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Abstract. We develop a general methodology for tilting time series data. Attention is focused on
a large class of regression problems, where errors are expressed through autoregressive processes.
The class has a range of important applications, and in the context of our work may be used to
illustrate the application of tilting methods to interval estimation in regression, robust statistical
inference, and estimation subject to constraints. The interval estimation example includes em-
pirical likelihood, where earlier applications to time series have involved either the multivariate
“dual likelihood” approach introduced by Per Mykland, or a “Whittle likelihood” method sug-
gested by Anna Monti. One advantage of our form of empirical likelihood is that it admits a wide
range of distance, or more correctly divergence, functions. (We favour a non-traditional form of
Kullback-Leibler divergence, because of its robustness properties.) Another is its simplicity; it is
based directly on computed residuals, which are of course very familiar to time series analysts,
and it does not involve the complexities of dual likelihood. A third advantage is its flexibility; it
is readily applied to constructing confidence intervals or confidence bands in general regression
problems. And a fourth is its context as a particular example of a very general methodology; our
empirical likelihood approach is no more than a special case of a very broad class of tilting-based
techniques for inference in time series problems.
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1 Introduction

Tilting methods in statistics are techniques for adjusting the empirical distribution by alter-
ing the data weights from their usual uniform values (identical to n~! for each datum, where
n denotes sample size) to a general multinomial (where weight p; is given to the ith datum).
Historically, this procedure goes back at least to methods of constrained nonparametric density
estimation, introduced by Grenander (1956); and to related work on “nonparametric maximum
likelihood estimation” by Kiefer and Wolfowitz (1956) and on survival analysis by Kaplan and
Meier (1958). While the technique has a very wide range of applications (see e.g. Hall and Pres-
nell, 1998, 1999ab), at its core lies the assumption that the data are independent and identically
distributed. In this paper we discuss data tilting for time series, and describe their properties.

Our technique has connections to Mykland’s (1995) “dual likelihood” approach, through its
focus on the residuals in a time series. However, our use of general measures of discrepancy
enables us to develop a wider range of applications, not least because we may take the weights p;
equal to 0. Another approach to generalising tilting methods to dependent data is that proposed
by Kitamura (1997), based on blocking techniques. This method possesses the advantage that
it applies directly to very general time series, but has the disadvantage that, like better known
block bootstrap methods (e.g. Hall, 1985; Carlstein, 1986; Kiinsch, 1989) it requires very long
time series and is particularly sensitive to choice of block size. By way of contrast, techniques
based on linear processes require only relatively short time series and are relatively insensitive
to choice of time series order. They also have effective application to nonlinear time series; see
section 2.4 below.

Another attractive feature of tilting methods applied directly to time series, rather than via
blocks, is that they enjoy several of the features of conventional tilting applied to independent and
identically distributed data. Thus, for example, the versions of our technique that are appropriate
for constructing confidence intervals have important connections to Owen’s method of empirical
likelihood (e.g. Owen, 2001, §8.2). In particular, one can view the method as “empirical likelihood
with nuisance parameters,” the latter being the autoregressive coefficients. If these coefficients
are expressed through the equations that define them, they become a constraint under which an
extremum of the empirical likelihood equations must be solved.

A tilting method alternative to ours would be to extend, from the special case of empirical
likelihood, the spectral approach suggested by Monti (1997). This technique is in the spirit of
“Whittle’s method” (Whittle, 1953), in that it relies on asymptotic independence of periodogram

ordinates. However, since it does not take into account the explicit nature of a linear model such as



an autoregression, one would expect it to suffer from the inaccuracies of Whittle’s method, relative
to more conventional approaches, in time series problems where an explicit, finite-parameter
linear model was valid. (Of course, the “parameters” here describe only the dependence structure;
the independent disturbances, or errors, are not defined parametrically.) Moreover, the Whittle
method is awkward to extend to the full range of applications of tilting, treated in the present
paper.

The concept of empirical likelihood (Owen 1988, 1990) is noted, in the context of tilting and
the bootstrap, by Efron (1981) and Davison, Hinkley and Worton (1992). Confidence bands, which
will be discussed in §2, have featured before in the context of nonparametric or empirical likelihood
primarily through the use of smoothing (e.g. Hall and Owen, 1993; Chen, 1996; Zhang, 1998), or
applications to distribution functions or survival functions (e.g. Thomas and Grunkemeier, 1975;

Owen, 1995; Zhang 1996; Hollander, McKeague and Yang, 1997).

2 Methods and Calculation
2.1 General Methodology
Assume data D = {(X;,Y;),1 < i < n} are generated by the model
Y = g(Xil0) + e, (2.1)

where g(+|0) is a smooth function determined by the r-vector 6 of parameters, and the errors e;

form a stationary autoregression of order s, with

s
€ =¢; + E Qj€i—j,
j=1

a1 > 0 and oy # 0 and €;, —0o < j < 0o, being independent and identically distributed random
variables with finite variance 02 and zero mean. One approach to estimating § = (6,...,60,)"

and a = (ay,...,a,)7 is to use weighted least-squares, choosing (g(p), @(p)) to minimise
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where p = (ps+1,-..,pn) denotes a multinomial distribution on the indices s+ 1,...,n, with each

p;>0and ) ;.. pi = 1. Based on the estimated (6, ), we define
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being an empirical approximation to €;; and we put
n n 2
0= > new?-{ 3 new) (2.4
j=s+1 j=s+1
being an estimator of 0% = var(e;).

The standard least-squares estimator (6, &) of (8%, a°), denoting the true value of (6, &), would
be obtained with p = pynit = (1/(n—s),...,1/(n—s)). Biased-bootstrap or tilting methods would
involve choosing p = p to minimise a measure of distance or divergence, D(p), between p and
Punif, Subject to a constraint on a subvector of (é\(p), a(p),d(p)?). Typically the subvector would
be §(p) or (p)?, a being a vector of nuisance parameters. We shall consider only power divergence

measures of divergence,

/

{p(1=p)} {1 =m0 (mpy)P} ifp#0,1

Dy(p) = { —m™! Y izst1 log(mp;) ifp=0 (2.5)

kZ?:sﬂ pilog(mp;) if p=1,

where m = n — s. See Rényi (1961), Cressie and Read (1984) and Read and Cressie (1988). We

treat a class of constrained inferential problems that may be expressed in the form:

Problem: find 6(1,) = 0(p) and a(4,) = a(p), where p = p(1,) is chosen
to minimise D,(p) subject to P(p) = v{B(p),alp),5(p)2} = 1y, ¥ is a known, (2.6)

smooth, ¢-variate function of r + s + 1 variables, and 1, is a given t-vector.

The method can be expected to be relatively insensitive to choice of the autoregressive order, s,
particularly in comparison to the high degree of sensitivity shown by block-based methods to
selection of block length. In particular, overestimation of s will usually cause only minor problems.
Moreover, since the most ambitious aim of our methodology is to approximate the distribution of
a statistic computed from a time series, rather than to approximate the joint distributions of the
time series itself, then we need only capture main features of the way in which the dependence
structure affects the statistic. This means that the AR order used in the approximation can often
be relatively low.

Example 1: Generalised empirical likelihood. One instance of this example is that where (0, o, 0?)
= 1/(0) denotes a subvector, of length ¢ < r, of §. More generally, an a-level generalised empirical
likelihood confidence region for the true value 1(0°) of 1(0) is the set {1, : L(%x) < uq}, where

(Zm)_lL(zﬁ*) = min Dp(p)
p: '/’(P)ZT/)*y Z?:s-i—l pi:l
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and wu, is either the a-level critical point of the X2-distribution with ¢ degrees of freedom, or is
obtained by bootstrap calibration. See Section 2.3 for a discussion of calibration, and Section 4.1
for an account of asymptotic properties of the generalised likelihood, L. To obtain a simultaneous
empirical likelihood confidence band for the function g(:|@), first define 1/(0) = 6. Then the region

is the envelope of the class of functions {g(-|0,) : L(0) < uq }, where

(2m)1L(6,) = min D,(p) .

p=9(P):6’*,Z?:s+1 pi=1

A confidence interval for the value of g(z|f), for a particular value of z, is obtained by taking
¥(0) = g(z|0), a scalar, in Problem (2.6) above. There is no difficulty in including the case
that ¥ = 9(0,a), and in fact our theoretical development in section 4 will accommodate this
possibility.

Example 2: Robust inference. To make a general statistical procedure for the data D more
robust against unduly large values of the errors e; or the disturbances ¢;, arising for example
through contamination, we suggest choosing p so as to reduce the size of 5(p)? given in (2.4). We
work with &(p)?, rather than with the analogous estimator of the variance of ej, since the e;’s are
not independent.

Thus, we take (0, a,02) = o2, a scalar, in Problem (2.6). Let 62 = &(punir)?> denote the
standard least-squares estimate of o2. Then, defining P, = p(1x) to be the value of p that min-
imises D,(p) subject to o(p)> = 1, and considering successively smaller values of 9, < &2,
we are in effect “censoring” or “Winsorising” to a successively greater extent the residuals
€(p) = %\J{é\(p), @(p)} that have most leverage on the value of 5(p)2. The corresponding robust
estimators of 6 and « are 0, = 9\(13\*) and o, = a(py).

The least-squares procedure defined by minimising S(p), at (2.2), is equivalent to (conditional)
maximum likelihood when the disturbances €; are Normally distributed. We might choose 1, so
that a Q-Q plot for the residuals €(px), s + 1 < k < n, is approximately linear under the as-
sumption of Normality. In addition to producing robust estimators 5(13\*) and (), this technique

enables development of robust bootstrap methods for constructing confidence regions for #° and

a’. We resample using the model
Y] =g{X;|65.)} +e},

where the e;r-’s are defined by the autoregression



e

and conditional on D the variables ;

are independent and identically distributed with
P{& =&(p.,) — AP} =Fp,  s+1<k<n,

for fi(p) = Yh_, +1 Pr€k(p)- Both percentile and percentile-t confidence regions are possible in
this setting.

Example 3: Estimation subject to constraints. Physical considerations may dictate that the true
mean function, g° = ¢%(:|#°), satisfy a constraint such as monotonicity, in a specified direction,
or convexity. In linear regression problems the constraint might be that slope be greater than or
equal to a given value. If the least-squares estimator g(-|@) violates the constraint then we might
replace ] by that value of # that minimises a least-squares criterion, say, subject to the constraint.
However, the reason for g(|§) failing to satisfy the constraint may be that g is substantially in
error, for example due to experimental error, and then it makes little sense to choose 6 close to
6. An alternative is to choose P = D¢, ¢ standing for “constraint”, such that D,(p) is minimised
subject to g{|¢/9\(p)} satisfying the constraint; and take g{|§(ﬁc)} to be our estimator of g°.

If we suppose that contamination caused the constraint to fail for g(|5) then the approach
discussed above is related to that suggested in Example 2, and é\(ﬁc) is in a sense a “robustified”
estimator of 8. However, robustness is now enforced through the constraint, not through empirical
variance of the estimated disturbances.

A qualitative constraint on g(-|@) is in general different from the “equality” constraint imposed
for Problem (2.6). Instead of the identity ¢{§(p), a(p),5(p)?} = 1« in (2.6) we ask that é\(p) € 0,,
where O, denotes the set of 6 such that g(-|@) satisfies the constraint. Often, “é(p) € 0,” reduces
to “9}- (p) € Z.”, where 9\] denotes a specific component of 8 and Z, is a semi-infinite interval. For
example, when g(+|@) is linear and the constraint is monotonicity, @\J is the estimate of slope and
T, equals either [0,00) or (—oo, 0], depending on the direction of the constraint.

A fourth example, related to the third and to the theory with which we shall deal briefly at
the end of §4, is that of tilting the empirical distribution as a prelude to conducting a hypothesis
test. It may be applied to a particularly wide range of problems; see Hall and Presnell (1999a)
for the case of independent data. Taking a particular example for the purpose of illustration in
a time series setting, let us suppose we wish to test the hypothesis that the error distribution

has zero skewness, against the complementary alternative. Redefine 1 to be the skewness of the

distribution of €¢; and define @(p) to equal the empirical skewness of the tilted residuals:

n n n n 3
pp) =Y pj?j(p)3—3{ > pj?j(p)} > pj%‘(p)2+2{ > pj?j(p)} :

j=s+1 j=s+1 j=s+1 j=s+1



In this instance we compute p = p, to minimise D,(p) subject to ’lZ(p) = 0. The bootstrap
test is then calibrated by sampling nonuniformly, with respective weights (py);, from €;(py) for
s+ 1 < j < n, and determining the critical point which the absolute value of the bootstrap
form of empirical skewness exceeds with probability 7, conditional on the data (to obtain a test
with nominal level 7). The null hypothesis is rejected if the actual value of empirical skewness,
computed from the conventional residuals €;(Punif), exceeds the critical point. Level accuracy of

the test can be enhanced using the double bootstrap; see for example Hall (1992, Chapter 3).

2.2 Solving Problem (2.6)

Let fi(px) denote any function proportional to dD,(p)/0p, and put f = f; ! Then, a Lagrange

multiplier argument shows that

2
pkzmlf(A1+ATa_¢ﬁ+AT3¢ Oa | yr Y 0o )

_— 1<k< 2.
230 oo "2 90 opr T2 902 Opy stl<k<n,  (27)

where \; and do?/0p;, are scalars, Ay and 0v/0c? are t-vectors, 0v/00 and Ov/Oc are t-by-r
and t-by-s matrices, respectively, and 00/0py and Oa/Jpy are - and s-vectors, respectively. For
given k, the (r + s)-vector w = ((00/0px)”, (0a/Opy)T)T may be represented as a function of 6,
« and p, through the r + s equations

15J6]

00
Ak(gaaap) a Dk

. + Bi(0,a,p) —

=Vi, (2.8)

where Ay and By are (r + s)-by-r and (r + s)-by-s matrices and Vi is an (r + s)-vector. The
components of A, By and Vj, are given in Appendix 1. By (2.4),

do?

e =6 — 26, Z D€ +2 Z p]ejg—Z Z D € Z pjapk (2.9)
j=s+1 j=s+1 j=s+1 j=s+1

where 0€;/0py can be calculated in terms of 00/0py and Oa/dpy via (2.3). Along with the

components of 8§, the quantities a, p, A\; and Ay are given by the n — s equations at (2.7) and the

r+ s+t + 1 equations

> Zi(6,0)p; {Qu(Xj|9) +> o Qu(Xj—z'|9)} =0, 1<u<lr, (2.10)
j=s+1 =1
S Zi(0,0)p; (Yimo — 9(X;0l0)} =0,  1<w<s, (2.11)
j=s+1
P(0, ) = Pu, (2.12)



and

S pi=1, (213)

j=s+1

where

Zi(0,0) = Y; — g(X;|0) + Z a; {Yj—i — g(X;—i|0)} (2.14)

and ¢, (z|0) denotes the u-th element of the r-vector dg(z|6)/00.
The value of f(u) in (2.7) may be taken equal to v /=2 if p £ 0 or 1, u ' if p = 0 and e* if
p = 1. In this notation, we have A\; = 1 at (2.7) when p = 0, and A; reduces to a scaling constant

when p = 1.

2.3 Calibrating empirical likelihood

Bootstrap methods, instead of the x? approximation, may be used to calibrate empirical likelihood
confidence regions, as follows. Let (5, @,52) be the standard least-squares estimators, put 1; =

¢(5, &,5?), and let

S
=Y —g(X;10) + ) @ {Yj_i — 9(X;-il0)}.
=1

For s+1 < j < n, let ¢, ---,€, be the centred values of %1] We generate data (X;,Y;"),
1 < i < n, from the model Y;* = g(X,|§) + e}, where the e!’s form a bootstrap autoregression
and are resampled from €541,--- ,€,. (The design variables X; are not resampled.) From those
data, compute the bootstrap version L*(1,) of L(1,). Given a nominal coverage probability
v for an empirical likelihood confidence region, define u = @, to be the nearest solution of

P{L*(¢)) < u|D} = 7. Then the bootstrap-calibrated empirical likelihood confidence region for 6
is {1 L(¥hs) < 777}-
The bootstrap method described above involves drawing samples from the estimated autore-

gression model, which should be constrained to be causal in the sense that the equation

S
14> a2 =0 (2.15)
j=1
has its all roots outside of the unit circle |z| = 1. In practice this can be achieved as follows.
Suppose z1,- -,z are the roots of (2.15) with |z;| <1 for 1 < j <k, and |z;| > 1for k < j <s.

We generate e} from model

s k
el + Z &je; =€ H ER (2.16)
j=1 =1



where the ¢&;’s are determined by

k s
1—{—2(1]27—1_[ (1 — zzj) H (1—2/z).
j=1 i=k+1

Note that model (2.16) admits the same autocovariance function as the estimated autoregression

model; see Proposition 4.4.2 of Brockwell and Davis (1991).

2.4 An extension

The general methodology outlined in section 2.1 may be readily extended to deal with model (2.1)
in which e; follows a parametric nonlinear autoregressive model. We illustrate this idea when e;

is an autoregressive conditional heteroscedastic process, i.e.

$ 1/2
} : 2
€; = Ei{ao + ajei—j} ,

j=1
where ¢; are independent and identically distributed random variables with mean 0 and variance
1, all ; are non-negative, and oy > 0 and Zléjs s@; < 1. Under those conditions, the above
equation defines a unique strictly stationary process {e;} with E'e? < o0.
The statements in section 2.1 are still valid if we replace the weighted least-squares (2.2) by

{Y; — 9(X;10)}
> » a0+ Xl ei{Yj i —9(X; l0)}2

S(0,alp) =
Jj=s+1

and the residual (2.3) by

Y; - g{X;10)} .
[@o(p) + iy ()Y — 9(X;-4l0(p))}2/2

€i(p) =

3 Numerical Study

In this section we use simulation studies to illustrate each of the three problems treated in §2.1.
Throughout we employ the power divergence D, with p = 1. This choice was made because of the
good robustness properties of D;. In particular, Di(p) remains finite even if some values of p; are
zero. Otherwise, the algorithm becomes (in effect) obsessed with reweighting a small number of
data that have considerable leverage on the value of D,, due to little more than artifacts in the
definition of distance.

Example 1: Empirical likelihood. For the model

Y;=0X;2-X;)+ej, and ej=¢ —aej_1 —azej_a,
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Figure 1: (a) Boxplots of left end points (LEP) and right end points (REP) of the simulated
generalised empirical likelihood confidence interval for  at level v = 0.9. The horizontal line
indicates the true value 0 = 2. (b) Boxplots of bootstrap critical values u.. The horizontal line
indicates the critical value derived from a x? approximation. (c) Three examples of generalised
empirical likelihood D1{p(0,)}, plotted against 6, with the critical value equal to, respectively,
25% (dotted curve), 50% (solid curve) and 75% (dashed curve) quantiles in the 400 replications.



we constructed the generalised empirical likelihood confidence interval for 6. We took the X;’s to
be independent U (0,2) random variables, and the ¢;’s to be independent and standard normal.
Setting 8 = 2, a1 = 1 and as = 0.25, we drew 400 samples for n = 50 and n = 100. We set the
nominal confidence level at v = 0.9. The bootstrap method, instead of a x? approximation, was
used to determine the critical value %,. For each sample, we repeated bootstrap sampling 400
times. In this example, the chi-squared approximation — noted in Theorem 4.1 below — gave
inferior results. There are alternative methods of calibration, but the main ones are based on
asymptotic approximations that capture high-order terms, and are quite tedious to apply in the
time-series setting.

The generalised empirical likelihood function was calculated in terms of an iterative algorithm,
as follows. With given initial values of 6, ;’s and p;’s, find A9 based on (2.12) and (2.7)-(2.9).
(Note that A; can be obtained through a simple scaling.) Then update 6, the «;’s in terms of
(2.10) and (2.11), and the p;’s in terms of (2.7). We repeated the above process until the estimated
value of @ differed from 6, by only 10~*. We started 6, at the value of the standard lease squares
estimate. Using the estimates in the previous setting as initial values, we gradually increased (or
decreased) the value of 6,. The two end-points of the confidence intervals are displayed in Fig. 1(a).
The relative frequency of the interval covering the true value § = 2 (over 400 replications) was
0.920 for n = 50, and 0.905 for n» = 100. The average length of the interval was 0.789 for n = 50,
and 0.645 for n = 100. Fig. 1(b) presents boxplots of the bootstrap-determined critical values
iy, which are closer to 2.706 (the 90% quantile of the y?-distribution with 1 degree of freedom)
for n = 100 than for n = 50. Fig. 1(c) plots three typical examples of the generalised empirical
likelihood function D1{p(6,)} against 6,, with sample size n = 100. Those examples were selected
such that the corresponding bootstrap critical values were at the 25%, 50% and 75% quantiles
respectively during simulations with 400 replications.

In conclusion it can be seen that coverage accuracy is very good, variability of interval
endpoints is low, and the generalised empirical likelihood function is convex.

Example 2: Robust estimation of location. Consider the model
Yj =0+ €j where €j =€ —Q1€j—1 — Q2€j—2,

where the ¢;’s, § and o;’s are as in Example 1. With contaminated observations we seek estimators
6(p), @1(p) and @ (p), where p minimises Dy (p) subject to (p)?, defined as in (2.4), equal to a
fixed value o2. Having encountered numerical problems with an iterative algorithm based on the

equations in §2.2, caused by the complex function form of 1, we adopted a simulated annealing
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Figure 2: Contamination of'Y;’s. Boxplots show variability of the standard least squares estimates
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absolute deviations estimates (LADE) of (a) 0, (b) a1 and (c) ag. Horizontal lines indicate true
values of parameters. (d) Boxplots of ratios & (p)? /0 (punit)?- The dashed line indicates the target
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approach. To this end we searched for p that minimised
L(p) = Di(p) + X[5(p)* — 03], (3.1)

where A > 0 controlled the penalty for the discrepancy between 7(p)? and its target value o2.
Letting n = 30, we considered two types of contamination: either each Y; or each €; received an
added value 3 with probability 0.25.

Setting 02 = 0.1 (punif)?, we started the search with the initial p being the uniform distri-
bution over those j’s such that |€;| < T(pynir) (therefore p; = 0 if |€| > &(punif)), where the
€;’s were the residuals based on the standard least squares estimates. We added an independent
N(0,4?) perturbation to each pj, setting p; = 0 whenever it took a negative value. The new p
was obtained by the standard normalisation. We kept the new p if L(p) was not greater than
the minimum value of L (plus a small allowance 7) at that stage. For each A\ = \; = 40N and
i = 1,--+,4, we repeated the above procedure 50 million times with J fixed at m=1/2/~1 for
j=1,--+,4 in turn. We proceeded to the next stage if the minimum value of L failed to reduce in
50,000 successive searches. We took 7 to equal 30% of the minimum value in the previous stage,
starting at 0.3 X |G(punir)? — 02|. The overall minimiser of L was taken as the value of 7. Each
replication took about 5.4 hours using a Linux PC equipped with a Pentium III 1GHz processor.

Fig. 2 gives boxplots of estimates computed from 50 samples with contamination of the Y;’s.
For the sake of comparison we also calculated the standard least squares estimates (LSE) and least
absolute deviations estimates (LADE). The former method is of course known to be sensitive to
outliers, while the latter is robust against outliers. Fig. 2(a) shows that our data tilting approach
substantially reduces bias of estimators of 8, relative to LADE, and reduces variability too for
larger A. Fig. 2(d) indicates that for larger A the ratio &(p)?/5 (punir)? was closer to its target
value, 10%. Estimates of the autoregressive parameters a; and as show less of a pattern, but of
course those quantities are not the target of our method.

Similar results are also evident from Fig. 3, where the estimates were obtained from 50 samples
with contamination on the ¢;’s.

The value of 02 is often determined by the nature of problem and prior experience. Typically
we may let 02 = a5 (Pynir)? for a € [0.1,0.25]. In practical implementation we may take, in
(3.1), 02 to be smaller than a target value, and then choose the value X such that the ratio

G(P)? /0 (Punit)? equals a; see Figs.2(d) and 3(d).

Example 3: Estimation in regression subject to sufficiently steep slope. Consider the linear
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Figure 4: Boxplots show variability of the standard least squares estimates (LSE) and estimates
derived by constrained tilting (TILT) when the target was (a) 6y, (b) 61 and (c) «. Unbroken
horizontal lines indicate true parameter values, and the dashed line in panel (b) indicates the
constraint imposed on the tilted estimates of slope.

regression model

Yj:90-|—01Xj+ej, and e =€ —aej_1,

where both the X;’s and the ¢;’s are independent and standard normal. Setting 6y = 2, 6; = 1.2
and o = 0.5, we compared the standard least squares estimators of 6y, #; and « with the esti-
mators obtained by minimising generalised empirical likelihood subject to the constraint that the
regression line is sufficiently strongly increasing — specifically, 8; > 1.15. In practice a constraint
such as this would often be determined through prior experience with similar problems in the
past. In a sense, the methodology provides something like a Bayesian option to nonparametric
inference; it allows the experimenter to impose his or her prior belief on the value of estimator.

As in Example 1 we calculated the estimates in terms of an iterative algorithm based on the
equations in §2.2. The boxplots of those estimates are depicted in Fig. 4. Note that the estimates
derived from the generalised empirical likelihood are only different from the least squares estimates
when 51 < 1.15.

Of course, imposing the constraint removes all instances where 51 takes values less than 1.15.
However, it has little impact on distribution of the estimator on the upper side of 1.15, and neither

does it have a noticeable effect on either bias or variability of 52 or 53.

14



4 Theoretical Properties

In the context of Example 1 in §2, we show that if 1, equals the true value of (6, @) then,
under regularity conditions, the generalised empirical likelihood ratio statistic (2m)~'L(1) is
asymptotically distributed as x? with ¢ degrees of freedom. At the end of this section we discuss
theory for the other two examples from §2.

Let 6% a° denote the true values of 6, « respectively, and put ¥° = (6° o). Suppose that

for each n,

(C1) either X; < --- < X, are regularly spaced on a fixed interval Z, or they repre-
sent values of a sample of size n from a fixed, continuous distribution F'; and in the
latter case, assume that for each n, X1,--- , X, are stochastically independent of the

perturbations ¢;’s.

If the X;’s are regularly spaced on Z then, for future reference, we take F' to be the uniform

distribution on Z. In this notation, assume that

(C2) g(z|0) has three derivatives with respect to 6, bounded uniformly in z and in 6
in a neighbourhood of §°; the r x r matrix A; (), of which the (k,[)-th element is

dg(x|0) Og(z|0)
/ o6, o9, °F (2),

is nonsingular when 6§ = 6% the time series {e;} is causal in the sense that 1 +
doi<i<s oz?zj # 0 for all |z] < 1; (6, a) has two bounded derivatives in a neighbour-

hood of (6°,a°), and the ¢ x ¢ matrix

s -2 T T
<1+; a,) ‘(r?;—qul(e)—1 (‘Z—Z) +g—ZA2(a)—1 (%) (4.1)

evaluated at (0%, a’), is nonsingular.

In our technical arguments we do not address the possibility that in the definition of L(1),) at
(2.6), local minima occur at more than one value of p. To circumvent this issue we assume, in the
theorem below, that p = p(1,) is taken to be the multinomial distribution which, of all those that
produce a local minimum of D,(p) subject to {ﬁ\(p) = )4, minimises ||§(p) - g(punif)|| + ||a(p) —
a(punit)||- A proof of Theorem 4.1 is given in Appendix 2.

Theorem 4.1. Under conditions (C1) and (C2), (2m)~'L(¢°) is asymptotically distributed as

x? with ¢ degrees of freedom.
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If in addition to (C1) and (C2) we assume that the distribution of ¢; is absolutely continuous
and has sufficiently many finite moments, and that 1(6,a) and g¢(-|@) have sufficiently many

derivatives with respect to 6 and «, then we may derive an Edgeworth expansion of the distribution

of L(3°):
P{L(y") < u} = PO <u) +n7  qa(2) (@) + - + 0  gr(@) €(2) + O~ V), (42)

where ¢ denotes the x? density and g1, , g are polynomials. It follows that calibration using

the x? approximation produces a coverage error of order n!.

A bootstrap version of (4.2)
may likewise be developed, from which it may be shown that the bootstrap-calibrated approach
suggested in §2.3 produces confidence regions with coverage errors O(n 2).

We shall not give formal theoretical results in the context of applications to robustness, or for
inference under constraints. In those cases the mathematical proofs needed are generally simpler,
since they relate to convergence in probability to points or deterministic functions, rather than
to convergence in distribution. An instance where the argument is relatively complex, and similar
to that in the case of empirical likelihood, is that of implementing a bootstrap test using tilting
methods, mentioned at the end of section 2.

The power of such a test, against local alternatives, can be described by developing an
Edgeworth expansion analogous to that at (4.2). In this way it can be shown that the level of
the test is in error by only O(n~!), and the test is capable of distinguishing local alternatives

that are distant n—1/2

from the null. In particular, if the distribution F}, . of the errors ¢; can be
written as Fy, . = (1 — en™/2) G + en™'/2H, where G and H are fixed distributions, G' has zero
skewness, H has nonzero skewness, and ¢ > 0; if both G and H are continuous with sufficiently
many finite moments; and if the probability that the bootstrap test rejects the null hypothesis of
zero skewness is denoted by 7(n,c); then the methods leading to Theorem 4.1 may be employed

to prove that
7(n,0) =7+ 0O~ ), lim liminf 7(n,c) = 1.

Cc—00 N—0Q

Appendix 1: Derivation of (2.8)

Differentiating (2.10) and (2.11) with respect to py we obtain,

o0 0
Avk(eaaap) % + B’Uk)(aa aap) a—; = ‘/Uka v = ]-a 23 (A]-)

where the cases v = 1, 2 correspond to (2.10), (2.11) respectively, the matrices A1, Bk, Aog

and By are r-by-r, r-by-s, s-by-r and s-by-s, respectively, and V7, and Vy; are r- and s-vectors,
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respectively. Specifically, the u-th rows of Ay; and Byj, are

n

s T
> [6.0.060.0 - 20,0 {ax0+ 3 a0} |,
j=s+1 i=1
and
- Z {gju(ea a) nj (0)T + Zj (95 a) Cju(g)T} bj
j=s+1
respectively, where &, (0, a) = ¢, (X;(0) + >/ @i gu(X;—i|0) and &; = (&1, --- ,§j7«)T; nj(0) and
Cju(0) are the s-vectors with i-th elements 7;;(8) = Y;_; — g(X;_;|0) and g,(X,;—;|0), respectively;
and g, (z|0) is the r-vector 0¢,(x|0)/00. The u-th element of Viy equals Z (6, @) (6, @). The

v-th rows of A9y, and By, are

n

Z {njv 5] 9 a +Zj(9aa)g(Xj—v|0)T}pj and — Z njv(g)nj(o)ij

j=s+1 Jj=s+1

respectively, and the v-th element of Vs equals Z; (6, a) 1k, (6). Recall that Z;(0, o) was defined
at (2.14). Formula (2.8) follows from (A.1).

Appendix 2: Derivation of Theorem 4.1

For the sake of brevity we treat only the case 0 < p < 1 and 9 = ¥(0,a). Then a Lagrange

multiplier argument shows that
pr=m"" (14 A+ A3 6) /00, (A.2)

where A; is a scalar, Ay and &y are t-vectors, & = 81/1{9( ), @(p)}/Opr, and A1, A2 are determined
by the constraints ¢{0(p), a(p)} =, and >, prp = 1.

Let || - || denote the Euclidean norm applied to a vector or matrix. Put 7 = m™' Y, d,
M=m1 >k 0kdl and ¥ = (0, a&). Writing 1 for 9(6, a), let 11 = 91/80 and 1o = v/
The results in (A.3) below may be proved to hold, the first for uniformly in

peP={p:|0p) - <Cn ' and [a@) - a’| <On '},
where C > 0 is arbitrary but fixed:

sup |19 = Op(n™'72), Il = Op(n™"2), m™' Y " ||6l[> = Op(n'?),  (A3)
k

HH” = OP(]‘) ’ A1 = Op(nil) , ||A2|| = Op(nil/Q) .
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Indeed, the first bound in (A.3) follows by Taylor expansion and the smoothness of 1, and
implies the next three bounds. To obtain the two remaining formulae one initially assumes their
correctness and carries the proof below to its conclusion, obtaining (after only a minor elaboration
of the argument) proper “in probability” limits for each of nA; and n'/2)y. This proves the
existence of Lagrange multipliers (A1, A2) which satisfy the desired constraints and are such that
(A.3) holds. Since the multipliers are uniquely defined then the fifth and sixth results in (A.3)
must hold without precondition.

In view of (A.2) and (A.3),

1= "pe=1—-(1=p) "M+ MR +5(1-p) 22— p) M M Az +0p(n7Y), (A.4)
k

o = P{0(p),a(P)} =9 — (1= p) " MAs+op(n 1/?). (A.5)
We shall prove shortly that

M =M +o0,(1), (A.6)

where M is a fixed, nonsingular matrix. Therefore, by (A.4) and (A.5),
M= (=) BT M e =) + 5 (1= p) 2= ) (s — D) M7 (s =) +0p(n™"),  (AT)

A2 =—(1-p) Mt (s — "Z) + Op(nilﬂ) . (A.8)
By (A.2), (A.3) and (A.6),
a=1-m 'Y (mp)’ =p(1—p) ' M+ X0) —5p(1—p)72 A Mo+ 0p(n7").
k

Substituting for A; and Ay from (A.7) and (A.8) we deduce that

Dy(p) = {p(1—p)} "a =5 (= )" M (the =) + 0p(n ). (A.9)

Next we derive (A.6) and identify M. Put

Aj=Y; - g(X;10) + Y aif¥j-i — 9(X;-i[0)}.

i=1
Let g(-|6) (respectively, G(-|¢#)) denote the r-vector (r X r matrix) of the first (second) derivatives
of g(-|0) with respect to 8, and define (a) U; = ¢(X;|0)+ >, o g(X;—i|0), (b) V; to be the s-vector
with i-th element Y;_; — g(X;_4|0), (c) W; = G(X;]0) + >, ;i §(X;—i|0), and (d) Z; to be the

r X s matrix with i-th column ¢(X;_;|0). Then for S defined in (2.2),
S - S §
j=s+1 j=s+1
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Ifo = a(p) and @ = a(p) are chosen to minimise S = S(6, a|p), then both the derivatives at
(A.10) vanish, and so

1 8°S = P e 00 O
"= o~ 2 n (¥ =V ) v 3 mis (Woge 5 3 rsuth,

=s5+1 8pk j=s+1
1 8%8 = da o0 o6
0= =y pj(VjT——Uf ) ZpJA Zj o o Ak Vi
2 Oppda T, Oy Ok S
Equivalently,
00 I5)0" 00 I5)0"
M11 % + M12 apk = Ak Uk y M21 (9 + M22 apk = Ak Vk , (A.ll)
where . .
My =Y p(U;U] —8;W)), Mi=- Y p;(U; V] +4;%),
j=s+1 j=s+1

n
My= Y py (VUL +08;2), Mu=-Y pV;Vi.
j=s+1 j=s+1
Let Ag, UJ(-) , Vjo, WJQ and ZJO denote the values assumed by A;,U;,V;, W; and Z; when (0, )
is replaced by (6%, a); let Q; be the s-vector with i-th element e;_;; and observe that A? =€
and V-O = Q;. Using Taylor expansion we may prove that, uniformly in # and « such that
10 — 6°|] < Cn~Y/2 and ||a — a°|] < Cn~'/2, and uniformly in s + 1 < j < n, we have A; =
&+ QT (= a%) + 0yn112), Uy = UD + Op(n~2), Vj = @+ Opln~02), Wy = WO+ 0y n"12)
and Z; = ZJO + Op(n~1/?). From these formulae, (A.2), (A.3) and the fact that the design
points X; are independent of the perturbations e, we may deduce that My = M + 0,(1),
Myy = My + Op(n=/2), || Myal] + || Mar| = Op(n~"/2), where My = plimm~' ¥, E{UYU)"}
and M, = E(QoQ}). Both My and M, are nonsingular. (In notation of §4, My = (14 Y, «;)?41
and My = As.) Hence, by (A.11), and defining {p\j(p) = ¢j{§(p),&(p)}, we have

Therefore, writing 1/)? = 1;(6° a°) and & = ¢? M1_1 UP + 43 M2_1 Qp, we have

80(p)  ~ 0a(p)
_|_
Opk V2 Opk

{{p\l (p) Mil U, + ’l/ﬂ\g(p) Mil Vk} Ay + Op {n1/2 (‘

5 = Pi(p)

9(p)
Opk

0a(p)
Opk

)

M=m Y &el e+ o). (A.12)

k=s+1
Here we have used the property,
n Y 2 ~ 2
o0 oa(b
Z 6(p) + ‘ g( ) _ OP(’)’LI/Q),
ks t1 Pk Pk
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which may be proved from (A.11). The remainders here and at (A.12) are of the stated orders
uniformly in p € P.

The autoregression ¢; = Zog j<s @j €i—j, In which ap = 1, may be inverted to give a moving
average, €; = Y ;sq ) €i—j, say. It follows that the variables {e;_;,1 < i < s} are independent
of €;. This property and the law of large numbers may be used to prove that (A.12) implies (A.6),
with

M = {g? Mt (9)T + 98 My (49)7} E(e5) - (A.13)
Note that M/E(e2) is the matrix defined at (4.1), evaluated at (69, a°).

Finally we derive the required asymptotic distribution. Note that
=90+ 97 (6 —6°) + 98 (@ — o) + 0, (n7'1?). (A.14)

Taking p = punir in (A.10), equating 0S/06 and 0S/0a to 0, Taylor expanding the right hand

sides (which are functions of (6, &)) about (6°,a?), and solving for (6, &), we deduce that

- 1 & - 1 « _
M (0 —0° = - Y U +op(n?), My(a-a) = ~ > & Qrtop(n?).
k=s+1 k=s+1

From these results and (A.14) we may deduce that Y =y04n1/ 2N! where N} is asymptotically
Normally distributed with mean zero and covariance matrix M defined at (A.13). Combining this

result with (A.9) we deduce that
2nD(ﬁ) = (Nn _’Yn)T (Nn _’Yn)a (A.15)

where 7, = n'/?(4, — ¥°) and N, is asymptotically Normal N(0,I;). Theorem 4.1 follows
from (A.15).
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