z)) behave like a power of ¢~1. We
say that condition (R,) holds if

log N1(€,C, F(:|z)) < Hy(e), forall e >0, (Ry)
where
log(Ae™") ify=0,
H,(e) = (3.3)
Ae™? if vy >0,

for some constants A, > 0. The large is 7, the richer (the more complicated) is the class C.777?
In fact (Rp) holds for intervals, rectangles, balls, ellipsoids, and for classes which are constructed
from those by performing set operations union, intersection and complement finitely many times.
Especially, the classes Zj used above fulfill (Ry). The classes of convex sets in R (d > 2) fulfill
condition (R,) with v = (d — 1)/2. Other classes of sets satisfying (R,) with v > 0 can be found
in Dudley (1974, 1984).

The following theorem concerns the rates of convergence of dp(.|q) (/Me(a|x), Me(a|x)). This is the
only place where we assume that the model implied by the class C is correct, i.e. g(-|z) € Me(a).

Under this condition, dF(_|$)(/M@(a|x),Me(a\:v)) = dF(_‘z)(M\e(akv),Fg(.|m)()\a)).

Theorem 3.2 (Rates of convergence)

Let conditions (A1) — (A6), and (Ry) hold. Assume that for some a € (0,1), g(-|z) € Me(a) with
corresponding level Ao > 0. Suppose further that Ty ,)()) is Lipschitz continuous in X at A = Ay
with respect to dp(.|y). Suppose that

|F(Me(ofz)[z) — F(Me(alz)|z)| = op ((nh?) /2). (34)

Then for any n > 0 and

1 _ 1
h = ¢ max (n a+B+1) . n d+2(37+1)> ,

we have that as n — 0o,

1
. op(n T T if y < 1/5,
dF(|w)(MG(a|$)>Fg(\w)()\a)) = 1 .
op(n~ TG ) if v > 1/5.

Remark 3.3 (a) The convergence rate depends on the richness of the class €, and is monotoni-

cally decreasing as 7 (i.e. the richness) increasing.???

11



(b) For v = 0, which includes the case € = T, the rate given in the above theorem is in fact
of the form (nh?)~1/3+71. Note that the effective sample size in estimating conditional minimum
volume set is nh® instead of n. The above rate is in fact in alignment with the convergence rate
n~1/3+1 in estimating a unconditional minimum volume set with i.i.d. data (Polonik 1997). For
the classes Zy it seems plausible that one can adapt the methods from Kim and Pollard (1990) to
show that (nh®) /3 actually is the exact rate of convergence.

(c) In contrast to Theorems 3.4 and 3.6 below we cannot use the optimal bandwidth h = O(nfﬁ)
here. The bandwidth h has to be even smaller to ensure the bias term supCEe(Eﬁ’n (C|lz)-F(C|x)),
which is of order vnh? h?, tend to zero fast enough.

(d) It can be proved that assumption (3.4) is fulfilled for many classes €, including the sets of
balls, rectangles, ellipsoids, and convex sets in RY. Any possible references? —QY7?77 We
only give an heuristic explanation as follows. Note that the empirical conditional distribution

F,(-|z) has mass at the single point Y;

X2y (K)o e (B0,

t'=1

Fu({¥ile) =  (

which is in the order of 1/(nh?) since K is bounded. When € is rich enough, it is conceivable that
there exists an ‘empirical’ MV-predictor with mass (i.e. coverage probability) k/(nh¢), where k

fulfills condition |k/(nh?) — a| < ¢/(nh?). This implies (3.4) since F(Me(c|z)|z) = .

Theorem 3.4 (Asymptotic normality of coverage probabilities)
Let conditions (A1) — (A6) hold, and (R,) hold with v < 1/3. Let h = cn_d%‘l(loglogn)_l.
Suppose that pe(-|x) is continuous at o, F(Me(a|x)|z) = a, and (3.4) holds. Then for e defined

in (2.7), we have that as n — o0,
Vnht (&g — a) -5 N(0, a(l — @) /K2/f(x)).

Remark 3.5 (a) The MV-predictor is not always unique. The above theorem (and also the
theorem below) holds for any such a predictor. The existence of an MV-predictor is entailed by
the condition (R,).?7??

(b) The only unknown quantity in the asymptotic variance of e is the marginal density f(x),
which can be estimated consistently. This is in marked contrast with the asymptotic variance
of F (y|z). (See, for example, Hall, Wolff and Yao 1999.) Therefore, the confidence level for the

coverage probability can be easily constructed based on the above theorem.
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(c) The continuity assumption for pe(-|z) is satisfied for all « € (0,1) if g(+|z) is continuous and

has no flat parts, i.e. Leb{y : g(y|z) = A} =0 VA > 0.

Theorem 3.6 (Asymptotic normality of volumes)
Do you need conditions (A1) — (A6) and etc here? — QY Suppose that the function
pe(-|z) defined in (2.5) is differentiable and let pp(:|x) denote its Lipschitz continuous derivative.

If pe(alz) > 0, then under the assumptions of Theorem 3.4, as n — oo

flz) (-
Vant i (Belele) — pelal)) 5 MO, (1~ ) [ K.

4 Numerical properties

To appreciate the finite sample properties of the estimated MV-predictors, we illustrate the meth-
ods via one nonlinear AR(2) model and a set of the rainfall and river flow data from a catchment
in Wales. We always use the standard Gaussian kernel in calculation. We always set the coverage
probability @ = 0.9. We calculate estimators for the MV-interval M;(a|z) and MV-predictors
with at most two intervals M («|z), which will be searched using exhausting method among all
the intervals, or unions of two intervals with coverage probability 0.9. We only consider here the
estimation of MV-predictors. Examples for estimating predictive distributions can be found in

Hall, Wolff and Yao (1999).
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Figure 2: The scatter plot of Y;_1 against Y;_o from a sample of size 1000 generated from model
(4.1). The positions marked with ‘e’ are (from left to right) (-4.5, 5.7), (1.5, 7.8), (3.9, 2.4) and
(8.1, -4.7).
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Example 1. We first consider the following simulated model
Y; = 6.8 — 0.17Y;2 | + 0.26Y;_5 + 0.3¢;, (4.1)

where {¢;} is a sequence of independent random variables each with the standard normal distri-
bution truncated in the interval [—12,12]. We conduct the simulation in two stages to estimate

the MV-predictors for Y; given (i) X; = (Y;—1,Y;—2) and (ii) X; = Y; 1 respectively.
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0.8 A

———

'
' '
. '
= l
|
1 =
' '
' '
—_— '
[ —

x=(-4.5, 5.7) x=(1.5, 7.8) x=(3.9, 2.4)

0.6 A

0.4 A

0.2 A

|
|

0.0 -

x
1l
~
©
P
.
IN
~
v

Figure 3: The boxplots of the ratio of Leb{M; (c|z) AM; (a|z)} to Leb{M;(a|z)} for model (4.1).

(i) For four fixed values of X; = (Y;—1,Y;—2), we repeat simulation 100 times with sample size
n = 1000. Fig.2 is the scatter plot of a sample of size n = 1000. The four positions marked with
‘e’ are the values of X; = x at which the MV-predictors M;i(a|z) for Y; are estimated. Fig.3
presents the boxplots of Leb{J/\/I\l(a|x)AM1(a|m)}/Leb{M1(oe|x)}. The bandwidths were selected
by the bootstrap scheme stated in §2.4 based on parametric models determined by AIC. With
the given sample sizes, AIC always identified the correct model from the candidature polynomial
model of order 3.

(i) For a sample of size 1000, we estimate both predictors M;(a|z) and Ms(a|z) for Y; given its
first lagged value Y; | = z only. We let x range over 90% inner samples. We use a post-sample
of size 100 to check the performance of the predictors. For estimating bandwidths using the

proposed bootstrap scheme, the parametric model selected by the AIC is
Y; = 8.088 — 0.316Y;—1 — 0.179Y;%; + 0.003Y;2 ; + 0.825¢;.

Fig.4(a) displays the estimated M;(a|z) together with the 100 post-points. Within the range of
values of z on which estimation is conducted, Hl(a|m) contains about 90% of the post-sample.

Note that Mj(c|z) has an abrupt change in the width around z = 1.5. In fact the predictor
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(a) MV-predictive interval (b) MV-predictor with two intervals

Y()

5 0 5 -5 0 5
Y(t-1) Y(t-1)
(c) Coverage probabilities (d) Recommended predictor
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Figure 4: Simulation results for model (4.1). (a) The estimated M(a|z) for Y; given Y;_1 = z,
together with 100 post-samples. (b) The estimated Ms(a|z) for Y; given Y1 = z. The two
disconnected intervals are bounded respectively with solid lines and dashed lines. (c) The coverage
probabilities of the two intervals in (b). Solid curve — the coverage probability for the interval with
solid boundary; dashed curve — the coverage probability for the interval with dashed boundary.
(d) The recommended MV-predictor for Y; given Y;_1 = x, together with 100 post-samples.
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M (a|z) is not satisfactory for x between 1.5 and about 6 because the center of the intervals is
void for those z-values (also see Fig.2). The estimator J/\.l\g(a|ac) is plotted in Fig.4(b). Due to
sampling fluctuation, the estimator always consists of two disconnected intervals over the whole
sample space. The coverage probabilities of the two intervals are plotted in Fig.4(c). From
Fig.4(b) and Fig.4(c), we note that when z ¢ [1.5,6.3], the two intervals of My(c|z) are almost
connected, and the two corresponding coverage probabilities are either erratic or very close to 0
and 0.9 respectively. Therefore, it seems plausible to use Ms(c|z) for z € [1.5,6.3] and M; (a|z) for
z ¢ [1.5,6.3]. The combined MV-predictor is depicted in Fig.4(d) together with the post-sample.
The combined predictor covers the post-sample as good as the J/\/I\1(oe|a:) (Fig.4(b)) although its

Lebesgue measure has be reduced significantly for z € [1.5,6.3].

Example 2. Fig.5(a) and Fig.5(b) are plots of 401 hourly rainfall and river flow data from a
catchment in Wales. We try to predict the flow from its past values and the rainfall data. Note
that the flow data themselves are strongly auto-correlated (Fig.5(c)). Fig.5(d) — (f) indicate
that the point-cloud in the scatter plot of flow against rainfall with time lag 2 is slightly thinner
than those with time lag 0 and 1, which seems to suggest that the major effect of rainfall on
the river flow is of a two-hour delay in time. This is further supported by various statistical
modeling procedures. In fact, the cross validation method (Yao and Tong 1994b) specified that
the optimal regression subset with two regressors for the flow at the ¢-th hour Y; consists of its
lagged value Y;_; and the rainfall within the (¢ — 2)-th hour X;_». This was further echoed by a
fitted MARS model (Friedman 1991). We now predict Y; from Y;_; and X;_o using three different
types of predictive regions. We estimate the predictors using the data with sample size n = 394,
which was resulted by leaving out the 373-th, the 375-th and the last five flow data (therefore
also their corresponding lagged values and the rainfall data) in order to check the reliability of
the prediction. We standardize the observations of regressors before the fitting. We adopt the
bootstrap scheme to select the bandwidth. The parametric model determined by AIC is

Y; = —1.509 + 1.191Y; 1 + 0.924X; o + 0.102Y;_; X; o — 0.004Y,% ; + 7.902¢,

where ¢; is standard normal. Table 2 reports the estimated predictors for the 7 data points which
are not used in estimation. All the quantile intervals cover the corresponding true values. For
the MV-predictor Mi(«|z), 6 out of 7 intervals contain the true value. The only exception occurs

when there is high burst of river flow at the value 86.9. It is easy to see from Fig.5 that data
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Figure 5: Hourly rainfall and river flow data from a catchment in Wales. (a) flow (litres/sec); (b)
rainfall (mm); (c) scatter plot of flow data; (d) — (f) scatter plots of rainfall against flow at time
lags 2, 1 and 0 respectively.
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Table 2. The estimators for the quantile interval I(a|z) and the MV-predictors
M;(a|z) (i = 1,2) with coverage probability @ = 0.9 for the river flow at the ¢-th hour
Y; from its lagged value Y;_; and the rainfall in the (¢-2)-th hour X; .

Y | (Yio1,Xi—2) | I(alz) M (a|x) Ms(a|x) Coverage probabilities
479 | (29.1, 1.8) | 3.8, 71.8] | [3.3, 51.1] | [3.6, 42.3]U[65.4, 67.5] (0.89, 0.01)
86.9 | (92.4, 2.6) | [3.8,102.9] | [3.3. 76.2] | [3.3, 53.1]U[62.6, 78.5] (0.83, 0.07)
28.0 | (30.7, 0.6) | [5.6,39.3] | [3.8, 33.5] | [4.3, 5.6]U[6.6, 34.6] (0.03, 0.87)
27.5 | (28.0,0.2) | [4.7,35.8] | [3.8, 32.4] | [4.1, 26.9]U[30.7, 34.6] (0.82, 0.08)
25.4 | (27.5,0.0) | [4.4, 34.6] | [3.8, 32.4] | [3.6, 24.7]U[30.7, 34.6] (0.02, 0.88)
26.9 | (254, 0.0) | [7.7,33.5] |[9.3,33.5] | [9.7, 26.9]U[29.1, 34.1] (0.81, 0.09)
25.4 | (26.9,0.0) | [4.7, 34.1] | [3.6, 31.7] | [3.3, 25.9]U[30.7, 34.1] (0.83, 0.07)

are sparse at this level and upwards. Due to the quick river flow caused by rainfall, we expect
the predictive distributions are skewed to the right. Therefore, the improvement in prediction
should be observed by using the MV-predictor M;(«|z) instead of the quantile interval I(«|z).
In fact even if we discard the case where the true Y; lies outside of M (a|z), the relative decrease
in length of M;(a|z) with respect to the quantile predictor I(a|z) is between 4.4% and 27.9%
for the 6 other cases. Actually M;(a|z) could be regarded as a compressed shift of I(a|z) to its
left in 6 out of 7 cases. For the application with data sets like this, it is pertinent to use the
state-dependent bandwidths. For example for estimating M (a|z), our bootstrap scheme selected
quite large bandwidths 1.57 and 2.99 for the first two cases respectively in Table 2, in response
to the sparseness of data in the area with positive rainfall and quick river flow. The selected
bandwidths for the last five cases are rather stable and are between 0.33 and 0.43. There seems
little evidence suggesting the multi-modality, for the estimated My (a|x)'s always have one interval
with very tiny coverage probability. For this example, we recommend to use the MV-predictive
interval M (a|z).

In the above application, we include a single rainfall point X;_o in the model for the sake of
simplicity. A more pertinent approach should take into account the moisture condition of soil
which depends on prior rainfall. For more detailed discussion in this aspect, we refer to Young

(1993) and Young and Bevan (1994).

5 Appendix: Proofs

The proofs rely on some asymptotic results for a conditional empirical process which will be

published elsewhere. We listed the main results in the Addendum below for easy reference. The

18



basic idea is similar to the proofs of Polonik (1997) where a global (unconditional) empirical
process with i.i.d. observations is concerned. The proof for Theorem 3.1 is omitted since it is the

least technically involved.

Proof of Theorem 3.2: The basic inequality (5.1) follows along the same lines as (7.24) of
Polonik (1997), given in the proof of Theorem 3.1. (We do not present the proof here.) In (5.1)
we heavily use the fact that F(Ty(.z)(Aa) AMe(@)|z) = 0 which follows from the assumption that

g(-|z) € Me(a). For each € > 0 and M > sup, g(y|z) we have

dp(z)(Me(@|2),Tgein)(Aa)) < D(€) + Rin(e) + Ron(e) + op( 'rthd)’ (5.1)
where D(e) = F({y : [9(y|z) — Aol < €}]z)
M/ ~ 1 -
Rin(e) = — ((Fu = F)(Ty(ia)(Aa)la) + T etelz) - ne(olz)))
Ron(e) = % ((Fo = F)(Me()lz) = (F = F)(Tyia)(Ma)|2))-

Note that in the present situation we have = MAy. Below we use the Bahadur-Kiefer ap-

1
my, (elz)
proximation of Theorem 6.2 to control Ri,(e). In fact, it follows that Ri,(€) and Roy(e) are of
the same asymptotic stochastic order.

We now present the proof for v = 0. The other cases can be proven similarly, as will be indicated

at the end of the proof. First note that
D(e) = O(e) (5.2)
Rin(e) = Ron(e) = Op (74 ) - (5.3)
(5.2) immediately follows from the assumptions. As for (5.3) we use Theorem 6.1 with 02 = 1.

By choosing € = (nhd)_% to balance the rates of the deterministic term D(e) and the sum of the

stochastic terms Ry, (€) + Ra,(€) we get from (5.1) a first stochastic rate

i) (Me(0]2), Ty (M) = Op ((nh?) %)

Note that here at this first step we could choose an even larger bandwidth, namely the optimal
bandwidth h = n_d%‘l. Then, however, we would have to stop here, and this would finally give
us a slower rate of convergence. Instead, by using the faster bandwidth as given in the Theorem,
this first rate can be used to obtain a faster rate of convergence (and then go on iterating). By

choosing o2 = (nhd)*% we obtain from Theorem 6.1 and Theorem 6.2, respectively, that

) . (5.4)

D=

Rin(€) = Ronle) = Op (§<nhd)—<%+é)<logn>
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As above, by balancing the deterministic and the stochastic term in (5.1) we get the second rate
F o d ,(1+L) 1
dp(.1a)(Me(a]), Ty(10) (M) = Op ((nh?) =575 (logn)¥)

Iterating this argument M times we obtain the rate (nh®)~5()(logn)SM=1 where S(M) =
Zj]vil(%)j. We can do this iteration arbitrarily, but finitely, often. Since S(M) — 1/3 as M — oo
the assertion follows.

Note that in order to assure that the assumptions of Theorem 6.1 on h and o2 are satisfied in
each iteration step we need for each n > 0 that nh¢t* < (nhd)féﬁl. This leads to the condition
h=c n_d_i?).

As for v > 0, the same proof in principle works. However, we have to take into account that
we can only proceed the above iteration steps as long as the resulting rate is not faster than
(nhd) %, which comes from the definition of A, in Theorem 6.1. Due to this reason, we can
do this iteration arbitrarily often only for v < 1/5. For v > 1/5 iteration does not help, so that

the arbitrary n > 0 in the exponent does not appear.

g-e.d.

Proof of Theorem 3.4: By assumption we have

F(Me(alz)|z) = a = ﬁn(ﬁe(a|$)|x) +op (ﬁ)

it follows that

Vahi (ag—a) = Vaht (F(Me(alo)|z) — Fa(Me(alz)|r)) + op(1)

= Vnht (F(Me(alz)|z) — Fy(Me(alz) ) + op (1)

The last equality follows from Theorem 6.1, because Theorem 3.1 gives consistency of Me(a|z),
thisis dp(. ) (Me(a|z), Me(a|z)) = op(1). Finally, asymptotic normality of vnhe (F(Me(c|z)|z)—
F,(Me(a|z)|z)) with given variance under the present conditions is not difficult to proof. It follows
by nowadays almost standard arguments. The proof is therefore omitted.

g-e.d.

Theorem 3.6 immediately follows from Theorem 6.2 together with the abovementioned asymptotic

normality of the conditional empirical process.
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6 Addendum:

For ease of reference we present two theorems about the asymptotic behavior of a conditional

empirical process. The proofs of these results will be published elsewhere.

N/zﬂlog(%2 if y=0,

A (o2, n) = 1- 3r=1 (6.1)
! max ((02)T7 ) <nhd) 2(37“)) if vy > 0.

Let

Theorem 6.1 Suppose that (A2) — (A6) hold. For each o> > 0, let C, C € be a class of
measurable sets with supcce, F(Clz) < 0? < 1, and suppose that € fulfills (R,) with some y > 0.

Further we assume that h®* — 0 and nh® — oo as n — 0o such that

nh*tt < (A (0% )" (6.2)

1
nhio? log 5
(logn)®

M >0 such that Ve >0, 303 >0 such that for all 0> < i and for large enough n

For v = 0 we assume in addition that — 00 as n — oo. Then there exists a constant

P ( sup |vp(Clz)| > MA,7(0'2,71)> <e
CeC,

Theorem 6.2 (Generalized Bahadur-Kiefer approximation)
Suppose that (A2) — (A6) hold. Assume that pe(-|x) is differentiable with Lipschitz-continuous
derivative p)(-|z). Let C be such that (R,) holds. Let further a € (0,1) be fized and suppose
that Me(a|z) is unique up to Leb-nullsets, that F(Me(B|z)|z) = B for all B in a neighborhood of
a, and that pp(alz) > 0. If for h and o? satisfying the conditions of Theorem 6.1 we have for
n — oo that

dr (1) Mel(alz), Me(alz)) = Op(?)
then for n — oo

1

Yk |(F = P)(Me(olo) + s

(ie(alz) — pe(al2))| = Op (A (0%,m)) .
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