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Abstract

This paper considers the nonparametric estimation of regression expectiles and percentiles
by using an asymmetric least squares (ALS) approach, in which the squared error loss func-
tion is given different weight depending on whether the residual is positive or negative. The
kernel method based on locally linear fit is adopted, which also provides an estimator of the
derivative of the regression function. Under the assumption that the observations are strictly
stationary and p-mixing, the asymptotic normality for the estimators of conditional expectiles
is established by using the convexity lemma. For a large class of regression models, the ALS
approach can be adapted to estimate the conditional percentiles directly. Further, we show

that these ALS estimators for conditional percentiles are consistent.
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1 Introduction

In the standard regression analysis, most of the methods developed so far are based on the mean
regression function, which is an estimator of conditional expectation. Geometrically, the observa-
tions {(X;, Y;), i =1,...,n} form a cloud of points in a Euclidean space. The mean regression
function describes the middle of the point-cloud, in the Y direction, as a function of the covariate
X (cf. Efron 1991). However, new insights about the underlying structure can be gained by
investigating the higher or lower regions of the point-cloud. This leads us to study the estimation
of the conditional percentiles of Y given X. Usually, the asymmetric least absolute deviations
(ALAD) methods are used to estimate the regression curves (cf. Hogg 1975, Koenker and Bassett
1978, Bassett and Koenker 1982 etc.). Note that the mean regression function is virtually a (sym-
metric) least squares estimator. In this sense, a natural way to investigate the higher or lower
regions of the point-cloud would be to consider the asymmetric least squares (ALS) regression.
This leads to the concept of the so-called conditional expectiles, which was originally proposed by
Newey and Powell (1987). See also Efron (1991) and Section 2 below. It turns out that similar to
the conditional percentiles, the conditional expectiles also characterize the underlying conditional
distribution. Therefore, it provides an effective diagnostic tool such as testing the heteroscedastic-
ity of regression models and the conditional symmetry of the noise terms (cf. Efron 1991, Newey
and Powell 1987). Although the ALS method is not as robust as the ALAD method against
outliers, it has some desired features. For example, an ALS estimator is easier to compute and
reasonably efficient under normality conditions (cf. Efron 1991). In terms of interval prediction,
the conditional percentile is more appealing than the conditional expectile because of its conven-
tional probability interpretation, whilst for general statistical diagnoses, the conditional expectile
is a valuable alternative to the conditional percentile. Because neither is uniformly superior, the
choice will usually depend on the particular application at hand. This situation is similar to the
comparison between the conditional mean and the conditional median in conventional regression.
On the other hand, we observe that for quite a large class of nonlinear regression models, the
conditional expectiles as functions of X are in a one—one correspondence with the conditional
percentiles. Therefore, the ALS approach can be adapted to estimate conditional percentiles
directly.

All the above mentioned work concentrated on parametric models. Fan, Hu and Truong (1992)

has studied a class of nonparametric function estimators based on the locally linear fit for i.i.d.



observations, which includes the ALAD estimators for conditional percentiles as a special case.
Their method can also be applied to the ALS estimators for conditional expectiles although this
was not stressed there explicitly. Fan (1992) has showed that the kernel estimator based on locally
linear fit is superior to that based on locally constant fit.

In this paper, we estimate the conditional expectiles and the conditional percentiles in a spe-
cial class of regression models by using the ALS method based on the locally linear fit for weakly
dependent data. We highlight the fact that the locally linear fit offers a natural estimator of the
derivative of the regression function. Yao and Tong (1994b) has indicated that the estimators of
derivatives of regression curves play a very important role in monitoring the reliability of non-
linear prediction and detecting chaos. Under the assumption that the observations are strictly
stationary and p-mixing, we establish the asymptotic normality for the ALS estimators of condi-
tional expectiles as well as their derivatives by using the convexity lemma (cf. Pollard, 1991, for
example). With a trivial extension of this interesting lemma, we also show that the estimator of
conditional expectile converges weakly to the real curve uniformly on compact subsets. Further,
the weak consistency of the ALS estimators of conditional percentiles is proved. Although the
ALS estimator cannot be expressed in a closed form, a convenient iterative algorithm can be
constructed easily. Simulation shows that this algorithm converges very fast.

The paper is organized as follows. Section 2 provides a brief description of conditional per-
centiles and expectiles, as well as their ALS estimators and iterative algorithms. Some numerical
results are also reported. Section 3 states the main results, the technical proofs of which are

deferred to Section 4.

2 Percentiles and Expectiles

Let {(X;,Y;),i = 1,...,n} be a sequence of two-dimensional real strictly stationary random
vectors, each having the same distribution as (X,Y). Suppose that E(Y?|X = 1) as a function

of z € R is continuous.

2.1 Expectiles

We begin our discussion with the conventional definition of percentiles. Let a € [0,1]. The

100a-th conditional percentiles of Y given X = z is defined as

€a(z) = arg min g < E{Ry(Y—0a)| X =2z},



where the loss function
(1-a)y y<0,

aly| y > 0.

Ra(y) =

It is well known that the relation o = P{Y < {,(z)|X = z} holds. To compare it with expectiles,
we rewrite this relation as follows

CE{Iy<qwp | X =1}
T E(1 | X=2) 21)

It is easy to see that when o = %, €a(z) is the conditional median.

If we define the loss function as

W)
Quiyy =4 1w vsh (22)

wy? y >0,

for w € [0, 1], the 100 w-th conditional expectile of Y is defined as the minimizer
Tw(w) = arg 1’nin|a.|<o<> E{ Qw(Y - a) | X=z }a

(cf. Neway and Powell 1987). Obviously, in the case w = 3, this definition reduces to the

conditional mean E(Y|X = z). Since Q,(.) has a continuous first derivative, 7,(z) satisfies the

equation
E{L,(Y —1,(z)) | X=2}=0,
where
L=t vs=o 23)
wy y > 0.

Consequently, we have
_ E{ |Y - ’Tw(CC)| I{Ygrw(w)} | X = CC}
E{]Y —7(z)| | X =z}

Comparing this expression with (2.1), we can see that given X = z, the percentile &,(x) specifies

(2.4)

the position below which 100a% of the (probability) mass of Y lies; while the expectile 7, (x)
determines, again given X = z, the point such that 100w% of the mean distance between it
and Y comes from the mass below it. Further, it will be seen later that if the conditional
distribution of Y given X = z belongs to a location and scale family (with respect to z € R),
then {7,(.), w € (0,1)} = {&a(.), a € (0,1)}.

To estimate 7,(z), a conventional method may be the kernel estimation based on the locally

constant fit. More precisely, estimate 7,,(z) by the minimizer of the function

> auy -k (F55),
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where K(.) and h are respectively a density function and a bandwidth. In the special case w =
the method leads to the popular Nadaraya-Watson estimator. It has been pointed out that the
kernel estimation based on the locally constant fit can be rather deficient (cf. Chu and Marron
1991, Fan 1992). For example, the bias of the estimator can have an adverse effect when the
derivative of the marginal density or that of the estimated function is large, which would be
typically the case in chaotic systems (cf. Yao and Tong 1994a,b). The drawback can be repaired
by using a locally linear fit instead (Fan 1992, Fan, Hu and Truong 1992). Further, in order to
monitor the efficacy in the context of stochastic prediction, it is essential to estimate the derivative
of the estimated functions besides the latter (cf. Yao and Tong 1994a,b).

Let Ay, (x) = d7,(z)/dz. The idea of a locally linear fit is to approximate the unknown function
Tw(.) by a linear function 7,(z) = 7,(z) + A\, (z)(z — z) = a + b(z — z) for all z near z. Locally,
estimating 7, (z) and A\, (x) is equivalent to estimating a and b. Thus we may estimate 7, (z) by

a and A\, (z) by b, where (a, b) minimizes the function

- X;—zx
> Quf¥i —a— b )k (Z55). (2.5)
i=1

It is easy to see that {7,(z), \o(z)} satisfies the following equation

S Lu{Yi — fule) = Au(@)(X; — o) 1K (X52) = 0,

: (2.6)
Y1 (X — )Ly {Y; — 7w (z) — Au(2)(X; — 2) } K (&h_—z) =0.

Here, L, (.) is the piecewise linear function defined by (2.3). The following interative algorithm
is available for computing (7,(z), Aw(z)).

For a,b € R, let

(1-wK (572), ¥; <a+b(X; - 2),

Ti(waaab) = X (27)
wK(—’,;—SE), Y >a+b(X; —x),
and
n
Sk(:l;aaa b) = Z(X’L —x)kri(x,a, b)a k:051a2a
=1
Tk(l‘,a, b) = ZE(XZ —m)kri(m,a, b)7 k=0,1.
=1
Define
To(z,a,b)S2(x,a,b)—T1(x,a,b)S1(x,a,b
7(z,6,b) = O(so(z,)a,i)(sz(x,)a,b)l—(fs(f(m),afb(ﬁza g
(2.8)

Masa,b) = B e T ey
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It is easy to check from (2.6) that (7, (), A, (x)) are the stationary values of (7(z, a,b), A(«, a, b)),

i.e.

Tw(z) = 7(2, 70 (), Au(T)),
j\w(m) = A(Ia%w(x)aj\w(-r))'

The above algorithm can be explained as follows. Any trial value of (a, b) determines a straight

(2.9)

line in the (X,Y") plane, say L(a,b) = {Y = a + bX; X € R}. This straight line determines
weights on the data points as indicated in (2.7): assign weight w if (X;,Y;) is above L(a,b), and
weight (1 — w) otherwise. These weights produce a solution vector (a',b') = (7(z, a,b), A\(z,a, b))
by (2.8), and thus a new straight line £(a’,?’), which leads to new weights upon iteration. The
final solution is (%,(z), A,(z)) = (a,b) at which L(a,b) = L(a’,¥'). We recommend the ordinary
least squares estimate (a,b) = (71/2(z), A /2()) as the initial value. Simulation shows that the

convergence rate of this iterative algorithm for solving (2.9) is very fast. (See also Section 2.3

below.)

2.2 Percentiles

Using the same construction leading to 7,(z), we can formally construct an estimator of the
conditional percentile £, (z) by using the function R,(.), which measures the error by absolute
residuals instead of squared residuals. Fan, Hu and Truong (1992) has studied this method with
ii.d. observations. However, since Ry(x) is not differentiable at z = 0, we do not have any
iterative algorithm like (2.6) — (2.9). Therefore, either further smooth approximation to R,(.)
(recall the scoring method) or more complicated software development seems necessary in order
to compute estimators numerically (cf. Bloomfield and Steiger 1983). In what follows, we are
going to explore the possibility of using the ALS approach to estimate £, (z) for a special class of
models.

Suppose that (X,Y") has the relation
Y = p(X) + o(X)e, (2.10)

where u(.), o(.) > 0 are continuous functions on R, € is a random variable with zero mean and
finite non-zero variance, and € and X are independent. Let 5((10) denote the a-percentile of e, i.e.

P {e < 5((10)} = . It is easy to see that

falw) = p(z) + o(2)EL). (2.11)



Let p(.) denote the marginal density function of X. For any a € (0,1) and = € {p(x) > 0}, define
w = w(a,z) € (0,1) for which
Tw(a,w)(x) = éa(m)' (2'12)

From the definitions of 7,,(.) and &,(.), such an w(q, x) exists.
Proposition 1. For model (2.10), w(a, z) is independent of z. Specifically, it can be expressed
as

ot Bl o)
2B T, } - (1 - 20)€

Further, w(a) is monotonically increasing, and invariant with respect to scaling transformations

w(a,z) = w(a) (2.13)

on €.

Proof. It follows from (2.4) and (2.12) that for any « € (0,1) and z € {p(z) > 0},

w(a,z) = 2LV ~bal@l Iy<e@y | X =2}
’ B{[Y —&a(2)| [ X =2}

Substituting (2.10) and (2.11) in the above expression, we have the relation (2.13). Consequently,

w@ _ B{éa(n) - Y Iycg@y [ X =2}
l-w(a) EBE{Y —&(z) [ysea@y | X =2} '

Since &4 (z) is monotonically increasing as « increases, w(a)/(1 — w(«)), therefore also w(a), is a

monotonically increasing function. The invariance is obvious. The proof is completed.

The above proposition shows that for model (2.10), any percentile &, (x) is an expectile 7, (z)
with w = w(«) as given in (2.13). Further, if the distribution of € is known, while the distribution
of the error term (i.e. o(X)e) of the model may still be unknown, the function w = w(a) is
completely determined. For example, Fig.1 presents the curves of w = w(«) for normal, uniform,
and symmetric exponential distributions. In fact, in the case of uniform distribution U[—b, b],
w(a) = a?/(2a® — 2a+ 1). For exponential distribution with density 0.5a exp{—a|z|} (a > 0),
w(a) equals a/{2a —log(2a)} for a € (0,1/2], and {1 — o — log(2 — 2c0) } /{2 — 2 — log(2 — 2c) }
for @ € (1/2,1], which is nearly a linear function (see Fig.1).

In most practical situations, the distribution of € is unknown. The following estimator is
constructed in which we adapt Newey and Powell’s idea (1987) to estimate the function w = w(«)

(also cf. Efron 1991).



Suppose the data (X;,Y;),7 = 1,...,n, satisfy the model
Y = p(X;) + o(Xi)e, (2.14)

where €,. .., €, are i.i.d. with zero mean, and for ¢ > 1,¢; is independent of {X1,..., X;;
Yi,...,Yi 1}. Let no(z) = déo(x)/dz. We define the estimators £4(z) = &, and f,(z) = b, where

(&,b) minimizes

- Xz — T
;Qw(a){Yi —a—b(X; —z)} K ( - ) : (2.15)

where Q,,(.) is defined as in (2.2), and @(«) € (0,1) is determined in such a way that the proportion
of the sample {(X;,Y;),1 <i < n} lying below the regression curve {y = a(z) : z € R} is 100a%.

Notice that there are two distinct parts in the above definition: (i) for a given value of w,
the ALS method determines the regression curve; (ii) we choose the regression curve by varying
the values of w between 0 and 1 such that the proportion of data points lying below the curve is
a. Note that when w varies from 0 to 1, the proportion of the sample lying below the regression
curve varies from 0% to 100%. Therefore, for given a € (0,1), such a @(«) does exists.

Perhaps it might be worried that the above ALS approach is estimating something other than
€a(x), since we use the complete samples to determine @(«) in order to estimate &,(x) for a

specified z. Under the model (2.14), Theorem 2 below shows that £, (z) is in fact consistent.

2.3 Examples

In order to get a rough idea how to use the ALS estimators to construct predictive intervals and

so on, we are going to study the following nonlinear time series model
Zy =376 Z; 1 —0235Z2 | +e, t>1, (2.16)

where e, e9,..., are i.i.d. with the same distribution as (g1 + ... + 748), and n1,...,m48 are
independent random variables with the same distribution U[—-0.075,0.075]. According to the
central limit theorem, we can treat e; as being nearly a normal random variable with mean 0
and variance 0.32. However, it has a bounded support [—3.6,3.6]. Note that bounded support
of e; is necessary for the stationarity (see Chan and Tong 1994). We generate 1000 samples
from model (2.16). We estimate conditional percentiles or expectiles in the following three cases:
(i) Xe = Zy, Yo = Zyq; (1) Xy = 2y, Yy = Zyio; and (ill) Xy = Z;, Yy = Zpi3. We use

Gaussian kernel in our estimation. All the bandwidths are adjusted subjectively based on the



cross-validation selection for the cases of 50% expectiles. The case (i) is a special case of model
(2.14); we can use the ALS method to estimate &, () directly. The estimated curves £,(.) for
five different values of « are plotted in Fig.2(i). To produce each of these curves, a C-program
ran for 3.2 — 7.8 seconds on a SUN4 SPARC 2 workstation. The maximum number of iterations
needed was 5. Fig.2(ii) shows the estimates of the same curves by the ALAD method. We can
see that in this case, both methods give almost the same results. To effect the ALAD method,
the Downhill Simplex method was used (cf. Press et.al. 1989, §10.4). The CPU time needed for
each ALAD estimator was around 40 times of that for an ALS estimator. In cases (ii) and (iii),
the condition (2.14) no longer holds. The estimated curves for 7,(x) with five different values of
w are reported in Fig.3 for case (ii), and Fig.4 for case (iii). The maximum number of iteration
used was 7 in these cases. Comparing all plots together, we can see that for case (i), the width
of the predictive interval is almost uniform over the different values of = (see Fig.2). However,
this is not the case in Fig.3 or Fig.4. For example in Fig.4, the three-step ahead prediction is at
its worst when z = 8, and at its best when z is around 5 or 11. This observation also shows the
potential of the conditional expectiles in testing conditional heteroscedasticity.

More examples on interval prediction can be found in Yao and Tong (1994a). Further research

on testing the conditional heteroscedasticity and conditional symmetry will be reported elsewhere.

3 Asymptotic Properties

To discuss the asymptotic properties of the ALS estimators 7,,(z) and éa(m), we need the following
assumptions. We denote by ¢(.|z) the conditional density function of Y given X = z, and by p(.)
the marginal density function of X. We use c to denote a generic constant which may be different

at different places.

(A1) Let 9;(z) = [y'g(y|z)dy for i = 1,2. The marginal density function p, and 1)1, 1o have

continuous derivatives.

(A2) The joint density of the distinct elements of (X1, Y7, X, Yx) (k > 0) is bounded by a constant

independent of k.
(A3) The strictly stationary process {(X;,Y;),7 > 1} is p-mixing, i.e.

pj=sup{ sup  Corr(U, V)} — 0,

>l UeF},VEFy,



where F/ is the o-field generated by {(Xy,Y%) : k =14,...,j}J > 1). Further, we assume

3

that 2% pp < 00

(A4) K(.) is a bounded symmetric density function with a bounded support in R. Further
[zK(z)dz =0, [2?K(z)dx = 03 > 0, and |K(z) — K(y)| < c|z — y| for any z,y € R.

(A5) The bandwidth h — 0, nh® — oo, and (logn)/(nh) — 0, as n — oo.

The condition of bounded support of kernel function is imposed for the brevity of proofs,
which can be removed at the expense of a longer proof. In particular, Gaussian kernel is allowed.
The assumption that the process is p-mixing is also for the technical convenience, which is not
the weakest possible. An autoregressive process satisfying some mild conditions is p-mixing (cf.
Theorem 3.4.10 of Gy6rfi et al 1989). More detailed discussion on different mixing conditions can

also be found in Bradley (1986).

Theorem 1 Assume that conditions (A1) — (A5) hold. Then for z € {p(z) > 0},

Vih{#,(z) — 10(z) — B2pur} 3 N(0,02), (3.1)
VA28, (7) — Ao(z) — huy} 5 N(0,02). (3.2)

Further, 7,(z) and M\, (z) are asymptotically independent in the sense that the random variables

on the RHS of (3.1) and (3.2) are jointly asymptotic normal with zero covariance. Here,

2 1

e = irl0,) = Sho(@)f + 0 (1), = al,) = 55 h(@) [WK@d + o (1)

208

0 = o2 (w,z) = LKW J{Quly — 7u(@)) Vg (ylm)dy

p(x){y(w, =)}

_ JuK2(w)du [{Quly - 7u(@)Yg(yle)dy
p(@)o3 {(1(w,2) 2

7
and

Y(w, z) = 2wP{Y1 < 7,(2)| X1 =z} + 2(1 — w)P{Y7 > 7,,(2)| X1 = z}.

In the above expressions, o is as given in (A4), and ¢(.) denotes the derivative of the function

o(.)-

Theorem 2. Suppose that conditions (A1)-(A5) hold. We assume that \,(z) = 7, () is contin-

uous in (w,z) € (0,1) x R.



(i) For any compact subset A x B C (0,1) x {p(z) > 0}, 7,(z) 5 7w () uniformly for w € A

and z € B.
(ii) If equation (2.14) holds, &q(z) Eis €a(z) for a € (0,1) and z € {p(z) > 0}.

Theorem 1 gives the asymptotic normality of the ALS estimator for the conditional expectile
and its derivative. As shown in (3.1), the ‘asymptotic bias’ of 7,(z) is +d*r,(z)/dz?, which is
due to the local approximation of the underlying curve by a linear function (cf (2.5)). To use
the locally quadratic fit will improve the estimate of A\, (x) considerably (cf. Fan et. al 1993).
However, it creates further complications in practical implementation. Theorem 2 presents the
uniform (weak) consistency of 7,(z) for both z and w. On augmenting this result with the
assumption of model (2.14), the weak consistency of the estimator £q(z) is proved. The reason
that we need the uniform consistency of 7,(x) is that in order to estimate &,(x) for a fixed z, we
determine the function w = w(a) by using the complete sample scattering in the state space.

We are not going to discuss in any detail how to choose the bandwidth A, except to mention
that, from (3.1), we can choose h such that [{u2(w,z)h* + 72(z)/(nh)} k(z)dz attains its mini-
mum, where k(z) is a weight function. However, practical implementation of this ‘asymptotically
optimal’ bandwidth involves estimating some unknown functions. A lot of work has been done on
choosing the bandwidth either subjectively or objectively. From the practical point of view, we
believe that a good estimator should not be so ‘approach dependent’, i.e. the conclusions drawn
from different approaches should not be substantially different if there is sufficient information in

the data.

4 Proofs

The main idea of the proof of theorem 1 is to approximate the objective function in (2.5) by
a quadratic function whose minimizer (vector) is asymptotically normal, and then to show that
(75(2), Ao(x)) lies close enough to the minimizer to share the latter’s asymptotic behaviour.
The convexity lemma plays a key role in the above approximation (cf. Pollard 1991). This
idea has been used by Fan, Hu and Truong (1992) to study nonparametric regression with i.i.d.
observations. By conditioning on the covariates, Fan, Hu and Truong (1992) has been able to
exploit the convenience provided and obtain the conditional asymptotic normality of the regression

estimators. Unfortunately, the idea of conditioning on the covariates does not apply to dependent
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data. We have to prove the asymptotic normality directly. The proof of Theorem 2 is based on
an extension of the convexity lemma.

In the sequel, we always assume that conditions (A1) — (A5) hold. Let K; = K (%) , Zi =
(1 Jh—) Y =Y — 1u(z) —Auo(2)(X; — ), and 6 = Vnh(7,(z) — 70(z), h(Au () — Au(z)))'.
For 0 € R?, define

Gn(0) = Gn(0;w, ) Z{Qw —0'Z;/v/nh) — Qu(Yi")} K, (4.1)
and .
Ry(6) = Ra(0;,2) = Gu(6) — 6/ D(w, 2)0 — ﬁe; Z:Qu(Y7)K; (42)
where D = D(w, z) = 3p(z)7y(w, ) (1) 02 . We proceed to the proofs in a sequence of lemmas.
0o

4.1 Proof of Theorem 1

Lemma 1. For § € R?,

BHQu(Y; =021 V)= Qu(Y)}K1] = 0/ Dlw, )0 =0 B{Z1 QoY) K b+o (1) (43)

Further, if A, (z) is continuous in both w and z, the convergence in (4.3) is uniform for (w,z) in
compact subsets of (0,1) x R.
Proof. Let § = (01,65)', and d = d(z,u) = 7,(z) + A\o(z)uh. Then the LHS of (4.3) is equal to

[ (@ {o - dow - 222 - Qufy - die,w)] Kty + hulpte + by

1 2
-1 / (01 + Oou) [wI{y carortiny + (1= w)I{y>d+oljgu}] K(w)g(y|z + hu)p(z + hu)dydu

2h
_ﬁ (y — d)(61 + O2u) WI{ygd—l—Glj%"}—'_(l w)I w >d+01j@“}

x K (u)g(y|z + hu)p(z + hu)dydu

+h/(y — d)2 |:wI{y§d+€lj%u} + (1 - )I{ >d+01+62u}

—wliy<gy — (1 - w)I{y>d}] K(u)g(y|z + hu)p(z + hu)dydu.

11



Assumption (A1) implies that the first term on the RHS of the above expression is equal to

n10'D(w,z)0 + o (%), and the second term is equal to —(nh)*%G'E{Zle(Yl*)Kl} +o (%) Sim-

ilarly, it is easy to see that the third term is o (%) The uniform convergence follows from the

continuity assumption in (A1) and the fact that K has a bounded support.

Lemma 2. For any z,y € R,w € [0,1],
|Qu(z +y) — Qulz) — Qw(x)y| < 4’!/2a

|Qw($ +y) - Qw(x) - Qw(m)m < Alyl,

where Q,(z) = d*{Q.,(z)}/dz? for z # 0, and Q,(0) = 0.

The proof follows from some simple algebra operation, which is omitted here.

Lemma 3. For any # € R2,w € (0,1), and z € R, R,(#) = R,(0;w, 2) Eo. Further, if A\, (z) is
continuous in w and z, the convergence is uniform for (w,z) in compact subsets of (0,1) x R.

Proof. By (4.1) and (4.2), we have the following expression

R, (0) = iTl —0'D(w, )0, (4.4)
i=1
where
T; = T;(6;w, ) = {Qu(Y;" = 0'Z;/Vnh) — Qu(Y}") — Qu(Y")0' Zi/Vnh} K;. (4.5)
Hence
Var{R,(0)} < nE(T7) +2)_{E(TT)) - (ET1)?}. (4.6)
1<j

It follows from Lemma 2 and (A4) that
1
ET? <16E(0'Z,K,/Vnh)* = O (ﬁ) :

By the Cauchy-Schwarz inequality, we can ignore all the summands with j — ¢ < logn in the

second term of the RHS of (4.6), since (logn)/(nh) — 0. It follows from (A3) and (A5) that

n—1 n
C C
>, {B(IT) - (BT} < — 32 (n=kpe < — > pp = 0.
j—i>logn I Zogn My Zogn

Hence, Var{R,(6)} = O(d,,), where ,, = max{(logn)/(nh), % Y k—togn Pk} — 0.
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It follows from Lemma 1 that for any § € R?, w € (0,1) and z € R, E{R,(0;w,z)} — 0.

Therefore, for any constant € > 0, |E{R, (0;w, z)}| < €/2 for all sufficiently large n. Consequently,
P{|Rn(0;w,7)| > €} < P{|Rn(0;w, z) — E{Rn(0;w, x)}| > €/2}

< S Var{(Ra(6:,2)} = 0(5). (47)

To prove the uniform convergence, consider [t1,t2] C (0,1), and M > 0. Let m be a large

integer. Define

For any w € [t1,t2] and |z| < M, there exist 1 <k <m and 1 < j < m, such that |w — wg| < %,
and |z — z;| < 22 Tt follows from (4.4) and Lemma 1 that for any € > 0, we can choose m > 0

large enough such that for all sufficiently large n,

sup Ry(0;w,z) — max Rp(0;wg,z;)
t1 <w<ta,|z|<M 1<k,j<m
n n
< sup T;(0;w,z) — max T;(0; wg, ;) +€/2, (4.8)
t1 <w<ta,|z|<M ; Z I<k,j<m ; Z ’

when T; is defined as in (4.5). Notice that A,(z) is continuous in both z and w, and K(.) has
a bounded support. Assumptions (A1), (A2) and (A4) imply that the difference of the first two
terms on the RHS of (4.8) is less than a random variable |(,| plus €/2, and (, L 0asn— oo
Thus

PU s (RaBo0)| > 3ep < PL max [Ra(ana)| +16] > 2¢)
t1 <w<ty,|z|<M 1<k,j<m

: P{ls?,?}s(mm"(e;wk’xj)' > 6 lonl < 6}+O(1) = P{ls%?émm"(e;w’“mj)' ” 6}+O(1) -0

the limit follows from (4.7).

Lemma 4. As n — oo,

. 3 .
E{0'Z:Q.,(Y{) K1} = %)\w(x)p(:z:)'y(w,x)(&ag + 92/u3K(u)du){1 +0o(1)}, (4.9)

E{0'Z1Qu(Y?)K1}? = h(8107 + 6205){1 + o(1)}, (4.10)
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where 03 is given as in (A4), and
o = p(@) [ Kxwdu [{Quly - (@) Po(yla)dy,
o} = pla) [ WK (w)du [{Quly = (@) Polylo)dy.

Proof. We prove only (4.9). (4.10) can be proved in the similar, and simpler way.

Since K(.) has a bounded support, we need only to consider X; such that |X; — z| < hM
for some constant M > 0. let v = 7,(X1) — 7w(x) — Au(x)(X1 — ). It is easy to see that
v = 2, (2)(X1 — z)? + O(h®) = O(h?). Noticing that |Q,(z)| < 2|z| and Y;* = ¥ — 7,(X1) + v,

we have that

E{ Qu(Y{) K1 Itvi—ry(x)j<poly } < B B{ K1 Iy _py(x) <oy} = o(B%).

Note that E{Q., (Y1 — 7,(X1))| X1} = 0. Therefore, the LHS of (4.9) can be expressed as

E{0'Z1Qu(Y1) K1 Iy, ny(xii> iy} + o(h?)

= Bl020, - (XK {%Aw(m)(xl _ )+ 0(h3)} ] + o(h3).

It can be proved that the first term on the RHS of the above equality is asymptotically equivalent
to the RHS of (4.9).

Lemma 5. As n — oo,
1 X ) i ) i
= 2O 1Z:Qu(Y) K — B{ZiQu(Y))Ki}) 5 N(0, 6101 + 0203) (4.11)
i =1
where 07 and o2 are given as in Lemma 4.
Proof. Let U; = h_%ﬁ'ZiQw(Yi*)Ki, and S, = 31" U; — EU;. It follows from (4.10) and (4.9)
that
n
Z{EUZ2 - (EUi)Q} = n(ﬁla% + 920%)(1 + o(1)).
i=1

Note that

n
Var(S,) =Y {EU7 — (EU;)’}+2 > Cov(Ui,Uj)+2 > Cov(U;,Uj).
1=1 0<j—i<h—1/2 j—i>h—1/2

By assumption (A2), Cov(U;,U;) = O(h) for i # j. Therefore, the second term on the RHS of
the above equality is of the order nh~Y/2h = o(n). Tt follows from (A3) that the third term on
the RHS of the above equality is less than

n—1 n—1
2Var(U;) Z (n—Fk)pr <cn Z pr = o(n).
k=h=1/241 k=h=1/241
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Hence, Var(S,) = n(6107 + 0203)(1 + o(1)). Consequently, (4.11) follows from Theorem 2.4 of
Peligrad (1986).
The Proof of Theorem 1. Note that G,,(0) — —0' Z Z:Q.,(Y7")K; is convex as a function of

Vnh

6 (cf. (4.1)). Lemma 3 shows that it converges to the convex function 6'D(w, ). By the convexity
lemma (cf. Pollard 1991), sup |R;; ()| = o,(1) for any compact subset K C R?. Using the same ar-
feK

guments as in p.193 of Pollard (1991), we can show that the difference between the minimizer 6,, of
G,,(0) and the minimizer of the quadratic function 6’ D(w, =)0+ }9' 1 ZiQu(Y;*) K; converges
to 0 in probability. Note that the minimizer of the function ¢’ D(w, )6 + mﬁ' Y1 ZiQu (YK

can be explicitly expressed as

~ o 1 o ¥ . o
M{Tw(x) — Tw(T)} = Mp(w)'y(w,w) Z:ZIQw(Y; VK + p(l)a

ht N .
\/ﬁp( Uo’)’ W, :v ZQw Y $)KZ+ p(l)'

The theorem follows from the above equations, Lemma 5, and (4.9) immediately.

\/ﬁh% {j\w(m) - /\w(x)} =

4.2 Proof of Theorem 2

First, we prove Theorem 2 (i), which is based on the following trivial extension of the convexity
lemma (cf. Pollard 1991).
Lemma 6. Let {F,(f,v) : 0 € O,v € B} be a sequence of random continuous functions, © be a
convex open subset of R?, B be a compact subset of R¥, and Fj,(.,v) is a convex function on ©
for each fixed v € B. Suppose that F(6,v) is a continuous real-valued function on © x B, and
316111; |Fn(6,v) — F(6,v)| L 0 for each fixed 6 € ©. Then for any compact subset K C ©,
v
sup |Fn(6,v) — F(0,v)| 5 0.
9cK,veB
The proof of Lemma 6 can proceed in almost the same way as in Section 6 of Pollard (1991)

(also see Proof of Theorem 2(i) below), which is omitted here.

Proof of Theorem 2(i). By Lemmas 3 and 6, the remainder R,(6;w,z) converges to 0 in
probability uniformly for § € K, w € By, and z € By, where K,B; and By are the compact
subsets of R?,(0,1), and {p(z) > 0} respectively. We rewrite (4.2) as follows

Gn(;w,z) = G, (0;w,z) + Ry (0w, x), (4.12)
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where

| R
Gy (0;w,2) = 0'D(w,2)0 + —0">_ ZiQu (V") Ki. (4.13)

Vnh i3

Let

Vnh

which is the minimizer of G}, (6;w, z) over § € R?. We have

2 " .
9;1 = H:L(wax) = ——D_l(w,.'L') ZZZQW(K*)KZ’
=1

Gr(0;w,2) = (0 — 0;)'D(w,z)(0 — 0,) + G}, (07 w, ).

Let B, (d;w,z) be the closed ball with the center 6} (w,z) and the radius § > 0. By Lemmas 1
and 3, we can choose the compact set K C R? such that it contains all B,,(d;w, ) for all w € By

with probability arbitrarily close to 1, i.e.

P{ sup ||én—9;;||>5}
w€e€B1,x€B>

SP{ sup |6, — 6%|| > 8, By (0w, z) CKforalleBl,mEBg}—i-e (4.14)
wEBl,Z‘EBz

and thereby also implying that

A, = sup | Ry, (0w, z)| = op(1).
w€B1,$€B2766K

For any 0 ¢ B, (6;w,z),0 = 6} (w,z) + fv with > § and v a unit vector. Define 0=0 (0;w, )
as the boundary point of B, (d;w,z) that lies on the linear segment from 6} (w,z) to 6, i.e.

o= 0 (w,z) + dv. Convexity of G,, and (4.12), (4.13) imply that

5 GulOsw.) + (1= 5) Gulb50,9) 2 GG 0,9)
B B
> G (5;w,x) — Ay > (6% D(w,z)d* + Gp(0);w, 1) — 24,

Z Y

where 6* = (§,0)'. Let co = _inf _ (6*)'D(w,z)6* > 0, the above inequality entails that
UJEBl,:EEBQ

) . . B
— > — .
wEB11I,l£EB2 {||0161’71’§f|.|>5 Gn(9) Gn(en)} > 5¢0 + 0p(1)

Hence the first term on the LHS of (4.14) tends to zero. Consequently, sup |7,(z) — 7, (w)] 5o,
weB1,z€B3

where
1 LI
> Qu(Yi)K;.

Tol®) = ) @y, a) 2
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Similar to Lemma 3, we can prove that the second term on the RHS of the above expression tends

to zero in probability uniformly for w € B; and z € By. The proof is completed.

Proof of Theorem 2(ii). From (2.15), we can see that £,(z) = Ta(a)(®). Proposition 1 en-
sures that £,(7) = 7,(s)(7), where w(a) is a continuous function given as in (2.13). Since
7»(z) is continuous in w € (0,1), and converges to 7,(z), we need only to prove that for
o = o*(a, X1,Y1,...,X,,Y,) such that w(a*) = &), o 5.

From the definition of @(a) (cf. (2.15) and the statements therewith), the proportion of the
sample {(X;,Y;),1 <iln} lying below the regression curve {y = éa(x) : z € R} is within o + %

Therefore, we have that

1 & 1
o —af <la” =23 Tyice, cxpl + 5,
i=1
L1 1]& 1
<lo" = =3 Tvicee x| o Do UTigr e} — Iituanxop) | + (4.15)
=1 =1

1 n
By (2.11), the first term on the RHS of the above expression is less than sup |a — - Z I{€v<€(o)}
a€(0,1) i—1 r=hoe

1=
which converges to zero in probability according to Glivenko-Cantelli’s Theorem (cf. Theorem

8.2.2 of Chow and Teicher 1978, for example).

bl

It is easy to see that for given a € (0,1), there exist ¢1,t2 satisfying 0 < t; < w(a) < t2 < 1,
such that P{t; < w(a*) <t2} — 1 (cf. Propositions 1 and (2.15)). Therefore the second term on
the RHS of (4.15) is less than

n

Y vicro(xiy — Ipvicau(x})

=1

sup — +0,(1) = V1 +0p(1).

wE[tl ,tz] n

Let us choose a compact D2 C Dy = {p(x) > 0} such that the probability of the event {X €

D; — Dy} is less than an arbitrarily given constant € > 0. Then
n

Z(I{Yiﬁm (X;i),X;€D2} — I{Yiﬁﬁu(Xi),XieDz})
=1

1
Vap < sup —
weE[t1,ta] T

2 n
+ - Z I{XiEDl—DQ}'

"=
Theorem 2 (i) entails that the first term on the RHS of the above expression converges to 0 in
probability. By the standard ergodic theorem, the second term has the limit 2P(X; € D; — Dy)

which is smaller than 2e. Thus V1 £o. Consequently, by (4.15), we have that |o* — ¢ £o.
The proof is completed.
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Fig.1

Fig.2(i)

Fig.2(ii)

Fig.3

Fig.4

Figure Captions

The curves of w = w(a) given as in (2.13) for three kinds of distributions: Solid curve —
normal distribution N (0, 02); dotted curve — exponential distribution with density function

0.5a exp{—alz|}; dot-dashed curve — uniform distribution U[-b, b).

The ALS estimated conditional percentiles of Z;,1 given Z; (with A = 0.31). Solid curve
— a = 0.05(w = 0.01); longer dashed curve — a = 0.25(w = 0.2); shorter dashed curve —
a = 0.5(w = 0.54); dotted curve — a = 0.75(w = 0.88); dot-dashed curve — a = 0.95(w =
0.99).

The ALAD estimated conditional percentiles of Z;,1 given Z; (with h = 0.35). Solid curve
— a = 0.05; longer dashed curve — a = 0.25; shorter dashed curve — a = 0.5; dotted

curve — a = 0.75; dot-dashed curve — o = 0.95.

The ALS estimated conditional expectiles of Z; o given Z; (with h = 0.28). Solid curve —
w = 0.01; longer dashed curve — w = 0.2; shorter dashed curve — w = 0.5; dotted curve —

w = 0.9; dot-dashed curve — w = 0.99.

The ALS estimated conditional expectiles of Z;,3 given Z; (with h = 0.25). Solid curve —
w = 0.01; longer dashed curve — w = 0.18; shorter dashed curve — w = 0.5; dotted curve

— w = 0.9; dot-dashed curve — w = 0.99.
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