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Abstract

We consider a conditional empirical distribution of the form

n

f?n(CIx) = an(Xt —2)iv,ecy
t=1

indexed by C € €, where {(X;,Y;),t = 1,...,n} are observations from a strictly stationary
and strong mixing stochastic process, {w,(X; — z)} are kernel weights, and € is a class of sets.
Under the assumption on the richness of the index class € in terms of metric entropy with
bracketing, we have established uniform convergence and asymptotic normality for ﬁ'n(|a:)
The key result specifies rates of convergences for the modulus of continuity of the conditional
empirical process. The results are then applied to derive Bahadur-Kiefer type approximations
for a generalized conditional quantile process which, in the case with independent observations,
generalizes and improves results of Bhattacharya and Gangopadhyay (1990), and Gangopad-
hyay and Sen (1993). Potential applications in the areas of estimating level sets and testing

for unimodality (or multimodality) of conditional distributions are discussed.
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1 Introduction

An empirical process indexed by a class of sets or functions is an interesting mathematical model
with various statistical applications (see, for example, Shorack and Wellner 1986). Such a process
defined from independent and identically distributed (i.i.d.) observations has been extensively
studied in literature in past two decades. More recently, empirical processes based on dependent
data have been studied under various mixing conditions (e.g. Massart 1987, Andrews and Pollard
1994, Doukhan, Massart, and Rio 1995). The extension of the above exploration to conditional

empirical processes is practically useful and technically more challenging.

Consider observations {(X;,Y;), t=1,...,n} with X; € R? and Y; € R?. Let F(:|z) denote the
conditional distribution of Y; given X; = z. Note that F(C|z) = E{I(yc¢)|X: = z}. This regres-
sion relationship suggests to consider the following Nadaraya-Watson-type conditional empirical
distribution of the form

FolCl) = Y- Ipceyk (X4575) / >k (X) (1.1

t=1 t=1

where K(-) > 0 is a kernel function on RY, and A > 0 is a bandwidth, C' is a measurable
set, and z € R?. By choosing C = (—o0,2],z € R, it reduces to the conditional empirical

distribution function (cdf) F,(z|z) = F,((—oc,z]|z). The corresponding (classical) conditional

empirical process is usually defined as
vo(2) = Vnhi(F,(z|z) — F(2|z)), z€R*

where F'(-|z) denotes the conditional distribution function of ¥; given X; = z, and z is considered
as fixed. To our best knowledge, the study of conditional empirical processes so far has been
confined with i.i.d. observations {(X;,Y;),t = 1,...,n}; see, among others, Stute (1986a,b),
Horvath (1988), and Bhattacharya and Gangopadhyay (1990). The conditional empirical quantile
process is defined as
&nlyle) = §lylz) Vahd (B, (ylz) — F ' (y|z)),

where G(y|z) denotes the conditional density quantile function, i.e. g(y|lz) = g(F~!(y|z))|z),
g(-|z) denotes the density function of F(-|z), and F;1(y|z) and F~1(y|z)) are the (generalized)
inverses of ﬁ’n(z|x) and F'(z|z) respectively. There are two types frequently used asymptotic
approximations for empirical and quantile processes, namely Bahadur-Kiefer approzimations and

Bahadur representations. Bahadur-Kiefer approximations are typically of the form

En(ylz) — vn(F~L(y|z)) = “bias” + VnhiR,(y|z) + “higher order terms”,



where the rate of convergence of Vnh?R,,(y|z) to zero describes the accuracy of the approximation.

A Bahadur representation is an approximation for a quantile process &, (y|z):
&n(ylz) = “sum of i.4.d. r.v.” 4+ “bias” + Vnhe R, (z|z) + “higher order terms”,

which is of the similar form to Bahadur-Kiefer approximation but with v, (F~!(y|z)) replaced by
a sum of i.i.d. random variables. Note that we may expect that v,(F !(y|z)) is asymptotically
normal, but not necessarily a sum of 4.7.d. random variables.

Bhattacharya and Gangopadhyay (1990) derived a Bahadur-representation with R, (y|z) =
O(n=3/5logn) a.s. with both y and « fixed for the case d = d’ = 1 and the uniform kernel K ).
They also studied nearest neighbor type versions of the empirical and the quantile processes and
derived analogous Bahadur representations. Based on a different proof, Gangopadhyay and Sen
(1993) re-derived Bhattacharia and Gangopadhyay’s result for the nearest neighbor versions with
Ry (z]z) = Op(n~%/% logn) in their Bahadur representation. Mehra et al. (1991) considered a local
version of the conditional quantile estimator proposed by Yang (1984) and studied the asymptotic
behavior of the corresponding quantile process. Xiang (1995, 1996) studied a smoothed version
of F-1(y|lz) where Fl(y|z) is smoothed with another kernel locally around y. Xiang derived
a Bahadur-representation for this smoothed conditional quantile function. With appropriately
selected (two) bandwidths he was able to derive the asymptotic distribution of vnh R, (y|z) for
fixed y and z. Bahadur-Kiefer type approximations for unconditional empirical and quantile
processes based on mixing processes have also been studied by, for example, Sen (1972), Basu and

Singh (1978), or Yoshihara (1995).

In this paper the above studies for conditional processes are generalized in two respects. First,
observations are allowed to be dependent, i.e. strong mixing, and secondly we consider set-
indexed processes, i.e. the indicators I1y,<,} are replaced by Iiy,ccy (see (1.1)) with sets C' lying
in some class of (measurable) sets €. This is not only of theoretical interested, but also has some
direct statistical applications. Our study is directly motivated by prediction of nonlinear and
non-Gaussian time series (Polonik and Yao 2000). We will also discuss potential applications
of our results in various other statistical practices such as level set estimation and testing for

unimodality.

We always assume that {(X;,Y;)} is a strictly stationary process, with X; € R? and ¥; € R¥.

In the usual time series context, Y; is a scalar and X; consists of its lagged values. We study the



asymptotic behaviour of the conditional empirical process
€3 C — vy (Clz) = Vnhi{F,(Clz) — F(C|z)} (1.2)

and derive Bahadur-Kiefer approximations for a conditional generalized quantile process (see be-
low). The key result Theorem 2.3 essentially deals with the asymptotic behaviour of the modulus
of continuity of v, (-|z). This asymptotic behaviour depends on the richness (or complexity) of
the index class €, which is measured in terms of metric entropy with bracketing. In fact if €
is not too rich (see Theorem 2.3 below), the conditional C-indexed empirical process converges
weakly, in the sense of Hoffman-Jgrgensen (c¢f. van der Vaart and Wellner 1996), to a so-called
F(-|z)-bridge. Therefore the empirical process behaves like the one based on i.i.d. observations
in terms of first order asymptotics, as long as the class € is not too rich. This phenomenon is
not a surprise, since only the observations with X; in a small neighbourhood of z are effectively
used in the estimation (1.1). Those observations are not necessarily close with each other in the
time space. Indeed, they could be regarded as asymptotically independent under appropriate
conditions such as strong mixing; see Hard (1996). On the other hand, it remains at least to us
as an open problem to identify the maximum richness of € (under the strong mixing condition) to
retain the above i.i.d.-like asymptotic behaviour. The condition specified in this paper restrains
C far from being as rich as in the case of i.i.d. observations in order to retain the same asymp-
totic results. Note that the standard conditional empirical processes indexed by = € R% usually
behave asymptotically like those based on i.i.d. observations. However, the corresponding class
€ = {(~o0, ],z € R} is very “thin”.

We also apply the key result, Theorem 2.3, to derive the Bahadur-Kiefer approximations for a
generalized conditional quantile process. Note that for set-indexed processes there is no obvious
quantile process or inverse process. Instead we consider processes indexed over an important class
of sets, namely the so-called (empirical) minimum volume sets (see below). For a € [0,1], a set

Me(a|z) € € is called a conditional MV-set in € at level « if
Me(a|z) € argmax{Leb(C) : C € €, F(C|z) > a}, (1.3)

where Leb(+) denotes Lebesgue measure. Analogously, Me(a|z) denotes an empirical conditional
MV-set if F(-|z) in (1.3) is replaced by the empirical distribution F},(-|z). We denote their volumes
as

pe(alz) =Leb(Me(af)) and  fie(alz) = Leb(Me(alz)), (1.4)



respectively. The volume process
o = Vah? (jie(alz) — pealr)) (1.5)

can be considered as a conditional version of a generalized quantile process as defined in Einmahl
and Mason (1992). This generalized quantile process turns out to be a generalization of the usual
quantile process defined above (see below).

Note that MV-sets are indexed by a one-dimensional parameter. As a consequence we are deal-
ing with one-dimensional processes. Nevertheless, it is essential that set-indexed processes are
studied, because empirical minimum volume sets are random sets. The Bahadur-Kiefer approx-
imation for the volume process derived in §3 improves and generalizes results of Bhattacharya
and Gangopadhyay (1990) and Gangopadhyay and Sen (1993), who both considered the special
case of d = d = 1 and the observations being independent. Polonik (1997) established similar

Bahadur-Kiefer approximation for an unconditional volume process based on ¢.7.d. observations.

The remainder of the paper is organized as follows. We present the asymptotic results of the
process {vp(-|z)} in §2. §3 contains the Bahadur-Kiefer approximations for the volume process
(1.5). §4 provides a discussion on how the results in this paper can be applied to various statistical

applications. §5 contains some key technical arguments.

2 The set-indexed conditional empirical process

In this section, we establish asymptotic properties of the process vy (-|z) defined in (1.2), which
include a Glivenko-Cantelli type result, the asymptotic normality of finite dimensional distribu-
tions, and the asymptotic behaviour of the modulus of continuity. The last two results imply that
vn(+|z) converges to a Gaussian process.

Let f(-) be the density function of X;. We always assume that x € R? is fixed and f(z) >
0. Further, all the non-deterministic quantities are assumed to be measurable, and we write
dr(.|z)(4, B) = F(AAB|z). We use c to denote some generic constant, which may be different at

different places. We introduce some regularity conditions first.
(A1) The marginal density f is bounded and continuous in a neighbourhood of z.
(A2) The kernel density function K is bounded and symmetric, and lim,, o ||[u||?K (1) = 0.

(A3) f € Cy4(b), where Cy 4(b) denotes the class of bounded real-valued functions with bounded

second order partial derivatives.



(A4) F(:|z) has a Lebesgue-density g(-|z) € Caq4(b). Moreover, for each C' € € the function
F(C|-) € Cy4(b) such that supgce #{%F(CM)‘ < oo, V1<i,5<d.

(A5) || [ voTK(v) dv|| < .

(B1) The joint distribution of (X, X¢4) has the density function f,, and f, is bounded uniformly

over g > 1.

(B2) The joint density function of (X, Xy, X, X, ) exists and is bounded from the above by a

constant independent of (s, t,q,r).

We call the stationary process {(X;,Y;)} strong mizing if

a(j)=  sup  |P(AB) — P(A)P(B)| =0, asj— oo, (2.1)
A€FO , BEF

where F! denotes the g-algebra generated by {(X;,Y;),s < i < t}. We use the term geometrically
strong mixing if a(j) < aj P for some a > 0 and § > 1, and ezponentially strong mixing if
a(k) < by* for some b > 0 and 0 < 7 < 1. Sometimes the condition of strong mixing can be
reduced to so-called 2-strong mizing, which is defined as in (2.1) with F° _ and F7° replaced by
o(Xo,Yy) and o(X;,Y;) respectively. We use the terms geometrically or exponentially 2-strong
mixing in a similar manner.

Now we introduce the notion of metric entropy with bracketing which provides a measure of
richness (or complexity) of a class of sets €. This notion is closely related to covering numbers.
We adopt L;-type covering numbers using the bracketing idea. The bracketing reduces to inclusion
when it is applied to classes of sets rather than classes of functions. For each € > 0, the covering

number is defined as

Ni(e,C, F(-|z)) = inf{n e N: 3C4,...,C, € C such that

VCeC 31<4,j<nwithC; CCCC; and F(C;\ Cilz) <e€}.  (2.2)

The quantity log Ny(e, C, F(-|z)) is called metric entropy with inclusion of € with respect to F(|z).
A pair of sets Cj, Cj is called a bracket for C. Estimates for such covering numbers are known for
many classes. (See, e.g. Dudley 1984.) We will often assume below that either log N (e, C, F(-|z))
or Ni(e, €, F(-|z)) behave like powers of e~! : We say that condition (R,) holds if

log N1(€,C, F(:|z)) < Hy(e), forall e >0, (Ry)



where

H () = log(Ae™) ifty=0, (2.3)

Ae7 if v >0,

for some constants A, > 0. In fact condition (Rp) holds for intervals, rectangles, balls, ellip-
soids, and for classes which are constructed from the above by performing set operations union,
intersection and complement finitely many times. The classes of convex sets in R? (d > 2) fulfill
condition (R,) with v = (d — 1)/2. This and other classes of sets satisfying (R,) with v > 0 can
be found in Dudley (1987).

Now we are ready to formulate the results on the uniform consistency and the (pointwise) asymp-

totic normality of v, (C|z).

Theorem 2.1 (Uniform consistency)

Suppose that conditions (Al), (A2) and (B1) hold, and that {(X;,Y:)} is geometrically 2-strong
mizing with f > 2(p—1)/(p—2). Let C be a class of measurable sets for which Ny (e, C, F(:|z)) < oo
for any € > 0. Suppose further that V C € €

[F(Cly)fly) = F(Clz)f(z)| =0 as y — = (2.4)
If nh® — 0o and h — 0 as n — oo, then

sup |F,(C|z) — F(C|z)| -2 0.
CceC

Theorem 2.2 (Asymptotic normality)
Let (A2) — (Ab) and (B2) hold, and suppose that (B1) holds with p = co. Suppose further that the
process {(Xt,Y:)} is geometrically strong mizing with B > 2. Let h = cn_ﬁ(log logn)~!. Then

asn — oo, form >1 and Cy,...,Cy,, € G,
{n(Cilz); i =1,...,m} <5 N(0, %),
where £ = (05)i-1,..m; and 015 = {F(Ci N Cla) = F(C2)F(Clx)} J K2(u)du/f(2).

In order to formulate the next theorem which provides the information on the asymptotic be-

haviour of the modulus of continuity (see remarks below), we need to introduce the following

function
o2 log ;1; if y =0,
Ay(o?,m) = - P (25)
! max ((02)77 , (nhd) 2(37“)) if v > 0.



Theorem 2.3 Suppose that (A2) — (A5) and (B1) hold, and the process {(X,Y;)} is exponentially
strong mizing. For each o > 0, let C; C € be a class of measurable sets with supcce, F(C|z) <
0% < 1, and suppose that C fulfills (Ry) with some v > 0. Further we assume that h¢ = 0 and

nh?® — 0o as n — oo such that

nhitt < (A7(02,n))2, and

nh (02 log 01—2) e

logn

— 00 asn — o0.

Further we assume that o> > h%. For v > 0 and d = 1,2 the latter has to be replaced by
o? > hdlog(1/h%). Then for every e > 0 there exists a constant M > 0 such that

P (SUP lvn (Clz)| > MA’y(UQan)> <e
CeCs,

for all sufficiently large n.

Remark 2.4 (a) Note that A, tends to zero as n — oo provided v < 1/3. In this case, Theo-
rem 2.3 entails the tightness of the conditional set-indexed empirical process. To see this, note that
trivially supg pee [Vn(Clz) — vn(D|z)| < 2 suppgeeye [vn(Blz)| where €\ € = {C'\ D,C, D € €}.
Without the loss of generality, we may assume that § € € such that € C €\ €. Now, it is easy
to see that N(e, €, F(-|z)) < Ni(e,€\ C, F(:|z)) < (Nr(e/2,C, F(:|z)))?. This implies that (R,)
holds for € if and only if it holds for €\ €. Hence, an application of Theorem 2.3 to the class
C\ € together with Theorem 2.2 entails, by standard arguments, that the set-indexed process
converges in distribution to a so-called F'(-|z)-bridge, provided v < 1/3. An F(-|z)-bridge is a
Gaussian process with almost surely continuous sample paths and covariance structure as given
in Theorem 2.2 (e.g. Pollard 1984). Taking into account possible non-measurability the conver-
gence in distribution should be understood in the sense of Hoffman-Jgrgensen (see van der Vaart
and Wellner 1996).

(b) It is well-known in the empirical process theory that an unconditional empirical process based
on i.i.d. observations is tight if (R,) holds with the sharp bound v < 1 (see Alexander 1984).
The same conclusion holds for a conditional empirical process as long as the process is formed
from a set of i.i.d. observations. However, for the empirical processes based on dependent data
under the strong mixing condition, we assume in this paper v < 1/3 to achieve the tightness. It

was indicated on page 128 of Andrews and Pollard (1994) that the tightness of an (unconditional)



empirical process can be established by using the method of Massart (1987) under the condition
that v < 1/4. (Note that the parameter 8 in Andrews and Pollard (1994) is equal to 27 in our
notation.) Hence, we have enlarged the upper bound from 1/4 to 1/3. However it remains as an
open problem if a further improvement is possible, and if further we can reach the upper bound
1 for strong mixing processes.

(c) To demonstrate that our general results lead to well-known (optimal) rates of convergence
in special cases, we briefly discuss the case v = 0. With h = ¢, (%2) 7 , where ¢, — ¢ > 0 as

n — 00, the results below follow from Theorem 2.3 immediately.

(c1) Let 02 = 1, we have that

n@# sup | B, (Clz) — F(Clz)| = Op(1).
cee

(c2) Let {C,} be a sequence of classes of sets with €, C € and supgce, F(C|z) < 02 < 1. Let
02 = 02 — 0 such that the conditions of Theorem 2.3 hold. Then

(%)™ sup |7, (Clz) = F(Cle)] = Op(Viogn).

]
3 Bahadur-Kiefer-type approximations

In this section we study the behaviour of the volume process defined in (1.5), which can be

regarded as a generalized quantile process. Note that fie(a|z) = Leb(ﬁe(oda:)), and
Me(alz) € argmax{Leb(C) : F,(C|z) > a}.

We assume throughout this section, that empirical MV-sets with finite v-measure exist for every
a € [0,1]. This assumption is satisfied for all standard choices of the class C. Replacing the
Lebesgue measure by a general function A : € — R, the process defined in (1.5) becomes a
conditional version of the generalized quantile function as defined in Einmahl and Mason (1992).
It reduces to the conditional quantile if we let € = {(—o0,z],z € R} and A((—o0,z]) = z. In
fact we have that the MV-set T\Ze(akv) = (—oo,ﬁ'n_l(a|w)] on the one hand, and the “volume”
fie(a]z) = A((—o0, F1(alz)]) = F:'(alz) on the other hand. Hence, a conditional quantile may
be regarded as an MV-sets itself, and as well as its “volume”.

A classical (unconditional) empirical MV-sets is the so-called shorth which is the MV-interval at

the level 1/2. The term ‘shorth’ was first introduced by Andrews et al. (1972) referring to the



mean of the data lying inside the MV-interval at the level 1/2, which is different from current
practice. Rousseeuw (1986) introduced the MV-ellipsoid in the context of robust estimation for
multivariate location and scatter.

A very important type of MV-sets are the so-called level sets defined in terms of probability
density functions. Suppose that F'(-|z) has Lebesgue density g(-|z). Denote

Tyn)A) ={z € R : g(t|z) > A}, A >0, (3.1)

the level sets of g(-|z). It is easy to see that if T'y(;y(A) € €, it is an MV-set at the level a) =
Theorem 3.1 below presents Bahadur-Kiefer type rates of approximation for the set-indexed con-
ditional empirical process. Note that Me(e|z) depends on the bandwidth h through F,(-|z),

which is not reflected explicitly in the notation.

Theorem 3.1 (Generalized Bahadur-Kiefer approximation)
Suppose that the conditions of Theorem 2.8 hold. Assume that pe(-|z) is differentiable with
Lipschitz-continuous derivative pup(-|z), and the condition (Ry) holds for C. Let further o € (0,1)
be fized and suppose that Me(a|x) is unique up to Leb-nullsets, that F(Me(B|z)|z) = B for all
B in a neighborhood of «, and that pp(alz) > 0. If for h and o satisfying the conditions of
Theorem 2.3 we have that as n — oo,

dr(z)(Me(alz), Me(alz)) = Op(0?),

then as n — o0,

E, — F)(M m =0 Ay(o%,m)
|(Fn — F)(Me(alz)) + )(ue(alw)—ue(alﬂc))l— P\ i )

pelalz

In order to evaluate explicit rates from this theorem, we need to know the rates of convergence o

for the empirical MV-sets. To this end, we assume that the level sets of the conditional density
are (essentially) unique MV-sets. More precisely, it is assumed that for a € [0,1] there exists a

level A\, such that for any Me(a) we have

dLeb(Pg(-|x)()‘a)aM(‘Z(O“x)) = 0. (3.2)

This assumption is fulfilled for all v if T'y(.;;y(A) € € for all A > 0, and g(-|z) has no flat parts
(i.e. Leb{y : g(y|z) = A} =0 V XA > 0). In addition we assume that g(-|z) is regular at the level
Aa, in the sense that

Leb{y : |g(ylz) — Aa| < €} = O(e). (3-3)



Under (3.2) and (3.3) rates of convergence for MV-sets are derived in Polonik and Yao (2000).

Using these rates we obtain the following corollary.

Corollary 3.2 Let conditions (A2) — (A5), (B1) and (B2) hold, and suppose that the process
{(Xy, Y1)} is exponentially strong mizing. Let o € [0,1] such that (3.2) and (3.3) hold. Further
let

_ 1 _ 1
h = ¢ max (n a+B+1), n d+2(37+1)> .

1 1
For~y > 0 andd =1 the termn~ @G+" in the definition of h has to be replaced by n~ ¥+G+ log(n).

Then for every n > 0 we have as n — oo that

N R Op(n~ T 1) if y < 1/5,
[(Fr — F)(Tg(2)(Aa) ) + Aalie(alz) — pelalz))| = 2 :
Op(n 267D if y > 1/5.

Finally, we state a theorem giving Bahadur-Kiefer approximations for the standard conditional

one-dimensional empirical process indexed by y € R (see Introduction). Let
q(a) = q(alz) = F(a|z)
denote the conditional quantile, and let
gn(alz) = F ' (alz),

where F~! and ﬁn_ ! denote the generalized inverses of F(-|z) and Fj(-|z), respectively. Since we
now use the optimal bandwidth, the bias comes into play (see also Lemma 5.2 in the Appendix).
We define

1
f (@)

where V and V? denote gradient and Hessian operator respectively. To simplify notation we write

Ty(Clz) = ——(VF(C|z), / K (v)(v, (Vf)(:v))d’u)+% / IVIF(CleyK (v) dv  (34)

Uy (y|z) instead of Wy ((—o0,y]|z).

Corollary 3.3 (Bahadur-Kiefer approximation for the usual conditional empirical process)

Let conditions (A2) — (A5), (B1) and (B2) hold with C = {(—o0,y],y € R}, and suppose that
the process {(Xy,Y:)} is exponentially strong mizing. Suppose further, that for a fized a € (0,1)
the function g(-|z) is continuous at g(a|z) and that g(¢(a|z)|z) > 0. Let h = en /44, Then as

n — o0, it holds that

|(F — F)(a(alz)|2) + T2(a(alz)|2) + gla(e|z) 2)(an(alz) — a(alz))| = Op (n~ ¥ /iogn ).

The approximation holds also almost surely with rate O (n_d_fr‘i(logn)%)

10



Remark 3.4 (a) Although the class C in Corollary 3.3 satisfies (R,) with v = 0, the rates in
Corollary 3.3 are faster than that derived from Corollary 3.2 with v = 0. In fact, the quantiles
converge at the rate of 1/ \/W, whereas the estimators of level sets converge at a slower rate,
although both of them are MV-sets. Note that quantiles are MV-sets in the class of intervals
of the form (—o0,y],y € R, which have one fixed end-point at —oo. Hence, the estimation of a
quantile reduces to the estimation of its “length”, which can be fulfilled at the rate of 1/ Vnhd.
However, estimation of a general MV-set is much more involved, and hence the convergence is
slower. (It is well-known that the classical shorth can be estimated at the rate of n~1/3 only,
whereas the length of the shorth can be estimated at the rate of n~1/2.)

(b) Corollary 3.3 improves results from Bhattacharya and Gangopadhyay (1990) and from Gan-
gopadhyay and Sen (1993). Bhattacharya and Gangopadhyay dealt with the i.i.d. case using a
uniform kernel with one-dimensional X;, i.e. d = 1. Note that in the i.i.d. case, the Bahadur-
Kiefer approximation given in Corollary 3.3 actually gives a Bahadur representation. The conver-
gence rate obtained by Bhattacharya and Gangopadhyay (1990)for their Bahadur representation
is O (n_% logn), which is slower than ours by a factor (log n)% Gangopadhyay and Sen (1993)
used a different method of derive a Bahadur representation of order Op ('rf% logn) which is
slower that ours by a factor of \/logn .

(c) The above a.s. approximation rate is of the form (nh?®)~%/%(log(nh®))?/%. Hence, up to log-
factors it is in alignment with the rates for unconditional quantile process. For example, the
almost sure rate for one-dimensional unconditional processes (i.e. d = 1) with i.i.d. observations
is O(n—3/*(loglogn)3/*) (Kiefer 1967).

(d) The density quantile function g(g(e)|z) in Theorem 3.3 corresponds to A, in Theorem 3.1.
Note that both of them have the same geometric interpretation as the values of the (conditional)
density at the boundary of the corresponding MV-set which are T'y(.;)(Aa) and (—o0,g(alz)],

respectively.

4 Discussion

Apart from its direct application in prediction of nonlinear and non-Gaussian time series (Polonik
and Yao 2000, and references therein), a conditional empirical MV-set is also interesting (i) as
an estimator for a level set of a conditional density, and (ii) to be used in tests for unimodality

of conditional distributions. In this section, we discuss how the above theoretical results can be
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applied to these two applications.

First, we briefly illustrate how to derive the Li-rate of convergence for a conditional empirical
MV-set by applying Theorem 3.1 iteratively. It can be shown that the L;-distance between the
empirical and the true MV-set can be estimated from above by a sum of several terms including
the difference of the empirical process and the generalized quantile process. (See Polonik and
Yao 2000 for details.) Hence, Bahadur-Kiefer rates derived in Theorem 3.1 are useful. Note,
however, an explicit rate o2 is needed in applying Theorem 3.1, and further, it is not necessary
in Theorem 3.1 to let o2 converge to 0. Now we start with 0> = 1. Then Theorem 3.1 yields
the first Bahadur-Kiefer approximation rate which in turn can be used to derive the first rate o2
for Me(a|z). Further, this rate for Me(a|z) can be plugged into Theorem 3.1 to yield a faster
Bahadur-Kiefer type approximation. This faster Bahadur-Kiefer rate leads to a faster rate of
convergence for i/[\e(akv) and so on. The iteration will be continued until the rate of convergence

is saturated.

The testing for unimodality of conditional distribution is an interesting and challenging problem in
statistics. It has been observed that the conditional distribution of (nonlinear) time series given its
lagged values could be multimodal. Further, the number of modes may vary over different places
in the state space. Polonik and Yao (2000) proposed a heuristic device to detect the possible
multimodality based on coverage probabilities of unconnected regions. A more rigorous statistical
test can be constructed as follows based on conditional MV-sets. We only consider a special case
when Y is univariate (i.e. d' = 1).

To predict Y from X, the best predictive region among a candidate class € is the MV-set of €
in the sense that the MV-set has the minimum Lebesgue measure. Obviously this best predictor
depends on the choice of the class €. In view of simple prediction, there is strong temptation to
let € be the class of all intervals Z;. However, such a C is only pertinent when the conditional
density g(-|z) is unimodal. Indeed, if g(-|z) is, for example, bimodal, we should let € = Z, which
is the class of unions of at most two intervals. In this case, the MV-set of Z; may have much larger
Lebesgue measure than that of Zo. Hence, the comparison of the volumes (Lebesgue measures)
for the MV-sets in different set classes gives us the information on the number of modes of the
underlying conditional distribution. This idea has been explored by Polonik (1997) in testing the

unimodality for unconditional distribution.
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To test the null hypothesis that g(-|z) is unimodal, we define the statistic

Tn,a(@) = sup{jiz; (ofz) = fiz, (o)} (4.1)

where A C [0, 1]. Obviously, we may replace Z; and Z5 in the above expression by appropriate € and
D (with € C D) respectively for testing different hypotheses. Now, it follows from Theorem 3.1

and its proof that under the null hypothesis
fiz, (elw) = pz, (alz) + ph, (al2) ((Fn = F)(Cypia)Aa)l2) + (nh?) 2w, 1 (02)) + R,

where Wy, 1, denotes the modulus of continuity of v, 7, which is the conditional empirical process
indexed by T, and o2 denotes the Li-rate of convergence of Mz, (a|z) to Lg(.1z)(Aa)- The remainder
term R, is of smaller order. The analogous expansion also holds for fiz, (e|z). Since under the null
hypothesis uz,(a|r) = pz, (a|r), the statistic T}, 4} (z) converges to 0 under the null hypothesis
and the rate of convergence is (nh®)~!/ 2(;1,,%1._2 (02). The rates given in Corollary 3.2 for v = 0
are explicit rates for this quantity for some particular h. Since the statistic T3, 4 is defined as a
supremum, we need to show that the results in Theorem 3.1 and Corollary 3.2 hold uniformly for
a € A, which can be validated at least for A C [¢,1 — €](e > 0) under appropriate conditions on
the smoothness of g(:|z) (see Polonik 1997 for the global i.i.d. case).

The idea of excess mass provides an alternative approach to test the uni- or multi-modality. The
excess mass approach was introduced independently by Miiller and Sawitzki (1987) and Hartigan
(1987). (For further work see Nolan 1991, and Polonik 1995a,b). Adapted to the conditional
empirical processes, the basic statistic is of the form E, e(A|z) = supCEe(F’n(C|x) — ALeb(C)),
which might be called a conditional empirical excess mass functional. As a function of A it contains
information about mass concentration of the underlying distribution. Similar to the above, we
compare the functionals under different classes C. Namely, we define the test statistic

To(z) = sup(En,z,(Al2) — En 1 (Al2)),
A>0

which is a conditional version of the test statistic proposed by Miiller and Sawitzki (1987, 1991).
The rates of convergence of T,,(z) under the hypothesis of unimodality can be derived from Theo-
rem 2.3. It can be shown that v/nh T),(z) can be estimated from above by supysq(vn(Tn.z, (\)|7) —
Un(Ty(1z)(N)|z)). Here T', 7,(N)|z) € Z2 denotes the conditional empirical A-cluster which is the
maximizer of the excess mass statistic E, 7,(A|z) defined above. See Polonik (1995a) for un-

conditional cases with 4.i.d. observations. If Lj-rates of convergence o2 for the sets [, 7,(}) to

13



I'y(|z)(A) can be derived, then we have vnh Ty(z) < Op(wy, 7, (02)), and rates of convergence of

the quantity on the right-hand side of the last inequality immediately follow from Theorem 2.3.

2
n

The rates o, can be derived by using ideas from Polonik (1995) and the results of the present

paper.
Finally, we point out that the above test can be generalized to tests for other null hypotheses
if we replace Z; and Z; by € and D (with € C D) in the definition of the test statistic. This
generalization can be treated analogously, provided information about the metric entropy with

bracketing of D (and hence also about €) is known. This shows the actual strength of Theorem 2.3.

5 Appendix: Proofs

Some proofs of the above results are more or less standard nowadays. We outlines these proofs
only. The proof of Theorem 2.3 is most technically involved, where we adapted the so-called
chaining idea in empirical process theory. The key of the adaptation is to establish an exponen-
tial inequality (see Lemma 5.3 below) for which the proof is provided. Using this exponential
inequality, Theorem 2.3 can be proved following the main ideas of the proof of Theorem 2.3 of

Alexander (1984). Therefore the detailed derivation is omitted.

Throughout the proofs we use the notation:

_ 1 n Xt — T
oo(Cle) = g ST € O (), (5.1
and define
B 1 & Xt — T
fn(z) = W;K( 5 )- (5.2)

The corresponding theoretical functions are ¢(C|z) = F(C|z)f(z) and f(z) itself. We write
Kp(y) = hl—dK (¥) . Moreover, unless stated otherwise z is assumed to fixed such that f(z) > 0.

Let us first introduce two technical lemmas without proofs:

Lemma 5.1 Suppose that f is continuous at x. Suppose further that f is bounded, and that (2.4)
holds. Then we have ¥ C € € that as n — oo

|E(n(Clz)) — ¢(Cla)| = 0p(1), and |E(F,(C|z)) - F(Clz)| = op(1).
If (2.4) does hold uniformly over C € € so do the assertions.
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In the following lemma we give the exact asymptotic behaviour of the bias terms. The proofs

consist of tedious, but straightforward calculations using Taylor expansions. Details are omitted.

Lemma 5.2 Suppose that (A2) — (A5) hold. Let VU,(C|z) = (VF(C|z), [ vK (v)(v, Vf(z))dv) +
$f(z) [vIV2F(Clz)vK (v) dv + $F(Clz) [vTV2f(z)vK(v) dv and let Uy as defined in (3.4).

Then we have for each x as n — oo that uniformly in C € C
() b 2(Epn(Clz) — ¢(Clz)) = ¥1(Clz)

(@) h2(EE,(Clz) — F(Clz)) = ¥a(Clz).

Proof of Theorem 2.1: We use the following decomposition:

F — x - x) — x _ﬁ’n(C’|w) z) — f(z
Fy(Clz) - F(Clz) = @) (en(Clz) — (Clz)) @) (fn(z) — f(2))- (5.3)
iFrom this it is easy to see that we only need to show that as n — oo
supcee |on(Clz) — (Clz)| = 0p(1)  and (5.4)
[fn(z) = f(z)| = op(1). (5.5)

(5.5) is well known to hold under the present conditions (cf. Bosq 1996). That for every fixed
C € Cwe have |p,(C|z)—¢(C|z)| = op(1) can be shown by similar arguments, and is omitted here.
It remains to conclude uniform consistency from this by using finite metric entropy with inclusion.
By observing that both ¢, and ¢ are monotonic functions in the sense that ¢(,)(C) < ¢ (D)
for C C D, the bracketing idea can be used in exactly the same way as is done to proof uniform

convergence of the empirical process (e.g. Pollard 1984, proof of Theorem 2). Details are omitted.

Proof of Theorem 2.2: Using the fact that under the given conditions f,(z) is consistent we

have

F(Clz)
f(z)
Using the notation b;(C) = I{Y; € C}K (X=Z) we obtain

(Clo) =Vl (oo (Cla) = @(Cla)) = o ful) = (&) (L +0p(1). (50

w(Clz) = ﬁ;wcm (5.7
+ Vi s (Bpu(©) = ¢(0)) - Vaid T (B (X, - ) - @), (69

where Win(Clz) = 155 (Bi(C) — Bbi(C)) - }(C|)) (K(X; — ) — EK(X; — z)). Tt is well known

that under the assumptions of the theorem the bias of f,, converges to zero at a rate h?. The
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same holds for the bias of ¢,(C) (Lemma 5.2). Hence, the assumptions on h assure that the
terms in (5.8) are asymptotically negligible. It remains to show that the right-hand side in (5.7)
is asymptotically normal with the given variance. To see this, the proof of Theorem 2.3 of Bosq
(1996) can easily by adapted. ' As for adapting the estimates given there one can use the fact
that b,(C) < K (£=2). Calculation of the asymptotic variance-covariance matrix is lengthy but

straightforward.

Proof of Theorem 2.3: We start with the decomposition of v,(C|z) given in (5.6) above.
Since under the present assumptions vVnhd(f,(z) — f(z)) = Op(1) (e.g. Bosq 1996), the second
summand in the main term (inside the brackets) in (5.6) is of the order Op(0?). It remains to
show, that \/Wsupcgga (¢n(C|z) — ¢(C|x)) is of the desired order.

To see this first note that E,(C|z) — ¢,(C|z) is of the (uniform) order Op(h?). Hence, the
assumption vVnhd h? < A,(0?,n) ensures that the bias-terms is of the required order. Therefore,
with 7, (C|z) = Vnhd {n(C|z) — B, (C|x)} it remains to show that the assertion of the theorem
holds with v, replaced by ,,. This is done by adapting the chaining idea (known from empirical
process theory) to the present situation. The crucial ingredient is the following exponential
inequality (5.9). Using this, the proof of Theorem 2.3 of Alexander (1984) (and the corresponding
Correction (1987)) can be adapted to the present situation. This adaptation is somehow involved,
because the free parameter r in (5.9) has to be chosen appropriately at various places throughout
the proof, and one has to make sure that every choice satisfies the constraint r € [1,n/2]. Details

are omitted, however. Only the proof for (5.9) is presented.

Lemma 5.3 Under the assumptions of Theorem 2.3, for each € > 0 and each integer r € [1,n/2]

there exist positive constants c,c1,ce such that for C € C, and large enough n

P(|on(Clz)| > €) < 4exp (_ (2:2 n ))
CcC\O W T

n n
+exp [—61; +c2 (IOgT‘ + (0 Vlog W))] . (5.9)

Proof of Lemma 5.3: The following result is crucial. If F(C|z) > and 02 > h?, then

hd
log(1/h%)

>~ Cov (b1(C), bi1(C)) = O (WU(F(Cla)) ) (5.10)
k=1

In the proof of Theorem 2.3 of Bosq (1996) r*/* has to be replaced by r%/* in the formula preceding (2.40).
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In order to derive this result we proof the following two estimates:

Cov (b1(C), bk41(C)) = O ((F(Cla)h=h)/?)  forp>1, (5.11)

Cov (b1(C), b1 (C)) = O (p'a(k)l/p'F(Cm)ll/p' (nt)™ p') forp' > 1. (5.12)
Estimate (5.11) can be seen as follows. With 1/p +1/¢ = 1 we have
Cov (b1(C), bys1(C)) < / I{Yi € C}Kn(X1 — ) Kp(Xpy1 — 2)dP
(/ (171 € CYK, (X1 - x))p dP) . (/ (K" (X1 = 2)Kn(Xp 11 — x))qu)
e (F(Clo)f(@)+ o) " ( / Ky (u — :v)du) e ( / Ki(w ac)dv) e

= (F(C'|x)f(g;) + O(hz))l/P -0 (h—d-l-d/Q) =0 (((F(C|$) + hz)h_d) 1/P> '

1/q

IA

IA

By assumption F(C|z) > h%, and hence (5.11) follows. For the proof of (5.12) we use the following
inequality. Let p’,¢',r' > 1 be integers with 1/p’ +1/q' + 1/’ =1, then

Cov(br+1(C), b1(C)) < 29/ 2a(k)) /7' |[Br1.1(C) |t 161(C)] |- (5.13)

Inequality (5.13) is known as Davydov’s inequality, and is a corollary to the so-called Rio’s in-

equality (see Bosq 1996, Corollary 1.1). Using similar arguments as above, one can see that
1be41(C) |y = O ((F(Cl) + k)M p=d0=1/)

and
[|61(O)||» = O ((F(C|x) I h2)1/T'h_d(1_1/T')) .

Plugging these results into (5.13) gives (5.12). Combining the estimates (5.11) and (5.12) leads
to (5.10) by using similar arguments as in the proof of Theorem 2.1 in Bosq (1996).

We now indicate how to obtain the exponential inequality (5.9). We apply (1.26) from Bosq
(1996) to 7, (Clz) = Vnhd L 37 (5,(C) — Eby(C)). Since |b(C)| < Mih™¢, for some constant

M; > 0 this gives for € > 0

P(on(Clz)| > ¢) =P (|<pn(C|x) ~ Bon(Cla)| >

2

€
\/nhd>
e*r

/2

4 My 02\ n

< _— il A — .
<4 exp( thdv2(r)) +22 (1+ i roz([2r]> (5.14)
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where here [z] denotes integer part of z, a(-) denotes the strong mixing coefficient defined in (2.1),
and r is an integer with 1 < r < n/2. Further,

2
8re c1

2 —
vi(r) = pvxd (r) + S1/21,3)3

€
s—1
and o?(r) =0 (s Var(b1(C)) + s Z Cov (b1(C), bk+1(C))) ,
k=1
where s = n/2r. It is well known that h¢Var(b; (C)) = F(C|z)f(z) [ K? + O(h?). Together with
(5.10) this gives

02(7") = O(sh_dF(C|:1:)) = O(Sh_dO'Q), (5.15)

which leads to the estimate
v2(r) =0 (slhda2 + ;) . 5.16
(r) N (5.16)

Plugging this estimate into (5.14) we obtain for some constant ¢ > 0

2 1/2
P(n(Clz)| > ) < dexp | ——— | 422 (1+461,/%) A, (5.17)
C(U + X —)

r

Using 7 < n/2 we obtain for the last term the following estimate which completes the proof:

1/2 1 1 /
22(1+4e*1,/h%) / rvy® <exp [—;—Tlog;+logg+log22+§log(1+4e1 %)]

n n
<exp [—cl; + co (logq+ (0Vlog W))] )

Proof of Theorem 3.1: Let g,(a) = Vnhe

f(z)
u,(alz)

as in Polonik (1997), proof of Lemma 7.1, one can see that on the set B, = {dp(.|) (/I\/T@(a|ac), Me(alz)) <

(ﬁ@(a|x) —ue(a|x)) . Using similar arguments

o2} U{|aif — a < a?}U{ai € (0,1)} we have

1 _ 1
VR ey el le) — i) < an(@) < VT s elei )~ pefele) - 519)
where
o = ax ((Fy — F)(Me(alo)|z) + wy,((2)(0%). (5.19)

and wy, (.[z)(€) = suUpP{c, pee: dp(ia)(C,D)<e} |vn(C|z) — vp(D|z)| denotes the modulus of continuity
of the conditional empirical process v, (C|z) = Vnh (ﬁn(C|a:) — F(C|z)). ;From (5.18) and
(5.19) together with the fact that P(B,) — 0 as n — oo the assertion follows by applying a
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one-term Taylor expansion.

Proof of Theorem 3.3: First note that all the results proven above hold analogously if we
choose € = {(—o00,y] : y € R} and replace Leb by the function v defined through v((—o0,y]) = y.
A first application of Theorem 2.3 with 02 = 1 shows that Sup(,cr} Vnhd |EL (y|z) — F(y|z)| =

Op(1) as n — oo (cf. Remark 2.4, (c1)). From this it follows that as n — oo
|Bn(gn(l2)|2) = F(gn(alz)|o)| = Op ((nh?)72),
and since F, (g, (e|z)|z) = F(q(a|z)|z) + op(1/nh%) we obtain
[F(ga(ala)lz) — F(a(ala)lz)| = Op ((nh)7/?). (5.20)

Observing | F(gn(ale)|z) — F(g(a]z)|z)] = dr((=00, ga(al2)], (~o0, q(alz)]), and applying Theo-
rem 3.1 a second time, but now with ¢? = (nhd)_l/ 2 gives the asserted rate of convergence in
probability by choosing h = n~@. Note that here we also have to take into account the bias

which for this choice of h does not vanish (cf. Lemma 5.2).

As for the almost sure rate, note that the first rate (see (5.20) above) needs to hold almost surely.
By using the exponential inequalities derived in the proof of Theorem 2.3 and applying Borel-
Cantelli-Lemma one can see that supg,cgr; Vnht |F,(y|z) — F(y|lz)] = O(v/logn )a.s. Then, as
above, plugging in the resulting rate for dp((—o0, ¢gn(@|z)], (=00, ¢(a|z)]) into Theorem 2.3 and

applying Borel-Cantelli-Lemma a second time leads to the assertion.
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