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Abstract: We suggest two improved methods for conditional density estimation. The

first is based on locally fitting a log-linear model, and is in the spirit of recent work on

locally parametric techniques in density estimation. The second method is a constrained

local polynomial estimator. Both methods always produce non-negative estimators. We

propose an algorithm suitable for selecting the two bandwidths for either estimator. We

also develop a new bootstrap test for the symmetry of conditional density functions. The

proposed methods are illustrated by both simulation and application to a real data set.
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1 Introduction

We have two goals in this paper. First, we propose two new methods for estimating the
conditional density function of Yt given Xt based on observations from a strictly stationary
process {(Xt, Yt)}. Second, we propose a new bootstrap method for testing the symmetry of
conditional density functions.

Our new conditional density estimation methods improve on the local polynomial estima-
tors proposed by Fan, Yao and Tong (1996) by restricting the estimator to be non-negative.
The “double kernel” smoothing approach, similar to that adapted by Yu and Jones (1998) to
estimate conditional quantiles.

Our first estimation method is locally parametric; it produces estimators of arbitrarily high
order and is always non-negative. In spirit, this approach is related to recently-introduced
local parametric methods for density estimation; see, for example, Copas (1995), Simonoff
(1996, Section 3.4), Hjort and Jones (1997), Loader (1996) and Hall, Wolff and Yao (1999).
Our second method is a constrained version of the estimator studied by Fan, Yao and Tong
(1996). The simple constraint makes the estimator always non-negative while retaining the
nice asymptotic properties of the local polynomial estimators.

We consider the mean square error properties of our estimators and show that the asymptotic
optimal bandwidth in the x-direction is greater than that in ordinary kernel regression esti-
mation in order to compensate for the data sparseness due to the smoothing in y-direction.
Similarly, the optimal bandwidth in the y-direction is greater than that for unconditional den-
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sity estimation to compensate for the smoothing in the x-direction. Based on the mean-square
error properties, we propose a practical bandwidth selection algorithm for the new estima-
tors.

The symmetry of conditional density functions is of interest in modelling time series data in
business and finance (Brännäs and De Gooijer, 1992) and in constructing predictive regions
for nonlinear time series (Hyndman, 1995; Polonik and Yao, 2000; De Gooijer and Gannoun,
2000). As far as we know, the symmetry of conditional density functions has never been ad-
dressed in the literature before. However, various statistical methods have been proposed for
testing the symmetry of unconditional density functions, which include, among others, Butler
(1969), Hollander (1971), Rothman and Woodroofe (1972), Srinivasan and Godio (1974), Dok-
sum et al (1977), Hill and Rao (1977), Lockhart and McLaren (1985), Csörgö and Heathcote
(1987), Zhu (1998) and Diks and Tong (1999).

The paper is organized as follows: we propose the two new estimators for conditional densi-
ties in Section 2. The asymptotic normality of the estimators is presented under some mixing
conditions. Section 3 addresses the issue of bandwidth selection. The bootstrap tests for the
symmetry are discussed in Section 4. Numerical illustration through two simulated exam-
ples and a real data set is reported in Section 5. In particular, we demonstrate via a repeated
simulation that the bootstrap provides an adequate approximation for the null-distribution
of the test statistic.

2 Estimation of conditional densities

We assume that data are available in the form of a strictly stationary stochastic process
{(Xi, Yi)}, where Yi and Xi are scalars. Naturally, this includes the case where the pairs
(Xi, Yi) are independent and identically distributed. In the time series context, Xi typically
denotes a lagged value of Yi. Let g(y|x) be the conditional density of Yi given Xi = x, which
we assume to be smooth in both x and y. We are interested in estimating g(y|x) and its
derivatives from the data {(Xi, Yi), 1 ≤ i ≤ n}.

Let K(.) be a symmetric density function on IR and Kb(u) = b−1K(u/b). Note that as b → 0,

E{Kb(Yi − y)|Xi = x} = g(y|x) + O(b2).

This suggests that g(y|x) can be regarded as a regression of Kb(Yi − y) on Xi. For example,
Nadaraya-Watson kernel regression yields the kernel estimator

g̃(y|x) =
n∑

i=1

wi(x)Kb (Yi − y) (2.1)

where
wi(x) =

Wh (Xi − x)∑n
j=1 Wh (Xj − x)

,

Wh(u) = h−1W (u/h), W (·) is a kernel function and h > 0 is a bandwidth. This estimator
was proposed by Hyndman, Bashtannyk and Grunwald (1996) and is a modification of the
estimator proposed by Rosenblatt (1969). Hyndman, Bashtannyk & Grunwald (1996) derive
some of its properties and Bashtannyk & Hyndman (2001) explore bandwidth selection rules.
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Note that there are two smoothing parameters: h controls the smoothness between condi-
tional densities in the x direction (the smoothing parameter for the regression) and b controls
the smoothness of each conditional density in the y direction.

The estimator has two desirable properties which match those of the density being estimated:
1) it is always non-negative; and 2) integrals of the estimator with respect to y equal 1. How-
ever, it does suffer from the bias problems often associated with kernel smoothers (see Hyn-
dman, Bashtannyk and Grunwald, 1996).

If local polynomial regression is used we obtain the local polynomial estimator proposed by
Fan, Yao and Tong (1996). Let

R(θ;x, y) =
n∑

i=1

{Kb(Yi − y) −
r∑

j=0

θj(Xi − x)j}2Wh(Xi − x). (2.2)

Then ĝ(y|x) = θ̂0 is a local rth order polynomial estimator where θ̂xy = (θ̂0, θ̂1, . . . , θ̂r)
′ is that

value of θ which minimizes R(θ;x, y). For r = 0, this estimator is identical to (2.1). While
this estimator has some nice properties such as smaller bias than (2.1) when r > 0, it is not
restricted to be non-negative and it does not integrate to 1 except in the special case r = 0. In
this paper, we propose two new estimators which are always non-negative.

2.1 Two new non-negative estimators

We replace R(θ;x, y) by

R1(θ;x, y) =
n∑

i=1

{Kb(Yi − y) − A(Xi − x, θ)}2Wh(Xi − x) (2.3)

where

A(x, θ) = `
( r∑

j=0

θjx
j
)

and `(·) is a monotonic function mapping IR → IR+. Using `(u) = exp(u) seems a reasonable
choice. Then ĝ1(y|x) ≡ A(0, θ̂xy) = `(θ̂0) where θ̂xy minimizes R1(θ;x, y).

We call this the local parametric estimator. It is in the same spirit as the local logistic estima-
tor for a conditional distribution function proposed by Hall, Wolff and Yao (1999), and is a
conditional version of the density estimator proposed by Loader (1996). Further, it is equiv-
alent to using local likelihood estimation (Tibshirani and Hastie, 1987) for the regression of
Kb(Yi − y) against Xi with the Gaussian likelihood and link function `−1. Consequently, θ̂xy

may be easily computed using local likelihood estimation software such as locfit (Loader,
1997). (Note that the gam function in S-Plus will not allow a non-identity link function with
the Gaussian likelihood.) If an identity link is used (`(u) = u), we obtain the local polynomial
estimator as a special case.

An alternative estimator is obtained by modifying the local linear estimator for g(y|x) directly
to force it to be positive. We constrain the minimization of (2.2) so that the coefficient θ0 is
positive. This is achieved by setting θ0 = `(α) where `(u) = exp(u). We shall denote this
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estimator by ĝ2(y|x) and refer to it as the constrained local polynomial estimator. Obvi-
ously, this idea can also be applied to the problem of estimation of a conditional distribution
function, addressed by Hall, Wolff and Yao (1999).

Depending on bandwidth choice, both of these estimators also furnish consistent estimators
of the derivatives of the conditional density. Let

g(i)(y|x) ≡ ( ∂
∂y )ig(y|x), g(|j)(y|x) ≡ ( ∂

∂x)jg(y|x), g(i|j)(y|x) ≡ ( ∂
∂y )i( ∂

∂x)jg(y|x),

`(j)(u) ≡ ( ∂
∂u )j`(u) and A(j)(x, θ) ≡ ( ∂

∂x)jA(x, θ).

For j = 1, 2, . . . , r we can estimate the density derivatives:

ĝ
(|j)
1 (y|x) = A(j)(0, θ̂xy) =

j∑

k=1

θ̂k

(j−1
k−1

)
`(k)(θ̂0) and ĝ

(|j)
2 (y|x) = j!θ̂j .

If K(u) is at least q-times differentiable, then for i = 1, 2, . . . , q we can also estimate the
density derivatives ĝ

(i)
1 (y|x) and ĝ

(i)
2 (y|x). These are unavailable in closed form but they are

easily obtained using numerical differentiation.

In practice, we rescale ĝ(y|x), ĝ1(y|x) and ĝ2(y|x) to ensure they integrate to 1. Note that there
is no need to rescale the kernel estimator g̃(y|x).

Based on an intentionally biased bootstrap argument of Hall and Presnell (1999), Hall, Wolff
and Yao (1999) proposed a modified Nadaraya-Watson estimator for the conditional distribu-
tion function which is always non-negative and shares the same first order asymptotic prop-
erties as the local linear regression estimator. The same idea can be adapted to the estimation
of conditional density functions although we have not pursued this idea here.

2.2 Asymptotic properties

For the local parametric estimator ĝ1(y|x) we only consider functions A of type A(x, θ) =
exp(θ0 + θ1x + . . . + θrx

r), with r ≥ 1. Let f denote the marginal density of Xi. We impose
the following regularity conditions:

(C1) For fixed y and x, f(x) > 0, g(y|x) > 0, f is continuous at x, and g(y|·) has 2[r/2] + 2
continuous derivatives in a neighbourhood of x, where [t] denotes the integer part of t.

(C2) The kernel K and W are symmetric, compactly supported probability density functions.
Further, |W (x1) − W (x2)| ≤ C |x1 − x2| for any x1, x2.

(C3) The process {(Xi, Yi)} is absolutely regular, that is

β(j) ≡ sup
i≥1

E
{

sup
A∈F∞

i+j

|P (A|F i
1) − P (A)|

}
→ 0 as j → ∞ ,

where F j
i denotes the σ-field generated by {(Xk, Yk) : i ≤ k ≤ j}. Furthermore,∑

j≥1 j2β(j)δ/(1+δ) < ∞ for some δ ∈ [0, 1). (We define ab = 0 when a = b = 0.)

(C4) As n → ∞, h → 0, b → 0, nbh → ∞ and lim infn→∞ nh2(r+1) > 0.
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Condition (C3) holds with δ = 0 if and only if the process {(Xi, Yi)} is m-dependent for some
m ≥ 1. The requirement of the kernels being compactly supported is imposed for the sake
of brevity of proofs. In particular, the Gaussian kernel is allowed. The assumption on the
mixing conditions is also not the weakest possible.

Theorem 1 below presents the asymptotic normality of the estimators. The asymptotic ex-
pressions for biases and variances are useful in development of the bandwidth selection pro-
cedures described in Section 3.

We introduce some notation first. Define

κj =

∫
ujW (u)du, νj =

∫
ujW 2(u)du, µj =

∫
ujK(u)du, and λj =

∫
ujK2(u)du.

Let S denote the (r +1)× (r +1) matrix with (i, j)-th element κi+j−2, and κ(i,j) be the (i, j)-th
element of S−1. Let r1 = 2[r/2] + 2,

τ2
r = λ0

∫ (r+1∑

i=1

κ(1,i)vi−1

)2

W 2(v)dv, ηr =
1

(r + 1)!

r+1∑

i=1

κ(1,i)κr1+i−1,

and let θxy be uniquely defined by

g(y|x) = A(0, θxy), and g(|j)(y|x) = A(j)(0, θxy) j = 1, . . . , r. (2.4)

Let Nn1 and Nn2 denote random variables with the standard Normal distribution.

Theorem 1. (i) Suppose r ≥ 1 and conditions (C1) – (C4) hold. Then as n → ∞,

ĝ1(y|x) − g(y|x) = (nhb)−1/2
{

g(y|x)

f(x)

}1/2

τrNn1 + hr1ηr{g(|r1)(y|x) − A(r1)(0, θxy)}

+ b2 µ2
2 g(2)(y|x) + o{(nhb)−1/2 + hr1 + b2}. (2.5)

(ii) Assume conditions (C1) – (C4) with r = 1. Then as n → ∞,

ĝ2(y|x) − g(y|x) = (nhb)−1/2
{

λ0g(y|x)

f(x)

}1/2

Nn2

+ h2 κ2
2 g(|2)(y|x) + b2 µ2

2 g(2)(y|x) + o{(nhb)−1/2 + h2 + b2}. (2.6)

Remark 1. To the first order, the asymptotic variance of ĝ1(y|x) is exactly the same as in
the case of local polynomial estimator ĝ(y|x) of order r. This similarity extends also to the
bias term, to the extent that for both ĝ1 and local polynomial estimators the bias is of order
O(hr+1 + b2) for odd r and O(hr+2 + b2) for even r. However, the form of bias as functionals
of the ‘regression mean’ g are quite different. This is a consequence of the fact that ĝ1(y|x)
is constrained to be non-negative. In fact, (2.5) would also hold for the local polynomial
estimator with order r if we replace the term A(r1)(0, θxy) by 0. See Fan and Gijbels (1996) §6.2
or Fan, Yao and Tong (1996). Note, however, that neither reference gives explicitly the bias
term in the order hr1 and that the expression they give for τ 2

2 contains some typographical
errors.
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Remark 2. For the linear case (r = 1) we have τ 2
1 = λ0ν0 and η1 = κ2/2. Because of the

above remark, (2.6) also holds for the standard local linear estimator. On the other hand,

when `(u) = exp(u) and r = 1, A(r1)(0, θxy) =
[
g(|1)(y|x)

]2
/g(y|x).

Remark 3. For the quadratic case (r = 2), we have

τ2
2 =

λ0(κ
2
4ν0 − 2κ2κ4ν2 + κ2

2ν4)

(κ4 − κ2
2)

2
and η2 =

κ2
4 − κ6κ2

6(κ4 − κ2
2)

.

Remark 4. It may be proved that, under conditions (C1) – (C4) and r ≥ 1, θ̂xy → θxy (see
Lemma 1 in the Appendix). Consequently, we may prove that ĝ1(y|x) is a consistent estima-
tor. Similarly, ĝ2(y|x) is also consistent.

3 Bandwidth selection

Using (2.5), we find the asymptotic mean square error of ĝ1(y|x) is

E {ĝ1(y|x) − g(y|x)}2 ≈ τ2
r g(y|x)

nhbf(x)
+

{
hr1ηr

[
g(|r1)(y|x) − A(r1)(0, θxy)

]
+ b2 µ2

2
g(2)(y|x)

}2

,

and so the weighted integrated MSE is

IMSE =

∫ ∫
E {ĝ1(y|x) − g(y|x)}2 f2(x) dx dy

=

{
τ2
r

nhb
+ αrh

2r1 + βrh
r1b2 + γb4

}
{1 + o(1)} (3.1)

where αr = η2
r

∫ ∫ [
g(|r1)(y|x) − A(r1)(0, θxy)

]2
f2(x) dx dy (3.2)

βr = µ2ηr

∫ ∫
g(2)(y|x)

[
g(|r1)(y|x) − A(r1)(0, θxy)

]
f2(x) dx dy (3.3)

and γ =
µ2

2

4

∫ ∫ (
g(2)(y|x)

)2
f2(x) dx dy . (3.4)

Bashtannyk and Hyndman (2001) used a similar weighted IMSE to derive bandwidths for
the estimator (2.1).

Optimal bandwidths for ĝ1(y|x) can be derived by differentiating (3.1) with respect to h and
b and setting the derivatives to zero. Solving the resulting equations gives

ĥ =

(
τ2
r

ncrr1(2αr + βrc2
r)

) 2
5r1+2

and b̂ = cr(ĥ)r1/2 (3.5)

where

cr =

√
(r1 − 2)βr +

√
(r1 − 2)2β2

r + 32r1αrγ

8γ
, .
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When r = 1, this simplifies to c1 = (α1/γ)1/4. (Because of Remark 2, ĥ and b̂ in (3.5) are also
optimal for ĝ2(y|x) with r = 1.) Substituting these optimal bandwidths into (3.1) shows that
the IMSE is of order n−4r1/(5r1+2). Note that the optimal bandwidth ĥ is different from that
in standard kernel regression estimation. For example, ĥ = O(n−1/6) when r = 1 while the
optimal bandwidth for local linear regression estimation is of order n−1/5. Intuitively we need
a larger bandwidth (in the order n−1/6) to compensate the sparseness of data points due to the
smoothing in the y-direction. Similarly, the optimal bandwidth b̂ is of order O(n−1/6) when
for unconditional density estimation, the optimal order is O(n−1/5). The larger bandwidth
for the conditional estimator is because of the local estimation due to smoothing in the x-
direction.

We use these results in the following sections to develop a bandwidth selection strategy. Here
we follow the approach of Bashtannyk and Hyndman (2001) in using a mixture of normal ref-
erence rules and a regression method. It may be preferable to derive a plug-in rule as Sheather
and Jones (1991) have done for univariate density estimation, but this is more difficult to de-
velop.

3.1 Normal reference rules

In the kernel estimation of marginal densities, a useful bandwidth selection procedure is to
find the optimal bandwidth assuming the normal density (see Silverman, 1986). This has
also been used successfully by Bashtannyk and Hyndman (2001) in conditional density es-
timation with the kernel estimator g̃(y|x) defined by (2.1). Even with non-normal densities,
the bandwidths arising from these calculations are usually reasonable.

We shall follow a similar approach for the estimator ĝ1(y|x) and derive optimal bandwidths
assuming the conditional distribution and the marginal distribution are both normal. We fur-
ther assume the conditional distribution has quadratic conditional mean and constant vari-
ance σ2, and that the marginal distribution of X has mean µ and variance v2.

Then we can write

g(y|x) = 1
σ φ

(
y−d0−d1(x−µ)−d2(x−µ)2

σ

)
and f(x) = 1

v φ
(

y−µ
v

)
.

Substituting these into (3.2)–(3.4), we obtain

γ =
3µ2

2

64πσ5v
, α1 =

κ2
2(2d

2
2σ

2 + d4
1 + 12d2

2v
2(d2

1 + d2
2v

2))

16πσ5v
, β1 =

µ2κ2(d
2
1 + 2d2

2v
2)

16πσ5v

and c1 = (α1/γ)1/4 when the log link (`(u) = exp(u)) is used. For the local linear estimator
(`(u) = u), we obtain the same γ and c1 values, with

α1 =
κ2

2(8d
2
2σ

2 + 3d4
1 + 36d2

2v
2(d2

1 + d2
2v

2))

64πσ5v
and β1 =

3µ2κ2(d
2
1 + 2d2

2v
2)

32πσ5v
.

The local quadratic estimator is more difficult and we only give the bandwidths for the iden-
tity link (`(u) = u) assuming the conditional mean is linear (i.e., d2 = 0). Then we obtain the
same γ with

α2 =
105η2

2d8
1

64πσ9v
, β2 =

−15η2µ2d
4
1

32πσ7v
and c2

2 =
|η2|d4

1(
√

305 − 5 sign(η2))

2µ2σ2
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where sign(u) = u/|u|.

In the special case where both W (u) and K(u) denote a standard normal kernel, and the
conditional mean is linear (d2 = 0), we substitute the above values into (3.5) to obtain the
following simple rules:

• When r = 1 and `(u) = exp(u), ĥ ≈ 0.916
(

vσ5

n|d1|5

)1/6
and b̂ = 1.05|d1|ĥ.

• When r = 1 and `(u) = u, ĥ ≈ 0.935
(

vσ5

n|d1|5

)1/6
and b̂ = |d1|ĥ.

• When r = 2 and `(u) = u, ĥ ≈ 0.703
(

vσ10

nd10
1

)1/11
and b̂ ≈ 2.37d2

1
σ (ĥ)2.

3.2 A bandwidth selection algorithm

For a given bandwidth b and a given value y, finding ĝ(y | x) is a standard nonparametric
problem of regressing Kb(Yi−y) on Xi. Therefore, we can adapt bandwidth selection methods
used in regression for use in this problem. Let Mb(h; y) denote a goodness-of-fit statistic for
the regression of Kb(Yi − y) on Xi with bandwidth h. For example, Mb(h; y) may denote the
generalized cross-validation statistic (Fan and Gijbels, 1996, p.45). We then define

Mb(h) =
N∑

j=1

Mb(h; y′j)

where y = {y′1, . . . , y′N} are equally spaced in the sample space of Y . For a given value of
b, Mb(h) may be minimized to select a value of h. This approach was suggested by Bash-
tannyk and Hyndman (2001) for the kernel estimator with Mb(h; y) denoting the penalized
average square prediction error (see, for example, Härdle, 1991). Fan, Yao and Tong (1996)
suggested a similar approach for the local polynomial estimator with Mb(h) denoting the
Residual Squares Criterion proposed by Fan and Gijbels (1995).

When this approach is combined with the normal reference rules, we have a useful algorithm
for selecting the bandwidth parameters.

1 Select the smoothing parameter b using the normal reference rule.

2 Given this value of b, minimize Mb(h) to find a value for h.

4 Bootstrap tests for symmetry

We are interested in testing for the symmetry of a conditional density function g(y|x) at a
particular value of x. If the conditional density is shown to be symmetric at x, then a more
efficient estimator of g(y|x) can be constructed (see Remark 6). Note that in interval forecast-
ing of time series, the conditional (rather than unconditional) distributions are relevant; see
Polonik and Yao (2000). Conditional symmetry is helpful in constructing predictive intervals
as both tails of the density can be used to estimate the boundaries of the intervals.
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For fixed x with f(x) > 0, we are interested in testing the hypothesis that the conditional
distribution g(·|x) is symmetric, that is

H0 : g(y|x) = g(2u(x) − y|x) for any y,

where u(x) is the centre of the conditional distribution of g(.|x). Under hypothesis H0, we
would expect that the above equality also holds approximately for a good estimator of g, say
ĝ. Therefore, we define the test statistic

T (x) = min
u

∫
{ĝ(y|x) − ĝ(2u − y|x)}2dy

and reject H0 for large values of T .

To derive the asymptotic distribution of T (under H0) is a tedious matter. Typically the sample
size n must be very large to ensure asymptotic results are adequately accurate in nonparamet-
ric tests (see, for example, Hjellvik, Yao and Tjøstheim, 1998). Therefore we adopt a bootstrap
approach in this paper.

Note all the estimators described in Section 2 can be written as linear forms of {Kb(Yi − y)}
as follows

ĝ(y|x) =
n∑

i=1

mi(x)Kb(Yi − y),

where the weight mj(x) depends on {Xi} and x only. Note the kernel function K(.) is sym-
metric. It is easy to see that

ĝ(2u(x) − y|x) =
n∑

i=1

mi(x)Kb(2u(x) − Yi − y).

This means that the mirror reflection of the estimator ĝ(·|x) with respect to u(x) is ĝ itself ob-
tained with the sample {(Yi, Xi)} replaced by {(2u(x)−Yi, Xi)}. This motivates the following
resampling scheme.

1 We calculate
u(x) = arg min

u

∫
{ĝ(y|x) − ĝ(2u − y|x)}2dy. (4.1)

2 We sample n independent observations {X∗
i , 1 ≤ i ≤ n} from {Xi, 1 ≤ i ≤ n} with

replacement.

3 Suppose X∗
i = Xij . For each 1 ≤ i ≤ n, sample Y ∗

i from the uniform distribution on the
two symmetric points Yij and 2u(x) − Yij .

4 Form the statistic T ∗ in the same way as T with {Xi, Yi} replaced by {X∗
i , Y ∗

i }.

We reject H0 if T is greater than the upper α-point of the conditional distribution of T ∗ given
{Xi, Yi}. In fact, the p-value is the relative frequency of the event {T ∗ ≥ T} in the bootstrap
replications.

We may let ĝ be the local parametric estimator ĝ1 with r = 1 or the constrained local linear
estimator ĝ2. We use the same method to choose the bandwidth for the original data and
bootstrap data.
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Since we only test the symmetry of g(·|x) at fixed x, one would expect that we only sample
Y ∗

i from a symmetric distribution when X∗
i is close to x. This is effectively achieved in the

nonparametric estimation of g(·|x), since the estimation is localized by the kernel function.

When we generate the bootstrap samples, we largely ignore the possible dependence in the
data. Note that under the mixing condition (C3), the dependence does not enter the major
terms (i.e., first order terms) in the asymptotic expansions in Theorem 1. This is due to the
fact that in nonparametric regression (with random design), we only use effectively the nh
nearest neighbours in the state space, which are unlikely to be the neighbours in the time space
under the mixing condition (C3). Those points could be regarded as asymptotically indepen-
dent when n → ∞. In fact we may prove that it holds almost surely that the conditional
distribution of T ∗ given {Xi, Yi} is asymptotically equal to the null-hypothesis distribution
of T (cf. Kreiss, Neumann and Yao, 1998).

Remark 5. Note that since f(x) > 0, the null hypothesis can be expressed equivalently as
H0 : g(y|x)f(x) = g(2u(x) − y|x)f(x) for any y. Furthermore, the joint density function
p(x, y) ≡ g(y|x)f(x) can be easily estimated. For example, the simple product kernel esti-
mator is p̂(x, y) = 1

n

∑n
i=1 Wh(Xi − x)Kb(Yi − x). Therefore, an alternative test statistic can

be defined as T1(x) = minu
∫ {p̂(x, y) − p̂(x, 2u − y)}2dy. The bootstrap procedure described

above can be applied to facilitate this alternative test.

Remark 6. When the a density is symmetric, a symmetric estimator may be obtained as

̂̂g(y|x) =
1

2
(ĝ(y|x) + ĝ(2u(x) − y|x)) . (4.2)

See Kraft, Lepage and van Eeden (1985) and Meloche (1991) for further discussion on estima-
tion of symmetric densities. Note that for most values of x and y, ̂̂g(y|x) will have smaller
variance than ĝ(y|x). In the numerical examples, we estimate the density by (4.2) if ĝ(y|x)
passes the symmetry test.

5 Numerical examples

We illustrate the symmetry tests through simulations and by application to some real data.
In all cases, we have used a truncated Gaussian kernel,

K(u) = W (u) =

{
exp(−u2/2)/

√
2π |u| < 10;

0 otherwise.

(The truncation is used to satisfy the finite domain requirement of C2, although in practice it
has negligible effect.)

Example 1

Consider the model Yi = 5 + (1 + Wi)Xi + εi where {Xi}, {Wi} and {εi} are all independent
with Xi uniformly distributed on [0, 12], εi normally distributed with zero mean and variance
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Figure 1: Scatterplot of 500 observations from Example 1. The line through the points is u(x), the
estimated centre of symmetry, calculated from (4.1).

9, and Wi is a binary variable with Pr(Wi = 1) = 1 − Pr(Wi = 0) = 0.3. Figure 1 shows a
scatterplot of 500 observations from this model. The line through the points is u(x) calculated
from (4.1). When x = 0, the density is symmetric, and it increases in skewness as x increases.
For x ≤ 6, the skewness is hardly visible from Figure 1 due to the masking effect from the
large variance of εi.

We computed the p-value of the bootstrap test for symmetry for 0 ≤ x ≤ 12 at steps of 0.5.
For these tests, we used the local parametric estimator of g(y|x) with r = 1 and bandwidths
chosen using the algorithm of Section 3.2 to be h = 1.35 and b = 1.59. (For this example, the
true optimal bandwidths calculated using (3.5) are ĥ = 0.87 and b̂ = 1.25.) Figure 2 shows the
p-values. Each test involved 100 replications. The skewness is clearly detected by the tests for
x > 6.

To demonstrate that the bootstrap method does provide an accurate approximation for the
distribution of the test statistic under H0, we modify the above model in order (i) to make x =
0 an inner point in the sample space, and (ii) to reduce the masking effect for the asymmetry
due to large errors. The modified model is

Yi = 2.5 + (1 + Wi)Xi + εi,

where Xi
d
= U(−6, 6), εi

d
= N(0, 0.52), and Wi unchanged. Note that the conditional distribu-

tion of Yi given Xi = x is strictly symmetric if and only if x = 0. Further the reduction of the
noise level is in favour of the rejection of H0. Our simulation shows that the bootstrap test
leads to the correct inference (i.e., not to reject H0 when x = 0).

We let x = 0 and n = 500. Note for x = 0, the conditional distribution of Yi given Xi =
x is normal with mean 2.5 and standard deviation 0.5. To speed up the computation, the
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Figure 2: The p-values of the bootstrap test for symmetry of the conditional density g(y|x) in Ex-
ample 1. Here ĝ(y|x) is the local parametric estimate with r = 1 and bandwidths chosen using the
normal reference rules to be h = 1.1 and b = 1.6. The horizontal line shows the 0.05 level.
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Figure 3: The plots of the sampling distribution of nT (x) (thick solid lines) and its bootstrap approx-
imations: first quartile (dotted lines), median (thin solid lines) and third quartile (dashed lines).
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normal reference rules are employed to select the bandwidths. Figure 3 plots the empirical
distribution of the test statistic T (x) in the simulation with 200 replications, together with
three bootstrap approximations. The three bootstrap approximations were selected in such a
way that the corresponding p-values were equal to the first quartile, the median and the third
quartile. Figure 3 shows that the bootstrap approximation is fairly accurate.

Example 2

We next consider a quadratic AR(1) time series model

Yt = 0.23Yt−1(16 − Yt−1) + 0.4εt (5.1)

where {εt} is a sequence of independent random variables each with the standard normal
distribution truncated in the interval [−12, 12]. The conditional distribution of Yt given Xt ≡
Yt−m is symmetric for m = 1 but not necessarily so for m > 1. Figure 4 shows a lagged scat-
terplot of 600 observations from this model with m = 3. The line through the points is u(x)
calculated from (4.1) where ĝ(y|x) is the local parametric estimate with r = 1. Bandwidths
were chosen using the algorithm to be h = 0.4 and b = 1.2. For each of the bootstrap tests, 100
replications were performed. The p-values from the bootstrap test for symmetry are shown
in Figure 5. There is a clear evidence that the conditional distribution is not symmetric for x
between 6.5 and 8.5.

To demonstrate that our bootstrap approximation works, we conduct simulations with Xt =
Yt−1. Then the conditional distribution of Yt given Xt = x is normal with mean 0.23x(16 − x)
and variance 0.42. For x = 5, we simulate 200 data sets for each of n = 600 and n = 1200.
Figure 6 shows that the bootstrap approximations with n = 600 tend to be biased in the

y(t-3)

y(
t)

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Figure 4: Scatterplot of 600 observations from Example 2. The line through the points is u(x), the
estimated centre of symmetry, calculated from (4.1).
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Figure 5: The p-values of the bootstrap test for symmetry of the conditional density g(y|x) in Exam-
ple 2. Here ĝ(y|x) is the kernel estimate with bandwidths h = b = 0.5. The horizontal line shows the
0.05 level.
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(b) n=1200
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Figure 6: The plots of the sampling distribution of nT (x) (thick solid lines) and its bootstrap approx-
imations: first quartile (dotted lines), median (thin solid lines) and third quartile (dashed lines).
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sense that the bootstrap distributions seem to have heavier tails on the left. By increasing
the sample size to n = 1200, the approximation is more satisfactory. This seems to suggest
that a large sample size is required to ensure the estimator behaves like the one based on
independent data.

Old Faithful Geyser data

Azzalini and Bowman (1990) give data on the waiting time between the starts of successive
eruptions and the duration of the subsequent eruption for the Old Faithful geyser in Yellow-
stone National Park, Wyoming. The data were collected continuously between 1–15 August
1985. There are a total of 299 observations. The times are measured in minutes. Some dura-
tion measurements, taken at night, were originally recorded as S (short), M (medium), and L
(long). These values have been coded as 2, 3 and 4 minutes respectively. This data set is also
distributed with S-Plus.

We are interested in the distribution of duration time conditional on the previous waiting
time. The bandwidth selection algorithm gives bandwidths h = 8.1 and b = 0.33. Using
these values we test the symmetry of the conditional densities (again using the kernel estima-
tor (2.1)) with 100 replications per test. The p-values from the bootstrap test for symmetry are
shown in Figure 7. Where the p-value is greater than 0.05, we replace ĝ(y|x) by the symmet-
ric estimator (4.2). The resulting estimates are shown in Figure 8 using the stacked density
visualization method of Hyndman, Bashtannyk and Grunwald (1996).
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Figure 7: The p-values of the bootstrap test for symmetry of the density of the Old Faithful Geyser
eruption duration conditional on the waiting time between eruptions. Here ĝ(y|x) is the kernel esti-
mate with bandwidths h = 7.2 and b = 0.41 chosen using the bandwidth selection algorithm. The
horizontal line shows the 0.05 level.
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Figure 8: Estimated conditional density of eruption duration conditional on waiting time to the erup-
tion. The densities have been symmetrized if the p-values in Figure 7 are greater than 0.05. Bandwidths
were chosen using the selection algorithm.
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7 Appendix: Proof of Theorem 1

We only prove (2.5); equation (2.6) can be proved in a much simpler manner. We use the same
notation as in Section 2. We always assume that conditions (C1) – (C4) hold and r ≥ 1. We
first introduce a lemma.

Lemma 1. As n → ∞, θ̂xy → θxy in probability.

Proof. Since θ̂xy is the minimiser of R1(θ;x, y) defined in (2.3), Dn(x, y, θ̂xy) = 0, where

Dn(x, y, θ) =
1

nhr

n∑

i=1

{Kb(Yi − y) − A(Xi − x, θ)}A(Xi − x, θ)Wk(Xi − x)

×
(

1,
Xi − x

h
, . . . , (

Xi − x

h
)r
)τ

.
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Define

D(x, y, θ, h) =
f(x)

hr

∫
(1, t, . . . , tr)τA(0, θ)W (t)dt

r∑

i=0

(ht)i

i!
{g(|i)(y|x) − A(i)(0, θ)}.

It is easy to see that D(x, y, θxy, h) ≡ 0. Further, it can be proved that for any compact set G,

sup
θ∈G

||Dn(x, y, θ) − D(x, y, θ, h)|| P−→ 0.

Let assume that θ̂xy 6 P−→ θxy. Then there exists a sub-sequence of {n}, still denoted as {n} for
the simplicity of notation, for which P{||θ̂xy − θxy|| > ε} > ε for all sufficiently large n, where
ε > 0 is a constant. Consequently, inf||θ−θxy||≤ε ||Dn(x, y, θ)|| 6 P−→ 0. Hence we have that

inf
||θ−θxy||≤ε

||D((x, y, θ, h)|| ≥ inf
||θ−θxy||≤ε

||Dn(x, y, θ)|| − sup
||θ−θxy||≤ε

||Dn(x, y, θ) − D(x, y, θ, h)||

= inf
||θ−θxy||≤ε

||Dn(x, y, θ)|| + op(1) 6 P−→ 0,

which contradicts the fact that D(x, y, θxy, h) ≡ 0. Therefore, θ̂xy
P−→ θxy.

Proof of (2.5). For any ε ∈ (0, 1), it follows from Lemma 1 that there exists ε1 ∈ (0,∞) for
which P{||θ̂xy − θxy|| ≤ ε1} ≥ 1 − ε for all sufficiently large n. Let G ≡ G(ε1) be the closed
ball centered at θxy with radius ε1. Let θ̂xy,G be the minimizer of (2.3) with θ restricted on
G. Define ĝG(y|x) = A(0, θ̂xy,G). Then P{ĝG(y|x) 6= ĝ(y|x)} < ε for all sufficiently large n.
The above argument indicates that we only need to establish (2.5) for ĝG(y|x). Therefore we
proceed the proof below by assuming θ̂xy is always within a compact set G.

We consider only the case that r is odd and δ given in condition (C3) is positive. Note that
W (.) has a bounded support. By a simple Taylor expansion on A in (2.3), we have that

R1(θ;x, y) =
n∑

i=1

(
Kb(Yi − y) −

r∑

j=0

A(j)(0, θ)

j!
(Xi − x)j

− A(r+1)(ci(Xi − x), θ)

(r + 1)!
(Xi − x)r+1

)2

Wh(Xi − x),

where ci ∈ [0, 1]. Define R∗
1(θ;x, y) as R1(θ;x, y) with θ in A(r+1)(ci(Xi − x), θ) replaced by

θ̂xy. Let θ̂∗xy be the minimizer of R∗
1(θ;x, y), and ĝ∗1(y|x) = A(0, θ̂∗xy). In the sequel, we first

prove that (2.5) holds for ĝ∗1(y|x). Then we show that

ĝ1(y|x) = ĝ∗1(y|x) + op(h
r+1). (7.1)

It is easy to see that (2.5) follows from the above two statements immediately.

It follows from least squares theory that

ĝ∗1(y|x) − g(y|x) =
1

nh

n∑

i=1

Wn

(
Xi − x

h
, x

)

×
{

εi +
1

(r + 1)!
{g(r+1)(y|x + c′i(Xi − x)) − A(r+1)(ci(Xi − x), θ̂xy)}(Xi − x)r+1

}
, (7.2)
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where εi = Kb(Xi − x) − g(y|x), c′i ∈ [0, 1],

Wn(u, x) = (1, 0, · · · , 0)Sn(x)−1(1, u, · · · , ur)τW (u),

and Sn(x) is an (r + 1) × (r + 1) matrix with si+j−2(x) as its (i, j)-th element, and

sj(x) =
1

nhj

n∑

i=1

Wh(Xi − x)(Xi − x)j .

(See, for example, (3.11) of Fan and Gijbels 1996.) It follows from the ergodic theorem that
Sn(x)

P−→ f(x)(κi+j−2). We write

ξi =
r+1∑

j=1

κ(1,j)
(

Xi − x

h

)j−1

,

ηi = [g(r+1)(y|x + c′i(Xi − x)) − A(r+1)(ci(Xi − x), θ̂xy)]/(r + 1)!.

We have that

ĝ∗1(y|x) − g(y|x) =

{
1

nhf(x)

n∑

i=1

ξiW

(
Xi − x

h

)
{εi + ηi(Xi − x)r+1}

}
{1 + op(1)}.

(See Lemmas 1 and 2 of Yao and Tong, 2000.) Note that we have assumed that θ̂xy ∈ G. It
follows from Theorem 1.7 of Peligrad (1986) and the ergodic theorem that the RHS of the
above expression admits the asymptotic expansion in the RHS of (2.5).

To prove (7.1), note that all the A(i)(0, θ̂∗xy) (i = 0, 1, · · · , r) have explicit expressions such as

(7.2). Therefore, it is easy to prove that A(i)(0, θ̂∗xy)
P−→ A(i)(0, θxy), where θxy . is determined

by (2.4). This implies that θ̂∗xy
P−→ θxy. (See Lemma 1 above.) Consequently, |θ̂∗xy − θ̂xy| P−→ 0,

which implies that R1(θ̂
∗
xy;x, y) = R∗

1(θ̂
∗
xy;x, y) + op(nh2(r+1)), because ∂R∗

1(θ;x,y)
∂θ = 0 at θ =

θ̂∗xy. Note that R1(θ̂xy;x, y) = R∗
1(θ̂xy;x, y) and θ̂xy and θ̂∗xy are the minimizers of R1 and R∗

1.
From

0 < R1(θ̂
∗
xy;x, y) − R1(θ̂xy;x, y) = R∗

1(θ̂
∗
xy;x, y) − R∗

1(θ̂xy;x, y) + op(nh2(r+1)),

we have that
1

n
R1(θ̂xy;x, y) =

1

n
R1(θ̂

∗
xy;x, y) + op(h

2(r+1)).

Since ∂R
(
1θ;x,y)
∂θ = 0 at θ = θ̂xy, the above expression implies that

h−2(r+1)(θ̂xy − θ̂∗xy)
τ R̃(θ̂xy)(θ̂xy − θ̂∗xy)

=

(
θ̂xy,0 − θ̂∗xy,0

h(r+1)
,
θ̂xy,1 − θ̂∗xy,1

hr
, . . . ,

θ̂xy,r − θ̂∗xy,r

h

)
R∗




θ̂xy,0−θ̂∗
xy,0

h(r+1)

θ̂xy,1−θ̂∗
xy,1

hr

...
θ̂xy,r−θ̂∗xy,r

h




P−→ 0,

where R̃(θ) = 1
2n

∂2R1(θ;x,y)
∂θ∂θτ , and

R∗ = diag(1, h−1, . . . , h−r) R̃(θ̂xy) diag(1, h−1, . . . , h−r).

Hyndman and Yao: 6 July 2001 Page 18



Nonparametric estimation and symmetry tests for conditional density functions

It can be proved that R∗ P−→ f(x)g(y|x){1−g(y|x)}S, where S = (κi+j−2) is a positive definite
matrix. Therefore we have that

θ̂xy,i = θ̂∗xy,i + op(h
r−i+1)

for i = 0, 1, . . . , r. Now (7.2) follows from the fact that ĝ(y|x) = exp(θ̂xy,0). We have com-
pleted the proof.
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