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a b s t r a c t

We consider the statistical inference for high-dimensional precision matrices. Specifically,
we propose a data-driven procedure for constructing a class of simultaneous confidence
regions for a subset of the entries of a large precision matrix. The confidence regions can
be applied to test for specific structures of a precision matrix, and to recover its nonzero
components. We first construct an estimator for the precision matrix via penalized node-
wise regression.We thendevelop theGaussian approximation to approximate the distribu-
tion of the maximum difference between the estimated and the true precision coefficients.
A computationally feasible parametric bootstrap algorithm is developed to implement the
proposed procedure. The theoretical justification is established under the setting which
allows temporal dependence among observations. Therefore the proposed procedure is
applicable to both independent and identically distributed data and time series data.
Numerical results with both simulated and real data confirm the good performance of the
proposed method.

Crown Copyright© 2018 Published by Elsevier B.V. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With an ever-increasing capacity of collecting and storing data, industry, business and government offices all encounter
the task of analyzing the data of unprecedented size arisen from various practical fields such as panel studies of economic,
social andnatural (such asweather) phenomena, financialmarket analysis, genetic studies and communications engineering.
A significant feature of these data is that the number of variables recorded on each individual is large or extremely large.
Meanwhile, in many empirical studies, observations taken over different times are dependent with each other. Therefore,
many well-developed statistical inferencemethods for independent and identically distributed (i.i.d.) data may no longer be
applicable. Those features of modern data bring both opportunities and challenges to statisticians and econometricians.

The entries of covariance matrix measure the marginal linear dependence of two components of a random vector. There
is a large body of literature on estimation and hypothesis testing of high-dimensional covariance matrices with i.i.d. data,
including Bickel and Levina (2008a, b), Qiu and Chen (2012), Cai et al. (2013), Chang et al. (2017b) and references within.
In order to capture the conditional dependence of two components of a random vector conditionally on all the others,
the Gaussian graphical model (GGM) has been widely used. Under GGM, conditional independence of two components is
equivalent to the fact that the correspondent entry of the precision matrix (i.e. the inverse of the covariance matrix) is zero.
Therefore, the conditional dependence among components of a random vector can be well understood by investigating
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the structure of its precision matrix. Beyond GGM, the bijection relationship between the conditional dependence and the
precision matrix may not hold. Nevertheless, the precision matrix still plays an important role in, among others, linear
regression (van de Geer et al., 2014), linear prediction and kriging, and partial correlation graphs (Huang et al., 2010). See
also Examples 1–3 in Section 2.

Let Ω denote a p × p precision matrix and p be large. With i.i.d. observations, Yuan and Lin (2007) and Friedman et al.
(2008) adopted graphical Lasso to estimateΩ bymaximizing the likelihoodwith an L1 penalty. Meinshausen and Bühlmann
(2006) introduced a neighborhood selection procedure which estimatesΩ by finding the nonzero regression coefficients of
each component on all the other components using Lasso (Tibshirani, 1996) or Dantzig method (Candes and Tao, 2007). Also
see Cai et al. (2011), Xue and Zou (2012) and Sun and Zhang (2013) for other penalized estimationmethods. Chen et al. (2013)
investigated the theoretical properties of the graphical Lasso estimator for Ω with dependent observations. Though these
methods provide consistent estimators for Ω under some structural assumptions (for example, sparsity) imposed on Ω ,
they cannot be used for statistical inference directly due to the non-negligible estimation biases, caused by the penalization,
which are of order slower than n−1/2.

The bias issue has been successfully overcome with i.i.d. Gaussian observations by, for example, Liu (2013) based on p
node-wise regressions method. Furthermore, Ren et al. (2015) proposed a novel estimator for each entry of Ω based on
pairwise L1 penalized regression, and showed that their estimators achieved the minimax optimal rate with no bias terms.
In spite of p(p−1)

2 pairs among p components, their method in practice only requires at most p(1 + s̄) pairwise L1 penalized
regressions, where s̄ is the average size of the selected node-wise regression models.

The major contribution of this paper is to construct the confidence regions for subsets of the entries of Ω . To our best
knowledge, this is the first attempt of this kind. Furthermore we provide the asymptotic justification under the setting
which allows dependent observations, and, hence, includes i.i.d. data as a special case. See also Remark 2 in Section 3.2.
More precisely, let S ⊂ {1, . . . , p}2 be a given index set of interest, whose cardinality |S| can be finite or grow with p. Let
ΩS be the vector consisting of the entries ofΩ with their indices in S . We propose a class of data-driven confidence regions
{CS,α}0<α<1 for ΩS such that sup0<α<1|P(ΩS ∈ CS,α) − α| → 0 when both n, p → ∞, where n denotes the sample size.
The potential application of CS,α is wide, including, for example, testing for some specific structures ofΩ , and detecting and
recovering nonzero entries ofΩ consistently.

For any matrix A = (aij), let |A|∞ = maxi,j|aij| be its element-wise L∞-norm. We proceed as follows. First we propose
a bias corrected estimator Ω̂S for ΩS via penalized node-wise regressions, and develop an asymptotic expansion for
n1/2(Ω̂S − ΩS ) without assuming Gaussianity. As the leading term in the asymptotic expansion is a partial sum, we
approximate the distribution of n1/2

|Ω̂S − ΩS |∞ by that of the L∞-norm of a high-dimensional normal distributed random
vector with mean zero and covariance being an estimated long-run covariance matrix of an unobservable process. This
normal approximation, inspired by Chernozhukov et al. (2013, 2014), paves theway for evaluating the probabilistic behavior
of n1/2

|Ω̂S − ΩS |∞ by parametric bootstrap.
It is worth pointing out that the kernel estimator for long-run covariances, initially proposed by Andrews (1991) for the

problem with fixed dimension (i.e. p fixed), also works under our setting with p → ∞ without requiring any structural
assumptions on the underlying long-run covariance matrix. Owning to the form of this kernel estimator, the parametric
bootstrap sampling can be implemented in an efficient manner in terms of both computational complexity and the required
storage space; see Remark 4 in Section 3.2.

The rest of the paper is organized as follows. Section 2 introduces the problem to be solved and its background. The
proposed procedure and its theoretical properties are presented in Section 3. Section 4 discusses the applications of our
results. Simulation studies and a real data analysis are reported in Sections 5 and 6, respectively. All the technical proofs are
relegated to the Appendix. We conclude this section by introducing some notation that is used throughout the paper. We
write an ≍ bn to mean 0 < lim infn→∞|an/bn| ≤ lim supn→∞|an/bn| < ∞. We say xn,j = op(an) uniformly over j ∈ J if
maxj∈J |xn,j/an|

p
−→ 0 as n → ∞. Let |·|1 and |·|0 denote, respectively, the L1- and L0-norm of a vector.

2. Preliminaries

Let y1, . . . , yn be n observations from an Rp-valued time series, where yt = (y1,t , . . . , yp,t )T and each yt has the constant
first two moments, i.e. E(yt ) = µ and Cov(yt ) = Σ for each t . LetΩ = Σ−1 be the precision matrix. We assume that {yt} is
β-mixing in the sense that βk → 0 as k → ∞, where

βk = sup
t

E
{

sup
B∈F∞

t+k

⏐⏐P(B|F t
−∞

) − P(B)
⏐⏐}.

Here F t
−∞

and F∞

t+k are the σ -fields generated respectively by {yu}u≤t and {yu}u≥t+k. β-mixing is a mild condition for time
series. It is known that causal ARMA processes with continuous innovation distributions, stationary Markov chains under
some mild conditions and stationary GARCH models with finite second moments and continuous innovation distributions
are all β-mixing. We refer to Section 2.6 of Fan and Yao (2003) for the further details on β-mixing condition.

For a given index set S ⊂ {1, . . . , p}2, recallΩS denotes the vector consisting of the entries ofΩ with their indices in S.
We are interested in constructing a class of confidence regions {CS,α}0<α<1 forΩS such that

sup
0<α<1

⏐⏐P(ΩS ∈ CS,α) − α
⏐⏐ → 0 as n, p → ∞. (1)
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We also allow r ≡ |S|, the length of vectorΩS , either to be fixed or to go to infinity together with p. The largest r can be p2.
We first give several motivating examples.

Example 1 (High-dimensional Linear Regression). Consider linear regression zt = xTt γ+εt withE(xtεt ) = 0, where xt consists
of m explanatory variables and m is large, and γ = (γ1, . . . , γm)T = {E(xtxTt )}−1E(xtzt ) are true regression coefficients. In
order to identify non-zero regression coefficients, we test the hypotheses

H0 : γl = 0 for all l ∈ A vs. H1 : γl ̸= 0 for some l ∈ A, (2)

where A ⊂ {1, . . . ,m} is a given index set of interest. Let yt = (zt , xTt )T, and Ω = (ωj1,j2 )p×p be the precision matrix of
yt . It can be shown that (ω1,2, . . . , ω1,p)T = −cγ , where c = [Var(zt ) − E(xTt zt ){E(xtxTt )}−1E(xtzt )]−1 > 0. Thus, (2) can be
equivalently expressed as

H0 : ωj1,j2 = 0 for any (j1, j2) ∈ S vs. H1 : ωj1,j2 ̸= 0 for some (j1, j2) ∈ S, (3)

where S = {(1, l) : l − 1 ∈ A}. We reject H0 at the significance level α if CS,α does not contain the origin of Rr with r = |A|.

Example 2 (Linear Prediction and Kriging). In the context of predicting a random variable zt based on an observed
p-dimensional vector xt , the best linear predictor in the sense of minimizing the mean squared predictive error is
Cov(zt , xt )Ωxt , whereΩ is the precision matrix of xt . Here we assume the means of both zt and xt are zero, to simplify the
notation. We also assume that any redundant components of xt have been removed by applying the techniques described
in Example 1.

To obtain a consistent estimate for Ω when p is large, it is necessary to impose some structural assumptions on Ω . In
the context of kriging (i.e. linear prediction in the context of spatial or spatial–temporal statistics), some lower-dimensional
factor structures have been explored. See Huang et al. (2017) and the references within. Bandness/bandableness is another
popular structural assumption often used in estimating large covariance or precisionmatrices (Bickel and Levina, 2008a). To
investigate a banded structure forΩ , one may test the hypotheses

H0 : ωj1,j2 = 0 for any |j1 − j2| > k vs. H1 : ωj1,j2 ̸= 0 for some |j1 − j2| > k, (4)

where 1 ≤ k < p is a prespecified integer. We reject H0 if confidence region CS,α does not contain the origin Rr , where
S = {(j1, j2) : 1 ≤ j1, j2 ≤ p, j2 − j1 > k} and r = (p − k)(p − k − 1)/2.

Example 3 (Partial Correlation Network). Given a precision matrix Ω = (ωj1,j2 )p×p, we can define an undirected network
G = (V , E) where the vertex set V = {1, . . . , p} represents the p components of y and the edge set E = {(j1, j2) ∈ V × V :

ωj1,j2 ̸= 0, j1 < j2} are the pairs of variables with non-zero precision coefficients. Let ρj1,j2 = Corr(εj1 , εj2 ) be the partial
correlation between the j1th and the j2th components of y for any j1 ̸= j2, where εj1 and εj2 are the errors of the best linear
predictors of yj1 and yj2 given y−(j1,j2) = {yk : k ̸= j1, j2}, respectively. From Lemma 1 of Peng et al. (2009), it is known
that ρj1,j2 = −

ωj1,j2√
ωj1,j1ωj2,j2

. Therefore, the network G = (V , E) also represents the partial correlation graph of y. The vertices

(j1, j2) ̸∈ E if and only if yj1 and yj2 are partially uncorrelated. The GGM assumes in addition that y is multivariate normal.
Then Ω depicts the conditional dependence among the p vertices of the network, i.e. ωj1,j2 is the conditional correlation
between the j1th and j2th vertices given all the others.

Neighborhood and community are two basic features in a network. The neighborhood of the jth vertex, denoted by Nj,
is the set of all the vertices directly connected to it. For most of the spatial data, it is believed that the partial correlation
neighborhood is related to the spatial neighborhood. Let Nj(k) be the set including the first k closest vertices to the jth
vertex in the spatial domain. It is of great interest to test H0 : Nj = Nj(k) vs. H1 : Nj ̸= Nj(k) for some pre-specified
positive constant k. A community in a network is a group of vertices that have heavier connectivity within the group than
outside the group. For graph estimation, wewant tomaximize thewithin-community connectivity and reduce the between-
community connectivity. Therefore, it is of practical importance to explore the connectivity between different communities.
Assume the p components of y are decomposed into K disjoint communities V1, . . . , VK . We are interested in recovering
D = {(k1, k2) : ωj1,j2 ̸= 0 for some j1 ∈ Vk1 and j2 ∈ Vk2}.

3. Main results

3.1. Estimation ofΩ

We first recall the relationship between a precision matrix and node-wise regressions. For a random vector y =

(y1, . . . , yp)T with mean µ = 0 and covarianceΣ , we consider p node-wise regressions

yj1 =

∑
j2 ̸=j1

αj1,j2yj2 + ϵj1 (j1 = 1, . . . , p). (5)

Let y−j1 = {yj2 : j2 ̸= j1}. The regression error ϵj1 is uncorrelated with y−j1 if and only if αj1,j2 = −
ωj1,j2
ωj1,j1

for any j2 ̸= j1.

Under this condition, Cov(ϵj1 , ϵj2 ) =
ωj1,j2

ωj1,j1ωj2,j2
for any j1 and j2. Let ϵ = (ϵ1, . . . , ϵp)T and V = Cov(ϵ) = (vj1,j2 )p×p. Then
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Ω = {diag(V)}−1V{diag(V)}−1; see Lemma 1 of Peng et al. (2009). This relationship between Ω and V provides a way to
learnΩ by the regression errors in (5).

Since the error vector ϵ in (5) is unobservable in practice, its ‘‘proxy’’ – the residuals of the node-wise regressions – can be
used to estimate V. Let αj = (αj,1, . . . , αj,j−1,−1, αj,j+1, . . . , αj,p)T. For each j = 1, . . . , p, we may fit the high-dimensional
linear regression

yj,t =

∑
k̸=j

αj,kyk,t + ϵj,t (t = 1, . . . , n) (6)

by Lasso (Tibshirani, 1996), Dantzig estimation (Candes and Tao, 2007) or scaled Lasso (Sun and Zhang, 2012). For the case
µ ̸= 0, the regression (6) will be conducted on the centered data yt − ȳ, where ȳ = n−1∑n

t=1yt is the sample mean. For
simplicity, we adopt Lasso estimation. Let α̂j be the Lasso estimator of αj defined as follows:

α̂j = argmin
γ∈Θj

[
1
n

n∑
t=1

(γTyt )2 + 2λj|γ|1

]
, (7)

whereΘj = {γ = (γ1, . . . , γp)T ∈ Rp
: γj = −1} and λj is the tuning parameter. For each t , the residual

ϵ̂j,t = −α̂T
j yt (8)

provides an estimate of ϵj,t . Write ϵ̂t = (̂ϵ1,t , . . . , ϵ̂p,t )T and let Ṽ = (̃vj1,j2 )p×p be the sample covariance of {̂ϵt}
n
t=1, where

ṽj1,j2 = n−1∑n
t=1̂ϵj1,t ϵ̂j2,t . It is well known that n−1∑n

t=1ϵj1,tϵj2,t is an unbiased estimator of vj1,j2 , however, replacing ϵj1,t
by ϵ̂j1,t will incur a bias term. Specifically, as shown in Lemma 3 in the Appendix, under Conditions 1–3 and some mild
restrictions on the sparsity ofΩ and the growth rate of p with respect to n, it holds that

ṽj1,j2 −
1
n

n∑
t=1

ϵj1,tϵj2,t = −(̂αj1,j2 − αj1,j2 )
(
1
n

n∑
t=1

ϵ2j2,t

)
I(j1 ̸= j2)

− (̂αj2,j1 − αj2,j1 )
(
1
n

n∑
t=1

ϵ2j1,t

)
I(j1 ̸= j2) + op{(n log p)−1/2

}.

(9)

Here the higher order term op{(n log p)−1/2
} is uniform over all j1 and j2. Since n−1∑n

t=1ϵ
2
j,t is n1/2-consistent for vj,j, (9)

implies that ṽj,j is also n1/2-consistent for vj,j. However, for any j1 ̸= j2, due to the slow convergence rates of the Lasso
estimators α̂j1,j2 and α̂j2,j1 , ṽj1,j2 is no longer n1/2-consistent for vj1,j2 . To eliminate the bias, we employ an estimator for vj1,j2 :

v̂j1,j2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

1
n

n∑
t=1

(̂ϵj1,t ϵ̂j2,t + α̂j1,j2 ϵ̂
2
j2,t + α̂j2,j1 ϵ̂

2
j1,t ), j1 ̸= j2;

1
n

n∑
t=1

ϵ̂j1,t ϵ̂j2,t , j1 = j2.

(10)

By noticing thatΩ = {diag(V)}−1V{diag(V)}−1, we estimate ωj1,j2 by

ω̂j1,j2 =
v̂j1,j2

v̂j1,j1 v̂j2,j2
(11)

for any j1 and j2. We need to point out that the asymptotic expansion (9) is still valid for other penalized methods such
as Dantzig estimation (Candes and Tao, 2007) and scaled Lasso (Sun and Zhang, 2012). Hence, we can also estimate vj1,j2
and ωj1,j2 as (10) and (11), respectively, based on the residuals {̂ϵt}

n
t=1 obtained by other penalized methods. To study the

theoretical properties of this estimator ω̂j1,j2 , we need the following regularity conditions.

Condition 1. There exist constants K1 > 0, K2 > 1, 0 < γ1 ≤ 2 and 0 < γ2 ≤ 2 independent of p and n such that for each
t = 1, . . . , n,

max
1≤j≤p

E{exp(K1|yj,t |γ1 )} ≤ K2 and max
1≤j≤p

E{exp(K1|ϵj,t |
γ2 )} ≤ K2.

Condition 2. The eigenvalues of Σ are uniformly bounded away from zero and infinity.

Condition 3. There exist constants K3 > 0 and γ3 > 0 independent of p and n such that βk ≤ exp(−K3kγ3 ) for any positive k.

Condition 1 implies max1≤j≤pP(|yj,t | ≥ x) ≤ K2 exp(−K1xγ1 ) and max1≤j≤pP(|ϵj,t | ≥ x) ≤ K2 exp(−K1xγ2 ) for any
x > 0 and t = 1, . . . , n. It ensures the exponential upper bounds for the tail probabilities of the statistics concerned (see
for example Lemma 1 in the Appendix), which makes our procedure work for p diverging at some exponential rate of n.
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Condition 2 implies the bounded eigenvalues ofΣ andΩ , which is commonly assumed in the literatures of high-dimensional
data analysis. Condition 3 for the β-mixing coefficients of {yt} is mild. Causal ARMA processes with continuous innovation
distributions areβ-mixingwith exponentially decayingβk. So are stationaryMarkov chains satisfying certain conditions. See
Section 2.6.1 of Fan and Yao (2003) and the references therein. In fact, stationary GARCHmodels with finite secondmoments
and continuous innovation distributions are also β-mixing with exponentially decaying βk; see Proposition 12 of Carrasco
and Chen (2002). If we only require suptmax1≤j≤pP(|yj,t | > x) = O{x−2(ν+ι)

} and suptmax1≤j≤pP(|ϵj,t | > x) = O{x−2(ν+ι)
} for

any x > 0 in Condition 1 andβk = O{k−ν(ν+ι)/(2ι)
} in Condition 3 for some ν > 2 and ι > 0,we can apply the Fuk–Nagaev-type

inequalities to construct the upper bounds for the tail probabilities of the statistics if p diverges at some polynomial rate of n.
We refer to Section 3.2 of Chang et al. (2018) for the implementation of the Fuk–Nagaev-type inequalities in such a scenario.
The β-mixing condition can be replaced by the α-mixing condition, under which we can justify the proposed method for p
diverging at some polynomial rate of n by using the Fuk–Nagaev-type inequalities. However, it remains an open problem to
establish the relevant properties under α-mixing for p diverging at some exponential rate of n.

Proposition 1. Let s = max1≤j≤p|αj|0 and select the tuning parameter λj in (7) satisfying λj ≍ (n−1 log p)1/2 for each
j = 1, . . . , p. Under Conditions 1–3, if s2(log p)3n−1

= o(1) and log p = o(nϱ1 ) for a positive constant ϱ1 specified in the
proof of this proposition in the Appendix, it holds that

ω̂j1,j2 − ωj1,j2 = −
δj1,j2

vj1,j1vj2,j2
+ op{(n log p)−1/2

},

where δj1,j2 = n−1∑n
t=1(ϵj1,tϵj2,t − vj1,j2 ) for any j1 and j2, and op{(n log p)−1/2

} is a uniform higher order term.

We see from Proposition 1 that ω̂j1,j2 is centered at the true parameter ωj1,j2 with a standard deviation at the order n−1/2.
Since αj1,j2 is proportional to ωj1,j2 , it follows from s2(log p)3n−1

= o(1) that Ω is sparse. When the maximum number
of nonzero elements in each row of Ω is of the order smaller than n1/2(log p)−3/2, Proposition 1 holds even when p is of an
exponential rate of n. Similar to the asymptotic expansion for ω̂j1,j2 in Proposition 1, Liu (2013) gave an asymptotic expansion
for −v̂j1,j2 with j1 ̸= j2. More specifically, with i.i.d. data, he showed that −v̂j1,j2 = −

bj1,j2ωj1,j2
ωj1,j1ωj2,j2

+ δj1,j2 + R for δj1,j2 specified
in Proposition 1 and bj1,j2 = ωj1,j1 v̂j1,j1 + ωj2,j2 v̂j2,j2 − 1, where R is a remainder term with the convergence rate faster than
n−1/2. It follows from the central limit theorem that −n1/2cj1,j2 (̂vj1,j2 −

bj1,j2ωj1,j2
ωj1,j1ωj2,j2

) converges to standard normal distribution

with some suitable scale cj1,j2 , which indicates that −n1/2cj1,j2 v̂j1,j2 can be used as the testing statistic to test ωj1,j2 = 0 or
not. Notice that v̂j,j = ω−1

j,j + Op(n−1/2) which implies bj1,j2 = 1+ Op(n−1/2). Hence, the magnitude of −n1/2cj1,j2 v̂j1,j2 will be
large ifωj1,j2 ̸= 0. This indicates that the asymptotic expansion given in Liu (2013) is enough for identifying non-zero entries
ofΩ . However, it is not enough for constructing the confidence interval for ωj1,j2 due to the fact that it does not contain the
asymptotic expansion of ω̂j1,j2 .

3.2. Confidence regions

Let∆ = −n−1∑n
t=1(ϵtϵ

T
t − V). It follows from Proposition 1 that

Ω̂ − Ω = Π + Υ forΠ = {diag(V)}−1∆{diag(V)}−1,

where |Υ |∞ = op{(n log p)−1/2
}. Restricted on a given index set S with r = |S|, we have

Ω̂S − ΩS = ΠS + ΥS . (12)

Based on (12), we consider two kinds of confidence regions:

CS,α,1 = {a ∈ Rr
: n1/2

|Ω̂S − a|∞ ≤ qS,α,1},

CS,α,2 = {a ∈ Rr
: n1/2

|̂D−1(Ω̂S − a)|∞ ≤ qS,α,2},
(13)

where D̂ is an r×r diagonalmatrix, specified in Remark 5, of which the elements are the estimated standard deviations of the
r components in n1/2(Ω̂S − ΩS ). Here qS,α,1 and qS,α,2 are two critical values to be determined. CS,α,1 and CS,α,2 represent
the so-called ‘‘non-Studentized-type’’ and ‘‘Studentized-type’’ confidence regions for ΩS , respectively. The Studentized-
type confidence regions perform better than the non-Studentized-type ones when the heteroscedasticity exists, however,
the performance of the non-Studentized-type confidence regions is more stable when the sample size n is fairly small. See
Chang et al. (2017a).

In the sequel, we mainly focus on estimating the critical value qS,α,1 in (13), as qS,α,2 can be estimated in the similar
manner; see Remark 5. To determine qS,α,1, we need to first characterize the probabilistic behavior of n1/2

|Ω̂S − ΩS |∞.
Since ΥS is a higher order term, n1/2

|Ω̂S − ΩS |∞ will behave similarly as n1/2
|ΠS |∞ when n is large. Notice that each

element of n1/2ΠS is asymptotically normal distributed. Following the idea of Chernozhukov et al. (2013), it can be proved
that the limiting behavior of n1/2

|ΠS |∞ can be approximated by that of the L∞-norm of a certainmultivariate normal vector.
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See Theorem 1. More specifically, for each t , let ςt be an r-dimensional vector whose jth element is
ϵχ1(j),t ϵχ2(j),t−vχ(j)
vχ1(j),χ1(j)vχ2(j),χ2(j)

where

χ(·) = {χ1(·), χ2(·)} is a bijective mapping from {1, . . . , r} to S such thatΩS = {ωχ(1), . . . , ωχ(r)}
T. Then, we have

ΠS = −
1
n

n∑
t=1

ςt .

Denote byW the long-run covariance of {ςt}
n
t=1, namely,

W = E
{(

1
n1/2

n∑
t=1

ςt

)(
1

n1/2

n∑
t=1

ςt

)T}
. (14)

Let ηt = (η1,t , . . . , ηr,t )T where ηj,t = ϵχ1(j),tϵχ2(j),t − vχ(j). ThenW specified in (14) can be written as

W = HE
{(

1
n1/2

n∑
t=1

ηt

)(
1

n1/2

n∑
t=1

ηt

)T}
H (15)

where H = diag{v−1
χ1(1),χ1(1)

v−1
χ2(1),χ2(1)

, . . . , v−1
χ1(r),χ1(r)

v−1
χ2(r),χ2(r)

}. To study the asymptotical distribution of the average of the
temporally dependent sequence {ςt}

n
t=1 and its long-run covarianceW, we introduce the following condition on {ηt}

n
t=1.

Condition 4. There exists constant K4 > 0 such that

lim inf
b→∞

inf
1≤ℓ≤n+1−b

E
(⏐⏐⏐⏐ 1

b1/2

ℓ+b−1∑
t=ℓ

ηj,t

⏐⏐⏐⏐
2)
> K4

for each j = 1, . . . , r.

Condition 4 is for the validity of the Gaussian approximation for dependent data. Under Conditions 1 and 3, Davydov
inequality (Davydov, 1968) entails lim supb→∞sup1≤ℓ≤n+1−bE(|b−1/2∑ℓ+b−1

t=ℓ ηj,t |
2
) < K5 for some universal constant K5 > 0.

Together with Condition 4, they match the requirements of Gaussian approximation imposed on the long-run covariance of
{ηj,t}

ℓ+b−1
t=ℓ for j = 1, . . . , r and ℓ = 1, . . . , n + 1 − b. See Theorem B.1 of Chernozhukov et al. (2014). If {ηj,t} is stationary,

E(|b−1/2∑ℓ+b−1
t=ℓ ηj,t |

2
) = E(η2j,1) +

∑b−1
k=1(1 − kb−1)Cov(ηj,1, ηj,1+k). Under the stationarity assumption on each sequence

{ηj,t}, Condition 4 is equivalent to
∑

∞

k=0Cov(ηj,1, ηj,1+k) > K4 for any j = 1, . . . , r . Now we are ready to state our main
result.

Theorem 1. Let ξ ∼ N(0,W) for W specified in (14). Under the conditions of Proposition 1 and Condition 4, we have

sup
x>0

⏐⏐P(
n1/2

|Ω̂S − ΩS |∞ > x
)
− P(|ξ|∞ > x)

⏐⏐ → 0

as n → ∞, provided that s2(log p)3n−1
= o(1) and log p = o(nϱ2 ) where s = max1≤j≤p|αj|0 and ϱ2 is a positive constant

specified in the proof of this theorem in the Appendix.

Remark 1. Theorem 1 shows that the Kolmogorov distance between the distributions of n1/2
|Ω̂S − ΩS |∞ and |ξ|∞

converges to zero. More specifically, as shown in the proof of Theorem 1 in the Appendix, this convergence rate is
O(n−C ) for some constant C > 0 without requiring any structural assumption on the underlying covariance W. Note that
n1/2

|Ω̂S − ΩS |∞ may converge weakly to an extreme value distribution, which however requires some more stringent
assumptions on the structure ofW. Furthermore the slow convergence to the extreme value distribution, i.e. typically slower
than O(n−C ), entails an less accurate approximation than that implied by Theorem 1. We need to point out that there is also
a requirement imposed on the diverging rate of r = |S| such as log r = o(nC ) for some constant C > 0 in the proof of
Theorem 1. Since r ≤ p2, such requirement is satisfied automatically when the requirements on p in Theorem 1 are required.

Theorem 1 provides a guideline to approximate the distribution of n1/2
|Ω̂S − ΩS |∞. To implement it in practice, we

need to propose an estimator forW. Denote byΞ the matrix sandwiched by H’s on the right-hand side of (15), which is the
long-run covariance of {ηt}

n
t=1. Notice that v̂j,j defined in (10) is n1/2-consistent to vj,j, we can estimate H by

Ĥ = diag
{̂
v−1
χ1(1),χ1(1)̂

v−1
χ2(1),χ2(1)

, . . . , v̂−1
χ1(r),χ1(r )̂

v−1
χ2(r),χ2(r)

}
. (16)

Let η̂t = (̂η1,t , . . . , η̂r,t )T for η̂j,t = ϵ̂χ1(j),t ϵ̂χ2(j),t − v̂χ(j), and define

Γ̂k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n

n∑
t=k+1

η̂t η̂
T
t−k, k ≥ 0;

1
n

n∑
t=−k+1

η̂t+k̂η
T
t , k < 0.
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Based on the Γ̂k’s, we propose a kernel estimator suggested by Andrews (1991) forΞ as

Ξ̂ =

n−1∑
k=−n+1

K
(

k
Sn

)
Γ̂k (17)

where Sn is the bandwidth, K(·) is a symmetric kernel function that is continuous at 0 and satisfying K(0) = 1, |K(u)| ≤ 1
for any u ∈ R, and

∫
∞

−∞
K2(u)du < ∞. Given Ĥ and Ξ̂ defined respectively in (16) and (17), an estimator forW is given by

Ŵ = ĤΞ̂ Ĥ. (18)

Theorem 2 shows that we can approximate the distribution of n1/2
|Ω̂S − ΩS |∞ by that of |̂ξ|∞ for ξ̂ ∼ N(0, Ŵ).

Remark 2. Andrews (1991) systematically investigated the theoretical properties for the kernel estimator for the long-run
covariance matrix when p is fixed. It shows that the Quadratic Spectral kernel

KQS(u) =
25

12π2u2

{
sin(6πu/5)

6πu/5
− cos(6πu/5)

}
is optimal in the sense of minimizing the asymptotic truncated mean square error. In our numerical work, we adopt this
quadratic spectral kernel with the data-driven selected bandwidth proposed in Section 6 of Andrews (1991), though our
theoretical analysis applies to general kernel functions. Both our theoretical and simulation results show that this kernel
estimator Ξ̂ still works when p is large in relation to n. There also exist other estimation methods for long-run covariances,
including the estimation utilizing moving block bootstrap (Lahiri, 2003; Nordman and Lahiri, 2005). Also see den Haan and
Levin (1997) and Kiefer et al. (2000). Compared to those methods, an added advantage of using the kernel estimator is
the computational efficiency in terms of both speed and storage space especially when p is large; see Remark 4. When the
observations are i.i.d., a special case of our setting,W as in (14) is degenerated to E(ςtς

T
t ), the marginal covariance of ςt . We

can apply n−1∑n
t=1̂ηt η̂

T
t to estimateΞ , and then use Ĥ(n−1∑n

t=1̂ηt η̂
T
t )Ĥ to estimateW with Ĥ as in (16).

Theorem 2. Let ξ̂ ∼ N(0, Ŵ) for Ŵ specified in (18). Assume the kernel function K(·) satisfy |K(x)| ≍ |x|−τ as x → ∞ for some
τ > 1, and the bandwidth Sn ≍ nρ for some 0 < ρ < min{

τ−1
3τ ,

γ3
2γ3+1 } and γ3 in Condition 3. Under the conditions of Theorem 1,

it holds that

sup
x>0

⏐⏐P(
n1/2

|Ω̂S − ΩS |∞ > x
)
− P

(
|̂ξ|∞ > x|Yn

)⏐⏐ p
−→ 0

as n → ∞, provided that s2(log p)n−1 max{S2n , (log p)
2
} = o(1) and log p = o(nϱ3 ) where s = max1≤j≤p|αj|0, ϱ3 is a positive

constant specified in the proof of this theorem in the Appendix, and Yn = {y1, . . . , yn}.

Remark 3. Theorem 2 is valid for any Ŵ satisfying |Ŵ − W|∞ = op(1); see Chernozhukov et al. (2013). Different from
the common practice in estimating large covariance matrices, we construct Ŵ in (18) without imposing any structural
assumptions onW.

In practice, we approximate the distribution of |̂ξ|∞ by Monto Carlo simulation. Specifically, let ξ̂1, . . . , ξ̂M be i.i.d. r-
dimensional random vectors drawn from N(0, Ŵ). Then the conditional distribution of |̂ξ|∞ given Yn can be approximated
by the empirical distribution of {|̂ξ1|∞, . . . , |̂ξM |

∞
}, namely,

F̂M (x) =
1
M

M∑
m=1

I
{
|̂ξm|

∞
≤ x

}
.

Then, qS,α,1 specified in (13) can be estimated by

q̂S,α,1 = inf{x ∈ R : F̂M (x) ≥ 1 − α}. (19)

To improve computational efficiency, we propose the following Kernel based Multiplier Bootstrap (KMB) procedure to
generate ξ̂ ∼ N(0, Ŵ), which is much more efficient when r is large.

Step 1. Generate g = (g1, . . . , gn)T from N(0,A), where A is the n × nmatrix with K(|i − j|/Sn) as its (i, j)th element.
Step 2. Let ξ̂ = n−1/2Ĥ(

∑n
t=1gt η̂t ), where Ĥ is defined in (16).

Remark 4. The standard approach to draw a random vector ξ̂ ∼ N(0, Ŵ) consists of three steps: (i) perform the Cholesky
decomposition on the r×r matrix Ŵ = LTL, (ii) generate r independent standard normal random variables z = (z1, . . . , zr )T,
(iii) perform transformation ξ̂ = LTz. Thus, it requires to store matrix Ŵ and {̂ηt}

n
t=1, which amounts to the storage costs

O(r2) and O(rn), respectively. The computational complexity is O(r2n + r3), mainly due to computing Ŵ and the Cholesky
decomposition. Note that r could be in the order of O(p2). In contrast the KMB scheme described above only needs to store
{̂ηt}

n
t=1 and A, and draw an n-dimensional random vector g ∼ N(0,A) in each parametric bootstrap sample. This amounts to

total storage cost O(rn+n2). More significantly, the computational complexity is only O(n3) which is independent of r and p.
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Remark 5. For the Studentized-type confidence regions CS,α,2 defined in (13), we can choose the diagonal matrix D̂ =

{diag(Ŵ)}1/2 for Ŵ specified in (18). Correspondingly, for ξ̂ ∼ N(0, D̂−1ŴD̂−1), it can be proved, in the similar manner as
that for Theorem 2, that

sup
x>0

⏐⏐P{
n1/2

|̂D−1(Ω̂S − ΩS )|∞ > x
}

− P(|̂ξ|∞ > x|Yn)
⏐⏐ p
−→ 0 as n → ∞.

To approximate the distribution of n1/2
|̂D−1(Ω̂S − ΩS )|∞, we only need to replace the Step 2 in the KMB procedure by

Step 2′. Let ξ̂ = n−1/2D̂−1Ĥ(
∑n

t=1gt η̂t ) where Ĥ is defined in (16).

Based on the i.i.d. random vectors ξ̂1, . . . , ξ̂M generated by Steps 1 and 2′, we can estimate qS,α,2 via q̂S,α,2, which is
calculated the same as q̂S,α,1 in (19). We call the procedure combining Steps 1 and 2′ as Studentized Kernel based Multiplier
Bootstrap (SKMB).

4. Applications

4.1. Testing structures ofΩ

Many statistical applications require to explore or to detect some specific structures of the precision matrix Ω =

(ωj1,j2 )p×p. Given an index set S of interest and a set of pre-specified constants {cj1,j2}, we test the hypotheses

H0 : ωj1,j2 = cj1,j2 for any (j1, j2) ∈ S vs. H1 : ωj1,j2 ̸= cj1,j2 for some (j1, j2) ∈ S.

Recall that χ(·) = {χ1(·), χ2(·)} is a bijective mapping from {1, . . . , r} to S such that ΩS = {ωχ(1), . . . , ωχ(r)}
T. Let r = |S|

and c = {cχ(1), . . . , cχ(r)}T. A usual choice of c is the zero vector, corresponding to the test for non-zero structures ofΩ . Given
a prescribed level α ∈ (0, 1), define Ψα = I{c ̸∈ CS,1−α,1} for CS,1−α,1 specified in (13). Then, we reject the null hypothesis
H0 at level α if Ψα = 1. This procedure is equivalent to the test based on the L∞-type statistic n1/2

|Ω̂S − c|∞ that rejects
H0 if n1/2

|Ω̂S − c|∞ > q̂S,1−α,1. The L∞-type statistics are widely used in testing high-dimensional means and covariances.
See, for example, Cai et al. (2013) and Chang et al. (2017a, b). The following corollary gives the empirical size and power of
the proposed testing procedure Ψα .

Corollary 1. Assume conditions of Theorem 2 hold. It holds that: (i) PH0 (Ψα = 1) → α as n → ∞; (ii) if max(j1,j2)∈S |ωj1,j2 −

cj1,j2 | ≥ C(n−1 log p)1/2max1≤j≤rw
1/2
j,j where wj,j is the jth component in the diagonal of W defined in (14), and C is a constant

larger than
√
2, then PH1 (Ψα = 1) → 1 as n → ∞.

Corollary 1 implies that the empirical size of the proposed testing procedure Ψα will converge to the nominal level α
under H0. The condition max(j1,j2)∈S |ωj1,j2 − cj1,j2 | ≥ C(n−1 log p)1/2max1≤j≤rw

1/2
j,j specifies the maximal deviation of the

precision matrix from the null hypothesis H0 : ωj1,j2 = cj1,j2 for any (j1, j2) ∈ S , which is a commonly used condition
for studying the power of the L∞-type test. See Cai et al. (2013) and Chang et al. (2017a, b). Corollary 1 shows that the
power of the proposed test Ψα will approach 1 if such condition holds for some constant C >

√
2. A ‘‘Studentized-type’’

test can be similarly constructed via replacing n1/2
|Ω̂S − c|∞ and q̂S,1−α,1 by n1/2

|̂D−1(Ω̂S − c)|∞ and q̂S,1−α,2 in (13),
respectively.

4.2. Support recovering ofΩ

In studying partial correlation networks or GGM, we are interested in identifying the edges between nodes. This is
equivalent to recover the non-zero components in the associated precision matrix. LetM0 = {(j1, j2) : ωj1,j2 ̸= 0} be the set
of indices with non-zero precision coefficients. Choose S = {1, . . . , p}2. Note that CS,α,1 provides simultaneous confidence
regions for all the entries ofΩ . To recover the setM0 consistently, we choose those precision coefficients whose confidence
intervals do not include zero. For any m-dimensional vector u = (u1, . . . , um)T, let supp(u) = {j : uj ̸= 0} be the support
set of u. Recall χ(·) = {χ1(·), χ2(·)} is a bijective mapping from {1, . . . , r} to S such that ΩS = {ωχ(1), . . . , ωχ(r)}

T. For any
α ∈ (0, 1), let

M̂n,α =

{
χ−1(l) : l ∈

⋂
u∈CS,1−α,1

supp(u)
}

be the estimate of M0.
In our context, note that the false positive means estimating the zero ωj1,j2 as non-zero. Let FP be the number of false

positive errors conducted by the estimated signal set M̂n,α . Let the family wise error rate (FWER) be the probability of
conducting any false positive errors, namely, FWER = P(FP > 0). See Hochberg and Tamhane (2009) for various types of
error rates in multiple testing procedures. Notice that P(FP > 0) ≤ P(ΩS ̸∈ CS,1−α,1) = α{1 + o(1)}. This shows that the
proposed method is able to control family wise error rate at level α for any α ∈ (0, 1). The following corollary further shows
the consistency of M̂n,α .
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Corollary 2. Assume conditions of Theorem 2 hold, and the signals satisfy min(j1,j2)∈M0 |ωj1,j2 | ≥ C(n−1 log p)1/2max1≤j≤rw
1/2
j,j

where wj,j is the jth component in the diagonal of W defined in (14), and C is a constant larger than
√
2. Selecting α → 0 such

that 1/α = o(p), it holds that P(M̂n,α = M0) → 1 as n → ∞.

From Corollary 2, we see that the selected set M̂n,α can identify the true set M0 consistently if the minimum signal
strength satisfies min(j1,j2)∈M0 |ωj1,j2 | ≥ C(n−1 log p)1/2max1≤j≤rw

1/2
j,j for some constant C >

√
2. Notice from Corollary 1

that only the maximum signal is required in the power analysis of the proposed testing procedure. Compared to signal
detection, signal recovery is a more challenging problem. The full support recovery ofΩ requires all non-zero |ωl1,l2 | larger
than a specific level. Similarly, we can also define M̂n,α via replacing CS,1−α,1 by its ‘‘Studentized-type’’ analogue CS,1−α,2
in (13).

5. Numerical study

In this section, we evaluate the performance of the proposed KMB and SKMB procedures in finite samples. Let ε1, . . . , εn
be i.i.d. p-dimensional samples from N(0,Σ ). The observed data were generated from the model y1 = ε1 and yt =

ρyt−1 + (1 − ρ2)1/2εt for t ≥ 2. The parameter ρ was set to be 0 and 0.3, which captures the temporal dependence among
observations. We chose the sample size n = 150 and 300, and the dimension p = 100, 500 and 1500 in the simulation. Let
Σ = {diag(Σ−1

∗
)}1/2Σ∗{diag(Σ−1

∗
)}1/2 based on a positive definite matrixΣ∗. The following two settings were considered

forΣ∗ = (σ ∗

j1,j2
)1≤j1,j2≤p.

A. Let σ ∗

j1,j2
= 0.5|j1−j2| for any 1 ≤ j1, j2 ≤ p.

B. Let σ ∗

j,j = 1 for any j = 1, . . . , p, σ ∗

j1,j2
= 0.5 for 5(h − 1) + 1 ≤ j1 ̸= j2 ≤ 5h, where h = 1, . . . , p/5, and σ ∗

j1,j2
= 0

otherwise.

Structures A and B lead to, respectively, the banded and block diagonal structures for the precision matrixΩ = Σ−1. Note
that, based on such defined covariance Σ , the diagonal elements of the precision matrix are unit. For each of the precision
matrices, we considered two choices for the index set S: (i) all zero components of Ω , i.e. S = {(j1, j2) : ωj1,j2 = 0}, and
(ii) all the components excluded the ones on the main diagonal, i.e. S = {(j1, j2) : j1 ̸= j2}. Notice that the sets of all
zero components in Ω for structures A and B are {(j1, j2) : |j1 − j2| > 1} and ∩

p/5
h=1{(j1, j2) : 5(h − 1) + 1 ≤ j1, j2 ≤ 5h}c ,

respectively. Aswe illustrate in the footnote,1 the index setsS in the setting (i) and (ii)mimic, respectively, the homogeneous
and heteroscedastic cases for the variances of n1/2(ω̂j1,j2 − ωj1,j2 ) among (j1, j2) ∈ S.

For each of the cases above, we examined the accuracy of the proposed KMB and SKMB approximations to the distribu-
tions of the non-Studentized-type statistic n1/2

|Ω̂S − ΩS |∞ and the Studentized-type statistic n1/2
|̂D−1(Ω̂S − ΩS )|∞, re-

spectively. Denote by F1n(·) and F2n(·) the distribution functions of n1/2
|Ω̂S − ΩS |∞ and n1/2

|̂D−1(Ω̂S − ΩS )|∞, respectively.
In each of the 1000 independent repetitions,we first draw a samplewith size n following the above discussed data generating
mechanism, and then computed the associated values of n1/2

|Ω̂S − ΩS |∞ and n1/2
|̂D−1(Ω̂S − ΩS )|∞ in this sample. Since

F1n(·) and F2n(·) are unknown, we used the empirical distributions of n1/2
|Ω̂S − ΩS |∞ and n1/2

|̂D−1(Ω̂S − ΩS )|∞ over
1000 repetitions, denoted as F∗

1n(·) and F∗

2n(·), to approximate them, respectively. For each repetition i, we applied the KMB
and SKMB procedures to estimate the 100(1 − α)% quantiles of n1/2

|Ω̂S − ΩS |∞ and n1/2
|̂D−1(Ω̂S − ΩS )|∞, denoted as

q̂(i)S,α,1 and q̂(i)S,α,2, respectively, with M = 3000, and then computed their associated empirical coverages F∗

1n (̂q
(i)
S,α,1) and

F∗

2n (̂q
(i)
S,α,2). We considered α = 0.075, 0.050 and 0.025 in the simulation. We report the averages and standard deviations

of {F∗

1n (̂q
(i)
S,α,1)}

1000
i=1 and {F∗

2n (̂q
(i)
S,α,2)}

1000
i=1 in Tables 1–3. Due to the selection of the tuning parameter λj in (7) depends on the

standard deviation of the error term ϵj,t , we adopted the scaled Lasso (Sun and Zhang, 2012) in the simulation which can
estimate the regression coefficients and the variance of the error simultaneously. The tuning parameters in scale Lasso were
selected according to Ren et al. (2015).

It is worth noting that in order to accomplish the statistical computing for large p under the R environment in high speed,
we programmed the generation of random numbers and most loops into C functions such that we utilized ‘‘.C()’’ routine
to call those C functions from R. However, the computation of the two types of statistics involves the fitting of the p node-
wise regressions. As a consequence, the simulation for large p still requires a large amount of computation time. In order
to overcome this time-consuming issue, the computation in this numerical study was undertaken with the assistance of

1 It follows from Proposition 1 that Var{n1/2(ω̂j1,j2 − ωj1,j2 )} = v−2
j1,j1
v−2
j2,j2

Var{n−1/2∑n
t=1(ϵj1,tϵj2,t − vj1,j2 )}{1 + o(1)}, where the term o(1) holds

uniformly over (j1, j2). Recall ϵj,t = −αT
j yt and yt = (1 − ρ2)1/2

∑
∞

k=0ρ
kεt−k , if ωj1,j2 = 0 which is equivalent to vj1,j2 = 0, then it holds that

Var(n−1/2∑n
t=1ϵj1,tϵj2,t ) = n−1(1 − ρ2)2

∑n
t1,t2=1E{(

∑
∞

k=0ρ
kαT

j1
εt1−k)(

∑
∞

k=0ρ
kαT

j2
εt1−k)(

∑
∞

k=0ρ
kαT

j1
εt2−k)(

∑
∞

k=0ρ
kαT

j2
εt2−k)}. Since εt ’s are i.i.d., together

with vj1,j2 = 0, we have E{(
∑

∞

k=0ρ
kαT

j1
εt1−k)(

∑
∞

k=0ρ
kαT

j2
εt1−k)(

∑
∞

k=0ρ
kαT

j1
εt2−k)(

∑
∞

k=0ρ
kαT

j2
εt2−k)} = ρ2t2−2t1 (1 − ρ2)−2E(ϵ2j1,tϵ

2
j2,t

) for any t2 ≥ t1 , which
implies Var(n−1/2∑n

t=1ϵj1,tϵj2,t ) = [1+2(1−ρ2)−2n−1
{(n−1)ρ2n

−(n−2)ρ2n+2
−ρ4

}]E(ϵ2j1,tϵ
2
j2,t

) for any (j1, j2) such thatωj1,j2 = 0. On the other hand, based
on the Gaussian assumption, since vj1,j2 = E(ϵj1,tϵj2,t ) = 0, we know the two normal distributed random variables ϵj1,t and ϵj2,t are independent, which
leads toE(ϵ2j1,tϵ

2
j2,t

) = E(ϵ2j1,t )E(ϵ
2
j2,t

) = vj1,j1vj2,j2 . Therefore, Var{n
1/2(ω̂j1,j2−ωj1,j2 )} = v−1

j1,j1
v−1
j2,j2

[1+2(1−ρ2)−2n−1
{(n−1)ρ2n

−(n−2)ρ2n+2
−ρ4

}]{1+o(1)}
for any (j1, j2) such thatωj1,j2 = 0. Notice thatωj,j = 1 in our setting for any j, then vj,j = ω−1

j,j = 1. Hence, the variances of n1/2(ω̂j1,j2 −ωj1,j2 ) for any (j1, j2)
such that ωj1,j2 = 0 are almost identical.
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Table 1
Averages of empirical coverages and their standard deviations (in parentheses) for p = 100.

Covariance
structure

ρ 1 − α n = 150 n = 300

S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2} S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2}

KMB SKMB KMB SKMB KMB SKMB KMB SKMB

A

0.925 0.963(0.013) 0.919(0.005) 0.885(0.022) 0.906(0.007) 0.954(0.011) 0.939(0.004) 0.915(0.014) 0.937(0.004)
0 0.950 0.978(0.008) 0.949(0.007) 0.913(0.016) 0.941(0.007) 0.972(0.007) 0.956(0.002) 0.941(0.011) 0.954(0.002)

0.975 0.991(0.004) 0.978(0.003) 0.950(0.014) 0.976(0.003) 0.985(0.003) 0.982(0.002) 0.963(0.006) 0.981(0.002)

0.925 0.950(0.014) 0.888(0.014) 0.835(0.029) 0.875(0.014) 0.955(0.012) 0.920(0.009) 0.890(0.019) 0.916(0.010)
0.3 0.950 0.967(0.010) 0.930(0.008) 0.876(0.025) 0.920(0.009) 0.973(0.007) 0.956(0.005) 0.924(0.013) 0.952(0.006)

0.975 0.987(0.006) 0.966(0.004) 0.923(0.017) 0.958(0.005) 0.987(0.004) 0.979(0.003) 0.956(0.010) 0.978(0.003)

B

0.925 0.953(0.016) 0.927(0.005) 0.812(0.036) 0.874(0.008) 0.950(0.009) 0.931(0.003) 0.894(0.014) 0.917(0.004)
0 0.950 0.973(0.010) 0.957(0.005) 0.863(0.028) 0.918(0.007) 0.969(0.008) 0.956(0.006) 0.925(0.013) 0.947(0.007)

0.975 0.986(0.004) 0.979(0.002) 0.918(0.020) 0.965(0.004) 0.989(0.004) 0.981(0.004) 0.961(0.008) 0.978(0.004)

0.925 0.950(0.019) 0.898(0.011) 0.772(0.039) 0.815(0.018) 0.950(0.011) 0.933(0.005) 0.880(0.017) 0.915(0.007)
0.3 0.950 0.971(0.011) 0.930(0.007) 0.826(0.031) 0.873(0.012) 0.968(0.007) 0.956(0.003) 0.913(0.012) 0.943(0.004)

0.975 0.987(0.004) 0.970(0.005) 0.885(0.021) 0.938(0.008) 0.985(0.004) 0.972(0.003) 0.943(0.010) 0.964(0.004)

Table 2
Averages of empirical coverages and their standard deviations (in parentheses) for p = 500.

Covariance
structure

ρ 1 − α n = 150 n = 300

S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2} S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2}

KMB SKMB KMB SKMB KMB SKMB KMB SKMB

A

0.925 0.967(0.006) 0.891(0.010) 0.872(0.017) 0.873(0.009) 0.971(0.003) 0.935(0.003) 0.924(0.008) 0.799(0.003)
0 0.950 0.978(0.004) 0.934(0.007) 0.903(0.011) 0.923(0.009) 0.977(0.002) 0.954(0.002) 0.939(0.006) 0.822(0.004)

0.975 0.987(0.003) 0.975(0.003) 0.933(0.012) 0.968(0.004) 0.983(0.002) 0.977(0.002) 0.956(0.004) 0.856(0.004)

0.925 0.961(0.010) 0.871(0.010) 0.786(0.027) 0.833(0.011) 0.973(0.004) 0.937(0.005) 0.867(0.011) 0.905(0.007)
0.3 0.950 0.979(0.006) 0.918(0.010) 0.842(0.021) 0.890(0.011) 0.982(0.004) 0.959(0.003) 0.899(0.011) 0.934(0.004)

0.975 0.991(0.004) 0.966(0.005) 0.890(0.014) 0.949(0.006) 0.991(0.001) 0.973(0.003) 0.936(0.007) 0.950(0.003)

B

0.925 0.961(0.007) 0.884(0.009) 0.713(0.027) 0.746(0.015) 0.966(0.006) 0.921(0.005) 0.884(0.011) 0.814(0.007)
0 0.950 0.974(0.004) 0.934(0.008) 0.780(0.030) 0.831(0.015) 0.980(0.003) 0.938(0.004) 0.915(0.009) 0.840(0.006)

0.975 0.985(0.003) 0.974(0.004) 0.869(0.019) 0.912(0.010) 0.988(0.002) 0.970(0.003) 0.952(0.006) 0.887(0.007)

0.925 0.954(0.007) 0.856(0.014) 0.641(0.034) 0.673(0.019) 0.964(0.005) 0.928(0.004) 0.853(0.016) 0.850(0.007)
0.3 0.950 0.968(0.006) 0.908(0.008) 0.716(0.036) 0.767(0.018) 0.979(0.004) 0.950(0.003) 0.900(0.012) 0.889(0.006)

0.975 0.983(0.004) 0.954(0.005) 0.821(0.028) 0.878(0.014) 0.988(0.002) 0.971(0.002) 0.940(0.010) 0.925(0.005)

Table 3
Averages of empirical coverages and their standard deviations (in parentheses) for p = 1500.

Covariance
structure

ρ 1 − α n = 150 n = 300

S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2} S = {(j1, j2) : ωj1,j2 = 0} S = {(j1, j2) : j1 ̸= j2}

KMB SKMB KMB SKMB KMB SKMB KMB SKMB

A

0.925 0.976(0.005) 0.854(0.013) 0.826(0.017) 0.834(0.013) 0.979(0.002) 0.959(0.003) 0.913(0.009) 0.948(0.004)
0 0.950 0.987(0.003) 0.908(0.010) 0.866(0.011) 0.892(0.010) 0.991(0.002) 0.974(0.001) 0.945(0.007) 0.963(0.001)

0.975 0.991(0.002) 0.954(0.005) 0.903(0.009) 0.944(0.006) 0.997(0.001) 0.987(0.003) 0.967(0.003) 0.979(0.003)

0.925 0.967(0.010) 0.823(0.013) 0.674(0.031) 0.758(0.016) 0.981(0.002) 0.951(0.004) 0.822(0.011) 0.933(0.004)
0.3 0.950 0.983(0.004) 0.887(0.011) 0.754(0.030) 0.840(0.012) 0.987(0.002) 0.972(0.004) 0.861(0.012) 0.958(0.005)

0.975 0.994(0.002) 0.952(0.010) 0.841(0.019) 0.922(0.011) 0.996(0.001) 0.988(0.002) 0.926(0.010) 0.978(0.003)

B

0.925 0.964(0.008) 0.852(0.013) 0.638(0.031) 0.631(0.019) 0.973(0.004) 0.944(0.005) 0.882(0.010) 0.912(0.006)
0 0.950 0.981(0.004) 0.915(0.008) 0.729(0.031) 0.738(0.021) 0.987(0.003) 0.967(0.003) 0.915(0.009) 0.946(0.004)

0.975 0.991(0.002) 0.961(0.007) 0.831(0.017) 0.860(0.015) 0.995(0.001) 0.984(0.001) 0.952(0.006) 0.968(0.003)

0.925 0.958(0.008) 0.781(0.025) 0.528(0.047) 0.417(0.031) 0.978(0.003) 0.930(0.006) 0.813(0.015) 0.867(0.010)
0.3 0.950 0.977(0.006) 0.870(0.009) 0.643(0.040) 0.564(0.023) 0.985(0.002) 0.956(0.005) 0.866(0.013) 0.912(0.009)

0.975 0.989(0.002) 0.939(0.007) 0.787(0.031) 0.737(0.023) 0.997(0.001) 0.980(0.002) 0.932(0.011) 0.954(0.005)

the supercomputer Raijin at the NCI National Facility systems supported by the Australian Government. The supercomputer
Raijin comprises 57,864 cores, which helped us parallel process a large number of simulations simultaneously.

From Tables 1–3, we observe that, for both KMB and SKMB procedures, the overall differences between the empirical
coverage rates and the corresponding nominal levels are small, which demonstrates that the KMB and SKMB procedures
can provide accurate approximations to the distributions of n1/2

|Ω̂S − ΩS |∞ and n1/2
|̂D−1(Ω̂S − ΩS )|∞, respectively. Also

note that the coverage rates improve as n increases. And, our results are robust to the temporal dependence parameter ρ,
which indicates the proposed procedures are adaptive to time dependent observations.
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Comparing the simulation results indicated by KMB and SKMB in the category S = {(j1, j2) : j1 ̸= j2} of Tables 1–3, when
the dimension is less than the sample size (p = 100, n = 150, 300), we can see that the SKMB procedure has better accuracy
than the KMB procedure if the heteroscedastic issue exists. This finding also exists when the dimension is over the sample
size and both of them are large (n = 300, p = 1500). For the homogeneous case S = {(j1, j2) : ωj1,j2 = 0}, the KMB procedure
provides better accuracy than the SKMB procedure when sample size is small (n = 150). However, when the sample size
becomes larger (n = 300), the accuracy of the SKMB procedure can be significantly improved and it will outperform the
KMB procedure. The phenomenon that the SKMB procedure sometimes cannot beat the KMB procedure might be caused
by incorporating the estimated standard deviations of ω̂j1,j2 ’s in the denominator of the Studentized-type statistic, which
suffers from high variability when the sample size is small. The simulation results suggest us that: (i) when the dimension
is less than the sample size or both the dimension and the sample size are very large, the SKMB procedure should be used to
construct the confidence regions ofΩS if the heteroscedastic issue exists; (ii) if the sample size is small, and we have some
previous information that there does not exist heteroscedastic issue, then the KMB procedure should be used to construct
the confidence regions ofΩS . However, even in the homogeneous case, the SKMB procedure should still be employed when
the sample size is large.

6. Real data analysis

In this section, we follow Example 3 in Section 2 to study the partial correlation networks of the Standard and Poors (S&P)
500 Component Stocks in 2005 (252 trading days, preceding the crisis) and in 2008 (253 trading days, during the crisis),
respectively. The reason to analyze those two periods is to understand the structure and dynamic of financial networks
affected by the global financial crisis (Schweitzer et al., 2009). Aït-Sahalia and Xiu (2015) analyzed the data in 2005 and
2008 as well in order to investigate the influence of the financial crisis.

We analyzed the data from http://quote.yahoo.com/ via the R package tseries, which contains the daily closing prices
of S&P 500 stocks. The R command get.hist.quote can be used to acquire the data. We kept 402 stocks in our analysis
whose closing prices were capable of being downloaded by the R command and did not have any missing values during
2005 and 2008. Let yj,t be the jth stock price at day t . We considered the log return of the stocks, which is defined by
log(yj,t ) − log(yj,t−1). As kindly pointed out by a referee that the log return data usually exhibit volatility clustering, we
utilized the R package fGarch to obtain the conditional standard deviation for the mean centered log return of each stock
via fitting a GARCH(1,1) model, and then we standardized the log return by its mean and conditional standard deviation.
Ultimately, we had the standardized log returns Rt = (R1,t , . . . , R402,t )T of all the 402 assets at day t .

LetΩ = (ωj1,j2 )p×p be the precisionmatrix of Rt . By the relationship between partial correlation and precisionmatrix, the
partial correlation network can be constructed by the non-zero precision coefficients ωj1,j2 as demonstrated in Example 3 in
Section 2. To learn the structures ofΩ , we focused on the Global Industry Classification Standard (GICS) sectors and their sub
industries of the S&P 500 companies, and aimed to discover the sub blocks of Ω which had nonzero entries. Those blocks
could help us build the partial correlation networks of the sectors and sub industries for the S&P 500 stocks in 2005 and
2008, respectively.

The advantage of investigating the complex financial network system by partial correlation is to overcome the issue that
the marginal correlation between two stocks might be a result of their correlations to other mediating stocks (Kenett et al.,
2010). For example, if two stocks Rj1,t and Rj2,t are both correlatedwith some stocks in the setR−(j1,j2),t = {Rj,t : j ̸= j1, j2}, the
partial correlation can suitably remove the linear effect ofR−(j1,j2),t on Rj1,t and Rj2,t . Hence, itmeasures a ‘‘direct’’ relationship
between j1 and j2 (de la Fuente et al., 2004). The partial correlation analysis is widely used in the study of financial networks
(Shapira et al., 2009; Kenett et al., 2010), as well as the study of gene networks (de la Fuente et al., 2004; Reverter and Chan,
2008; Chen and Zheng, 2009).

Based on the information on bloomberg and ‘‘List of S&P 500 companies’’ on wikipedia, we identified 10 major sectors
with 54 sub industries of the S&P 500 companies (see Tables 4 and 5 for detailed categories). The 10 sectors were
Consumer Discretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, Information Technology, Materials,
Telecommunication Services and Utilities. There were one company with the unidentified sector and eight companies with
unidentified sub industries due to acquisition or ticket change (represented by ‘‘NA’’ in Tables 4 and 5).

To explore the partial correlation networks of different sectors and sub industries, we were interested in a set of
hypotheses

Hh1h2,0 : ωj1,j2 = 0 for any (j1, j2) ∈ Ih1 × Ih2 vs. Hh1h2,1 : ωj1,j2 ̸= 0 for some (j1, j2) ∈ Ih1 × Ih2 (20)

for disjoint index sets {I1, . . . , IH}, which represented different sub industries. For each of the hypotheses in (20), we
calculated the Studentized-type statistic n1/2

|̂D−1Ω̂S |∞ in (13) with S = Ih1 × Ih2 and apply the SKMB procedure to obtain
M = 10000 parametric bootstrap samples ξ̂1, . . . , ξ̂M . The P-value of the hypothesis (20) was

P-valueh1,h2 =
1
M

M∑
m=1

I{|̂ξm|
∞

≥ n1/2
|̂D−1Ω̂S |∞} for S = Ih1 × Ih2 .

To identify the significant blocks, we applied the Benjamini and Hochberg (1995)’s multiple testing procedure that controls
the false discovery rate (FDR) of (20) at the rate α = 0.1. Let pvalue(1) ≤ · · · ≤ pvalue(K ) be the ordered P-values
and H(1),0, . . . ,H(K ),0 be the corresponding null hypotheses, where K = H(H − 1)/2 is the number of hypotheses under
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Table 4
Sectors and sub industries of the 402 S&P 500 stocks. ‘‘NA’’ represents that the sector or sub industry of the corresponding stock cannot be identified due
to acquisition or ticket change.

Stock Symbols Sectors Sector No. Sub Industries Industry No.

IPG Consumer Discretionary 1 Advertising 1
ANF, COH, NKE, TIF, VFC Consumer Discretionary 1 Apparel, Accessories & Luxury Goods 2
F, HOG, JCI Consumer Discretionary 1 Auto Parts & Equipment 3
CBS, CMCSA, DIS, DTV, TWC, TWX Consumer Discretionary 1 Broadcasting & Cable TV 4
IGT, WYNN Consumer Discretionary 1 Casinos & Gaming 5
JCP, JWN, KSS, M Consumer Discretionary 1 Department Stores 6
APOL, DV Consumer Discretionary 1 Educational Services 7
DHI, KBH, LEN, LOW, PHM Consumer Discretionary 1 Homebuilding 8
EXPE, HOT, MAR, WYN Consumer Discretionary 1 Hotels, Resorts & Cruise Lines 9
BDK, NWL, SNA, SWK, WHR Consumer Discretionary 1 Household Appliances 10
AMZN Consumer Discretionary 1 Internet Retail 11
HAS, MAT, ODP, RRD Consumer Discretionary 1 Printing Services 12
GCI, MDP, NYT Consumer Discretionary 1 Publishing 13
DRI, SBUX, YUM Consumer Discretionary 1 Restaurants 14
AN, AZO, BBBY, GPC, GPS, HAR, LTD, SPLS Consumer Discretionary 1 Specialty Stores 15
FPL, WPO Consumer Discretionary 1 NA NA
ADM Consumer Staples 2 Agricultural Products 16
CVS, SVU, SWY, WAG Consumer Staples 2 Food & Drug Stores 17
AVP, CL, KMB Consumer Staples 2 Household Products 18
TGT, FDO, WMT Consumer Staples 2 Hypermarkets & Super Centers 19

CAG, CCE, CPB, DF, GIS, HNZ, HRL, HSY, K, KFT, Consumer Staples 2 Packaged Food 20KO, MKC, PBG, PEP, SJM, SLE, STZ, TAP, TSN

EL, PG Consumer Staples 2 Personal Products 21
MO, RAI Consumer Staples 2 Tobacco 22
BTU, CNX, MEE Energy 3 Coal Operations 23

APA, CHK, COG, COP, CTX, CVX, DNR, DO, DVN,
Energy 3 Oil & Gas Exploration & Production 24EOG, EP, EQT, ESV, FO, HES, MRO, MUR, NBL,

OXY, PXD, RRC, SE, SWN, TSO, VLO, WMB, XTO

BHI, BJS, CAM, FTI, NBR, NOV, RDC, SII, SLB Energy 3 Oil & Gas Equipment & Services 25

BAC, BBT, BK, C, CIT, CMA, COF, FHN, FITB,
Financials 4 Banks 26HCBK, HRB, IVZ, KEY, LM, MI, MTB, NTRS, PNC,

SLM, STI, USB, WFC

CME, EFX, ICE, NYX, PFG, PRU, RF, STT, TROW, Financials 4 Diversified Financial Services 27UNM, VTR

ETFC, FII, JNS, LUK, MS, SCHW Financials 4 Investment Banking & Brokerage 28

AFL, AIG, AIZ, CB, CINF, GNW, HIG, L, LNC, Financials 4 Property & Casualty Insurance 29MBI, MET, MMC, PGR, TMK, TRV, XL

AMT, AVB, BXP, CBG, HCN, HCP, HST, IRM, Financials 4 REITs 30KIM, PBCT, PCL, PSA, SPG, VNO, WY

our consideration. Note that we had K = 1431 for testing sub industry blocks. We rejected H(1),0, . . . ,H(v),0 in (20) for
v = max{1 ≤ j ≤ K : pvalue(j) ≤ αj/K }.

We constructed the partial correlation networks based on the significant blocks from the above multiple testing
procedure. The estimated partial correlation networks of the 54 sub industries, labeled by numbers from1 to 54, are shown in
the right panels of Figs. 1 and 2, corresponding to 2005 and 2008, respectively. The name of each sub industry and the stocks
included can be found in Tables 4 and 5. The shaded areas with different colors represent the 10 major sectors, respectively.
The left panels in Figs. 1 and 2 give the partial correlation networks of the sectors, where the nodes represent the 10 sectors,
and two nodes (sectors) h̃1 and h̃2 are connected if and only if there exists a connection between one of sub industries
belonging to sector h̃1 and one of sub industries belonging to sector h̃2 in the right panel.

We observed from the left panel of Fig. 1 that preceding the crisis in 2005, the Consumer Discretionary sectorwas likely to
be a hub connecting to all the other 9 sectors. It was themost influential sector with the largest degree, i.e., the total number
of directed links connecting to the Consumer Discretionary sector in the network. During the crisis in 2008, the Consumer
Discretionary sector was still the most influential sector as shown by the left panel of Fig. 2, but it had less connections
compared to 2005. The Financials sector was a little bit separated from the other sectors in 2008, with only half connections
in contrast with the network connectivity in 2005. The similar situation also appeared in the partial correlations networks
of S&P 500 sub industries as shown in the right panels of Figs. 1 and 2. More specifically, both the numbers of the edges
within and between most sectors for the network of S&P 500 sub industries in 2008 were significantly less than those in
2005 (see Table 6 for details), which indicated that the market fear in the crisis broke the connections of stock sectors and
sub industries. From the perspective of financial network studies, the above analysis confirmed that fear froze the market in
the 2008 crisis (Reavis, 2012).
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Table 5
Sectors and sub industries of the 402 S&P 500 stocks (continued). ‘‘NA’’ represents that the sector or sub industry of the corresponding stock cannot be
identified due to acquisition or ticket change.

Stock Symbols Sectors Sector No. Sub Industries Industry No.

AOC Financials 4 NA NA

AMGN, BIIB, CELG, FRX, GENZ, GILD, HSP, Health Care 5 Pharmaceuticals 31KG, LIFE, LLY, MRK, MYL, WPI

ABC, AET, BMY, CAH, CI, DGX, DVA, ESRX, HUM, Health Care 5 Health Care Supplies 32MCK, MHS, PDCO, THC, UNH, WAT, WLP, XRAY

ABT, BAX, BCR, BDX, ISRG, JNJ, MDT, MIL, Health Care 5 Health Care Equipment & Services 33PKI, PLL, STJ, SYK, TMO, VAR

BA, RTN Industrials 6 Aerospace & Defense 34
CHRW, EXPD, FDX, UPS Industrials 6 Air Freight & Logistics 35
LUV Industrials 6 Airlines 36
DE, FAST, GLW, MAS, MTW, PCAR Industrials 6 Construction & Farm Machinery

& Heavy Trucks
37

COL, EMR, ETN, GE, HON, IR, JEC, LEG, Industrials 6 Industrial Conglomerates 38LLL, MMM, PH, ROK, RSG, TXT, TYC

CMI, DHR, DOV, FLS, GWW, ITT, ITW Industrials 6 Industrial Machinery 39
CSX, NSC, UNP Industrials 6 Railroads 40
ACS, CTAS, FLR, RHI Industrials 6 NA NA
CBE, MOLX, JBL, LXK Information Technology 7 Office Electronics 41

ADBE, ADSK, BMC, CA, ERTS, MFE, MSFT, NOVL, Information Technology 7 Application Software 42ORCL, TDC

CIEN, HRS, JDSU, JNPR, MOT Information Technology 7 Communications Equipment 43
AAPL, AMD, HPQ, JAVA, QLGC, SNDK Information Technology 7 Computer Storage & Peripherals 44

ADP, AKAM, CRM, CSC, CTSH, CTXS, CVG, EBAY,
Information Technology 7 Information Services 45FIS, GOOG, IBM, INTU, MA, MWW, PAYX, TSS,

XRX, YHOO, DNB

ALTR, AMAT, BRCM, INTC, KLAC, LLTC, LSI, MCHP, Information Technology 7 Semiconductors 46MU, NSM, NVDA, NVLS, QCOM, TXN, XLNX

ATI, BLL, FCX, NEM, OI Materials 8 Metal & Glass Containers 47
DD, DOW, ECL, EMN, IFF, MON, PPG, PX, SHW, SIAL Materials 8 Specialty Chemicals 48
BMS, MWV, PTV Materials 8 Containers & Packaging 49
AKS, TIE, X Materials 8 Iron & Steel 50
AVY, IP, SEE Materials 8 Paper Packaging 51
VMC Materials 8 NA NA
CTL, EQ, FTR, Q, S, T, VZ, WIN Telecommunications Services 9 Telecom Carriers 52

AEE, AEP, AES, AYE, CMS, CNP, D, DYN, ETR, Utilities 10 MultiUtilities 53FE, PEG, POM, PPL, SCG, SO, SRE, TE, WEC, XEL

STR, TEG Utilities 10 Utility Networks 54
RX NA NA NA NA

Table 6
The numbers of edges within and between sectors for the partial correlation networks of the
S&P 500 sub industries in Figs. 1 and 2.

Sectors 2005 2008

Within Between Within Between

Consumer Discretionary 13 37 9 12
Consumer Staples 4 16 1 6
Energy 0 8 1 4
Financials 3 14 5 5
Health Care 2 10 2 8
Industrials 5 19 3 5
Information Technology 5 13 6 9
Materials 2 12 2 10
Telecommunication Services 0 3 0 1
Utilities 0 4 1 2
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Appendix

Throughout the Appendix, let C denote a generic positive constant depending only on the constants specified in
Conditions 1–4,whichmay be different in different cases. Let ρ−1

1 = 2γ−1
1 +γ−1

3 , ρ−1
2 = 2γ−1

2 +γ−1
3 , ρ−1

3 = γ−1
1 +γ−1

2 +γ−1
3

and ρ−1
4 = max{ρ−1

2 , ρ−1
3 } + γ−1

3 . Define ζ = min{ρ1, ρ2, ρ3, ρ4} and∆ = n−1∑n
t=1ϵtϵ

T
t − V =: (δj1,j2 ).

Lemma 1. Assume Conditions 1–3 hold. If log p = o{nζ/(2−ζ )}, there exists a uniform constant A0 > 1 independent of n and p
such that

P
{
|Σ̂ − Σ |∞ > A1(n−1 log p)1/2

}
≤ exp{−CAρ11 (n log p)ρ1/2} + exp(−CA2

1 log p),

P
{
|∆|∞ > A2(n−1 log p)1/2

}
≤ exp{−CAρ22 (n log p)ρ2/2} + exp(−CA2

2 log p),

sup
1≤j≤p

P
(
1
n

n∑
t=1

ϵ2j,t > A3vj,j

)
≤ exp(−CAρ23 nρ2 ),
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sup
1≤j≤p

P
{
max
k̸=j

⏐⏐⏐⏐1n
n∑

t=1

ϵj,tyk,t

⏐⏐⏐⏐ > A4(n−1 log p)1/2
}

≤ exp{−CAρ34 (n log p)ρ3/2} + exp(−CA2
4 log p),

sup
1≤j≤p

P
{⏐⏐⏐⏐1n

n∑
t=1

αT
j,−jy−j,tϵj,t

⏐⏐⏐⏐ > A5(n−1 log p)1/2
}

≤ exp{−CAρ45 (n log p)ρ4/2} + exp(−CA2
5 log p)

for any A1, A2, A3, A4, A5 > A0.

Proof. For any given j1 and j2, basedon the first part of Condition1, Lemma2of Chang et al. (2013) leads to sup1≤t≤nP(|yj1,tyj2,t
− σj1,j2 | > x) ≤ C exp(−Cxγ1/2) for any x > 0. Hence, for any x > 0 such that nx → ∞, Theorem 1 of Merlevède et al. (2011)
leads to

P
(⏐⏐⏐⏐1n

n∑
t=1

yj1,tyj2,t − σj1,j2

⏐⏐⏐⏐ > x
)

≤ n exp(−Cnρ1xρ1 ) + exp(−Cnx2).

By Bonferroni inequality, we have P(|Σ̂ − Σ |∞ > x) ≤ np2 exp(−Cnρ1xρ1 ) + p2 exp(−Cnx2). Let x = A1(n−1 log p)1/2, we
obtain the first conclusion. Following the same arguments, we can establish the other inequalities. □

Lemma 2. Assume Conditions 1–3 hold. Let s = max1≤j≤p|αj|0. For some suitable λj ≍ (n−1 log p)1/2 for each j = 1, . . . , p,
we have max1≤j≤p |̂αj − αj|1 = op{(log p)−1

} and max1≤j≤p |̂αj − αj|2 = op{(n log p)−1/4
} provided that log p = o{nζ/(2−ζ )} and

s2(log p)3n−1
= o(1).

Proof. Define

T =

{
max
1≤j≤p

max
k̸=j

⏐⏐⏐⏐1n
n∑

t=1

ϵj,tyk,t

⏐⏐⏐⏐ ≤ A4(n−1 log p)1/2
}

for some A4 > A0, where A0 is given in Lemma 1. Selecting λj ≥ 4A4(n−1 log p)1/2 for any j, Theorem 6.1 and Corollary 6.8 of
Bühlmann and van de Geer (2011) imply that, restricted on T , we have

max
1≤j≤p

|̂αj − αj|1 ≤ Cs(n−1 log p)1/2 (21)

and

(̂αj − αj)TΣ̂−j,−j (̂αj − αj) ≤ Csn−1 log p (22)

with probability approaching 1. By Bonferroni inequality and Lemma 1,

P(T c) ≤

p∑
j=1

P
{∑

k̸=j

⏐⏐⏐⏐1n
n∑

t=1

ϵj,tyk,t

⏐⏐⏐⏐ > A4(n−1 log p)1/2
}

≤ p exp{−CAρ34 (n log p)ρ3/2} + p exp(−CA2
4 log p).

For suitable selection of A4, we have P(T c) → 0 as n → ∞. Thus, from (21), it holds that

max
1≤j≤p

|̂αj − αj|1 = Op{s(n−1 log p)1/2} = op{(log p)−1
}. (23)

On the other hand, notice that

(̂αj − αj)TΣ̂−j,−j (̂αj − αj) ≥ λmin(Σ−j,−j)|̂αj − αj|
2
2 − |Σ̂−j,−j − Σ−j,−j|∞ |̂αj − αj|

2
1,

by Condition 2, Lemma 1, (22) and (23), we have

max
1≤j≤p

|̂αj − αj|2 = Op{(sn−1 log p)1/2} = op{(n log p)−1/4
}.

Hence, we complete the proof. □

Lemma 3. Assume the conditions for Lemmas 1 and 2 hold, then

1
n

n∑
t=1

ϵ̂j1,t ϵ̂j2,t −
1
n

n∑
t=1

ϵj1,tϵj2,t = −(̂αj1,j2 − αj1,j2 )
(
1
n

n∑
t=1

ϵ2j2,t

)
I(j1 ̸= j2)

− (̂αj2,j1 − αj2,j1 )
(
1
n

n∑
t=1

ϵ2j1,t

)
I(j1 ̸= j2) + op{(n log p)−1/2

}.
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Here the remainder term op{(n log p)−1/2
} is uniform over all j1 and j2.

Proof. Notice that ϵj,t = −αT
j yt and ϵ̂j,t = −α̂T

j yt for any t , then

1
n

n∑
t=1

ϵ̂j1,t ϵ̂j2,t −
1
n

n∑
t=1

ϵj1,tϵj2,t = −
1
n

n∑
t=1

(̂αj1 − αj1 )
Tytϵj2,t −

1
n

n∑
t=1

(̂αj2 − αj2 )
Tytϵj1,t

+
1
n

n∑
t=1

(̂αj1 − αj1 )
TytyTt (̂αj2 − αj2 ).

Condition 2, Lemmas 1 and 2 imply that

max
1≤j1,j2≤p

⏐⏐⏐⏐1n
n∑

t=1

(̂αj1 − αj1 )
TytyTt (̂αj2 − αj2 )

⏐⏐⏐⏐
≤ max

1≤j1,j2≤p
|(̂αj1 − αj1 )

TΣ (̂αj2 − αj2 )| + max
1≤j1,j2≤p

|(̂αj1 − αj1 )
T(Σ̂ − Σ )(̂αj2 − αj2 )|

≤ C max
1≤j≤p

|̂αj − αj|
2
2 + |Σ̂ − Σ |∞ max

1≤j≤p
|̂αj − αj|

2
1

= op{(n log p)−1/2
}.

Meanwhile, by Lemma 1, we have max1≤j≤pmaxk̸=j|n−1∑n
t=1ϵj,tyk,t | = Op{(n−1 log p)1/2},which implies that

max
1≤j1,j2≤p

⏐⏐⏐⏐ ∑
k̸=j1,j2

(̂αj1,k − αj1,k)
(
1
n

n∑
t=1

yk,tϵj2,t

)⏐⏐⏐⏐ ≤ max
1≤j≤p

|̂αj − αj|1 · max
1≤j≤p

max
k̸=j

⏐⏐⏐⏐1n
n∑

t=1

yk,tϵj,t

⏐⏐⏐⏐
= op{(n log p)−1/2

}.

Therefore, we have

1
n

n∑
t=1

(̂αj1 − αj1 )
Tytϵj2,t = (̂αj1,j2 − αj1,j2 )

(
1
n

n∑
t=1

yj2,tϵj2,t

)
I(j1 ̸= j2)

+

∑
k̸=j1,j2

(̂αj1,k − αj1,k)
(
1
n

n∑
t=1

yk,tϵj2,t

)

= (̂αj1,j2 − αj1,j2 )
(
1
n

n∑
t=1

yj2,tϵj2,t

)
I(j1 ̸= j2) + op{(n log p)−1/2

}.

(24)

Here the remainder term is uniform over any j1 and j2. On the other hand, n−1∑n
t=1yj,tϵj,t = n−1∑n

t=1ϵ
2
j,t +

n−1∑n
t=1α

T
j,−jy−j,tϵj,t . By the fourth result of Lemma 1, it yields that n−1∑n

t=1yj,tϵj,t = n−1∑n
t=1ϵ

2
j,t + Op{(n−1 log p)1/2}.

Here the remainder term is uniform over all j. Together with (24), we have

1
n

n∑
t=1

(̂αj1 − αj1 )
Tytϵj2,t = (̂αj1,j2 − αj1,j2 )

(
1
n

n∑
t=1

ϵ2j2,t

)
I(j1 ̸= j2) + op{(n log p)−1/2

}.

Here the remainder term is also uniform over all j1 and j2. Hence,

1
n

n∑
t=1

ϵ̂j1,t ϵ̂j2,t −
1
n

n∑
t=1

ϵj1,tϵj2,t = −(̂αj1,j2 − αj1,j2 )
(
1
n

n∑
t=1

ϵ2j2,t

)
I(j1 ̸= j2)

− (̂αj2,j1 − αj2,j1 )
(
1
n

n∑
t=1

ϵ2j1,t

)
I(j1 ̸= j2) + op{(n log p)−1/2

}.

We complete the proof. □
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Proof of Proposition 1. Notice that vj1,j2 =
ωj1,j2

ωj1,j1ωj2,j2
,αj1,j2 = −

ωj1,j2
ωj1,j1

and ṽj1,j2 = n−1∑n
t=1̂ϵj1,t ϵ̂j2,t for any j1 and j2, Lemma3

implies that

−v̂j1,j2 + vj1,j2 = ṽj1,j2 +
α̂j1,j2

n

n∑
t=1

ϵ̂2j2,t +
α̂j2,j1

n

n∑
t=1

ϵ̂2j1,t + vj1,j2

=
1
n

n∑
t=1

(ϵj1,tϵj2,t − vj1,j2 ) +
αj1,j2

n

n∑
t=1

(ϵ2j2,t − vj2,j2 )

+
αj2,j1

n

n∑
t=1

(ϵ2j1,t − vj1,j1 ) + op{(n log p)−1/2
}

for any j1 ̸= j2. Recall∆ = n−1∑n
t=1ϵtϵ

T
t −V =: (δj1,j2 ). It follows from Lemma 1 thatmax1≤j1,j2≤p|δj1,j2 | = Op{(n−1 log p)1/2}.

Recall ω̂j1,j2 =
v̂j1,j2

v̂j1,j1 v̂j2,j2
, if log p = o{nζ/(2−ζ )} for ζ specified in Lemma 1 and s2(log p)3n−1

= o(1), it holds that

ω̂j1,j2 − ωj1,j2 = −
δj1,j2

vj1,j1vj2,j2
+ op{(n log p)−1/2

}

for any j1 ̸= j2. Meanwhile, by the same arguments, for each j = 1, . . . , p, it holds that ω̂j,j −ωj,j = −
δj,j

v2j,j
+ op{(n log p)−1/2

}.

This proves Proposition 1. □

Proof of Theorem 1. Define d1 = supx>0|P(n1/2
|ΠS |∞ > x) − P(|ξ|∞ > x)|. For any x > 0 and ε1 > 0, it yields that

P
(
n1/2

|Ω̂S − ΩS |∞ > x
)

≤ P(n1/2
|ΠS |∞ > x − ε1) + P(n1/2

|ΥS |∞ > ε1)

≤ P(|ξ|∞ > x − ε1) + d1 + P(n1/2
|ΥS |∞ > ε1)

= P(|ξ|∞ > x) + P(x − ε1 < |ξ|∞ ≤ x) + d1 + P(n1/2
|ΥS |∞ > ε1).

On the other hand, notice that P
(
n1/2

|Ω̂S − ΩS |∞ > x
)

≥ P(n1/2
|ΠS |∞ > x + ε1) − P(n1/2

|ΥS |∞ > ε1), following the
same arguments, we have

sup
x>0

⏐⏐P(
n1/2

|Ω̂S − ΩS |∞ > x
)
− P(|ξ|∞ > x)

⏐⏐ ≤ d1 + sup
x>0

P(x − ε1 < |ξ|∞ ≤ x + ε1) + P(n1/2
|ΥS |∞ > ε1). (25)

By the Anti-concentration inequality for Gaussian random vector [Corollary 1 of Chernozhukov et al. (2015)], it holds that

sup
x>0

P(x − ε1 < |ξ|∞ ≤ x + ε1) ≤ Cε1(log p)1/2 (26)

for any ε1 → 0. From the proofs of Lemmas 2 and 3, we know n1/2
|ΥS |∞ = Op(sn−1/2 log p). Thus, if s2(log p)3n−1

= o(1),
we can select a suitable ε1 to guarantee ε1(log p)1/2 → 0 and n1/2

|ΥS |∞ = op(ε1). Therefore, for such selected ε1, (25) leads
to

sup
x>0

⏐⏐P(
n1/2

|Ω̂S − ΩS |∞ > x
)
− P(|ξ|∞ > x)

⏐⏐ ≤ d1 + o(1). (27)

To prove Theorem 1, it suffices to show d1 → 0 as n → ∞. We will show this below.
Write ΠS = −(ς̄1, . . . , ς̄r )T where ς̄j = n−1∑n

t=1ςj,t and ξ = (ξ1, . . . , ξr )T. Given a Dn → ∞, define ς+

j,t =

ςj,tI{|ςj,t | ≤ Dn} − E[ςj,tI{|ςj,t | ≤ Dn}] and ς−

j,t = ςj,tI{|ςj,t | > Dn} − E[ςj,tI{|ςj,t | > Dn}]. Write ς+

t = (ς+

1,t , . . . , ς
+

r,t )T

and ς−

t = (ς−

1,t , . . . , ς
−

r,t )T for each t . The diverging rate of Dn will be specified later. Let L be a positive integer satisfying
L ≤ n/2, L → ∞ and L = o(n). We decompose the sequence {1, . . . , n} to the followingm + 1 blocks wherem = ⌊n/L⌋ and
⌊·⌋ is the integer truncation operator: Gℓ = {(ℓ− 1)L+ 1, . . . , ℓL} (ℓ = 1, . . . ,m) and Gm+1 = {mL+ 1, . . . , n}. Additionally,
let b > h be two positive integers such that L = b + h, h → ∞ and h = o(b). We decompose each Gℓ (ℓ = 1, . . . ,m)
to a ‘‘large’’ block with length b and a ‘‘small’’ block with length h. Specifically, Iℓ = {(ℓ − 1)L + 1, . . . , (ℓ − 1)L + b} and
Jℓ = {(ℓ− 1)L+ b+ 1, . . . , ℓL} for any ℓ = 1, . . . ,m, and Jm+1 = Gm+1. Assume u is a centered normal random vector such
that

u = (u1, . . . , ur )T ∼ N
[
0,

1
mb

m∑
ℓ=1

E
{(∑

t∈Iℓ

ς+

t

)(∑
t∈Iℓ

ς+

t

)T}]
.

Our following proof includes two steps. The first step is to show

d2 := sup
x>0

⏐⏐P(
n1/2

|ΠS |∞ > x
)
− P(|u|∞ > x)

⏐⏐ = o(1). (28)
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And the second step is to show

sup
x>0

⏐⏐P(|u|∞ > x) − P(|ξ|∞ > x)
⏐⏐ = o(1). (29)

From (28) and (29), we have d1 = o(1).
We first show (28). Define d3 = supx>0|P(|n−1/2∑n

t=1ς
+

t |
∞
> x) − P(|u|∞ > x)|. Notice that n1/2ΠS = n−1/2∑n

t=1ς
+

t +

n−1/2∑n
t=1ς

−

t , by the triangle inequality, it holds that |n1/2
|ΠS |∞ − |n−1/2∑n

t=1ς
+

t |
∞

| ≤ |n−1/2∑n
t=1ς

−

t |
∞
. Similar to (25),

we have

d2 ≤ d3 + sup
x>0

P(x − ε2 < |u|∞ ≤ x + ε2) + P
(⏐⏐⏐⏐ 1

n1/2

n∑
t=1

ς−

t

⏐⏐⏐⏐
∞

> ε2

)
(30)

for any ε2 > 0. For each j, it follows from Davydov inequality (Davydov, 1968) that

E
(⏐⏐⏐⏐ 1

√
n

n∑
t=1

ς−

j,t

⏐⏐⏐⏐2) =
1
n

n∑
t=1

E{(ς−

j,t )
2
} +

1
n

∑
t1 ̸=t2

E(ς−

j,t1
ς−

j,t2
)

≤
1
n

n∑
t=1

E{(ς−

j,t )
2
} +

C
n

∑
t1 ̸=t2

[E{(ς−

j,t1
)4}]1/4[E{(ς−

j,t2
)4}]1/4 exp(−C |t1 − t2|γ3 ).

Applying Lemma 2 of Chang et al. (2013), Conditions 1 and 4 imply that supj,tP(|ςj,t | > x) ≤ C exp(−Cxγ2/2) for any x > 0.
Then

E{ς4
j,tI(|ςj,t | > Dn)} = 4

∫ Dn

0
x3P(|ςj,t | > Dn) dx + 4

∫
∞

Dn

x3P(|ςj,t | > x) dx ≤ CD4
n exp(−CDγ2/2n ). (31)

By the triangle inequality and Jensen’s inequality,

E{(ς−

j,t )
4
} ≤ CE{ς4

j,tI(|ςj,t | > Dn)} + C[E{ςj,tI(|ςj,t | > Dn)}]4 ≤ CD4
n exp(−CDγ2/2n ), (32)

which implies that

sup
1≤j≤r

E
(⏐⏐⏐⏐ 1

n1/2

n∑
t=1

ς−

j,t

⏐⏐⏐⏐2) ≤ CD2
n exp(−CDγ2/2n ) + CD2

n exp(−CDγ2/2n )
n−1∑
k=1

exp(−Ckγ3 ) ≤ CD2
n exp(−CDγ2/2n ).

Thus, it follows from Markov inequality that

P
(⏐⏐⏐⏐ 1

n1/2

n∑
t=1

ς−

t

⏐⏐⏐⏐
∞

> ε2

)
≤

r
ε22

sup
1≤j≤r

E
(⏐⏐⏐⏐ 1

n1/2

n∑
t=1

ς−

j,t

⏐⏐⏐⏐2) ≤ Crε−2
2 D2

n exp(−CDγ2/2n ).

Similar to (26), it holds that supx>0P(x−ε2 < |u|∞ ≤ x+ε2) ≤ Cε2(log p)1/2 for any ε2 → 0. If we choose ε2 = (log p)−1 and
Dn = C(log p)2/γ2 for some sufficiently large C , then supx>0P(x − ε2 < |u|∞ ≤ x + ε2) + P(|n−1/2∑n

t=1ς
−

t |
∞
> ε2) = o(1).

Therefore, (30) implies d2 ≤ d3 + o(1). To show (28) that d2 = o(1), it suffices to prove d3 = o(1).
Let ς

+,ext
t = (ς+,T

t ,−ς
+,T
t )T = (ς+,ext

1,t , . . . , ς
+,ext
2r,t )T and uext

= (uT,−uT)T = (uext
1 , . . . , u

ext
2r )

T. To prove d3 =

supx>0|P(|n−1/2∑n
t=1ς

+

t |
∞
> x) − P(|u|∞ > x)| → 0, it is equivalent to show supx>0|P(max1≤j≤2rn−1/2∑n

t=1ς
+,ext
j,t > x) −

P(max1≤j≤2ruext
j > x)| → 0. From Theorem B.1 of Chernozhukov et al. (2014), supz∈R|P(max1≤j≤2rn−1/2∑n

t=1ς
+,ext
j,t > z) −

P(max1≤j≤2ruext
j > z)| → 0 if |Var(n−1/2∑n

t=1ς
+,ext
t ) − Var(uext)|

∞
→ 0.Notice that |Var(n−1/2∑n

t=1ς
+,ext
t ) − Var(uext)|

∞
=

|Var(n−1/2∑n
t=1ς

+

t ) − Var(u)|
∞
, thus to show d3 = o(1), it suffices to show

d4 := sup
z∈R

⏐⏐⏐⏐P(
max
1≤j≤r

n−1/2
n∑

t=1

ς+

j,t > z
)

− P
(
max
1≤j≤r

uj > z
)⏐⏐⏐⏐ → 0.

By Theorem B.1 of Chernozhukov et al. (2014), it holds that d4 ≤ Cn−C
+ Cm exp(−Chγ3 ) provided that

hb−1(log p)2 ≤ Cn−ϖ and b2D2
n log p + bD2

n(log p)
7

≤ Cn1−2ϖ (33)

for some ϖ ∈ (0, 1/4). As we mentioned above, Dn ≍ (log p)2/γ2 . To make p diverge as fast as possible, we can take
h ≍ (log n)ϑ for some ϑ > 0. Then (33) becomes⎧⎪⎨⎪⎩

C(log n)ϑnϖ (log p)2 ≤ b;

C(log n)2ϑ (log p)4/γ2+5
≤ n1−4ϖ

;

C(log n)ϑ (log p)4/γ2+9
≤ n1−3ϖ .
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Therefore, log p = o(nϕ) where ϕ = min
{ (1−4ϖ )γ2

4+5γ2
,

(1−3ϖ )γ2
4+9γ2

}
. Notice that ϕ takes the supremum when ϖ = 0. Hence, if

log p = o{nγ2/(4+9γ2)}, it holds that d4 → 0. Then we construct the result (28).
Analogously, to show (29), it suffices to show supz∈R|P(max1≤j≤ruj > z) − P(max1≤j≤rξj > z)| → 0. Write W̃ as the

covariance of u. Recall W denotes the covariance of ξ. Lemma 3.1 of Chernozhukov et al. (2013) leads to

sup
z∈R

⏐⏐⏐⏐P(
max
1≤j≤r

uj > z
)

− P
(
max
1≤j≤r

ξj > z
)⏐⏐⏐⏐ ≤ C |W̃ − W|

1/3
∞

{1 ∨ log(r/|W̃ − W|∞)}2/3. (34)

We will specify the convergence rate of |W̃ − W|∞ below. Notice that, for any 1 ≤ j1, j2 ≤ r , we have
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E
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.

The triangle inequality yields⏐⏐⏐⏐ 1
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E
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)(∑
t∈Iℓ

ςj2,t
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≤

1
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For each ℓ = 1, . . . ,m, the following identities hold:
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Together with the triangle inequality, Davydov inequality and Cauchy–Schwarz inequality, we have⏐⏐⏐⏐E{(∑
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)(∑
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ς−

j2,t
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1/4.

From (32), it holds that
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1≤j1,j2≤r
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)}⏐⏐⏐⏐ ≤ CDn exp(−CDγ2/2n ).

By the proof of Lemma 2 in Chang et al. (2015), we can prove that
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+ Cbn−1. (35)
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Specifically, notice that
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(36)

where we set Im+1 = ∅. By Cauchy–Schwarz inequality and Davydov inequality, we have⏐⏐⏐⏐ 1
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=
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exp{−C |(ℓ1 − ℓ2)b|γ3} ≤ Cbn−1.

Similarly, we can bound the other terms in (36). Therefore, we have (35) holdswhich implies that |W̃ − W|∞ ≤ Ch1/2b−1/2
+

Cbn−1
+CDn exp(−CDγ2/2n ). For b, h andDn specified above, (34) implies supz∈R|P(max1≤j≤ruj > z)−P(max1≤j≤rξj > z)| → 0.

Then we construct the result (29). Hence, we complete the proof of Theorem 1. □

Lemma 4. Assume Conditions 1 and 3 hold, the kernel function K(·) satisfies |K(x)| ≍ |x|−τ as x → ∞ for some τ > 1, and the
bandwidth Sn ≍ nρ for some 0 < ρ < min{

τ−1
3τ ,

γ3
2γ3+1 }. Let κ = max

{ 1
2γ3+1 ,

ρτ−ρ+2
τ+1+γ3

,
ρτ+1
τ

}
, and α0 be the maximizer for the

function f (α) = min{1 − α − 2ρ, 2(α − ρ)τ − 2} over κ < α < 1 − 2ρ. Then⏐⏐⏐⏐ n−1∑
k=0

K
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k
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1
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{ηtη
T
t−k − E(ηtη

T
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]⏐⏐⏐⏐
∞
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(
{log(pn)}4/γ2n−f (α0)/2

)
provided that log p ≤ CnCδ where δ = min[

γ2
γ2+8 (2α0γ3 + α − 1), γ28 {(α0 − ρ)τ + α0 + α0γ3 + ρ − 2}].

Proof. We first construct an upper bound for sup1≤j1,j2≤rP{|
∑n−1

k=0K(k/Sn)[n−1∑n
t=k+1{ηj1,tηj2,t−k − E(ηj1,tηj2,t−k)}]| > x}.

For any j1 and j2, it holds that
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⏐⏐⏐⏐K(
k
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)⏐⏐⏐⏐⏐⏐⏐⏐1n
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ψt,k
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k
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t=1

ψt,k

⏐⏐⏐⏐ > x
2

} (37)

for any α ∈ (0, 1), where ψt,k = ηj1,t+kηj2,t − E(ηj1,t+kηj2,t ). Following Lemma 2 of Chang et al. (2013), it holds that

sup
0≤k≤n−1

sup
1≤t≤n−k

P
(
|ψt,k| > x

)
≤ C exp(−Cxγ2/4) (38)
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for any x > 0. Notice that Sn ≍ nρ , we have max⌊Cnα⌋+1≤k≤n−1|K(k/Sn)| ≤ Cn−(α−ρ)τ if α > ρ. Then, (38) leads to

P
{ n−1∑

k=⌊Cnα⌋+1

⏐⏐⏐⏐K(
k
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(39)

We will specify the upper bound for P{
∑

⌊Cnα⌋

k=0 |K(k/Sn)||n−1∑n−k
t=1ψt,k| > x/2} below. Similar to (38), we have that

sup
1≤j1,j2≤r

sup
0≤k≤n−1

sup
1≤t≤n−k

P(|ηj1,t+kηj2,t | > x) ≤ C exp(−Cxγ2/4) (40)

for any x > 0. Denote by T the event {sup0≤k≤n−1sup1≤t≤n−k|ηj1,t+kηj2,t | > M}. For each k = 0, . . . , ⌊Cnα⌋, let ψ+

t,k =

ηj1,t+kηj2,tI{|ηj1,t+kηj2,t | ≤ M} − E[ηj1,t+kηj2,tI{|ηj1,t+kηj2,t | ≤ M}] for t = 1, . . . , n − k. Write D =
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P
{⌊Cnα⌋∑

k=0

⏐⏐⏐⏐K(
k
Sn

)⏐⏐⏐⏐⏐⏐⏐⏐1n
n−k∑
t=1

ψt,k

⏐⏐⏐⏐ > x
2

}
≤

⌊Cnα⌋∑
k=0

P
(⏐⏐⏐⏐1n

n−k∑
t=1

ψt,k

⏐⏐⏐⏐ > x
2D
, T c

)
+ P(T )
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)
.

(41)

From (40), we have P(T ) ≤ Cn2 exp(−CMγ2/4). Similar to (31), we have
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1≤j1,j2≤r

sup
0≤k≤n−1

sup
1≤t≤n−k

E[|ηj1,t+kηj2,t |I{|ηj1,t+kηj2,t | > M}] ≤ CM exp(−CMγ2/4).

If DMx−1 exp(−CMγ2/4) → 0, then (41) yields that
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+ Cn2 exp(−CMγ2/4). (42)

For each k = 0, . . . , ⌊Cnα⌋, we first consider P{n−1∑n−k
t=1ψ

+

t,k > x/(4D)}. By Markov inequality, it holds that

P
(
1
n

n−k∑
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ψ+

t,k >
x
4D

)
≤ exp

(
−

unx
4D

)
E
{
exp

( n−k∑
t=1

uψ+

t,k

)}
(43)

for any u > 0. Let L be a positive integer such that L ≍ nα and L ≥ 3⌊Cnα⌋ for C specified in (37). We decompose the
sequence {1, . . . , n−k} to the followingm+1 blocks wherem = ⌊(n−k)/L⌋: Gℓ = {(ℓ−1)L+1, . . . , ℓL} (ℓ = 1, . . . ,m) and
Gm+1 = {mL+1, . . . , n−k}. Additionally, let b = ⌊L/2⌋ and h = L−b. We then decompose each Gℓ (ℓ = 1, . . . ,m) to a block
with length b and a block with length h. Specifically, Iℓ = {(ℓ−1)L+1, . . . , (ℓ−1)L+b} and Jℓ = {(ℓ−1)L+b+1, . . . , ℓL}
for any ℓ = 1, . . . ,m, and Im+1 = Gm+1. Based on these notations and Cauchy–Schwarz inequality, it holds that

E
{
exp

( n−k∑
t=1

uψ+

t,k

)}
≤

[
E
{
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ℓ=1
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t,k

)}]1/2[
E
{
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2uψ+

t,k

)}]1/2

.

By Lemma 2 of Merlevède et al. (2011), noticing that b(m + 1) ≤ 2n, we have

E
{
exp
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ℓ=1

∑
t∈Iℓ

2uψ+

t,k

)}
≤
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ℓ=1

E
{
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(∑
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2uψ+
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)}
+ CuMn exp(8uMn − C |b − k|γ3+ ). (44)

Following the inequality ex ≤ 1 + x + x2ex∨0/2 for any x ∈ R, we have that

E
{
exp

(∑
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2uψ+

t,k

)}
≤ 1 + 2u2E

{(∑
t∈Iℓ

ψ+

t,k

)2}
exp(4ubM) ≤ 1 + Cu2b2 exp(4ubM).
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Together with (44), following the inequality (1 + x)m+1
≤ e(m+1)x for any x > 0, and bm ≤ n/2, it holds that

E
{
exp

(m+1∑
ℓ=1

∑
t∈Iℓ

2uψ+

t,k

)}
≤ exp{Cu2nb exp(4ubM)} + CuMn exp(8uMn − C |b − k|γ3+ ).

Similarly, we can obtain the same upper bound for E{exp(
∑m

ℓ=1
∑

t∈Jℓ
2uψ+

t,k)}. Hence,

E
{
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( n−k∑
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t,k
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≤ exp{Cu2nb exp(4ubM)} + CuMn exp{8uMn − C |b − k|γ3+ ).

We restrict |ubM| ≤ C . Notice that b − k ≥ ⌊Cnα⌋/2 − 1, then

E
{
exp

( n−k∑
t=1

uψ+

t,k

)}
≤ C exp(Cu2nb) + CuMn exp(8uMn − Cnαγ3 ).

Together with (43), notice that D ≍ Sn ≍ nρ and b ≍ nα , it holds that

P
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1
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x
4D

)
≤ C exp(−Cun1−ρx + Cu2n1+α) + CuMn exp(−Cun1−ρx + 8uMn − Cnαγ3 ). (45)

Tomake the upper bound in above inequality decay to zero for some x → 0+ andM → ∞, we need to require uMn1−αγ3 ≤ C .
For the first term on the right-hand side of above inequality, the optimal selection of u is u ≍ xn−α−ρ . Therefore, (45) can be
simplified to

P
(
1
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t,k >
x
4D

)
≤ C exp(−Cn1−α−2ρx2) + C exp(−Cnαγ3 )

if xMn1−α−αγ3−ρ
≤ C . The same inequality also holds for P{n−1∑n−k

t=1ψ
+

t,k < −x/(4D)}. Combining with (37), (39) and (42),

P
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K
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1
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≤ Cnα exp(−Cn1−α−2ρx2) + Cnα exp(−Cnαγ3 ) + Cn2 exp[−C{xn(α−ρ)τ−1

}
γ2/4] + Cn2 exp(−CMγ2/4)

for any x > 0 such that xMn1−α−αγ3−ρ
≤ C . Notice that above inequality is uniform for any j1 and j2, thus

P
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K
(

k
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)[
1
n

n∑
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T
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T
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]⏐⏐⏐⏐
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}

≤ Cp2nα exp(−Cn1−α−2ρx2) + Cp2nα exp(−Cnαγ3 ) + Cp2n2 exp[−C{xn(α−ρ)τ−1
}
γ2/4] + Cp2n2 exp(−CMγ2/4).

To make the upper bound of above inequality converge to zero, x andM should satisfy the following restrictions:⎧⎪⎨⎪⎩ x ≥ C
[√

log(pn)
n1−α−2ρ ∨

{log(pn)}4/γ2

n(α−ρ)τ−1

]
,

M ≥ C{log(pn)}4/γ2 .

(46)

Notice that xMn1−α−αγ3−ρ
≤ C , (46) implies that log p ≤ CnCδ where δ = min{

γ2
γ2+8 (2αγ3 +α−1), γ28 {(α−ρ)τ +α+αγ3 +

ρ−2}}. Tomake x can decay to zero and p can diverge at exponential rate of n, we need to assume 0 < ρ < min{
τ−1
3τ ,

γ3
2γ3+1 }

and κ < α < 1 − 2ρ. Let f (α) = min{1 − α − 2ρ, 2(α − ρ)τ − 2} and α0 = argmaxκ<α<1−2ρ f (α). We select α = α0 and
x = C{log(pn)}4/γ2n−f (α0)/2, then

P
{⏐⏐⏐⏐ n−1∑

k=0

K
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T
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]⏐⏐⏐⏐
∞

> x
}

→ 0.

Hence, we complete the proof of Lemma 4. □

Proof of Theorem 2. Similar to the proof of (29), it suffices to prove |Ŵ − W|∞ = op(1). By Lemmas 1 and 3, we have
max1≤j≤p |̂vj,j − vj,j| = Op{(n−1 log p)1/2}. Notice that vj,j’s are uniformly bounded away from zero, then v̂−1

j,j ’s are uniformly
bounded away from infinity with probability approaching one. Thus,

|Ŵ − W|∞ ≤ C |Ξ̂ − Ξ |∞ + C |̂H − H|∞ = C |Ξ̂ − Ξ |∞ + Op{(n−1 log p)1/2}. (47)



J. Chang et al. / Journal of Econometrics 206 (2018) 57–82 79

We will show |Ξ̂ − Ξ |∞ = op(1) below.
Define

Ξ̃ =

n−1∑
k=−n+1

K
(

k
Sn

)
Γk

where

Γk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n

n∑
t=k+1

E(ηtη
T
t−k), k ≥ 0;

1
n

n∑
t=−k+1

E(ηt+kη
T
t ), k < 0.

We will specify the convergence rates of |Ξ̂ − Ξ̃ |∞ and |Ξ̃ − Ξ |∞, respectively. Notice that

Ξ̂ − Ξ̃ =

n−1∑
k=0

K
(

k
Sn

)(
Γ̂k − Γk

)
+

−1∑
k=−n+1

K
(

k
Sn

)(
Γ̂k − Γk

)
.

For any k ≥ 0, it holds that

Γ̂k =
1
n

n∑
t=k+1

ηtη
T
t−k +

1
n

n∑
t=k+1

(̂
ηt − ηt

)
ηT
t−k +

1
n

n∑
t=k+1

ηt
(̂
ηt−k − ηt−k

)T
+

1
n

n∑
t=k+1

(̂
ηt − ηt

)(̂
ηt−k − ηt−k

)T
,

which implies

n−1∑
k=0

K
(

k
Sn

)(
Γ̂k − Γk

)
=

n−1∑
k=0

K
(

k
Sn

)[
1
n

n∑
t=k+1

{ηtη
T
t−k − E(ηtη

T
t−k)}

]
+

n−1∑
k=0

K
(

k
Sn

){
1
n

n∑
t=k+1

(̂
ηt − ηt

)
ηT
t−k

}

+

n−1∑
k=0

K
(

k
Sn

){
1
n

n∑
t=k+1

ηt
(̂
ηt−k − ηt−k

)T}
+

n−1∑
k=0

K
(

k
Sn

){
1
n

n∑
t=k+1

(̂
ηt − ηt

)(̂
ηt−k − ηt−k

)T}
.

(48)

We will prove the |·|∞-norm of the last three terms on the right-hand side of above identity are Op{sSn(n−1 log p)1/2}. We
only need to show this rate for one of them and the proofs for the other two are similar. For any j and t ,

η̂j,t − η̂j,t =
{̂
ϵχ1(j),t ϵ̂χ2(j),t − ϵχ1(j),tϵχ2(j),t

}
−

{̂
vχ(j) − vχ(j)

}
= ϵ̂χ1(j),t ϵ̂χ2(j),t − ϵχ1(j),tϵχ2(j),t + Op{(n−1 log p)1/2}

=
{̂
αχ1(j) − αχ1(j)

}TytyTt
{̂
αχ2(j) − αχ2(j)

}
− ϵχ2(j),t

{̂
αχ1(j) − αχ1(j)

}Tyt − ϵχ1(j),t
{̂
αχ2(j) − αχ2(j)

}Tyt

+ Op{(n−1 log p)1/2}.

Here the term Op{(n−1 log p)1/2} is uniform for any j and t . Then the (j1, j2)th component of
∑n−1

k=0K(k/Sn){n−1∑n
t=k+1 (̂ηt −

ηt )ηT
t−k} is

{̂
αχ1(j1) − αχ1(j1)

}T
{n−1∑

k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ηj2,t−kytyTt

)}{̂
αχ2(j2) − αχ2(j2)

}
−

{̂
αχ1(j1) − αχ1(j1)

}T
{n−1∑

k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ytηj2,t−kϵχ2(j1),t

)}

−
{̂
αχ2(j1) − αχ2(j1)

}T
{n−1∑

k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ytηj2,t−kϵχ1(j1),t

)}
+ R̃j1,j2 ,

(49)
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where

|̃Rj1,j2 | ≤

{n−1∑
k=0

⏐⏐⏐⏐K(
k
Sn

)⏐⏐⏐⏐(1
n

n∑
t=k+1

|ηj2,t−k|

)}
· Op{(n−1 log p)1/2}

≤

{ n∑
k=0

⏐⏐⏐⏐K(
k
Sn

)⏐⏐⏐⏐}(
1
n

n∑
t=1

|ηj2,t |

)
· Op{(n−1 log p)1/2}

= Op{Sn(n−1 log p)1/2}.

Here the term Op{Sn(n−1 log p)1/2} is uniform for any j1 and j2. Following the same arguments, we have

sup
1≤j1,j2≤p

⏐⏐⏐⏐ n−1∑
k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ηj2,t−kytyTt

)⏐⏐⏐⏐
∞

≤ CSn,

sup
1≤j1,j2≤p

⏐⏐⏐⏐ n−1∑
k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ytηj2,t−kϵχ2(j1),t

)⏐⏐⏐⏐
∞

≤ CSn,

sup
1≤j1,j2≤p

⏐⏐⏐⏐ n−1∑
k=0

K
(

k
Sn

)(
1
n

n∑
t=k+1

ytηj2,t−kϵχ1(j1),t

)⏐⏐⏐⏐
∞

≤ CSn.

Therefore, the (j1, j2)th component of
∑n−1

k=0K(k/Sn){n−1∑n
t=k+1 (̂ηt − ηt )ηT

t−k} can be bounded by CSnsup1≤j≤p |̂αj − αj|1 +

Op{Sn(n−1 log p)1/2} = Op{sSn(n−1 log p)1/2},where the last identity in above equation is based on (23). Therefore, from (48),
by Lemma 4, we have⏐⏐⏐⏐ n−1∑

k=0

K
(

k
Sn

)(
Γ̂k − Γk

)⏐⏐⏐⏐
∞

≤

⏐⏐⏐⏐ n−1∑
k=0

K
(

k
Sn

)[
1
n

n∑
t=k+1

{ηtη
T
t−k − E(ηtη

T
t−k)}

]⏐⏐⏐⏐
∞

+ Op{sSn(n−1 log p)1/2}

= Op[{log(pn)}4/γ2n−f (α0)/2] + Op{sSn(n−1 log p)1/2}.

Analogously, we can prove the same result for |
∑

−1
k=−n+1K(k/Sn)(Γ̂k − Γk)|∞. Therefore, |Ξ̂ − Ξ̃ |∞ =

Op[{log(pn)}4/γ2n−f (α0)/2] + Op{sSn(n−1 log p)1/2}. Repeating the proof of Proposition 1(b) in Andrews (1991), we know the
convergence in Proposition 1(b) is uniformly for each component of Ξ̃ − Ξ . Thus, |Ξ̃ − Ξ |∞ = o(1). Then |Ξ̂ − Ξ |∞ =

op(1). Similar to (34), we complete the proof. □

Proof of Corollary 1. From Theorem 2, it holds that PH0 (c ∈ CS,1−α,1) → 1 − α. Therefore, PH0 (Ψα = 1) = PH0 (c ̸∈

CS,1−α,1) → α which establishes part (i). For part (ii), the following standard results on Gaussian maximum hold:

E
(
|̂ξ|∞|Yn

)
≤ {1 + (2 log p)−1

}(2 log p)1/2 max
1≤j≤r

ŵ
1/2
j,j

and

P
{
|̂ξ|∞ ≥ E

(
|̂ξ|∞|Yn

)
+ u|Yn

}
≤ exp

(
−

u2

2max1≤j≤p ŵj,j

)
for any u > 0. Then, q̂S,1−α,1 ≤ [{1 + (2 log p)−1

}(2 log p)1/2 + {2 log(1/α)}1/2]max1≤j≤rŵ
1/2
j,j . Let Tε = {max1≤j≤r |ŵ

1/2
j,j −

w
1/2
j,j |/w

1/2
j,j ≤ ε} for some ε > 0. Restricted on Tε , q̂S,1−α,1 ≤ (1 + ε)[{1 + (2 log p)−1

}(2 log p)1/2 + {2 log(1/α)}1/2]
max1≤j≤rw

1/2
j,j . Let (j̃1, j̃2) = argmax(j1,j2)∈S |ωj1,j2 − cj1,j2 |. Without lose of generality, we assumeωj̃1,j̃2

− cj̃1,j̃2 > 0. Therefore,

PH1 (Ψα = 1) = PH1

{
max

(j1,j2)∈S
n1/2

|ω̂j1,j2 − cj1,j2 | > q̂S,1−α,1

}
≥ PH1

{
n1/2(ω̂j̃1,j̃2

− cj̃1,j̃2 ) > q̂S,1−α,1
}

= 1 − PH1

{
n1/2(ω̂j̃1,j̃2

− cj̃1,j̃2 ) ≤ q̂S,1−α,1, Tε

}
− P(T c

ε ).

Restricted on Tε , if ε → 0, it holds that q̂S,1−α,1 − (ωj̃1,j̃2
− cj̃1,j̃2 ) ≤ −C(log p)1/2max1≤j≤rw

1/2
j,j for some C > 0, which implies

PH1

{
n1/2(ω̂j̃1,j̃2

− cj̃1,j̃2 ) ≤ q̂S,1−α,1, Tε

}
≤ PH1
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) ≤ −C(log p)1/2 max
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j,j
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From Lemma 4, we know that max1≤j≤r |ŵj,j − wj,j| = op(1) which also implies that max1≤j≤r |ŵ
1/2
j,j − w

1/2
j,j |/w

1/2
j,j = op(1).

Then we can choose suitable ε → 0 such that P(T c
ε ) → 0. Hence, we complete part (ii). □

Proof of Corollary 2. Our proof includes two steps: (i) to show P(M̂n,α ⊂ M0) → 1, and (ii) to show P(M0 ⊂ M̂n,α) → 1.
Result (i) is equivalent to P(Mc

0 ⊂ M̂c
n,α) → 1. The latter one is equivalent to P{max(j1,j2)∈Mc

0
n1/2

|ω̂j1,j2 | ≥ q̂S,1−α,1} → 0.
Notice that S = {1, . . . , p}2, it holds that

P
{

max
(j1,j2)∈Mc

0

n1/2
|ω̂j1,j2 | ≥ q̂S,1−α,1

}
≤ P

{
max

(j1,j2)∈S
n1/2

|ω̂j1,j2 − ωj1,j2 | ≥ q̂S,1−α,1

}
≤ α + o(1),

which implies P{max(j1,j2)∈Mc
0
n1/2

|ω̂j1,j2 | ≥ q̂S,1−α,1} → 0. Then we construct result (i). Result (ii) is equivalent to
P{min(j1,j2)∈M0n

1/2
|ω̂j1,j2 | ≤ q̂S,1−α,1} → 0. Let (j̃1, j̃2) = argmin(j1,j2)∈M0 |ωj1,j2 |. Without lose of generality, we assume

ωj̃1,j̃2
> 0. Notice that

P
{

min
(j1,j2)∈M0

n1/2
|ω̂j1,j2 | ≤ q̂S,1−α,1

}
≤ P

{
n1/2(ω̂j̃1,j̃2

− ωj̃1,j̃2
) ≤ q̂S,1−α,1 − n1/2ωj̃1,j̃2

}
,

we can construct result (ii) following the arguments for the proof of Corollary 1. □
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