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Abstract

We deal with smoothed estimators for conditional probability functions of discrete-valued
time series {Y;} under two different settings. When the conditional distribution of ¥; given
its lagged values falls in a parametric family and depends on exogenous random variables, a
smoothed maximum (partial) likelihood estimator for the unknown parameter is proposed.
While there is no prior information on the distribution, various nonparametric estimation
methods have been compared and the adjusted Nadaraya-Watson estimator stands out as
it shares the advantages of both Nadaraya-Watson and local linear regression estimators.
The asymptotic normality of the proposed estimators has been established in the manner
of sparse asymptotics, which shows that the proposed smoothed methods outperform their
conventional, unsmoothed, parametric counterparts under very mild conditions. Simulation
results lend further support to the above assertion. Finally, the new method is illustrated via
a real data set concerning the relationship between the number of daily hospital admissions
and the levels of pollutants in Hong Kong in 1994 — 1995. An ad hoc model selection

procedure based on local AIC is proposed to select the significant pollutant indices.

Keywords: a-mixing; Adjusted Nadaraya-Watson estimator; Discrete-valued time series; Lo-
cal AIC; Local linear smoother; Local partial likelihood; Nonparametric estimation; Smoothed

maximum likelihood estimation; Sparse asymptotics.

*Address for correspondence: Qiwei Yao, Department of Statistics, London School of Economics, Houghton

Street, London WC2A 2AE, UK. E-mail: q.yaoQlse.ac.uk



1 Introduction

Let {Y;} be a strictly stationary discrete-valued time series. We apply smoothing techniques to
estimate the conditional probability function of Y; given its lagged values in both parametric
and nonparametric settings. The methods proposed are applicable when Y; is either quantitative
or ordinal categorical. Such a variable can arise as a discretization of an underlying continuous
variable or as an inherently discrete, but ordered, set of categories (Simonoff, 1996, Section 6.1).
In the former case, discrete values of Y; have real physical meanings. If Y; indeed represents a
discretization of a continuous variable with smooth density function, the probability of Y; = 4
will be close to that of Y; = i+ A for small integer A. In the latter, the different values stand for
different categories which have a natural ordering (for example, very bad, bad, neutral, good,
and very good). An observation falling in one particular cell provides information about the
probability of falling in its neighbors. Therefore, smoothing makes sense since we may assume
that the probability function is ‘continuous’ (see the conditions (A3) and (B2) below) in both
cases. The improvement using smoothing is most evident when the distribution is sparse in the
sense that probability of Y; falling each cell is small. To highlight this phenomenon, we develop
an asymptotic approximation under the sparse asymptotics framework which assumes that the
maximum value of the probability function converges to 0 when the sample size goes to infinity;
see Simonoff (1985), Hall and Titterington (1987) and Simonoff (1996, Section 6.2). We will
show that the proposed smoothed estimators have smaller asymptotic mean squared errors than
those of conventional (non-smoothed) parametric estimators when the underlying distribution
is sparse; see Remarks 2, 5 and 7 below.

In Section 2, we assume that the conditional distribution of Y; given its past falls in a
parametric family with the parameter depending on the value of Y;_; and also an ‘exogenous’
variable. By assuming that the parameter is ‘continuous’ in Y;_; (see the condition (A3) and
Remark 1(iii) below), we estimate the parameter by maximizing a local (i.e. smoothed) partial
likelihood function. We propose a simple and intuitively appealing bootstrap method to choose
the bandwidth. The asymptotic normality of the estimator is established. In Section 3, various
nonparametric kernel estimation methods for the conditional probability function of Y; given Y; 1
are discussed. We are in favour of the adjusted Nadaraya-Watson estimator (Hall and Presnell,

1999; Hall, Wolff, and Yao, 1999) since it enjoys the same first-order asymptotic properties as



the local linear estimator and is always a proper probability function itself. The nonparametric
setting in Section 3 is similar to the local polynomial estimation of continuous conditional density
functions considered by Fan, Yao, and Tong (1996). However, the asymptotic theory is different
since we estimate a probability function which converges to 0 itself. In Section 4, the proposed
methods are illustrated through two simulated examples and a Hong Kong air pollution/disease
data set.

Although it appears to us that smoothing techniques have not been used in analyzing
discrete-valued time series data before, there has been a substantial amount of literature on
their application to discrete data analysis. Aitchison and Aitken (1976), Bowman (1980), Tit-
terington (1980) and Hall (1981) appear to be among the earliest. Lucid reviews on research in
this direction can be found in Simonoff (1995; 1996, Chapter 6). The latest developments in-
clude Dong and Simonoff (1994) on boundary-corrected kernel estimation for sparse multinomial
distributions, Aerts, Augustyns, and Janssen (1997) and Simonoff (1998) on local polynomial
estimation of multinomial tables, and Faddy and Jones (1998) on semiparametric smoothing for

discrete probability functions.

2 Smoothed Parametric Estimation

2.1 Maximum local-partial-likelihood estimator

Suppose that discrete-valued time series Y; is influenced by an exogenous variable Xy, {(X;, Y;)}
forms a strictly stationary process, and Y; takes non-negative integer values. We assume that the
conditional probability of ¥; = j given (X, X¢—1,...,Yi—1 = 4,Y;_9,...) is p(J; X4, B;) which
depends on (X;,Y;_; = i) only, where p(+; -, -) is of a given form and 3, is a unknown parameter
vector. For example, the conditional distribution could be Poisson with mean p(X7/3;), where
p(-) is a known link function. Given observations {(Xy,Y:), 1 < ¢t < n}, the log conditional
likelihood function given X; and Y7 is

n n

> log{p(Y; Xy, By, )} + D _log{f(Xs; X¢ 1, ..., X1, i1, .00, V),

t=2 t=2
where f(X ; Z) denotes the conditional probability density of X given Z. By maximizing the

first sum in the above expression, we obtain the maximum (partial) likelihood estimators for



B1i, Ba, --.. Such an estimator for B3; is in fact derived by maximizing
n
> log{p(Ys; Xy, By) H (Vi1 = 1), (2.1)
=2
which depends on the pairs (Y;—1,Y;) with ¥;_; = ¢ only. To make more efficient use of the
available data, we define a smoothed (partial) likelihood function of 3; by replacing the indicator
function I(Y;—1 = i) by a kernel function:
n
> log{p(Ys; Xy, By)} Knn(Yio1 — i) (2.2)
=2
Maximizing the above smoothed likelihood, we obtain a smoothed estimator. In the above
expression, K (-) is kernel function, K, x(z) = h™*K(6,z/h), h > 0 is a bandwidth which
controls the amount of smoothing used in estimation, and §,, > 0 reflects the sparseness of the
underlying distribution; see, the condition (A3) and Remarks 1(ii) and (iii) in Section 2.3 below.
In view of the more attractive asymptotic properties of the local linear smoother relative to
the local constant version (Fan, Farmen, and Gijbels, 1998), we propose to use the local linear
estimator B3;, where (B;,8) is the maximizer of
n
b =) log{p(Yy; Xy, B + 6na(Yim1 — i)} Knp(Yier — ). (2:3)
=2
Obviously, the above approach can be applied to the case when the conditional probability
of Y; given its past is of the form p(Y;; 6y, ,) with known function p and unknown parameter 6.
Further, the smoothing can also be incorporated into a quasilikelihood approach of Wedderburn
(1974) in an obvious manner. In fact the proposed smoothed (partial) likelihood function (2.2),
although derived under a specified time series context, is of the form of the local likelihood
functions explored by, among others, Tibshirani and Hastie (1987) and Fan, Farmen, and Gijbels

(1998) for independent observations.

2.2 Bandwidth selection

The bandwidth A plays an important role in smoothing estimation. Most existing bandwidth
selection methods were originally designed for continuous independent data, although some of
them can be adapted to handle dependence in time series. For the problem discussed in this
section, there is no natural way to derive an analogue to the cross validation method or its

variations. Instead, we propose a simple bootstrap approach to choose h, which is easy to



implement, and takes into account of the dependence of the data in resampling. The bandwidth
selected may be variable in the sense that different bandwidths may be used to estimate different
Bis. The method is similar in spirit to those used by Hall, Wolff, and Yao (1999) and Polonik
and Yao (2000) for estimation of (continuous) conditional distribution functions and conditional
minimum volume sets.

We draw bootstrap samples conditionally on the given data {X;} as follows. Let ﬁz be the
parametric estimator obtained from maximizing (2.1) for all 7. (Some initial moving average
smoothing may be applied to {BZ} in the case that some cells contain few observations. Al-
ternatively, BZ can be obtained nonparametrically by maximizing (2.2) with a small bandwidth
such that the biases are small.) Draw Y from the empirical (marginal) probability function of
{Y;}. Fort =1,...,n, draw Y;* from the (discrete) probability function p(-; Xt"éYtil)' Define
B;k = E}: (h) in the same way as 3; with {(X;,Y;)} replaced by {(X;,Y;*)}. To estimate 8; for a

particular 2, we choose h which minimizes the conditional expectation

E[||B; (k) — Bl | {(Xe, Y2)}]-

To speed up the computation, we may use one single bandwidth for the estimation of all of the

B;, and this single bandwidth minimizes

Zm [18; () = Bill 1 {(X¢, YD)}, (2.4)

where 7; is the relative frequency estimate for the marginal probability P(Y; = 7). Some initial
moving average may be applied in case some cells contain no observations. For example, we
may replace 7; by the moving average of its three nearest neighbors (including itself) with the

weights 1/2, 1/4 and 1/4.

2.3 Theoretical properties

We write I(y; x, 8) = log{p(y; x,B)}, and let

ol(y;x,B) 9 1(y;x, B)
oB apopT

Define pj = [w/ K (u)du and v; = [ v/ K (u)?du. For matrix A = (a;j), ||Al| = (X a?j)l/Q. We

i(y;%,8) = , and I(y;x,8) =

use C' to denote a finite positive constant which may be different at different places. We state

some regularity conditions first.



(A1) The parameter 3; is identifiable in the sense that p(-; Xy, z1) # p(-; Xy, z2) for
any zj # 2z, and
82
GaaaT PP Xe BIX Yy = i) = E{

Further, all the third partial derivatives of p(Y3; Xy, 3;) with respect to 3, are

o? ,

W?(YE; X, 81X, Vi1 = Z} :
bounded by a random variable, say, M (Y;, X;), and E{M (Y}, X;)|X;,Y;—1 =i}
is finite.

(A2) X; = —E[E{[(Y};Xt,,BYt_l)\Xt,Y}_l} | Y;—1 = i] is a positive definite matrix.

Further for some v > 2,
B {Ili(Ye Xe, B) |17 + 1Y X, 8) 1} < o0,

and ||3; — X,|| < Cdylj — 1|

(A3) For i = 0,1,..., m = P(Y; = i) = 0y f;“ g(0pz)dz, where g(-) is a density
function on [0,00). Further, 8; = b(8,i) and both g(-) and b(z) = (%)Zb(m)
are continuous in a neighborhood of d,,:.

(A4) The kernel function K () is bounded, symmetric and compactly supported.

(A5) The process {X;, Y} is o-mixing with the mixing coefficient satisfying the
condition a(k) = O(k~?), where 8 > 2(y—1)/(y—2) for v given in (A2) above.

(A6) Asn — oo, h = 0, nh — o0, and 6, — 0.

Remark 1: Discussion of Conditions. (i) Both (A1) and (A2) are the standard conditions to
ensure that the (unsmoothed) maximum likelihood estimator is consistent and asymptotically
normal; see Lehmann and Casella (1998, Section 6.3). We need both of them for the consistency
and asymptotic normality of 3 as well. Together with (A3) — (A6), they also ensure that the

equation

n

S (1, 6a (Vi — i) @1(Ye; Xy, B +adn(Vie1 — 0) Ky p(Yie1 —4) =0 (2.5)
t=2

has a solution which is a consistent estimator for 3; (see Theorem 1(i) below), where ® denotes
the matrix Kronecker product. We refer BZ to such a solution hereafter.

(ii) Condition (A3) assumes m; = O(d,). Note d, — 0 as n — 0. This reflects the fact
that the sparse asymptotics depicts the performance of an estimator when the probability of Y;

falling into each cell is small. This is the case when the smoothing is most relevant.



(iii) The smooth condition imposed on both 8; and g(:) in (A3) reflects the fact that the
proposed method is designed for the cases when the conditional probability function of Y; given
Y;_1 is ‘continuous’ in Y;_1, which makes smoothing estimation relevant. The assumption that

b() is continuous ensures a nice asymptotic formula for the bias of BZ If we replace it by

18i — Bjll < Cénli — 4l

Bi is still asymptotically normal but with a bias of the order h.

(iv) The constant ¢y, is introduced to reflect the sparseness of data. It does not add any extra
complication in estimation of B;s. In fact in practical implementation we may fix §, at any value,
the resulting discrepancy will be absorbed in the estimation of bandwidth h automatically; see
(2.3).

(v) The requirement in (A4) that K(-) be compactly supported is imposed for the sake of
brevity of proofs, and can be removed at the cost of lengthier arguments. In particular, the
Gaussian kernel is allowed.

(vi) The a-mixing is one of the weakest mixing conditions for weakly dependent stochastic
processes. Stationary time series or Markov chains fulfilling certain (mild) conditions are a-
mixing with exponentially decaying coefficients; see Section 2.6.1 of Fan and Yao (2001). On the
other hand, the assumption on the convergence rate of a(k) in (A5) is not the weakest possible

and is imposed to simplify the proof.

Theorem 1. Let conditions (A1)-(A6) hold. Suppose that z; = id, is bounded away from both
0 and 0o as n — o0, and g(x;) > 0. Then the following assertions hold.
(i) Bquation (2.5) admits a root B; which converges to B8; in probability.

(i) For any BZ fulfilling (i) above,

~

h2 ..
Bi— B; = (nh)™'2N + B2 b(w:) + op((nh) ™2 + 1),
where N is a normal random vector with mean 0 and variance matriz vog(z;) '3, '

Remark 2: Comparison with parametric estimator. Under the condition (A3), P(Y; = i) =
O(8,). It can be shown that under this condition the parametric estimator B; derived from
maximizing (2.1) is asymptotically normal with mean 0 and variance of the order 1/(nd,) instead
of 1/n, since the expected number of observations falling in each cell is of the order nd, instead

of n. Theorem 1 shows that the asymptotic variance of the smoothed estimator B . is of the
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order 1/(nh). Hence the asymptotic variance of B; converges to 0 faster than that of 3; for
any bandwidth h for which h/d,, — oo. Theorem 1 indicates that the optimal bandwidth which
minimizes the approximate mean squared error (AMSE) is of the order n~'/5. (We define the
AMSE as squared asymptotic bias plus asymptotic variance up to the first order.) With the
optimal bandwidth, the AMSE of ,@Z is of the order n=%/5 which converges to 0 faster than
the AMSE of ; as long as nd3 — 0. This is a very mild condition. In the case that Y; takes
finite m values, é, = O(1/m). Therefore, the smoothed estimator Bz will outperform parametric

estimator 3; as long as n = o(m?).

Remark 3: Asymptotic properties of conditional probabilities. In the case that the exogenous

variable X; is absent, Theorem 1 implies that

~

p(]a:@z)
p(ja :32)

= 089G, B) () VN + )+ op((uh) 2 +12)),

—1 = p(,8) 9, 8" Bi — B (1 + 0r (1))

where p(j, 8;) = P(Y; = j|Y;—1 = 4) and p(j, B;) = a%f(% Bi)-

The proof of Theorem 1, as well as that of Theorem 2 in Section 3.3 below, is obtainable

from the authors upon request.

3 Nonparametric Estimation

3.1 Estimators

We assume that data {Y;, 1 < ¢ < n} are available from a strictly stationary discrete-valued
time series, where Y; takes integer values {1, ..., m} with m < co. Of interest is to estimate
the conditional probability function

pij:P(Y%:j|Y;g_1:’i), i,jzl,...,m.

In fact the proposed methods below may also be extended to estimate higher-dimensional con-

ditional probability function
Pityip,g = P(Ye = J | Vi1 = 41, ..o, Vi = i)

for £ > 1, which could be appealing when {Y;} is a k-th order Markov chain. However, such
an extension is of limited practical value due to the difficulties associated with the curse of

dimensionality.



Note that p;; = E{I(Y; = j) | Y;—1 = i}. This naturally leads to the Nadaraya-Watson (NW)

estimator
Bii = SF o I(Y: = ) Kpp (Y1 — 1)
” i Knn (Y1 —1)
where K (-) is a kernel function, Ky () = (mh) ™' K(-/(mh)), and h > 0 is a bandwidth which

(3.1)

controls the amount of smoothness in estimation. The extreme case of h = 0 corresponds to the

relative frequency estimate

V”_ZtZQI(Y;f—lziaYt:j) 9:
i = Yoo (Vi1 =) ( o O) )

0
When h > 0, we use the information contained in the data (Y;—1, Y;) with Y; = j and Y;_; close

(3.2)

to 4 to estimate p;;.

It is well known that an NW estimator exhibits boundary bias at both ends, which was
addressed in Simonoff (1995) for categorical data, and it has more complicated asymptotic bias
formula (see Remark 8 below). To attenuate these disadvantages, the obvious correction is to
use the local linear estimator, defined as p;; = @, due to its nice properties (Fan, 1993) such as

mathematical efficiency, bias reduction and adaptation of edge effects, where (@, B) minimizes
n
YUY =j) —a=B (Vi1 = i)]* Knn(Yio1 — ). (3.3)
=2
However, p;; is not constrained to lie between 0 and 1. In this aspect, the NW method is superior,
since p;; € [0,1] and >_jbij = 1. We propose an “adjusted” version of the Nadaraya-Watson
(ANW) estimator by combining the advantages from both NW and local linear estimators.
The method was first introduced by Hall and Presnell (1999) for estimation of conditional

mean functions and was used by Hall, Wolff, and Yao (1999) for the estimation of conditional

distribution functions of continuous random variables.

The ANW approach is described as follows. Let wy (i), for 1 < ¢ < n, denote weights (function

of the data Y1, ..., Y, 1, as well as ) with the property that
wy(i) >0, Y w(i) =1, and > wy(i) (i — Yi—1) Kppn(Yie1 — i) = 0. (3.4)
t=2

Of course, weights wy(i) satisfying these conditions are not uniquely defined, and we specify
them concisely by maximizing [], w:(:) subject to the constraints. As a result, w:(:) can be
expressed as

w(i) = (n = 1)7HL+ A (i = Y1) K (Yee1 — )} 71,



where )\, a function of the data and i, is uniquely defined by (3.4). It is easily computed using

a Newton-Raphson scheme. Then, the ANW estimator is defined by

= 2 (Y = ) we(9) Konn (Y1 — 7).

Pij Yoo wi (i) Ky (Yie1 — 7) (3.5)

Note particularly that 0 < pj;; < 1 and }°; pi; = 1. We show in Theorem 2 below that p;; is

first-order equivalent to a local linear estimator which does not enjoy either of these properties.

3.2 Bandwidth selection

We may apply the generalized cross-validation (GCV) proposed by Wahba (1977) and Craven
and Wahba (1979) to choose h. By ignoring the dependence on {I(Y; = j)} of the weight

functions {w;(t)}, it follows from (3.5) that

(ﬁYlm R ﬁYnfl,j)T = H(I(YQ = .7)’ s I(Yn = j))Ta

where H = H(h) is the (n — 1) X (n — 1) hat matrix. The GCV selects h which minimizes

tr(H) }_2 i {I(Y} =) —ﬁlﬁ—l,j}2'

t=2

GOV, (h) = {1 -

n
It is easy to see that tr(H) = Ky (0) 2t [wi(Yi—1)/ Xfg wi(Yi—1) Kimn (Yi—1 — Yi-1)].

It is known that the GCV has a tendency of undersmoothing when tr(H)/n is large, partic-
ularly for small sample size. To overcome this shortcoming, Hurvich, Simonoff, and Tsai (1998)

proposed using the corrected version of Akaike information criterion (AICC)

S R

t=2

It is easy to see that GCV and AICC are about the same when tr(H)/n is small, which is
typically the case in the context of analysing sparse discrete data.

Alternatively, the bootstrap approach described in Section 2.2 may also be adapted as follows.
We generate a Markov chain {Y;*} with the transition probability {p;;} defined in (2.1). Let
p;; = P;;(h) be the estimator based on data {Y;*,1 <t < n}, defined in the same manner as p;;.

We use the bandwidth h in the estimator p;;, which minimizes the conditional expectation

E

> 15 (h) = pisl 1{Yz}
j=1




3.3 Theoretical properties

We impose the following regularity conditions. Write z; = i/m for 0 < i < m.

(B1) As n — oo, h — 0, m — 0o, nh/m — oo, m?h® — oo and nh? — oco.
(B2) For 1 <i,j <m,
. . 1 [%
mi = PYia=i Yi=j}=— [ j(a)do, (3.6)
m Jz;_q

where 9); is a positive function defined on [0, 1] and has two continuous deriva-

tives in a neighborhood of x;. Further, the second derivative of the density

-1 m

function 9(xz) = m 721%;j(z) is bounded by a constant independent of m

in the same neighborhood.
(B3) K(-) is a bounded, symmetric density function with a compact support.

B4) The process {Y;} is strictly stationary and o-mixing with the mixing coefficient
p g g

a(k) = O(k=P) as k — oo, where 8 > 2 is a constant.

Remark 4. Discussion of Conditions. Note that p;; = m;;/m;, where m; = fff_l P(z)dz. It is
easy to see that the condition (B2) implies that p;; = O(m™'). Since we only deal with sparse
distributions, we assume the number of categories m tends to oo as the sample size n — co. We
assume 1; (therefore also 1)) has two continuous derivatives in order to pursue good asymptotic
properties. As long as ; is Lipschitz continuous in a neighborhood of z;, our estimators are

still asymptotically normal but with larger biases (of the order of h).

We only present the asymptotic normality for the adjusted Nadaraya-Watson estimator p;;
in the theorem below, and compare it with other methods in the discussion followed. Let
@j(z) = ¥;(z)/¥(x), and p; and v; be the same as in Section 2.3. We denote by ¢(-) and ¢(-)

the first two derivatives of ¢(-) respectively.

Theorem 2. Suppose that the conditions (B1) — (B4) hold, and x; = i/m is bounded away from

both 0 and 1 as n — oo. Then for any 1 < j <m,

1/2 .
. [ muw p2 P (i) _
pij/pij -1= (nh ij(owz)) zZ+ h2 2 (Pj](xi) + OP({m/(nh)}1/2 + h’2) + OP(m 1)7 (37)

where Z stands for a standard normal random variable.

10



Remark 5: Sparse asymptotics. Since p;; — 0, we consider the asymptotic normality of p;;/p;;
instead of p;;. Note that the number of observations falling in each category is of the order n/m
which can be viewed as the equivalent sample size in a usual asymptotic setting where p;; > 0 is

fixed (i.e. not converges to 0 as n — oo). This explains that the convergence rate in the above

theorem is (nh/m)'/? instead of the conventional (nh)/2. Consequently, the optimal bandwidth

h which minimizes the approximate mean squared error (AMSE) is of the order (m/n)'/5.

Remark 6: Comparison with relative frequency estimator. If the conditions (B2) and (B4)
holds and both n/m and m tend to infinity, it holds that (p;;/pi; — 1) is asymptotically normal
with mean 0 and asymptotic variance of the order m?/n. Note that the asymptotic variance of
Dij/pij is of the order m/(nh). Hence with any h such that mh — oo, the asymptotic variance of
the smoothed estimator p;; converges to 0 faster than that of the unsmoothed estimator p;;. If
we use the optimal bandwidth hey oc (m/n)'/?, for which mh — oo under very mild restriction

n = o(mb), the above assertion on the asymptotic variance also holds for the AMSE.

Remark 7: Comparison with other nonparametric estimators. The local linear estimator p;;
derived from (3.3) admits the same asymptotic expression as (3.7). For the NW estimator p;;
defined in (3.1), the asymptotic expression still holds if we replace the second term on the right

hand side of (3.7) (i.e. the bias) by

%#mwﬂmﬂwwﬁ+%MMW@MHWMWAMM,

which has one more term. Since all smoothed estimators pj;, pi; and p;; share the same asymp-
totic variance and the same order (i.e. O(h?)) biases, the assertions on the superiority over

unsmoothed estimator p;; in Remark 6 above are also valid for p;; and p;;.

Remark 8: Boundary properties. Let ¢ be a boundary point, i.e. i/m = ch for some ¢ € (0,1).

Then it can be proved that

o (m? m2(c)'/? 2 70()%5(0)
Pigfpij =1 = (nh> 1@ 001727 T 21 (00 0)
op((Z)Y2 4 h2) + Op(m™Y),

nh
Di /p -1 = (ﬂ) 1/2 {fic(HC,Q - l/Jc,l'U/)21{(’1]1)261’11}1/2
o nh)  (eoter — 1) Lo 0/(0)} 172
12 ©;(0) Ng,z — Me,1fe,3
20;(0) peopie2 — 12,

+ op({m/(nh)}'/? + h2) + Op(m™1),

11



+ oP((n—W}LL)lﬂ +h) + Op(m~Y),

1/2 1 K (w)2du)1/?
Bij/pi; — 1 (%) Uoe K@) du} & ) e 0)

fie0{(0)3(0)}1/2 tic,005(0)

where i = fic uF K (u)du, and

L u?2K(u) ! K (u)*
)= | T ak@™ ™0 = | A auk@

du (k=1,2).

In the above expressions, A is the root of equation [' uK(u)/{1 — MuK(u)}du = 0. These
results confirm that both ANW estimator and local linear estimator are also boundary-adaptive
in the sparse asymptotics in the sense that the asymptotic variances and biases are of the same
orders as at the inner points. Therefore, both p;; and p;; perform better than the unsmoothed

estimator p;; even at the boundary points; see Remark 6 above.

Remark 9: Comparison with smoothed parametric estimators. In the scenario described in
Remark 3, we may also apply nonparametric estimation for p;; = p(j, B;) if Y; takes finite values
1, ..., m. Theorem 2 shows that the bias of the resulting estimator is of the order h%, which is
the same as the smoothed parametric estimator; see Remark 3. The asymptotic approximation

for the variance is

Vil d) = Varlby /o =~ o =

———{1+o(1)}.

The last equality follows from the relation that ;(i/m) ~ m?m;; = m?p;;m;. On the other hand,

the smoothed estimation yields the asymptotic variance

Vi) = Var(BE B 1) m i, 807E G,B)
Vo0,

= P BTG B (1 + o),

see Remark 3 and Theorem 1. To facilitate the comparison between two estimators, we consider

the average asymptotic approximations

E{V1(Y,1)|Yi—1 = i} =

nhm
and
Y, Y, B8)7T
5 4 8:)p(Ys, B;) Vit = i)] = -2 5.,

P(
1
B 5) nh;

E{Va(Y, )Yy =1} =

where d is the dimensionality of B, which is a fixed constant. This shows that the ratio of the

variance for the smoothed parametric estimator to its nonparametric counterpart converges to 0

12



at the rate d,,. Therefore we should use the parametric approach whenever there are grounds to
do so. Our empirical study also confirms the superior performance of the smoothed parametric

estimation; see Example 2 in Section 4.

4 Numerical Properties

To assess the finite sample performance of the proposed smoothed estimators, we apply them
to two simulated examples and one real data set. For the simulation models, we compare the
smoothed estimators with their parametric counterparts. We also compare the nonparametric
and parametric smoothed estimators in Example 2. Throughout this section, the Epanechnickov

kernel K (u) = 0.75(1 — u?)I(Ju| < 1) is used.

Example 1. First we consider a Poisson time series model constructed as follows. Let {X;} be
a sequence of independent identically distributed random variables from uniform [—1,1]. Given
{(Xs41, Y;5), s < t}, the conditional distribution of Y;;; is Poisson with the mean A(Xy11, Y3),

where A(z, i) = exp(f1; + B2i ), and
Bri =4—249 exp {—(i — 25)?/512},  Ba = —1.5 sin(mi/25).

Obviously, {(X}, Y;)} is a homogeneous Markov chain. Figure la plots a sample of time series
{Y};} of length 200. We repeat the simulation 400 times for each of the sample sizes n = 100, 200
and 400. For each realization, we calculate the smoothed estimator (BM, Bgz) which maximizes
smoothed likelihood function defined as in (2.3), as well as the parametric estimator (Bli, BQZ)
which is derived by maximizing the likelihood function defined as in (2.1). For the smoothed
estimator, we set d, = 0.1 and use the bandwidth h which minimizes M (h) defined in (2.4).

Figure 1b presents boxplots of the mean absolute deviation errors (ADE)
=Y 7 {IBli—ﬂ1i|+\Bgi—ﬂ2i|}, (4.1)
i

where 7; is the relative frequency estimator for the marginal probability P(Y; = 7). The measure
£ decreases as the sample size increases. Figure 1c¢ depicts boxplots of the mean relative absolute

deviation errors

_ |Bui — Buil + |Bai — Bail
b2 g 3 : 4.2
Zi: |B1i — Bui| + |B2i — Bail (4.2)

Note that £, < 1 implies that the smoothed estimation outperforms its parametric counterpart.

Figure 1c shows that the improvement of using the smoothed method is substantial, although
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the difference decreases as n increases. The latter indicates that the smoothed method is more
relevant for small sample sizes, although for sample size as large as 400 it is still significantly
better than the unsmoothed method in this example. Figures 1d and 1e plot the typical example
of estimated B1; and B; against ¢, together with their true values. Typical example is selected
such that the corresponding £ is equal to the median in the 400 replicated simulations. Figure
1f plots M (h) defined in (2.4) versus bandwidth A, which indicates that the optimal bandwidth

is 0.35 for this typical example.

Example 2. We consider a Markov chain time series {Y;} generated as follows. Given {Y5, s <

t}, the conditional distribution of Y;y; is binomial(m, p(Y;)), where

logit(p()) = i/m — (i/m)* = ;.

Figures 2a — 2c¢ plot segments of time series {Y;} of length 200 for m = 5, 10 and 20 respectively.
For each of the sample sizes n = 100, 200, and 400 and m = 5, 10, and 20, we repeat the
simulation 400 times. For each realization, we compute the ANW estimator {p;;} defined in
(3.5) with the GCV bandwidth (see Section 3.2) and the relative frequency estimator {p;;} given

in (3.2). Figure 2d presents boxplots of mean absolute deviation errors (ADE)
=Y m Y |pij — pijl (4.3)
1 J

for m = 5 (the three panels on the left ), 10 (the three panels in the middle) and 20 (the three
panels on the right), where 7; is the relative frequency estimator for the marginal probability
P(Y; = 1). Tt is clear that £ decreases as the sample size n increases. Figure 2e displays the
boxplots of the mean relative absolute deviation errors

= LR (44

i i 1Pij = pij

It holds always that £ < 1 in Figure 2e. This indicates that the nonparametric estimator always
performs better than the relative frequency estimator in this example, although the difference
between the two methods decreases as the sample size n increases. Note that as m increases,
&, decreases. This illustrates that the more sparse the distribution is, the more relevant the
smoothing is. Figures 2g — 21 plot the typical example of estimated p;; (dotted line) and p;;
(dashed line) against j for n = 200 and m = 10, together with the true value p;; (solid line), for

five cases: from 7 = 1 to 7 = 5. They show clearly that the ANW estimates are more accurate
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than the relative frequency estimates. Typical examples are selected such that the corresponding

&'s are equal to the medians in the 400 replicated simulations.

To illustrate the superior performance of the smoothed parametric estimation over the purely
nonparametric estimation, we apply smoothed maximum likelihood method (see (2.3)) to obtain

the smoothed parametric estimator Bi, and then compare directly the derived estimator

2 J = m—j
. m ePi ePi
Pij =\ > 1- >
J 1+ P 1+ ebi

with the nonparametric estimator p;; obtained above. Figure 2f presents the boxplots of values

of
EF = Z?r, z |pfj — Dij| (4.5)
g J
in the 400 replications. A direct comparison with Figure 2d indicates that that overall p;j s
much more accurate than p;;. Furthermore, Figure 2g displays boxplots of the mean relative

ADE:s for pj; over pi;

i |pi; — pijl
Er=\ =Y - 4.6
=2 > 1pij — pijl’ (46)

which indicates a significant gain from using parametric model, as & is always smaller than 1

i

and in fact is smaller than 0.4 in most cases. The finding here reinforces the theoretical results

in Remark 9.

Example 3. Finally we apply the proposed methods to Hong Kong environmental data. The
data were collected daily in Hong Kong from January 1, 1994 to December 31, 1995 (courtesy of
Professor T. S. Lau). Of interest is to examine the relationship between the total number of daily
hospital admissions (Y;) for circulatory and respiratory problems and the levels of pollutants.
Figure 3a displays the number of daily hospital admissions. The covariates are taken as the
levels of pollutants sulphur dioxide X1; (in pug/m3), nitrogen dioxide Xy; (in pg/m?®) and dust
X3 (in pg/m?). The correlation coefficient between Xo; and X3; is 0.782, which is quite high.

Fan and Zhang (1999) used a varying-coefficient model
Vi = ai1(t) + ao(t) Xue + a3(t) Xop + as(t) Xt + & (4.7)

to fit the daily data. Cai, Fan and Li (2000) considered a Poisson regression model to the weekly

data with mean A(¢, X;) given by
log{/\(t, Xt)} = al(t) + az(t) X + a3(t) Xop + a4(t) X34 (48)
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While the fitted models are interesting, both approaches ignore the auto-dependence in the data;
see Figure 3b. Cai, Fan and Li (2000) argued that the autocorrelation of the response variable
is not strong for the weekly data. They also pointed out that X3; in the above model is not
significant according to a goodness-of-fit test.

Following the lead of Cai, Fan, and Li (2000), we model the daily hospital admissions with
Poisson distributions. However, instead of letting the parameter in the link function vary with
respect to the time, we assume it is a function of the number of patients in the immediate past.
By modeling data in such a way, we are able to incorporate the dependence in the time series
into the model. We assume that the number of daily admissions Y; follows a Poisson distribution
with the mean X;(X;, 8;), conditionally on its lagged values Y;_1 = 4, Y;_o, Yi_3, ..., and the

levels of pollutants, where \;(-, -) is given as

log{\i(Xy, B;)} = Bui + Bai X1t + B3i Xot + Pai X3t (4.9)

This model differs from that of Cai, Fan, and Li (2000) since the parameters ’s now vary with
respect to the immediately lagged value Y;_; rather than time {. Note that in this model the
dependence of Y; on Y; 1 has been also reflected indirectly by its association with pollutants
Xt for 7 =1, 2, and 3. Therefore, there is a genuine need to delete the insignificant variables
in (4.9). To this end, we propose an ad hoc procedure based on the local AIC as follows. In

general, the AIC is defined as
—2(maximized log likelihood) + 2(number of estimated parameters).

See Akaike (1973). From (2.2), we may define the local AIC at Y;_1 = i for this example as

M=

AIC,(d) =2 Y [M(Xe, By) — Vi log {Ni(Xs, B)}| K (Yi 1 — i) +24,

t

I|
I\

where d is the number of nonzero components of 3,. By minimizing AIC;(d) over d, we derive an
‘optimum’ model for the conditional distribution of Y; given Y; ; = i. However, we are interested
in the global form of mean in this example. We simply choose the model which minimizes the
average local AIC defined as
AIC(d) = > 7;AIC,(d), (4.10)
i

where 7; is the relative frequency estimate for P(Y; = i). By taking ¢,, to be 0.05 and using the

bandwidth selector described in Section 2.2, we computed the AIC values defined in (4.10) for
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Table 1: The AIC values for the eight candidate models.

Model Wlth cova.riate(s) no X]”S X1 X2 X3 (Xl, Xz) (Xl, X3) (Xz, X3) (Xl, Xz, X3)
AIC-min(AIC) 6.891 6.740 1.134 0.382 0.800 0.000 0.852 1.559

all eight possible models (with no interactions), which are reported in Table 1. This leads to

the selected model
log{Ai(Xs, B)} = Bui + Boi X1t + Bai Xt (4.11)

The corresponding optimal bandwidth is 1.10. Figure 3c plots estimated intercept Bli against ¢
(the value of Y;_1) and Figure 3d plots the estimated coefficients Bgi and §4i against 7. The fitted
model for ); is dominated by the intercept Bli which increases monotonically as ¢ increases. This
indicates clearly that the (conditional) distribution of ¥; depends on Y;_;. Further, Y; tends to

be large when when Y;_; is large. This reflects the auto-dependence observed in Figure 3b.
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(a) Time Series Plot of Simulated Data, n=200 (b) Boxplots of mean ADE-values
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Figure 1: Simulation results for Example 1. (a) Plot of a time series {Y;} of length 200. (b)
Boxplot of 400 values of £ defined in (4.1). (c) Boxplot of 400 values of £, defined in (4.2). (d)
Plot of true By; (solid line), Bui (dot line) and B1; (dashed line) against i. (e) Plot of true B
(solid lIine), Ba; (dotted line) and fBo; (dashed line) against i. (f) Plot of M (h) against bandwidth
h.
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(a) Time Series Plot of Simulated Data, n=200, m=5 (b) Time Series Plot of Simulated Data, n=200, m=10
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Figure 2: Simulation results for Example 2. (a)-(c) Plot of a time series {Y;} of length 200 for
m =5, 10 and 20. (d) Boxplot of 400 values of £ defined in (4.3). (e) Boxplot of 400 values of
&y defined in (4.4). (f) Boxplot of 400 values of £* defined in (4.5).
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() Boxplot of mean relative ADE-values (h) Probability Function, m=10, i=1
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Figure 2: (Continued.) (g) Boxplot of 400 values of £ defined in (4.6). (h)-(I) Plot of true p;;
(solid line), p;; (dotted line), p;; (dashed line), and p;; (dotted-dashed line) against j for n = 200
m=10. (h)i=1 (i)i=2 (ji=3, (k)i=4, and (I)i=5.
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(a) Time Series Plot of Daily Hospital Admissions (b) Scatterplot of Y_tvs Y_{t-1}
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Figure 3: (a) Time series plot of Daily Hospital Admissions. (b) Scatterplot of Y; vs Y;_1. (c)
Smoothed parametric estimation of 3. (d) Smoothed estimation of o and (.
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