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regions for a subset of the entries of a large precision matrix. The confidence regions can
be applied to test for specific structures of a precision matrix, and to recover its nonzero
components. We first construct an estimator for the precision matrix via penalized node-
wise regression. We then develop the Gaussian approximation to approximate the distribu-

]CE11.261a551ﬁcatlon. tion of the maximum difference between the estimated and the true precision coefficients.

c13 A computationally feasible parametric bootstrap algorithm is developed to implement the

C15 proposed procedure. The theoretical justification is established under the setting which

« i allows temporal dependence among observations. Therefore the proposed procedure is
eywords:
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applicable to both independent and identically distributed data and time series data.
Numerical results with both simulated and real data confirm the good performance of the

proposed method.
Crown Copyright © 2018 Published by Elsevier B.V. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Precision matrix

1. Introduction

With an ever-increasing capacity of collecting and storing data, industry, business and government offices all encounter
the task of analyzing the data of unprecedented size arisen from various practical fields such as panel studies of economic,
social and natural (such as weather) phenomena, financial market analysis, genetic studies and communications engineering.
A significant feature of these data is that the number of variables recorded on each individual is large or extremely large.
Meanwhile, in many empirical studies, observations taken over different times are dependent with each other. Therefore,
many well-developed statistical inference methods for independent and identically distributed (i.i.d.) data may no longer be
applicable. Those features of modern data bring both opportunities and challenges to statisticians and econometricians.

The entries of covariance matrix measure the marginal linear dependence of two components of a random vector. There
is a large body of literature on estimation and hypothesis testing of high-dimensional covariance matrices with i.i.d. data,
including Bickel and Levina (2008a, b), Qiu and Chen (2012), Cai et al. (2013), Chang et al. (2017b) and references within.
In order to capture the conditional dependence of two components of a random vector conditionally on all the others,
the Gaussian graphical model (GGM) has been widely used. Under GGM, conditional independence of two components is
equivalent to the fact that the correspondent entry of the precision matrix (i.e. the inverse of the covariance matrix) is zero.
Therefore, the conditional dependence among components of a random vector can be well understood by investigating
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the structure of its precision matrix. Beyond GGM, the bijection relationship between the conditional dependence and the
precision matrix may not hold. Nevertheless, the precision matrix still plays an important role in, among others, linear
regression (van de Geer et al., 2014), linear prediction and kriging, and partial correlation graphs (Huang et al., 2010). See
also Examples 1-3 in Section 2.

Let §2 denote a p x p precision matrix and p be large. With i.i.d. observations, Yuan and Lin (2007) and Friedman et al.
(2008) adopted graphical Lasso to estimate §2 by maximizing the likelihood with an L; penalty. Meinshausen and Bithimann
(2006) introduced a neighborhood selection procedure which estimates 2 by finding the nonzero regression coefficients of
each component on all the other components using Lasso (Tibshirani, 1996) or Dantzig method (Candes and Tao, 2007). Also
see Caietal.(2011), Xue and Zou (2012) and Sun and Zhang (2013) for other penalized estimation methods. Chen et al. (2013)
investigated the theoretical properties of the graphical Lasso estimator for 2 with dependent observations. Though these
methods provide consistent estimators for {2 under some structural assumptions (for example, sparsity) imposed on §2,
they cannot be used for statistical inference directly due to the non-negligible estimation biases, caused by the penalization,
which are of order slower than n~/2,

The bias issue has been successfully overcome with i.i.d. Gaussian observations by, for example, Liu (2013) based on p
node-wise regressions method. Furthermore, Ren et al. (2015) proposed a novel estimator for each entry of 2 based on
pairwise Lq Penallzed regression, and showed that their estimators achieved the minimax optimal rate with no bias terms.
In spite of 22 pairs among p components, their method in practice only requires at most p(1 + §) pairwise L, penalized
regressions, where s is the average size of the selected node-wise regression models.

The major contribution of this paper is to construct the confidence regions for subsets of the entries of {2. To our best
knowledge, this is the first attempt of this kind. Furthermore we provide the asymptotic justification under the setting
which allows dependent observations, and, hence, includes i.i.d.data as a special case. See also Remark 2 in Section 3.2.
More precisely, let S C {1,..., p}*> be a given index set of interest, whose cardinality |S| can be finite or grow with p. Let
{25 be the vector consisting of the entries of 2 with their indices in S. We propose a class of data-driven confidence regions
{Cs.a}o<a<1 for 25 such that supy_,|P(f2s € Csq) — a| — 0 when both n, p — oo, where n denotes the sample size.
The potential application of Cs 4 is wide, including, for example, testing for some specific structures of {2, and detecting and
recovering nonzero entries of {2 consistently.

For any matrix A = (ay), let |A|, = max;;|a;| be its element-wise Lo,-norm. We proceed as follows. First we propose
a bias corrected estimator .Qs for 25 via penalized node-wise regressions, and develop an asymptotic expansion for

1/2((25 — {2s) without assuming Gaussianity. As the leading term in the asymptotic expansion is a partial sum, we
approximate the distribution of n'/?|£2s — £2s|,, by that of the L,,-norm of a high-dimensional normal distributed random
vector with mean zero and covariance being an estimated long-run covariance matrix of an unobservable process. This
normal approximation, inspired by Chernozhukov et al. (2013, 2014), paves the way for evaluating the probabilistic behavior
of n'/2|f2s — 25|, by parametric bootstrap.

It is worth pointing out that the kernel estimator for long-run covariances, initially proposed by Andrews (1991) for the
problem with fixed dimension (i.e. p fixed), also works under our setting with p — oo without requiring any structural
assumptions on the underlying long-run covariance matrix. Owning to the form of this kernel estimator, the parametric
bootstrap sampling can be implemented in an efficient manner in terms of both computational complexity and the required
storage space; see Remark 4 in Section 3.2.

The rest of the paper is organized as follows. Section 2 introduces the problem to be solved and its background. The
proposed procedure and its theoretical properties are presented in Section 3. Section 4 discusses the applications of our
results. Simulation studies and a real data analysis are reported in Sections 5 and 6, respectively. All the technical proofs are
relegated to the Appendix. We conclude this section by introducing some notation that is used throughout the paper. We
write a, < b, to mean 0 < liminf,_,|a,/bs| < limsup,_, . |a,/ba| < 00. We say x,; = 0,(a,) uniformly over j € 7 if

maXje 7 |Xn,j/an| L 0asn — oo. Let |-|; and ||, denote, respectively, the L;- and Ly-norm of a vector.
2. Preliminaries

Letys, ...,y be n observations from an RP-valued time series, where y; = (y1¢, . . . ,yp,t)T and each y; has the constant
first two moments, i.e. E(y;) = s and Cov(y;) = X for each t. Let £2 = X ~! be the precision matrix. We assume that {y;} is
B-mixing in the sense that 8, — 0 as k — oo, where

ﬂkzsup]E{ sup |IP>(B|3?£OO)—JP>(B)|}.

t BeF X,

Here #! __ and T2y are the o -fields generated respectively by {yu}u<¢ and {yu}u>¢+k. B-mixing is a mild condition for time
series. It is known that causal ARMA processes with continuous innovation distributions, stationary Markov chains under
some mild conditions and stationary GARCH models with finite second moments and continuous innovation distributions
are all B-mixing. We refer to Section 2.6 of Fan and Yao (2003) for the further details on 8-mixing condition.

For a given index set S C {1, ..., p}?, recall £2s denotes the vector consisting of the entries of £2 with their indices in S.
We are interested in constructing a class of confidence regions {Cs 4 }o<¢<1 for £2s such that

sup |P(2s € Csqo)—a| = 0 as n,p —> oo. (1)

O<a<1
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We also allow r = |S|, the length of vector 25, either to be fixed or to go to infinity together with p. The largest r can be p.
We first give several motivating examples.

Example 1 (High-dimensional Linear Regression). Consider linear regressionz; = x?y—i—st with E(x;&;) = 0, where X, consists
of m explanatory variables and m is large, and y = (y1, - - ., ym)! = {E(X.X])}"'E(x,z) are true regression coefficients. In
order to identify non-zero regression coefficients, we test the hypotheses

Hp:y =0 forallle A vs. Hp:y #0 forsomel € A, (2)
where A C {1,...,m} is a given index set of interest. Let y, = (z,, X]), and £2 = (wj, j,)pxp be the precision matrix of
y:. It can be shown that (w12, . . ., w1,)T = —cy, where ¢ = [Var(z,;) — E(X'z, ){E(X.x] )}~ 'E(x,z,)]"! > 0. Thus, (2) can be

equivalently expressed as

Ho : wj, j, =0 forany (ji,j2) € S vs. Hp:wj,j, #0 forsome (j1,j2) € S, (3)

where S = {(1,1) : | — 1 € A}. We reject Hy at the significance level « if Cs , does not contain the origin of R"” with r = |A|.

Example 2 (Linear Prediction and Kriging). In the context of predicting a random variable z; based on an observed
p-dimensional vector X, the best linear predictor in the sense of minimizing the mean squared predictive error is
Cov(z;, X )12x,, where {2 is the precision matrix of X;. Here we assume the means of both z; and x; are zero, to simplify the
notation. We also assume that any redundant components of X; have been removed by applying the techniques described
in Example 1.

To obtain a consistent estimate for 2 when p is large, it is necessary to impose some structural assumptions on 2. In
the context of kriging (i.e. linear prediction in the context of spatial or spatial-temporal statistics), some lower-dimensional
factor structures have been explored. See Huang et al. (2017) and the references within. Bandness/bandableness is another
popular structural assumption often used in estimating large covariance or precision matrices (Bickel and Levina, 2008a). To
investigate a banded structure for £2, one may test the hypotheses

Hy : wj,j, =0 forany |j; —j2| > k vs. Hj:wj; #0 forsome |j; —ja| >k, (4)

where 1 < k < pis a prespecified integer. We reject Hy if confidence region Cs , does not contain the origin R", where
S={(1.J2): 1 <ji,j2 <p, o —j1 > klandr = (p — k)(p — k — 1)/2.

Example 3 (Partial Correlation Network). Given a precision matrix §2 = (wj, j, Jpxp, We can define an undirected network
G = (V, E) where the vertex set V = {1, ..., p} represents the p components of y and the edge set E = {(j1,j.) € V x V :
wj,j, # 0, j1 < jo} are the pairs of variables with non-zero precision coefficients. Let p;, ;, = Corr(gj,, &j,) be the partial
correlation between the j;th and the j,th components of y for any j; # j,, where ¢;, and ¢;, are the errors of the best linear
predictors of y;, and y;, giveny_, i,y = {¥x : k # ji,Jj2}, respectively. From Lemma 1 of Peng et al. (2009), it is known
that pj, j, = — (_U“_"z_ — . Therefore, the network G = (V, E) also represents the partial correlation graph of y. The vertices

A Pi1:d1%in .2
(1,J2) € Eif and only if y;, and y;, are partially uncorrelated. The GGM assumes in addition that y is multivariate normal.
Then {2 depicts the conditional dependence among the p vertices of the network, i.e. wj, j, is the conditional correlation
between the j;th and j,th vertices given all the others.

Neighborhood and community are two basic features in a network. The neighborhood of the jth vertex, denoted by \j,
is the set of all the vertices directly connected to it. For most of the spatial data, it is believed that the partial correlation
neighborhood is related to the spatial neighborhood. Let Aj(k) be the set including the first k closest vertices to the jth
vertex in the spatial domain. It is of great interest to test Hy : N = Nj(k) vs. Hy : N # WNj(k) for some pre-specified
positive constant k. A community in a network is a group of vertices that have heavier connectivity within the group than
outside the group. For graph estimation, we want to maximize the within-community connectivity and reduce the between-
community connectivity. Therefore, it is of practical importance to explore the connectivity between different communities.
Assume the p components of y are decomposed into K disjoint communities V7, ..., Vx. We are interested in recovering
D = {(k1, k2) : wj, j, # 0 for somej; € Vi, and j, € Vj,}.

3. Main results

3.1. Estimation of {2

We first recall the relationship between a precision matrix and node-wise regressions. For a random vectory =

1, ... ,yp)T with mean ¢ = 0 and covariance X', we consider p node-wise regressions
Yin = Z %Y T € Gi=1.....p) (5)
J2#h
Lety_j, = {¥j, : jo # j1}. The regression error ¢j, is uncorrelated with y_;, if and only if o, j, = —21—;2 for any j, # ji.
. 11
Under this condition, Cov(ej, , €j,) = — Y2 for any j; and j,. Let € = (eq, ..., €p) and V = Cov(e) = (v}, j,)pxp- Then

“i11 %22
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N = {diag(V)}~'V{diag(V)}~!; see Lemma 1 of Peng et al. (2009). This relationship between 2 and V provides a way to
learn {2 by the regression errors in (5).
Since the error vector € in (5) is unobservable in practice, its “proxy” - the residuals of the node-wise regressions - can be

used to estimate V. Let & = (1, ..., ®jj—1, —1,@jjs1. ..., @p) . Foreachj = 1,..., p, we may fit the high-dimensional
linear regression
Vie =) o +€e ((=1,....n) (6)
kj

by Lasso (Tibshirani, 1996), Dantzig estimation (Candes and Tao, 2007) or scaled Lasso (Sun and Zhang, 2012). For the case
i # 0, the regression (6) will be conducted on the centered datay; — y, wherey = n‘lz?:1yt is the sample mean. For
simplicity, we adopt Lasso estimation. Let &; be the Lasso estimator of &; defined as follows:

~ I~ 10
o = arg min| — + 2A; s 7
2 gyé@j[n [;(y v+ 2v1, (7)
where @; ={y =(y1, ..., yp)T € RP : yj = —1} and A, is the tuning parameter. For each t, the residual
%,r = —&\]'TYt (8)
provides an estimate of ¢j,. Write'§, = (€11, ..., €)' and let V= (Vj,.j, Joxp be the sample covariance of {€;}}_,, where

Viyjy = N 1Y 1€, (6. It is well known that n=1Y"!  €;, (€, ¢ is an unbiased estimator of vj, j,, however, replacing ¢;,
by €, . will incur a bias term. Specifically, as shown in Lemma 3 in the Appendix, under Conditions 1-3 and some mild
restrictions on the sparsity of £2 and the growth rate of p with respect to n, it holds that

- 1w . 1¢ o
V2 T Y e = —@y, — ijl,jz)<5 Zfi_r)ﬂ(h #J2)
t=1 t=1
~ 1¢ . .
—mm—%m(ﬁikﬁﬁm¢nHWNM%m”ﬁ
t=1

Here the higher order term o,{(nlogp)~'/?} is uniform over all j; and j,. Since n='Y_{_,€?, is n'/>-consistent for v, (9)
implies that j; is also n'/2-consistent for vj ;. However, for any j; # jo, due to the slow convergence rates of the Lasso

. A. X A. X ~. X . ‘1/2_ . L . . . . X L.
estimators o}, j, and o, j,, Vj, j, is no longer n'/“-consistent for vj, ;,. To eliminate the bias, we employ an estimator for vj, j,:
n
1 © 6+ €2 4 a €2 ), 1 # o
n €j1.t€p.t T Oy jp €y ¢ T i €y ) J1 F 25
~ t=1
Virj, = (10)

_l n
=D G =1l
=1
By noticing that £2 = {diag(V)}~'V{diag(V)} ', we estimate wj, j, by

~ Vv
O = 11
e Vjy.j1 Viz.ja ()
for any j; and j,. We need to point out that the asymptotic expansion (9) is still valid for other penalized methods such
as Dantzig estimation (Candes and Tao, 2007) and scaled Lasso (Sun and Zhang, 2012). Hence, we can also estimate vy, j,
and wj, j, as (10) and (11), respectively, based on the residuals {€;}{_, obtained by other penalized methods. To study the

theoretical properties of this estimator @, j,, we need the following regularity conditions.

Condition 1. There exist constants K1 > 0,K; > 1,0 < y; < 2and 0 < y, < 2 independent of p and n such that for each
t=1,...,n,

max E{exp(K1|y;|"")} <K, and max E{exp(Kilej|"?)} < K>.
1<j<p 1<j=<p

Condition 2. The eigenvalues of X' are uniformly bounded away from zero and infinity.

Condition 3. There exist constants K3 > 0 and y3 > 0 independent of p and n such that B, < exp(—K3k”3) for any positive k.

Condition 1 implies maxi<j<pP(y;¢| > x) < K;exp(—Kix"') and maxi<j<,P(lj:| > x) < K,exp(—K;x"2) for any
x > 0andt = 1,...,n It ensures the exponential upper bounds for the tail probabilities of the statistics concerned (see
for example Lemma 1 in the Appendix), which makes our procedure work for p diverging at some exponential rate of n.
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Condition 2 implies the bounded eigenvalues of X' and 2, which is commonly assumed in the literatures of high-dimensional
data analysis. Condition 3 for the B-mixing coefficients of {y;} is mild. Causal ARMA processes with continuous innovation
distributions are S-mixing with exponentially decaying Sy. So are stationary Markov chains satisfying certain conditions. See
Section 2.6.1 of Fan and Yao (2003) and the references therein. In fact, stationary GARCH models with finite second moments
and continuous innovation distributions are also 8-mixing with exponentially decaying S;; see Proposition 12 of Carrasco
and Chen (2002). If we only require suptmax1 <pP(IYie] > x) = Of{x~2v*+9} and sup,max;<j<,P(l€j¢| > x) = O{x~2"+)} for
any x > 0in Condition 1and B = O{k"("+?/(9} in Condition 3 for some v > 2and: > 0, we can apply the Fuk-Nagaev-type
inequalities to construct the upper bounds for the tail probabilities of the statistics if p diverges at some polynomial rate of n.
We refer to Section 3.2 of Chang et al. (2018) for the implementation of the Fuk-Nagaev-type inequalities in such a scenario.
The B-mixing condition can be replaced by the «-mixing condition, under which we can justify the proposed method for p
diverging at some polynomial rate of n by using the Fuk-Nagaev-type inequalities. However, it remains an open problem to
establish the relevant properties under e-mixing for p diverging at some exponential rate of n.

Proposition 1. Let s = maxy<j<pla;l, and select the tuning parameter A; in (7) satisfying A; = (n~'logp)/? for each
j = 1,...,p. Under Conditions 1-3, if s*(logp)®n~—! = o(1) and logp = o(n°") for a positive constant g specified in the
proof of this proposition in the Appendix, it holds that
~ 81 _
Wjrja — Wjrjp = — 4 op{(nlogp) 1/2},
Vj1.j1 Viz.a

where 8j, j, = 01> (€j,.c€j,.c — Vjyjp) for any ji and jo, and o,{(nlog p)~"/?} is a uniform higher order term.

We see from Proposition 1 that @y, j, is centered at the true parameter wj, ;, with a standard deviation at the order n=1/2.

Since «j, j, is proportional to wj, j,, it follows from s 2(logp)®n~! = o(1) that £2 is sparse. When the maximum number

of nonzero elements in each row of §2 is of the order smaller than nl/z(logp)*/2 Proposition 1 holds even when p is of an

exponential rate of n. Similar to the asymptotic expansion for wj, j, iIn Proposition 1, Liu (2013) gave an asymptotic expansion
b

for —vj, j, withj; # j,. More specifically, with i.i.d. data, he showed that —vj, ;, = ﬁ + §j, j, + Rfor §;, ;, specified

in Proposition 1and b;, j, = wj, j,Vj, j; + @)V, — 1, Where R is a remainder term with the convergence rate faster than

n~1/2.1t follows from the central limit theorem that —n'/%¢;, }, (9}, j, — :}J}”f%) converges to standard normal distribution
with some suitable scale ch Jp» Which indicates that —n'/?¢;, j,7j, j, can Il)e1 u;ezd as the testing statistic to test wj, j, = =0or
not. Notice that 7j; = w; ;' + 0,(n~'/?) which implies b]1 j, = 14 0,(n~1/2). Hence, the magnitude of —n'/2c;, ;,v;, ;, will be
large if w;, j, # 0. This indicates that the asymptotic expansion given in Liu (2013) is enough for identifying non-zero entries
of £2. However, it is not enough for constructing the confidence interval for wj, j, due to the fact that it does not contain the
asymptotic expansion of @y, j,.

3.2. Confidence regions

Let A = —n~')"/_,(ecel — V). It follows from Proposition 1 that
2 — 0 =1IT+ T for IT = {diag(V)}~" A{diag(V)} !,

where | T'|,, = 0p{(nlogp)~1/2}. Restricted on a given index set S with r = |S|, we have

Qs — s =1Is+ Ts. (12)
Based on (12), we consider two kinds of confidence regions:

Csa1= fa€R 10?0 —aly < qsa1), (13)
Csa2={acR : n2D"'(02s — )l < gs.w2),

where Disanr xr diagonal matrix, specified in Remark 5, of which the elements are the estimated standard deviations of the
r components in nl/z(ﬂs — f25). Here qs .1 and gs o 2 are two critical values to be determined. Cs .1 and Cs 4 2 represent
the so-called “non-Studentized-type” and “Studentized-type” confidence regions for 2, respectively. The Studentized-
type confidence regions perform better than the non-Studentized-type ones when the heteroscedasticity exists, however,
the performance of the non-Studentized-type confidence regions is more stable when the sample size n is fairly small. See
Chang et al. (2017a).

In the sequel, we mainly focus on estimating the critical value qs 4,1 in (13), as gs 4,2 can be estimated in the similar
manner; see Remark 5. To determine ¢s . 1, We need to first characterize the probabilistic behavior of n1/2|(l$ — 255
Since Ts is a higher order term, n'/?|2s — §25|., will behave similarly as n'/?|ITs|,, when n is large. Notice that each
element of n'/2 ITs is asymptotically normal distributed. Following the idea of Chernozhukov et al. (2013), it can be proved
that the limiting behavior of n'/?| ITs| ., can be approximated by that of the L,-norm of a certain multivariate normal vector.
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€x10).t€x20).t ~VxG)

V1@ x1 DV x20). x20)
x(-) = {x1(-), x2(-)} is a bijective mapping from {1, ..., r} to S such that 25 = {wy1), .. ., a)x(r)}T. Then, we have

_l n
= —E;St-

Denote by W the long-run covariance of {g,}_,, namely,

1 n _l n T
W= E{( ]/ZZgJ(anst) } (14)
t=1

t=1

See Theorem 1. More specifically, for each t, let g, be an r-dimensional vector whose jth element is where

Let n, = (M1es - - M) Where mj ¢ = €,,().c€x00.¢ — VG- Then W specified in (14) can be written as

_1 n _1 n T
W= HE{( 1/22"r><n1ﬁ2"r> }H (15)
t=1 t=1

where H = diag{v., X1(U ) X;m xo(1)° m](r) e x;( ). xo(r))- TO study the asymptotical distribution of the average of the

temporally dependent sequence {gt}t_] and its long-run covariance W, we introduce the following condition on {1,}}_;.

Condition 4. There exists constant K, > 0 such that

] G 2
imind it 2[5 20 ] ) =K

foreachj=1,...,r

Condition 4 is for the validity of the Gaussian approximation for dependent data. Under Conditions 1 and 3, Davydov

2
inequality (Davydov, 1968) entails lim sup,_, o, SUP1<p<p1-pE(|b™ VZZZH’ ]7]] ¢| ) < Ks for some universal constant K5 > 0.
Together with Condition 4, they match the requirements of Gaussian approximation imposed on the long-run covariance of
{n, [}“” Tforj = 1 ,rand € = 1,...,n+4 1 — b. See Theorem B.1 of Chernozhukov et al. (2014). If {n; ;} is stationary,

E(|b™ UZZ“L’ 1711 t| = [( 771 )+ Zb ! (1 — kb~ )Cov(r],-,l, nj,1+k). Under the stationarity assumption on each sequence
{nj,¢}, Condition 4 is equivalent to Zk:OCov(nj,1, nj1+k) > Ky foranyj = 1,...,r. Now we are ready to state our main
result.

Theorem 1. Let & ~ N(0, W) for W specified in (14). Under the conditions of Proposition 1 and Condition 4, we have
sup |]P’(n1/2|ﬁs — 25lo > x) —P(l€l, > x)| > 0

x>0

asn — oo, provided that s*(logp)®n~! = o(1) and logp = o(n%) where s = max;<j<plel, and o; is a positive constant

specified in the proof of this theorem in the Appendix.

Remark 1. Theorem 1 shows that the Kolmogorov distance between the distributions of n/2|f2s — 25|, and 1€] o
converges to zero. More specifically, as shown in the proof of Theorem 1 in the Appendix, this convergence rate is
o(n~ ) for some constant C > 0 without requiring any structural assumption on the underlying covariance W. Note that

n!/ Zl.(ls — 25|, may converge weakly to an extreme value distribution, which however requires some more stringent
assumptions on the structure of W. Furthermore the slow convergence to the extreme value distribution, i.e. typically slower
than O(n~°), entails an less accurate approximation than that implied by Theorem 1. We need to point out that there is also
a requirement imposed on the diverging rate of r = |S| such as logr = o(n®) for some constant C > 0 in the proof of
Theorem 1. Since r < p?, such requirement is satisfied automatically when the requirements on p in Theorem 1 are required.

Theorem 1 provides a guideline to approximate the distribution of n'/?| ﬁs — 25|, To implement it in practice, we
need to propose an estimator for W. Denote by = the matrix sandwiched by H’s on the right-hand side of (15), which is the
long-run covariance of {,}{_,. Notice that v; ; defined in (10) is n'/2-consistent to vjj, we can estimate H by

-1 -1 ~1
H = diag (V1) 000000 Dt Dot - (16)
Let W, = (Mues -+ o) fOr 3 =’€X10),teng),t — Dy, and define
Z el k= 0;
= [ k+1
Fk = g

n
Z Mol k <O.

t=—k+1
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Based on the Fk s, we propose a kernel estimator suggested by Andrews (1991) for = as

n—1 ] R
-y K(%)Fk (17)

k=—n+1 n

L

where S, is the bandwidth, K(-) is a symmetric kernel function that is continuous at 0 and satisfying £(0) = 1, [K(u)] < 1
forany u € R,and [ Kk2(u)du < occ.Given Hand = defined respectively in (16) and (17), an estimator for W is given by

~ PN

W=HEH. (18)
Theorem 2 shows that we can approximate the distribution of n!/2|2s — £2s|,, by that of |’§\|OO for & ~ N(0, W).

Remark 2. Andrews (1991) systematically investigated the theoretical properties for the kernel estimator for the long-run
covariance matrix when p is fixed. It shows that the Quadratic Spectral kernel

25 sin(6zru/5)
1272u? 67u/5

is optimal in the sense of minimizing the asymptotic truncated mean square error. In our numerical work, we adopt this
quadratic spectral kernel with the data-driven selected bandwidth proposed in Section 6 of Andrews (1991), though our
theoretical analysis applies to general kernel functions. Both our theoretical and simulation results show that this kernel
estimator = still works when p is large in relation to n. There also exist other estimation methods for long-run covariances,
including the estimation utilizing moving block bootstrap (Lahiri, 2003; Nordman and Lahiri, 2005). Also see den Haan and
Levin (1997) and Kiefer et al. (2000). Compared to those methods, an added advantage of using the kernel estimator is
the computational efficiency in terms of both speed and storage space especially when p is large; see Remark 4. When the
observations are i.i.d., a spec1al case of our setting, W as in (]4) is degenerated to E(g, ;t) the marginal covariance of g,. We
canapply n'Y_[_ 7,7 to estimate =, and then use H(n N )H to estimate W with H as in (16).

Kos(u) = - cos(Gnu/S)}

Theorem 2. LetE N(O, \Tv)for \TVspeClﬁed in(18). Assume the kernelfunction K(-) satisfy |KC(x)| < |x|~F as x — oo for some
T > 1, and the bandwidth S, =< n” forsome 0 < p < min{&¥= } and s in Condition 3. Under the conditions of Theorem 1,
it holds that

sup [P(n"/?[Rs — 2sls > x) — P([Elo > x130)| 2 0

x>0

31 ’ Zy +1

asn — oo, provided that s*(log p)n~' max{S2, (logp)*} = o(1) and logp = o(n®) where s = maxi<j<p|a;l,, 03 is a positive
constant specified in the proof of this theorem in the Appendix, and Y, = {y1, ..., Yn}-

Remark 3. Theorem 2 is valid for any w satisfying |\TV — W]|, = 0,(1); see Chernozhukov et al. (2013). Different from
the common practice in estimating large covariance matrices, we construct W in (18) without imposing any structural
assumptions on W.

In practice, we approximate the distribution of |’§\|oo by Monto Carlo simulation. Specifically, let a, ... ,EM be iid.r-
dimensional random vectors drawn from N(0, W). Then the conditional distribution of ||, given ), can be approximated
by the empirical distribution of {|&;]. ..., [y}, namely,

~ 13,
Fu(x) = D I lEnlc <x}.
m=1

Then, gs 4.1 specified in (13) can be estimated by

Gsa1 =inflx e R: Fy(x) > 1—a}. (19)

To improye computational efficiency, we propose the following Kernel based Multiplier Bootstrap (KMB) procedure to
generate & ~ N(0, W), which is much more efficient when r is large.

Step 1. Generateg = (g1, . .. +&n )T from NQ) A), where A is the n x n matrix with K(|i — j|/S,) as its (i, j)th element.
Step 2. Let& = n—!/2H( (>"i_,&m;), where H is defined in (16).

Remark 4. The standard approach to draw a random vector 1;' N(O, W) consists of three steps: (i) perform the Cholesky
decomposition on the r x r matrix W = LTL, (ii) generate r independent standard normal random variablesz = (z4, ..., z; ),
(111) perform transformation § = L'z Thus, it requires to store matrix W and {n,}!_,, which amounts to the storage costs
0(r?) and O(rn), respectively. The computational complex1ty is O(r’n + r3), mainly due to computing W and the Cholesky
decomposition. Note that r could be in the order of O(p?). In contrast the KMB scheme described above only needs to store
{n:}_, and A, and draw an n-dimensional random vector g ~ N(0, A) in each parametric bootstrap sample. This amounts to
total storage cost O(rn + n?). More significantly, the computational complexity is only O(n®) which is independent of r and p.
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Remark 5. For the Studentized-type confidence regions Cs ,,» defined in (13) we can choose the diagonal matrix D=
{diag(W)}!/2 for W specified in (18). Correspondingly, for € ~ N(0, D-'"WD~1), it can be proved, in the similar manner as
that for Theorem 2, that

sup ‘P{n”ﬂﬁ’%ﬁs - 025)lo > x} — P([E,, > X)) L 0asn— oo

x>0
To approximate the distribution of n'/2 |ﬁ‘1(fls — 25)|+, we only need to replace the Step 2 in the KMB procedure by
Step2. Let = n‘”zﬁ‘lﬁ(Zngﬁy}) where H is defined in (16).

Based on the i.i.d.random vectors E], .. ,EM generated by Steps 1 and 2/, we can estimate qs 4.2 Via s.4.2, Which is
calculated the same as Gs .1 in (19). We call the procedure combining Steps 1and 2’ as Studentized Kernel based Multiplier
Bootstrap (SKMB).

4. Applications
4.1. Testing structures of £2

Many statistical applications require to explore or to detect some specific structures of the precision matrix 2 =
(j, j Jpxp- Given an index set S of interest and a set of pre-specified constants {cj, j,}, we test the hypotheses

Ho : wj,j, = ¢, j, forany(ji,j2) € S vs. Hj:wjj, # ¢, forsome (ji,j2) € S.

Recall that x(-) = {x1(-), x2(-)} is a bijective mapping from {1, ..., r} to S such that 25 = {wy1), ..., a)x(r)}T. Letr = |S|
and ¢ = {Cy(1), - - - » Cxr)} - A usual choice of ¢ is the zero vector, corresponding to the test for non-zero structures of £2. Given
a prescribed level o € (0, 1), define ¥, = I{c ¢ Cs, 1-q,1} fOr Cs 14,1 specified in (13). Then, we reject the null hypothesis
Hp at level o if ¥, = 1. Thls procedure is equivalent to the test based on the Ly,-type statistic n'/ Zlﬂs — €|, that rejects

Hy if n'/?| .QS — €loo > Gs.1-0.1- The Loo-type statistics are widely used in testing high-dimensional means and covariances.
See for example, Cai et al. (2013) and Chang et al. (2017a, b). The following corollary gives the empirical size and power of
the proposed testing procedure ¥,.

Corollary 1. Assume conditions of Theorem 2 hold. It holds that: (i) Pyy(¥e = 1) — a asn — oo; (ii) if maxg, j,)es|®j, j, —

Giyjpl = C(n™! logp)l/zmax1§j<rw” where wjj is the jth component in the diagonal of W defined in (14), and C is a constant

larger than +/2, then Py, (¥, = 1) — lasn — oo.

Corollary 1 implies that the empirical size of the proposed testing procedure ¥, will converge to the nominal level «
under Ho. The condition max, j,)es|@j,j, — Gyj,] = C(n~! logp)1/2max1_,<ru1“/2 specifies the maximal deviation of the
precision matrix from the null hypothesis Hy : wj, ;, = ¢, j, for any (j1,j2) € S, which is a commonly used condition
for studying the power of the L -type test. See Cai et al. (2013) and Chang et al. (2017a, b). Corollary 1 shows that the
power of the proposed test ¥, will approach 1 if such condition holds for some constant C > V2. A “Studentized-type”
test can be similarly constructed via replacing n'/2|£2s — |, and Gs.1—.1 by /2D~ (£2s — ¢)|., and Gs.1—a.2 in (13),
respectively.

4.2. Support recovering of §2

In studying partial correlation networks or GGM, we are interested in identifying the edges between nodes. This is
equivalent to recover the non-zero components in the associated precision matrix. Let Mo = {(j1, j2) : wj, j, # 0} be the set

of indices with non-zero precision coefficients. Choose S = {1, ..., p}?. Note that Cs ,.1 provides simultaneous confidence
regions for all the entries of {2. To recover the set Mg consistently, we choose those precision coefficients whose confidence
intervals do not include zero. For any m-dimensional vector u = (uy, ..., uy)", let supp(u) = {j : u; # 0} be the support
set of w. Recall x(-) = {x1(-), x2(-)} is a bijective mapping from {1, ..., r} to S such that £2s = {wyq), ..., wx(r)}T. For any
€ (0, 1),let
Mo = {x‘1(l) e N supp(u)}
UeCs 1—a,1

be the estimate of M.

In our context, note that the false positive means estimating the zero wj, j, as non-zero. Let FP be the number of false
positive errors conducted by the estimated signal set M,, «. Let the family wise error rate (FWER) be the probability of
conducting any false positive errors, namely, FWER = P(FP > 0). See Hochberg and Tamhane (2009) for various types of
error rates in multiple testing procedures. Notice that P(FP > 0) < P(§2s & Cs,1—e.1) = {1 + o(1)}. This shows that the
proposed method is able to control family wise error rate at level & for any & € (0, 1). The following corollary further shows
the consistency of/\’/\ln,a.
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Corollary 2. Assume conditions of Theorem 2 hold, and the signals satisfy ming, j,je s, |l@j, j,| > C(n~"log p)"/?max;<j<, JIJ/Z

where wj; is the jth component in the diagonal of W defined in (14), and C is a constant larger than /2. Selecting o — 0 such
that 1/a = o(p), it holds that ]P’(MM = M) —> lasn — oo.

From Corollary 2, we see that the selected set M,,,a can identify the true set Mg consistently if the minimum signal
strength satisfies ming, j,)e @y, j,| > C(n~! logp)”zma)qi,grwﬁj/2 for some constant C > +/2. Notice from Corollary 1
that only the maximum signal is required in the power analysis of the proposed testing procedure. Compared to signal
detection, signal recovery is a more challenging problem The full support recovery of §2 requires all non-zero |wy, 1,| larger
than a specific level. Similarly, we can also define Mn « viareplacing Cs 14,1 by its “Studentized-type” analogue Cs,pa_z

in (13).

5. Numerical study

In this section, we evaluate the performance of the proposed KMB and SKMB procedures in finite samples. Let e, .. ., &,
be i.i.d. p-dimensional samples from N(0, ). The observed data were generated from the model y; = &; andy, =
oYi—1 + (1 — p*)/2g, for t > 2. The parameter p was set to be 0 and 0.3, which captures the temporal dependence among
observations. We chose the sample size n = 150 and 300, and the dimension p = 100, 500 and 1500 in the simulation. Let
Y = {diag(X¥ 1)}1/22 {diag( X )}1/2 based on a positive definite matrix X,. The following two settings were considered

for ¥, = (o, o ]2)141 J2<p

A letoj; =0.5017% forany 1 <j1,j2 <p.
B. Letaﬁj =1foranyj=1,...,p, 0 Mz =05for5(h—1)+1<j; #j, <5h,whereh=1,...,p/5 and o ]”2 =0
otherwise.

Structures A and B lead to, respectively, the banded and block diagonal structures for the precision matrix 2 = X ~!. Note
that, based on such defined covariance X, the diagonal elements of the precision matrix are unit. For each of the precision
matrices, we considered two choices for the index set S: (i) all zero components of §2,i.e. S = {(j1,j2) : wj,j, = 0}, and
(ii) all the components excluded the ones on the main diagonal, i.e. S = {(j1,j2) : j1 # Jj»}. Notice that the sets of all
zero components in §2 for structures A and B are {(ji,j2) : [j1 —Jj2| > 1} and ﬂﬁf]{(jhjz) :5(h—1)+1 < ji,j, <5h)5,
respectively. As we illustrate in the footnote,' the index sets S in the setting (i) and (ii) mimic, respectively, the homogeneous
and heteroscedastic cases for the variances of n'/?(@;, j, — wj, j,) among (j1, j») € S.

For each of the cases above, we examined the accuracy of the proposed KMB and SKMB appr0x1matlons to the distribu-
tions of the non-Studentized-type statistic n'/2|2s — §2s|., and the Studentized-type statistic n]/le (s — 25)|., Te-
spectively. Denote by Fy,(-) and Fa,(-) the distribution functions of n'/2| 25 — 25|, and n'/2[D~ (s — 2s)|.., respectively.
In each of the 1000 independent repetitions, we first draw a sample with size n followmg the above discussed data generating
mechanism, and then computed the associated values of n'/?|£2s — §2s|,, and n'/? D 1(2s — 125)| in this sample. Since
Fin(-) and Fap(-) are unknown, we used the empirical distributions of n'/2|2s — £2s|., and n‘/2|D 1(2s — 025)|,, over
1000 repetitions, denoted as Fj,(-) and F;, (), to approximate them, respectively. For each repetltlon i, we applied the KMB
and SKMB procedures to estimate the 100(1 — )% quantiles of n'/2|2s — 2s|., and n'/2|D~ (s — 2s)|.,, denoted as

ﬁg)a 1 and ¢ q. s,a,zv respectively, with M = 3000, and then computed their associated empirical coverages Fj; (?jf;a ;) and

F;‘n('cfs «.2)- We considered « = 0.075, 0.050 and 0.025 in the simulation. We report the averages and standard deviations

of {F}, (A(s w120 and {F3, ('(j(s 0211290 in Tables 1-3. Due to the selection of the tuning parameter A; in (7) depends on the
standard dev1at10n of the error term 6“, we adopted the scaled Lasso (Sun and Zhang, 2012) in the simulation which can
estimate the regression coefficients and the variance of the error simultaneously. The tuning parameters in scale Lasso were
selected according to Ren et al. (2015).

It is worth noting that in order to accomplish the statistical computing for large p under the R environment in high speed,
we programmed the generation of random numbers and most loops into C functions such that we utilized “.C()” routine
to call those C functions from R. However, the computation of the two types of statistics involves the fitting of the p node-
wise regressions. As a consequence, the simulation for large p still requires a large amount of computation time. In order
to overcome this time-consuming issue, the computation in this numerical study was undertaken with the assistance of

1 1t follows from Proposition 1 that Var{n'2(@, j, — oj,j,)} = Jﬁl ;ﬁzvar{n’”ZZ?ﬂkh,csz.[ — vj;.jp )1 + o(1)}, where the term o(1) holds

uniformly over (ji, j»). Recall ¢, = —cchy[ andy, = (1 — p2)23°02 pkee_i, if wj,j, = 0 which is equivalent to vj,j, = O, then it holds that
Var(n™23 1 €, 1€j,0) = 01— p? P30 B o0 e e‘f,4)(2,20/)"&}2e‘fﬁk)(z,ﬁiopka}] 6 1)L eop el €, 1)) Since &,’s are iid., together
with vj, j, = 0, we have ]E{(Z,fiop"a; er]_k)(z,fo:gpka}z er]_k)(zkw:opka; et )(X peop ajzstz ) = pP2(1 — p *)?E(e}: €. ) forany t; > t;, which
implies Var(n™'23"L ¢j, c€j, 0) = [142(1=p*) 0~ H{(n—1)p*" —(n—2)p*" 2 —p*}]E(€’, € ) forany (ji, jo) such that wj, j, = 0.On the other hand, based
on the Gaussian assumption, since vj, j, = E(€j, €j,,c) = 0, we know the two normal dlstrlf)uted random variables ¢;, ; and ¢j, ; are independent, which
leads to E(e? &, 12[) (hl)]E(ejzzv[): Vi, jy Vip.jp - Therefore, Var{n/2(@y, j, —wj, j, )} = jﬂ“ ;1]2[1+2(1 p2) 20" H{(n—1)p*"—(n—2)p>" 2 — p*}1{14+0(1)}
for any (ji, j2) such that w;, ;, = 0. Notice that w;; = 1in our setting for any j, then v;; =
such that wj, j, = 0 are almost identical.

j;' = 1.Hence, the variances of n'/2(@j, ;, — wj, ,) for any (j1, j)
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Table 1
Averages of empirical coverages and their standard deviations (in parentheses) for p = 100.
Covariance p 1—a n=150 n = 300
structure
S ={(1.J2) : ®j, j, =0} S ={(1.J2) 1 J1 #J2} S ={(1.J2) : ®j, j, =0} S ={(1.J2) 1 J1 #J2}
KMB SKMB KMB SKMB KMB SKMB KMB SKMB
0.925 0.963(0.013) 0.919(0.005) 0.885(0.022) 0.906(0.007) 0.954(0.011) 0.939(0.004) 0.915(0.014) 0.937(0.004)
0 0.950 0.978(0.008) 0.949(0.007) 0.913(0.016) 0.941(0.007) 0.972(0.007) 0.956(0.002) 0.941(0.011) 0.954(0.002)
A 0.975 0.991(0.004) 0.978(0.003) 0.950(0.014) 0.976(0.003) 0.985(0.003) 0.982(0.002) 0.963(0.006) 0.981(0.002)
0.925 0.950(0.014) 0.888(0.014) 0.835(0.029) 0.875(0.014) 0.955(0.012) 0.920(0.009) 0.890(0.019) 0.916(0.010)
0.3 0950 0.967(0.010) 0.930(0.008) 0.876(0.025) 0.920(0.009) 0.973(0.007) 0.956(0.005) 0.924(0.013) 0.952(0.006)
0.975 0.987(0.006) 0.966(0.004) 0.923(0.017) 0.958(0.005) 0.987(0.004) 0.979(0.003) 0.956(0.010) 0.978(0.003)
0.925 0.953(0.016) 0.927(0.005) 0.812(0.036) 0.874(0.008) 0.950(0.009) 0.931(0.003) 0.894(0.014) 0.917(0.004)
0 0.950 0.973(0.010) 0.957(0.005) 0.863(0.028) 0.918(0.007) 0.969(0.008) 0.956(0.006) 0.925(0.013) 0.947(0.007)
B 0.975 0.986(0.004) 0.979(0.002) 0.918(0.020) 0.965(0.004) 0.989(0.004) 0.981(0.004) 0.961(0.008) 0.978(0.004)
0.925 0.950(0.019) 0.898(0.011) 0.772(0.039) 0.815(0.018) 0.950(0.011) 0.933(0.005) 0.880(0.017) 0.915(0.007)
0.3 0950 0.971(0.011) 0.930(0.007) 0.826(0.031) 0.873(0.012) 0.968(0.007) 0.956(0.003) 0.913(0.012) 0.943(0.004)
0.975 0.987(0.004) 0.970(0.005) 0.885(0.021) 0.938(0.008) 0.985(0.004) 0.972(0.003) 0.943(0.010) 0.964(0.004)
Table 2
Averages of empirical coverages and their standard deviations (in parentheses) for p = 500.
Covariance p 1—a n=150 n = 300
structure
8§ ={(j1,J2) : wj, j, =0} S = {(1,J2) 1 J1 #J2} 8§ ={(j1,J2) : 0}, j, =0} S = {(1,J2) 1 J1 #J2}
KMB SKMB KMB SKMB KMB SKMB KMB SKMB
0.925 0.967(0.006) 0.891(0.010) 0.872(0.017) 0.873(0.009) 0.971(0.003) 0.935(0.003) 0.924(0.008) 0.799(0.003)
0 0.950 0.978(0.004) 0.934(0.007) 0.903(0.011) 0.923(0.009) 0.977(0.002) 0.954(0.002) 0.939(0.006) 0.822(0.004)
A 0.975 0.987(0.003) 0.975(0.003) 0.933(0.012) 0.968(0.004) 0.983(0.002) 0.977(0.002) 0.956(0.004) 0.856(0.004)
0.925 0.961(0.010) 0.871(0.010) 0.786(0.027) 0.833(0.011) 0.973(0.004) 0.937(0.005) 0.867(0.011) 0.905(0.007)
0.3 0950 0.979(0.006) 0.918(0.010) 0.842(0.021) 0.890(0.011) 0.982(0.004) 0.959(0.003) 0.899(0.011) 0.934(0.004)
0975 0.991(0.004) 0.966(0.005) 0.890(0.014) 0.949(0.006) 0.991(0.001) 0.973(0.003) 0.936(0.007) 0.950(0.003)
0.925 0.961(0.007) 0.884(0.009) 0.713(0.027) 0.746(0.015) 0.966(0.006) 0.921(0.005) 0.884(0.011) 0.814(0.007)
0 0.950 0.974(0.004) 0.934(0.008) 0.780(0.030) 0.831(0.015) 0.980(0.003) 0.938(0.004) 0.915(0.009) 0.840(0.006)
B 0.975 0.985(0.003) 0.974(0.004) 0.869(0.019) 0.912(0.010) 0.988(0.002) 0.970(0.003) 0.952(0.006) 0.887(0.007)
0.925 0.954(0.007) 0.856(0.014) 0.641(0.034) 0.673(0.019) 0.964(0.005) 0.928(0.004) 0.853(0.016) 0.850(0.007)
0.3 0950 0.968(0.006) 0.908(0.008) 0.716(0.036) 0.767(0.018) 0.979(0.004) 0.950(0.003) 0.900(0.012) 0.889(0.006)
0.975 0.983(0.004) 0.954(0.005) 0.821(0.028) 0.878(0.014) 0.988(0.002) 0.971(0.002) 0.940(0.010) 0.925(0.005)
Table 3
Averages of empirical coverages and their standard deviations (in parentheses) for p = 1500.
Covariance p 1—a n=150 n = 300
structure
S ={(1.J2) : wj, j, = 0} S = {(1.J2) 1 J1 #J2} S ={(1.J2) : wj, j, = 0} S = {(1.J2) 1 J1 #J2}
KMB SKMB KMB SKMB KMB SKMB KMB SKMB
0.925 0.976(0.005) 0.854(0.013) 0.826(0.017) 0.834(0.013) 0.979(0.002) 0.959(0.003) 0.913(0.009) 0.948(0.004)
0 0.950 0.987(0.003) 0.908(0.010) 0.866(0.011) 0.892(0.010) 0.991(0.002) 0.974(0.001) 0.945(0.007) 0.963(0.001)
A 0.975 0.991(0.002) 0.954(0.005) 0.903(0.009) 0.944(0.006) 0.997(0.001) 0.987(0.003) 0.967(0.003) 0.979(0.003)
0.925 0.967(0.010) 0.823(0.013) 0.674(0.031) 0.758(0.016) 0.981(0.002) 0.951(0.004) 0.822(0.011) 0.933(0.004)
0.3 0950 0.983(0.004) 0.887(0.011) 0.754(0.030) 0.840(0.012) 0.987(0.002) 0.972(0.004) 0.861(0.012) 0.958(0.005)
0.975 0.994(0.002) 0.952(0.010) 0.841(0.019) 0.922(0.011) 0.996(0.001) 0.988(0.002) 0.926(0.010) 0.978(0.003)
0.925 0.964(0.008) 0.852(0.013) 0.638(0.031) 0.631(0.019) 0.973(0.004) 0.944(0.005) 0.882(0.010) 0.912(0.006)
0 0.950 0.981(0.004) 0.915(0.008) 0.729(0.031) 0.738(0.021) 0.987(0.003) 0.967(0.003) 0.915(0.009) 0.946(0.004)
B 0.975 0.991(0.002) 0.961(0.007) 0.831(0.017) 0.860(0.015) 0.995(0.001) 0.984(0.001) 0.952(0.006) 0.968(0.003)
0.925 0.958(0.008) 0.781(0.025) 0.528(0.047) 0.417(0.031) 0.978(0.003) 0.930(0.006) 0.813(0.015) 0.867(0.010)
0.3 0950 0.977(0.006) 0.870(0.009) 0.643(0.040) 0.564(0.023) 0.985(0.002) 0.956(0.005) 0.866(0.013) 0.912(0.009)
0.975 0.989(0.002) 0.939(0.007) 0.787(0.031) 0.737(0.023) 0.997(0.001) 0.980(0.002) 0.932(0.011) 0.954(0.005)

the supercomputer Raijin at the NCI National Facility systems supported by the Australian Government. The supercomputer
Raijin comprises 57,864 cores, which helped us parallel process a large number of simulations simultaneously.

From Tables 1-3, we observe that, for both KMB and SKMB procedures, the overall differences between the empirical
coverage rates and the corresponding nominal levels are small, which demonstrates that the KMB and SKMB procedures
can provide accurate approximations to the distributions of n'/?| 25 — £2s|,, and n'/2|D~1(2s — 25)|.., respectively. Also
note that the coverage rates improve as n increases. And, our results are robust to the temporal dependence parameter p,
which indicates the proposed procedures are adaptive to time dependent observations.



J. Chang et al. / Journal of Econometrics 206 (2018) 57-82 67

Comparing the simulation results indicated by KMB and SKMB in the category S = {(j1, j2) : j1 # j2} of Tables 1-3, when
the dimension is less than the sample size (p = 100, n = 150, 300), we can see that the SKMB procedure has better accuracy
than the KMB procedure if the heteroscedastic issue exists. This finding also exists when the dimension is over the sample
size and both of them are large (n = 300, p = 1500). For the homogeneous case S = {(j1, j2) : wj, j, = 0}, the KMB procedure
provides better accuracy than the SKMB procedure when sample size is small (n = 150). However, when the sample size
becomes larger (n = 300), the accuracy of the SKMB procedure can be significantly improved and it will outperform the
KMB procedure. The phenomenon that the SKMB procedure sometimes cannot beat the KMB procedure might be caused
by incorporating the estimated standard deviations of @j, ;,'s in the denominator of the Studentized-type statistic, which
suffers from high variability when the sample size is small. The simulation results suggest us that: (i) when the dimension
is less than the sample size or both the dimension and the sample size are very large, the SKMB procedure should be used to
construct the confidence regions of §25 if the heteroscedastic issue exists; (ii) if the sample size is small, and we have some
previous information that there does not exist heteroscedastic issue, then the KMB procedure should be used to construct
the confidence regions of £25. However, even in the homogeneous case, the SKMB procedure should still be employed when
the sample size is large.

6. Real data analysis

In this section, we follow Example 3 in Section 2 to study the partial correlation networks of the Standard and Poors (S&P)
500 Component Stocks in 2005 (252 trading days, preceding the crisis) and in 2008 (253 trading days, during the crisis),
respectively. The reason to analyze those two periods is to understand the structure and dynamic of financial networks
affected by the global financial crisis (Schweitzer et al., 2009). Ait-Sahalia and Xiu (2015) analyzed the data in 2005 and
2008 as well in order to investigate the influence of the financial crisis.

We analyzed the data from http://quote.yahoo.com/ via the R package tseries, which contains the daily closing prices
of S&P 500 stocks. The R command get.hist.quote can be used to acquire the data. We kept 402 stocks in our analysis
whose closing prices were capable of being downloaded by the R command and did not have any missing values during
2005 and 2008. Let y;; be the jth stock price at day t. We considered the log return of the stocks, which is defined by
log(yj¢) — log(yj:—1). As kindly pointed out by a referee that the log return data usually exhibit volatility clustering, we
utilized the R package fGarch to obtain the conditional standard deviation for the mean centered log return of each stock
via fitting a GARCH(1,1) model, and then we standardized the log return by its mean and conditional standard deviation.
Ultimately, we had the standardized log returns R; = (R1, - . ., Rygy.¢)" of all the 402 assets at day t.

Let £2 = (wj, j, Joxp be the precision matrix of R;. By the relationship between partial correlation and precision matrix, the
partial correlation network can be constructed by the non-zero precision coefficients wj, j, as demonstrated in Example 3 in
Section 2. To learn the structures of {2, we focused on the Global Industry Classification Standard (GICS) sectors and their sub
industries of the S&P 500 companies, and aimed to discover the sub blocks of £2 which had nonzero entries. Those blocks
could help us build the partial correlation networks of the sectors and sub industries for the S&P 500 stocks in 2005 and
2008, respectively.

The advantage of investigating the complex financial network system by partial correlation is to overcome the issue that
the marginal correlation between two stocks might be a result of their correlations to other mediating stocks (Kenett et al.,
2010). For example, if two stocks R;, ; and R;,  are both correlated with some stocks in the setR_;, j,).c = {Rj : j # j1, 2}, the
partial correlation can suitably remove the linear effect of R_¢;, j,) onR;, ; and R;, .. Hence, it measures a “direct” relationship
between j; and j, (de la Fuente et al., 2004). The partial correlation analysis is widely used in the study of financial networks
(Shapira et al., 2009; Kenett et al., 2010), as well as the study of gene networks (de la Fuente et al., 2004; Reverter and Chan,
2008; Chen and Zheng, 2009).

Based on the information on bloomberg and “List of S&P 500 companies” on wikipedia, we identified 10 major sectors
with 54 sub industries of the S&P 500 companies (see Tables 4 and 5 for detailed categories). The 10 sectors were
Consumer Discretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, Information Technology, Materials,
Telecommunication Services and Utilities. There were one company with the unidentified sector and eight companies with
unidentified sub industries due to acquisition or ticket change (represented by “NA” in Tables 4 and 5).

To explore the partial correlation networks of different sectors and sub industries, we were interested in a set of
hypotheses

Hphy0 @ j,j, =0 forany (ji, j2) € In; X In, VS.Hypy1 @ @), 70 for some (i, j2) € Iy, x Ip, (20)

for disjoint index sets {Iy, ..., Iy}, which represented different sub industries. For each of the hypotheses in (20), we
calculated the Studentized-type statistic nlf D! 25| in (13) with S = In; x Iy, and apply the SKMB procedure to obtain
M = 10000 parametric bootstrap samples &, .. ., &. The P-value of the hypothesis (20) was

M
1 ~ o~
P-valuey, p, = i § [{[€,]. = 12D "2} for 8 = I, x In,.
m=1

To identify the significant blocks, we applied the Benjamini and Hochberg (1995)’s multiple testing procedure that controls
the false discovery rate (FDR) of (20) at the rate « = 0.1. Let pvalue;), < --- < pvaluey, be the ordered P-values
and H)0, . .., H),0 be the corresponding null hypotheses, where K = H(H — 1)/2 is the number of hypotheses under
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Sectors and sub industries of the 402 S&P 500 stocks. “NA” represents that the sector or sub industry of the corresponding stock cannot be identified due

to acquisition or ticket change.

Stock Symbols Sectors Sector No. Sub Industries Industry No.
IPG Consumer Discretionary 1 Advertising 1
ANF, COH, NKE, TIF, VFC Consumer Discretionary 1 Apparel, Accessories & Luxury Goods 2
F, HOG, ]JCI Consumer Discretionary 1 Auto Parts & Equipment 3
CBS, CMCSA, DIS, DTV, TWC, TWX Consumer Discretionary 1 Broadcasting & Cable TV 4
IGT, WYNN Consumer Discretionary 1 Casinos & Gaming 5
JCP, JWN, KSS, M Consumer Discretionary 1 Department Stores 6
APOL, DV Consumer Discretionary 1 Educational Services 7
DHI, KBH, LEN, LOW, PHM Consumer Discretionary 1 Homebuilding 8
EXPE, HOT, MAR, WYN Consumer Discretionary 1 Hotels, Resorts & Cruise Lines 9
BDK, NWL, SNA, SWK, WHR Consumer Discretionary 1 Household Appliances 10
AMZN Consumer Discretionary 1 Internet Retail 11
HAS, MAT, ODP, RRD Consumer Discretionary 1 Printing Services 12
GCI, MDP, NYT Consumer Discretionary 1 Publishing 13
DRI, SBUX, YUM Consumer Discretionary 1 Restaurants 14
AN, AZO, BBBY, GPC, GPS, HAR, LTD, SPLS Consumer Discretionary 1 Specialty Stores 15
FPL, WPO Consumer Discretionary 1 NA NA
ADM Consumer Staples 2 Agricultural Products 16
CVS, SVU, SWY, WAG Consumer Staples 2 Food & Drug Stores 17
AVP, CL, KMB Consumer Staples 2 Household Products 18
TGT, FDO, WMT Consumer Staples 2 Hypermarkets & Super Centers 19
CAG, CCE, CPB, DF, GIS, HNZ, HRL, HSY, K, KFT,
KO, MKC, PBG, PEP, SJM, SLE, STZ. TAP, TSN Consumer Staples 2 Packaged Food 20
EL, PG Consumer Staples 2 Personal Products 21
MO, RAI Consumer Staples 2 Tobacco 22
BTU, CNX, MEE Energy 3 Coal Operations 23
APA, CHK, COG, COP, CTX, CVX, DNR, DO, DVN,
EOG, EP, EQT, ESV, FO, HES, MRO, MUR, NBL, Energy 3 0il & Gas Exploration & Production 24
0OXY, PXD, RRC, SE, SWN, TSO, VLO, WMB, XTO
BHI, BJS, CAM, FTI, NBR, NOV, RDC, SII, SLB Energy 3 0il & Gas Equipment & Services 25
BAC, BBT, BK, C, CIT, CMA, COF, FHN, FITB,
HCBK, HRB, IVZ, KEY, LM, MI, MTB, NTRS, PNC, Financials 4 Banks 26
SLM, STI, USB, WFC
CME, EFX, ICE, NYX, PFG, PRU, RF, STT, TROW, Financials 4 Diversified Financial Services 27
UNM, VTR
ETFC, FII, JNS, LUK, MS, SCHW Financials 4 Investment Banking & Brokerage 28
AFL, AIG, AlZ, CB, CINF, GNW, HIG, L, LNC, . .
MBI, MET, MMC, PGR, TMK, TRV, XL Financials 4 Property & Casualty Insurance 29
AMT, AVB, BXP, CBG, HCN, HCP, HST, IRM, . .
KIM, PBCT, PCL, PSA, SPG, VNO, WY Financials 4 REITs 30
our consideration. Note that we had K = 1431 for testing sub industry blocks. We rejected H, - . ., Hu),0 in (20) for

v =max{1 <j <K : pvaluej; < oj/K}.

We constructed the partial correlation networks based on the significant blocks from the above multiple testing
procedure. The estimated partial correlation networks of the 54 sub industries, labeled by numbers from 1 to 54, are shown in
the right panels of Figs. 1 and 2, corresponding to 2005 and 2008, respectively. The name of each sub industry and the stocks
included can be found in Tables 4 and 5. The shaded areas with different colors represent the 10 major sectors, respectively.
The left panels in Figs. 1 and 2 give the partial correlation networks of the sectors, where the nodes represent the 10 sectors,
and two nodes (sectors) hy and h; are connected if and only if there exists a connection between one of sub industries
belonging to sector h; and one of sub industries belonging to sector h, in the right panel.

We observed from the left panel of Fig. 1 that preceding the crisis in 2005, the Consumer Discretionary sector was likely to
be a hub connecting to all the other 9 sectors. It was the most influential sector with the largest degree, i.e., the total number
of directed links connecting to the Consumer Discretionary sector in the network. During the crisis in 2008, the Consumer
Discretionary sector was still the most influential sector as shown by the left panel of Fig. 2, but it had less connections
compared to 2005. The Financials sector was a little bit separated from the other sectors in 2008, with only half connections
in contrast with the network connectivity in 2005. The similar situation also appeared in the partial correlations networks
of S&P 500 sub industries as shown in the right panels of Figs. 1 and 2. More specifically, both the numbers of the edges
within and between most sectors for the network of S&P 500 sub industries in 2008 were significantly less than those in
2005 (see Table 6 for details), which indicated that the market fear in the crisis broke the connections of stock sectors and
sub industries. From the perspective of financial network studies, the above analysis confirmed that fear froze the market in
the 2008 crisis (Reavis, 2012).
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Table 5
Sectors and sub industries of the 402 S&P 500 stocks (continued). “NA” represents that the sector or sub industry of the corresponding stock cannot be
identified due to acquisition or ticket change.

Stock Symbols Sectors Sector No.  Sub Industries Industry No.
AOC Financials 4 NA NA
AMGN, BIIB, CELG, FRX, GENZ, GILD, HSP,

KG, LIFE, LLY, MRK, MYL, WPI Health Care 5 Pharmaceuticals 31
ABC, AET, BMY, CAH, CI, DGX, DVA, ESRX, HUM, .

MCK, MHS, PDCO, THC, UNH, WAT, WLP, XRAY Health Care 5 Health Care Supplies 32
ABT, BAX, BCR, BDX, ISRG, JNJ, MDT, MIL, Health Care 5 Health Care Equipment & Services 33

PKI, PLL, STJ, SYK, TMO, VAR

BA, RTN Industrials 6 Aerospace & Defense 34
CHRW, EXPD, FDX, UPS Industrials 6 Air Freight & Logistics 35
Luv Industrials 6 Airlines 36
DE, FAST, GLW, MAS, MTW, PCAR Industrials 6 Construction & Farm Machinery 37
& Heavy Trucks
COL, EMR, ETN, GE, HON, IR, JEC, LEG, . .
LLL, MMM, PH, ROK, RSG, TXT, TYC Industrials 6 Industrial Conglomerates 38
CMI, DHR, DOV, FLS, GWW, ITT, ITW Industrials 6 Industrial Machinery 39
CSX, NSC, UNP Industrials 6 Railroads 40
ACS, CTAS, FLR, RHI Industrials 6 NA NA
CBE, MOLX, JBL, LXK Information Technology 7 Office Electronics 41
ADBE, ADSK, BMC, CA, ERTS, MFE, MSFT, NOVL, Information Technology 7 Application Software 42
ORCL, TDC
CIEN, HRS, JDSU, JNPR, MOT Information Technology 7 Communications Equipment 43
AAPL, AMD, HPQ, JAVA, QLGC, SNDK Information Technology 7 Computer Storage & Peripherals 44
ADP, AKAM, CRM, CSC, CTSH, CTXS, CVG, EBAY,
FIS, GOOG, IBM, INTU, MA, MWW, PAYX, TSS, Information Technology 7 Information Services 45
XRX, YHOO, DNB
ALTR, AMAT, BRCM, INTC, KLAC, LLTC, LSI, MCHP, Information Technolo 7 Semiconductors 46
MU, NSM, NVDA, NVLS, QCOM, TXN, XLNX sy
ATI, BLL, FCX, NEM, OI Materials 8 Metal & Glass Containers 47
DD, DOW, ECL, EMN, IFF, MON, PPG, PX, SHW, SIAL  Materials 8 Specialty Chemicals 48
BMS, MWV, PTV Materials 8 Containers & Packaging 49
AKS, TIE, X Materials 8 Iron & Steel 50
AVY, IP, SEE Materials 8 Paper Packaging 51
VMC Materials 8 NA NA
CTL,EQ, FTR,Q, S, T, VZ, WIN Telecommunications Services 9 Telecom Carriers 52
AEE, AEP, AES, AYE, CMS, CNP, D, DYN, ETR, . P
FE, PEG, POM, PPL, SCG, SO, SRE, TE, WEC, XEL Utlities 10 MultiUtilities 3
STR, TEG Utilities 10 Utility Networks 54
RX NA NA NA NA

Table 6
The numbers of edges within and between sectors for the partial correlation networks of the
S&P 500 sub industries in Figs. 1 and 2.

Sectors 2005 2008
Within Between Within Between

Consumer Discretionary 13 37 9 12
Consumer Staples 4 16 1 6
Energy 0 8 1 4
Financials 3 14 5 5
Health Care 2 10 2 8
Industrials 5 19 3 5
Information Technology 5 13 6 9
Materials 2 12 2 10
Telecommunication Services 0 3 0 1
Utilities 0 4 1 2
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Appendix

Throughout the Appendix, let C denote a generic positive constant depending only on the constants specified in
Conditions 1-4, which may be different in different cases. Let ,01’1 = ny] +y3’1, ,o;1 = 2y2’1+y3’1, p;1 = yfl—i—y;l—i-y;]
and p, ' = max{p; ', p; '} + y; ' Define ¢ = min{p1, p2, p3, pa}and A =n~'Y_ el —V = (5}, ,)-

Lemma 1. Assume Conditions 1-3 hold. If logp = o{n’/?=%)}, there exists a uniform constant Ay > 1 independent of n and p
such that

P{|Z — ¥| > Ai(n""logp)"/?} < exp{—CA}'(nlogp)*/} + exp(—CA? logp),
P{| Al > Ax(n""logp)"/?} < exp{—CA%*(nlogp)™/*} + exp(—CA3 log p),

_l n
sup IP( Zejz[ > A3vj,j> < exp(—CAS*n"2),
1gisp \MH 7
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1 n
Z € tYk,t

sup Pymax|—
1gj=p LKA N4

T o
sup IP’{ 'n ;“j1,jy—j,t€j,t

1<j=p

forany Ay, Ay, Az, Ay, As > Ao.

> Ag(n~! logp)l/z} < exp{—CA*(nlogp)*>/?} + exp(—CAj log p),

> As(n! logp)l/z] < exp{—CA%*(nlog p)**/*} + exp(—CAZ log p)

Proof. For any givenj; andj,, based on the first part of Condition 1, Lemma 2 of Chang et al. (2013)leads to sup; < <, P(1¥;,.c¥j,.t
—0j,j,| > x) < Cexp(—Cx"1/?) for any x > 0.Hence, for any x > 0 such that nx — oo, Theorem 1 of Merlevéde et al. (2011)
leads to

1 n
P(‘n 2 ViVt = O,
t=1

By Bonferroni inequality, we have P(| X — ¥|., > x) < np?exp(—Cn®1x?1) + p? exp(—Cnx?). Let x = A;(n~" logp)
obtain the first conclusion. Following the same arguments, we can establish the other inequalities. O

> x) < nexp(—Cn”1x"1) + exp(—Cnx?).

172

Lemma 2. Assume Conditions 1-3 hold. Let s = maxu<p|¢xj|0 For some suitable 1; < (n “llogp)/? foreachj = 1, ..
we have maxi<j<p|® — o], = 0p{(logp)~'} and max;j<p|@; — aj|, = 0,{(nlogp)~1/4} provided that logp = o{n‘/>~ 5)} and
s*(logp)’n~" = o(1).

Proof. Define

T = {max max < Ay(n”! IOgP)l/z}

1<j<p k#j

n
1
- E € tYk,t
n

t=1

for some Ay > Ao, where Ay is given in Lemma 1. Selecting A; > 4A4(n~! log p)'/? for any j, Theorem 6.1 and Corollary 6.8 of
Biihlmann and van de Geer (2011) imply that, restricted on 7, we have

max [a; — ay|; < Cs(n”" logp)"/? 21)
1=j<p

and
@ — )" X (@ — ej) < Csn~ ' log p (22)

with probability approaching 1. By Bonferroni inequality and Lemma 1,

p n
P(7¢) < ZP{Z %Zej,t}’k,t

=1 Yk ' =1

For suitable selection of A4, we have P(.7¢) — 0 as n — oo. Thus, from (21), it holds that

> Aq(n”! logp)‘/z} < pexp{—CAy*(nlogp)*/*} + p exp(—CA} logp).

max (& — e, = Op(s(n”" logp)"/?} = o,{(logp)~"}. (23)
On the other hand, notice that
@ — ) 2 (@ — o) = Amin( By )& — a2 — |25 — Tyl 16 — el

by Condition 2, Lemma 1, (22) and (23), we have

max [ — ], = Op{(sn™"logp)'/?} = op{(nlogp)~"/4}.
Hence, we complete the proof. O

Lemma 3. Assume the conditions for Lemmas 1 and 2 hold, then
1w 1w
n Z%l,fazyf T Zéjlyféjzvf = _(6‘\11,12 — Yy jp ( Z €, t)H(h #J2)
t=1 t=1

_(a\jZ»jl — %y ( Z €, [)HUl #b)-l—op{(nlogp)‘l/z}.
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Here the remainder term o,{(nlog p)~'/2} is uniform over all j; and j,.
Proof. Notice thate¢;; = —oijyt and’e},[ = —BZJ-Tyt for any t, then
1 ¢ 1 ¢ 1 ¢ 1 ¢
n ;EJMGJQI - n ;ejﬁszi = _E ;(“h - “1'1) Vi€t — n ;(“jz - “1'2) Ve€jy e

1 o Iy
+ E Z(“fl - oy )TnyI(ajz — oy, ).

t=1
Condition 2, Lemmas 1 and 2 imply that

n

1 —~ ~
. Z(ah - o )TnyI(“iz - afz)

n
t=1

max
1<j1.J25p

T g2 T, 3 -~
< max |(aj, —oy,) X(@j, —e,)l + max (o, — o) (¥ — X)@j, — o)l
1<j1.2=p 1<j1.02=p

<Cmax & — e+ |¥ — X|. max [@ — «;
< ls,gplj 515 + | |oo]§jsp|] |2

= op{(nlogp)~"/?}.
Meanwhile, by Lemma 1, we have max;<j<pMaxi4|n~"Y t_ € V| = Op{(n~"log p)!/?}, which implies that

n n
A 1 1
E (@, — oy k) - E Vi,t€jy ¢ - E Vi,t€jt
=1 =1

k£j1.J2

max

na < max [ — aj|, - max max
1<j1.j2=p

<j<p 15j<p k#j

= o,{(nlogp)~"/?}.

Therefore, we have

1. R L o
n ;(ajl — o) 'yie50 = (@, 4, — 0!11@)(; ;yjz,tejzonol £ )
1 n
+ Z @k — Oljl,k)<a Zyk,fejz.t> o
k#j1.J2 =1
1 n
= @ _ajl’jz)(ﬁ nyzstsz,t)l(fl # jo) + 0p{(nlogp)~'/?}.
t=1
Here the remainder term is uniform over any j; and j,. On the other hand, n='Y"_ i, = n 'Yy _ 16 N

n~'Y 4@ _y-j:€r. By the fourth result of Lemma 1, it yields that n™' Y\ yj e = n™'3 [ €7 + Opf(n”! logp)”2
Here the remainder term is uniform over all j. Together with (24), we have

1 N o _
EZ(““ — ;)Y€ = (@5, — ¥, 4 < Z <, t>H(11 # Ja) + 0p{(nlogp)~"/?}.

t=1

Here the remainder term is also uniform over all j; and j,. Hence,

" 2611 t€ja,t — Zeh t€t = a]l J2 O‘jlez)( Z €, t>H(jl #J2)

_(a\ijjl — %y 3 ( Z €, I)H(jl ?EjZ)‘i‘Op{(nlng)*l/z}.

We complete the proof. O
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iti i P AT . “irdz -1y o &~ i i
Proof of Proposition 1. Notice that vj, j, = g Wi = andvj, j, =n"'Y ,_,€,.c€,, foranyj; andj,, Lemma 3
implies that

v = T +“J1Jz 2 o4 ¥ jy +
Vjijo T Vi = VUi €t ]1 t T itz

n

1 - Y1z 2
- > (610650 = Vi jp) + 0 D (€ — i)
t=1

t=1

n

Uiy j -
e ;(eﬁ,r — vj,,) + 0p{(nlogp) %)
foranyji # jo.Recall A = n=1y"1 €€l —V =: (8, j,). It follows from Lemma 1 that maxi<j, j,<p|8j, j,| = Op{(n~"logp)'/?}.

Recall @j, j, = 311171]5112212 ,if logp = o{né/?=%)} for ¢ specified in Lemma 1 and s?(log p)>n~! = o(1), it holds that

—~ i, _
@jyjp — Wjrjp = -2 + Op{(HIOgP) 1/2}
Yjy.j1 Viz bz
for any j; # j,. Meanwhile, by the same arguments, for eachj = 1, ..., p, it holds that 53“ —wjj= —ifT’ +0p{(n logp)~1/2}.
This proves Proposition 1. O o

Proof of Theorem 1. Define d; = sup,. o|P(n'/?| 5|, > Xx) — P(|€|, > X)|. Forany x > 0 and &; > 0, it yields that
P(n'?|2s — sl > x) < P2 5| > x — 1) + P02 L5 > €1)
< P(l&l > x— 1) +dy +P(n'?| X5y, > £1)
= P(|lo > %)+ P(x = £1 < £l < %) +d1 + P2 s > £1).

On the other hand, notice that ]P(nl/2|ﬁs — sl > x) = P('?|IIs|,, > x + &1) — P(n"?| Xs|,, > &), following the

same arguments, we have

sup |P(n1/2|ﬁ$ — sl > x) — P&l > x)| < di +supP(x — &1 < [l <x+ 1) +P(n"? Tsly, > &1). (25)
x>0

x>0

By the Anti-concentration inequality for Gaussian random vector [Corollary 1 of Chernozhukov et al. (2015)], it holds that

supP(x — &1 < |Elo < x+#1) < Ce(logp)'/? (26)
x>0
for any &; — 0. From the proofs of Lemmas 2 and 3, we know n'/2| X's|,, = O,(sn~/2logp). Thus, if s>(log p)*n~"! = o(1),
we can select a suitable ¢; to guarantee &;(logp)'/? — 0and n'/?| X's|,, = op(e1). Therefore, for such selected &, (25) leads
to

sup ]IP’(nl/2|ﬁS — 25lo > x) = P(I&lo, > x)| < d1 +0(1). (27)

x>0

To prove Theorem 1, it suffices to show d; — 0 as n — oco. We will show this below.

Write ITs = —(51,....5) where 5 = n™ 'Y\ g and § = (&,...,&)". Given a D, — oo, define gjﬁ =
Giel{liel < Dn} — Elg Mgl < DYl and g, = gj.cl{lgjcl > Du} — Elgjel{lgjcl > Da}l. Write g7 = (57, s70)"
and ¢; = (Gq -5 6rt )T for each t. The diverging rate of D, will be specified later. Let L be a positive integer satisfying
L <n/2,L — oo and L = o(n). We decompose the sequence {1, ..., n} to the following m + 1 blocks where m = |n/L] and
L-] is the integer truncation operator: G, = {({ — 1)L+ 1,..., 2L} (£ =1,...,m)and G = {mL+ 1, ..., n}. Additionally,
let b > h be two positive integers such that L = b+ h,h — oo and h = o(b). We decompose each G, (£ = 1,...,m)
to a “large” block with length b and a “small” block with length h. Specifically, Z, = {(¢{ — 1)L+ 1, ..., (£ — 1)L 4+ b} and
Je={€—1)L+b+1,...,LL}forany £ =1, ..., m,and Jn+1 = Gm+1. Assume u is a centered normal random vector such

that
s R |

Our following proof includes two steps. The first step is to show

dy := sup [P(n"/?| s, > x) — P(lulo > x)| = 0(1). (28)
x>0



74 J. Chang et al. / Journal of Econometrics 206 (2018) 57-82

And the second step is to show

sup [B(ulog > X) — B(lgloc > %)| = o(1). (29)
X>
From (28) and (29), we have d; = o(1).

We first show (28). Define d3 = sup,_o|P(In""2Y"/_ ¢/, > x) — P(|u|,, > x)|. Notice that n'/?ITs = n="23"}_ ¢ +
n”ﬁZf:lgt_, by the triangle inequality, it holds that [n'/?|IIs| ., — [n="2Y""_gf| | < In"2>"_ ¢/ |- Similar to (25),
we have

dy <ds+supP(x —e; < U] <X+ &) +]P>(

x>0

172 th
o0

for any e, > 0. For eachj, it follows from Davydov inequality (Davydov, 1968) that

n 2 n
1 B 1 _ 1 -
(|2 ) =a ;E{“f*f)z} UEPIECTET

t1#t

- ez> (30)

I A

- ZE G ZUE{( SV IVAEL(6, ) exp(—Clty — 7).
fl#fz

Applying Lemma 2 of Chang et al. (2013), Conditions 1 and 4 imply that sup; P(|gj| > x) < C exp(—Cx”2/2) for any x > 0.
Then

Dn o]
E{s/I(|gj.c| > Dn)} = 4 / X’P(|gj.c| > Dy) dx + 4 / X’P(|gj.| > X) dx < CDy exp(—CD}?'?). (31)
0

Dn

By the triangle inequality and Jensen'’s inequality,

E{(g;)*} < CE{}1(Igjc| > Dn)} + CIE{g;.:I(Igj.c| > Da)}]* < CDj exp(—CD}2/?), (32)
which implies that

1 < 2
1/2 ZS‘J;
t=1

sup E(
1<j<r n

Thus, it follows from Markov inequality that
1 <« r
IP(WX;Q >82>§.9215Ju<pr ( ngn
t= 00

Similar to (26), it holds that sup,_oP(x — &3 < |u|o, < X+&;) < Csy(logp)!/? forany &, — 0.If we choose &, = (logp)~! and
D, = C(log p)*/?2 for some sufficiently large C, then sup,_P(x — &3 < [u,, <X+ &)+ P(In""2Y_[_ 67| > &) = o(1).
Therefore, (30) implies d, < ds + o(1). To show (28) that d, = o(1), it suffices to prove d3 = o(1).

Let ¢/ = (gf’T, -t = (o and ut = (T, —u!)T = (U, ug’r“) To prove d3 =
sup,.o|P(In""2¥"0_ 61, > X) — P(|lul,, > X)| — 0, it is equivalent to show supx>0|]P’(max1_,<2, 123 1g+ &b x)—
IP’(max1_,<2rqu > X)| — 0. From Theorem B.1 of Chernozhukov et al. (2014), sup,cg |P(max;<j<o,n~ 1/2 Zt 1g+ N
P(max;<j<oru$ > z)| — 0if[Var(n=12)"]_ ¢/**) — Var(u®™)| _ — 0.Notice that |Var(n=1/2)"]_ ¢;/*") — Var(u®™)| _ =

IVar(n='23"/_ i) — Var(u)| _, thus to show d3 = o(1), it suffices to show

n
[P’(max 2y ok > z) - (max uj > z)‘ — 0.
1<j<r ’
== =1

n—1
) < CD? exp(—CD2?/?) + CD? exp(—CD??/?) Z exp(—Ck”) < CD? exp(—CD??/?).
k=1

) < Cre; D% exp(—CD12/?).

dy ;= sup

zeR

1<j<r
By Theorem B.1 of Chernozhukov et al. (2014), it holds that d; < Cn—¢ 4+ Cm exp(—Ch"3) provided that

hb~'(logp)* < Cn™® and b*D? logp + bD*(logp)” < Cn'~2~ (33)

for some @w e (0, 1/4). As we mentioned above, D, =< (logp)*"2. To make p diverge as fast as possible, we can take
h =< (logn)” for some ¥ > 0. Then (33) becomes

C(logn)’n® (logp)* < b;
C(logn)?’ (log p)*/72+> < n'~4=,

C(logn)? (log p)¥/72%9 < n'—37,
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Therefore, logp = o(n¥) where ¢ = min |42 %} Notice that ¢ takes the supremum when @ = 0. Hence, if

a5y, 0 4+9
logp = o{n??/4+92)} it holds that d; — 0. Then we construct the result (28).

Analogously, to show (29), it suffices to show sup, g |P(max;<j<,U; > z) — P(Maxi<j<-& > z)| — 0. Write W as the

covariance of u. Recall W denotes the covariance of & Lemma 3.1 of Chernozhukov et al. (2013) leads to

max u; >z | — P max§; > z
1<j<r 1<j<r

We will specify the convergence rate of |\TV — W/, below. Notice that, for any 1 < ji, j, < r, we have

w2 (St (i) - 2e{ (S o) (T )
—ﬁ ZE{ (Z %) (Z sj;f> } » i { (Z sz,r> (Z sj;f> }

=1 teZy teZy teZy teZy

s e (25 (Z51))

The triangle mequahty yields

L% {(gs—h»(m—géﬂ(;@(;@ﬂ
w2 (T )(Z o))+ m S (25 (Z5))
a2 (T (T

Sup
zeR

< C|W — W| 21V log(r/IW — W )3

=1
Foreach ¢ =1, ..., m, the following identities hold:
(T o) (To)| = Zesiso+ T etss0)
teZy teZy teZy t1#b
+ - _ + - + -
E (Z gfﬁ) (Z gfzd‘) - ZE(S‘JLtgjzvf)—i_ ZE(S‘J'LH S‘J'z.fz)’
teZy teZy teZy t1#b
- + _ - _+ -+
E (Z gjL[) (Z gjw) - ZE(S‘h-fgquf)—i_ Z E(gjlvﬁgjz-fz)'
teZy teZy teZy t1#t

Together with the triangle inequality, Davydov inequality and Cauchy-Schwarz inequality, we have

E (Z §;},f> (Z §j;f> < Chsup[E{(g;,)*N"2,
teZy teZy

J.t

E (Z sﬂ) (Z sj;.t) < (hsuplEl(s; WRIkE suplE((s;,) 14,
teZy teZy
E (Z g;) (Z gj;[) = CbsuplE((s;) )" suplE((g;) '

teZy teZy It

From (32), it holds that

sl 2 (i) (Z )] -m Ll (Z o) (2]

teZy teZy teZy teZy

By the proof of Lemma 2 in Chang et al. (2015), we can prove that

] m 1 n n
o S (e He) o)
1512=r =1 tex, teT, t=1 t=1

< Ch'?b12 4+ cbhn~.

< CD, exp(—CD??/?).

(34)
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Specifically, notice that

{(E o) (Eo )l -2e{(Zo)(Z )+ ZE(Z ) (2 o)

teZy teZy L1#£Ly teZy, teZy,

Sz el 2o g )

teZy teJy L1#Ly teZy, teJe,
(36)

m+1
Bzl STz )
=1 teJy teZy L1#£Ly teJy, teZy,
m+1
Bz Sz )z )
=1 teJp teJy 1% teJe, tede,

where we set 7,1 = . By Cauchy-Schwarz inequality and Davydov inequality, we have

S5 o) (S0l 15 (Sa) (o))

A(GZ o) (G E )l

x Cm < Chb™! + Cbn~!

m
n—mb

=1
mh+b
nm

and

b
f;z

60

1 l( 1 1

{2 ) (S o) S G E ) (G 2 o)

n L1#Ly teIg1 l'EIez \/B teIgl \/E teI(2

< Cbn™' Y exp{—Cl(€y — £)b"*) < Cbn".
076

Similarly, we can bound the other terms in (36). Therefore, we have (35) holds which implies that [W — W[ < Ch/2p=1/2 4
Cbn~'4-CD, exp(—CD,}?/z). For b, hand D, specified above, (34) implies sup, g |[P(max;<j<;u; > z)—P(mMaxi<j<;& > z)| = 0.
Then we construct the result (29). Hence, we complete the proof of Theorem 1. O

Lemma 4. Assume Conditions 1 and 3 hold, the kernelfunction K(-) satisfies |K(x)| =< |x|~F as x — oo for some T > 1, and the

bandwidth S, < n* for some 0 < p < min{5, o) etk = max{MH, ‘;Tlfﬁj, 11 and ag be the maximizer for the

function f(a) = min{1 —a — 2p, 2(e¢ — p)t — 2} over k <o < 1—2p. Then

-1

X K
2 K(é)[ Z {men{_ — E(nen;_ k)}}L = 0p({log(pn)}*/72nI(@0)2)

t=k+1

provided that logp < Cn®® where § = min 25Qaoys +a — 1), Z{(co — p)T + g + 0ys + p — 2}].

Proof. We first construct an upper bound for sup; ;, 12<TIP’{|Z K(k/Sy)[n~ 12[ 1 Uit Migt—k — B0y e e} > X}
For any j; and j,, it holds that
- }

n—1 k 1 n
]P{ K(?ﬂ) [n Z {nj1,t'7]'2.t—k - E(nj],fnjz,tk)}}

g

k=0 t=k+1
(37)
LCn® n 1 K
AL k(@S- 3l 2 kRS- 3)
k=[Cn® | +1
forany o € (0, 1), where ¥ x = nj; t+k7j,.c — E(Nj,t+k7Nj,,¢)- Following Lemma 2 of Chang et al. (2013), it holds that
sup  sup P (|yeil > x) < Cexp(—Cx?/?) (38)

0<k<n—11<t<n—k
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for any x > 0. Notice that S, < n?, we have max e +1<k<n—1/K(k/Sp)| < Cn~ =P if @ > p. Then, (38) leads to

n—k

n—1
1 Ve
]P’{ ()l Z"”" 3= X e > o
k=[Cn®]+1 k=|Cn% |+1 t=1

n—k (39)

< Z D P{yexl > Cenlemr

k=(Cn® | +1 t=1
< Cn® exp[—C{xnl@—PT—1yr2/4y,

We will specify the upper bound for P Z,EC" J|IC (k/Sy ||”_]Zt 11/4 k| > x/2} below. Similar to (38), we have that

sup  sup  sup P(|nj, c4ktjp.el > x) < Cexp(—Cx2/%) (40)

1<j1.jp<r 0<k<n—11<t<n-k

for any x > 0. Denote by 7 the event {Supy—y<n—1SUP1<t<n—k|Mj;.c+kMjp,c| > M}. For each k = 0, ..., [Cn%], let 1/f?:k =
Ny t+k i . LMy ek Mg e | < MY = B0y ekl {0y e1k0jp e | < MY fort =1,...,n— k. Write D = Zlfo Y1K(k/Sq)l, then

' K\ X LCne | n—k
|2 e(5)[i 2w = 5} = D e v > 5 )+
n—k
Z (‘ Zw” ) ) (41)

|cn®) n—k
X
+ Z ( ZEHT)J] t+kMj,, t|H{|77]1 t+kMj, el > M} > E)

=1
From (40), we have P(T) < Cn? exp(—CM?"2/4), Similar to (31), we have

sup  sup  sup  E[|nj, vk T{mjy.coklpyc] > M} < CM exp(—CM™2/%),
1<j1.j2<r 0<k<n—11<t<n—k

If DMx~! exp(—CM?2/%) — 0, then (41) yields that
LCn% | n—k

P{LCnJ <1<>H ZW >7}§Z <‘ Z%k

Foreachk =0, ..., |Cn®], we first consider P{n‘lzt";fw;fk > x/(4D)}. By Markov inequality, it holds that

1k + X unx ak +
P(E ;w[’k > E) < exp(—w>E{exp<; Lll[/t,k>} (43)

for any u > 0. Let L be a positive integer such that L =< n* and L > 3|Cn%] for C specified in (37). We decompose the
sequence {1, ..., n—k} to the following m+ 1 blocks wherem = |(n—k)/L]: G, = {(£—1)L+1,...,¢L} (£ =1,...,m)and
Gm+1 = {mL+1, ..., n—k}. Additionally, letbh = |L/2] and h = L —b. We then decompose each G, (¢ = 1, ..., m)to ablock
with length b and a block with length h. Specifically, Z, = {(¢ — 1)L+ 1, ...,(£ —1)L+b}and 7, = {(£€—1)L+b+1, ..., LL}

)+Cn exp(—CM72/%). (42)

forany ¢ =1,..., m,and Z,+1 = Gm41. Based on these notations and Cauchy-Schwarz inequality, it holds that
n—k m+1 1/2 m 1/2
oSt ol | ol 5 )]
t=1 {=1teIy (=1teJy

By Lemma 2 of Merlevéde et al. (2011), noticing that b(m + 1) < 2n, we have
m+1 m+1

E exp(z Z Zuwfk>} < 1_[ E{exp (Z ZHwi,{) } + CuMn exp(8uMn — C|b — k|’?). (44)
1=1teZy; =1 teT;

Following the inequality ¥ < 14 x + x?¢*V°/2 for any x € R, we have that

E exp(z ZuWJk)} <1 +2u2]E{<

teZy

2
Z Wﬂ) } exp(4ubM) < 1+ Cu’b* exp(4ubM).

teZy
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Together with (44), following the inequality (1 + x)™! < e™+1* for any x > 0, and bm < n/2, it holds that

m+1
E{exp (Z Z 2“¢t+,k> } < exp{Cu’nb exp(4ubM)} + CuMn exp(8uMn — C|b — k|"?).
(=1 teZ,

Similarly, we can obtain the same upper bound for E{exp(}_,",>",. JZZul/rtf,()}. Hence,

n—k
]E{exp (Z uwf,{) } < exp{Cu’nb exp(4ubM)} + CuMn exp{8uMn — C|b — k|'?).

t=1
We restrict [ubM| < C. Notice thatb — k > |[Cn®|/2 — 1, then

n—k

E{exp(z uz//tfk> } < C exp(Cu®nb) + CuMn exp(8uMn — Cn®"3).

t=1
Together with (43), notice that D < S, < n” and b < n¢, it holds that

—k
1+« X
P(H E AP E) < Cexp(—Cun'~"x + Cu?n'**) + CuMn exp(—Cun'~*x 4+ 8uMn — Cn®"3). (45)
t=1

To make the upper bound in above inequality decay to zero for some x — 0" and M — oo, we need to require uMn'=*”3 < C.
For the first term on the right-hand side of above inequality, the optimal selection of u is u =< xn~*~”. Therefore, (45) can be
simplified to

1k X
P( - t > ) <Cexp(—Cn'"*"2x?) + C exp(—Cn®"3
(n;wt,k > 49) < Cexp( )+ Cexp( )

if xMn'~*~%r3—¢ < C. The same inequality also holds for P{n*lz?;fwtfk < —x/(4D)}. Combining with (37), (39) and (42),

n—1 i 1 n
P{ Z’C<é) [E D Uiyl — E(’?jl,tnjz,t—k)}i| > X}

k=0 t=k+1
for any x > 0 such that xMn!~%~*»3=7 < C. Notice that above inequality is uniform for any j; and j,, thus

< Cn® exp(—Cn'~72Px?) + Cn® exp(—Cn®"?) + Cn? exp[—C{xn @~ PT=1}72/4] 4 Cn? exp(—CM"2/4)
n—1 k 1 n
o[ e(5 )7 2wtz ]| -4
n
o0

k=0 t=k+1
To make the upper bound of above inequality converge to zero, x and M should satisfy the following restrictions:

zC[ log(pn) {log(pn)}“/”}

< (p°n® exp(—Cn'~*727x%) + Cp*n® exp(—Cn®"3) + Cp*n? exp[—C{xn @~ =1y2/4] 4 Cp?n? exp(—CM"2/4).

nlfot72/> n(afp)rfl (46)

M > C{log(pn)}*/>.
Notice that xMn'~%~%¥3=¢ < C, (46) implies that logp < Cn®® where § = min{;25(ays +a—1), B{l@—p)t +a+ay;+

o —2}}. To make x can decay to zero and p can diverge at exponential rate of n, we need to assume 0 < p < min{%], 2y1;3+1

andk <o < 1—2p.Letf(a) = min{l —a —2p, 2(ax — p)r — 2} and op = arg Max,.q<1-2,f (). We select o = ap and
x = C{log(pn)}¥/r2n~f@0)/2 then

n—1 I 1 n
P{ ZK(SZ)[n > {MH—E(MH)}” >x} — 0.

k=0 t=k+1
Hence, we complete the proof of Lemma 4. O

Proof of Theorem 2. Similar to the proof of (29), it suffices to prove |\TV —W|,, = 0,(1). By Lemmas 1 and 3, we have
Max;<j<p[0j; — vjj| = Op{(n~" logp)'/}. Notice that v 's are uniformly bounded away from zero, then v;'""s are uniformly
bounded away from infinity with probability approaching one. Thus,

~

W —W|,, < C|E — B|, +CH-H|, =C|E — E|,, +0,{(n""logp)"/?}. (47)
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We will show | = — F|y = 0p(1) below

79
Define

~
—
=

—_

where

n

1
— D By, k=0

t=k+1

n

1
E Z E(ﬂwkﬂ?), k <O0.

t=—k+1

We will specify the convergence rates of | = E-Z= | and 1E -5 |, Tespectively. Notice that

n—1 -1

~ = k\ , ~ k\ =~

E-E= E K(g)(rk_rk)‘i‘ E ]C<§>(Fk—1“k).
k=0 k=—n+1

For any k > 0, it holds that

Z 'lt'h k+ Z

n
t k+1

1 -~
mk"‘nZﬂt’hk M- k) +*Z(ﬂ
tk+1

s T
n t 77[)(77t—k - 'lt—k) »
t=k+1 t=k+1
which implies

n—1 I . n—1 k n—1 n
ZK<S<)(FI<—FI<)=Z’C(S)|: Z{mm k— 77t77t k ]+ZK(S )[ Z(ﬂr ﬂ)”zk}
k=0 n k=0 n t=k+1 k=0 n

n—1

t=k+1 (48)
k 1 n T n—1 k n
<S){ Z’?r(”t k— nt—k) }+ZK( ){n
k=0 n

S Z (Ur ”t)(ﬁt*k - ﬂrfk)T}~
t=k+1 k=0 n t=k+1

We will prove the |-|,,-norm of the last three terms on the right-hand side of above identity are O,{sSy(n Tlogp)'/?}. We
only need to show this rate for one of them and the proofs for the other two are similar. For any j and t

+
e}

it = Tt = {06 €t — €nonini] — {Oxi — i}
=00 Eni0t — Enltxtne T Op{(n~ logp)'/?}
o~ T T (-~ o~ T o~ T
= {%o’) - %u‘)} Yiy: {“m) - “x:(n} - GXZU)wf{aXIU) - “)n(i)} Ve — Emuxt{“m - %m} y
+ 0p{(n""logp)"/?}.

Here the term Op{(n~" log p)'/?} is uniform for any j and t. Then the (jy, j>)th component of Y ;—,
non;_) is

K /Sa){n™ "yt (e —

{&XIUI) - aX1U1)}T{ K( ) ( Z ’7]2 t— kyl'yt> } {a)(z(iz) - aszz)}
k=0

t=k+1

n—1 n
~ T k 1
- {aXl(il) - “X]U])} { ’C(*) (7 Z yr’]jg.t—k@@(ﬁ)t)}
k=0 Sn L (49)
n—1 n
~ T k 1

- {aXz(il) - “Xz(i])} { K(?) <E Z ytnjzyf*keXl(i]),f)}
k=0 n t=k+1

+R,;

J1.J2°



where
1
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— k 1«
~, . -~ - i . -1 1/2
IR, j,| < { ,?_O K(Sn> (n t_§k+1|7712.tk|> } Op{(n logp)”/~}

n L‘ 1 n | | | .
{k=0 K<sn)“<n;|mz*[|> Op{(n~"logp)"/<}

= Op{sn(ni] lOgP)l/z}-

Here the term 0,{S,(n"" log p)'/?} is uniform for any j; and j,. Following the same arguments, we have

n—1
Z ( )( Z TNjo.t— kYIyt> < (S,
k= oo

t=k+1

n—1 k 1 n
S (5 ) (5 X wmereane )| =6
k=0 00

t=k+1

n—1

k
S () (3 2 vecsens )| =65
k=0 o]

t=k+1

IA

sup
1<j1.J2=p

sup
1<j1.J22p

sup
15j1.25P

Therefore, the (j;, j»)th component of Z;:;élc(k/sn){n”Z?:k+](ﬁt — 1,)n;_,} can be bounded by CS,sup,;,[@ — a;l, +
0p{Sn(n~"log p)!/2} = 0,{sS,(n~"'log p)!/?}, where the last identity in above equation is based on (23). Therefore, from (48),
by Lemma 4, we have

()|

=

k=0

n—1 I
ZK(SZ)[ Z 011 = ECnmi }]‘ + 0, {sSa(n~" logp)'/?}

k=0 t=k+1

= 0p[{log(pn)}*/"2n7(@0/2] 4 0, {sS,(n"" log p)'/?}.

Analogously, we can prove the same result for IZ,:_I,,., 1 (k/Sn)(Fk I')l- Therefore, |: — :'|oo =
Op[{log(pn)}*/2n~@0)/2] 4 0,{sS,(n~" log p)"/?}. Repeating the proof of Proposmon ](b) in Andrews (1991), we know the
convergence in Proposition 1(b) is uniformly for each component of £ — E. Thus, |E — Z| =o0(1). Then |E — E|, =

0p(1). Similar to (34), we complete the proof. O

Proof of Corollary 1. From Theorem 2, it holds that Py, (¢ € Cs1-¢,1) = 1 — a. Therefore, Py (¥, = 1) = Py,(c ¢
Cs.1—a.1) — a which establishes part (i). For part (ii), the following standard results on Gaussian maximum hold:

E(€lc) < {1+ (2logp)~'}(2logp)"” max ]/?
t<j<r
and
{Eloe = E([Elo13n) | u?
P{[Eloe = B([Eloo|Vn) + uly Sexp(_iA>
o] oo lVn n Zmaxlﬁ,fp wj’j

forany u > 0. Then, Gs.1-¢.1 < [{1+ (2logp)~'}(2logp)/? + {2 log(1/a)}1/2]max1§jsrﬁ7]¥2. Let 7. = {maxi<j<|W,; 1/2

w;?|/w!/* < ¢} for some & > 0. Restricted on %, Gs,1-a1 < (1 + &)[{1 + (2logp) '}(2logp)"/> + {2log(1/a)}1/2]

172 iy = o e i i - e -
maxuSr i - Let(, j2) = argmaxg, j,jeslwj, j, — Gy j, |- Without lose of generality, we assume @, 5 —¢;, 5, > 0. Therefore,

Py, (W = 1) =Py, max n'2|&j, j, — G, jp| > Us.1-a
(1.J2)€S

1/2~ o~
> s G-
—PH1[" (@55, = Gij) > qs,‘*‘“}

1/2/~ -~ ;
=1 Py, {n'2@,j, - G,3,) = Ts-ars 7 — BT,

Restricted on 7, if ¢ — 0, it holds that§s 1_q.1 _(w}‘],}'z G, ]~2) < —C(logp)l/zmaxu<r /2 for some C > 0, which implies
~ _~ 2
Py [n'2@, 1, — 6,5, = sa-ans 2 = P 012@ 5, - g, 5) = C(logp)”z max j*| 0.
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From Lemma 4, we know that max <j<,|Wj; — wjj| = 0,(1) which also implies that maxls,-srlfuﬂz - wﬁle / w}f = 0p(1).
Then we can choose suitable ¢ — 0 such that P(.7,°) — 0. Hence, we complete part (ii). O

Proof of Corollary 2. Our proofinclgdes two steps: (i) to show ]I”(/\?l,,,a C Mp) — 1, and (ii) to show P(My C /\71,1701) — 1.
Result (i) is equivalent to P(M{ C M ) — 1.The latter one is equivalent to ]P’{max(,-l,}-z)eMgn1/2|Zz3j1 bl > Tqs1-a1} — 0.
Notice that S = {1, ..., p}?, it holds that

Py max 0@ 5| = Gsaaa{ <Py max '@, — @l = Ts1anf < @+ 0(1),
(1.j2)eMg (1.J2)es

which implies P{max(,»bjz)eMgnl/z@l,jz| > {s.i-w1} — 0. Then we construct result (i). Result (ii) is equivalent to

P{ming, jeron 215, < Tsi-a1)} — 0. Let (1,j2) = argming, jjerl@j, jp|- Without lose of generality, we assume
w;, 5, > 0. Notice that

i 1721%: .1 <7 <PIn'"?@ - —w: =) <7 —n'e -
P{(h,jT)ler}\Aon @jp] = qs']_‘“} = IP’{n (@55, = @5,3,) < Gsi1-an — N7 ,z}’

we can construct result (ii) following the arguments for the proof of Corollary 1. O
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