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Abstract

Motivated by the m-step-ahead prediction problem in nonlinear time series, a brief sketch
of stochastic chaotic systems is provided. The accuracy of the prediction depends on the ini-
tial value, which is a typical feature of nonlinear but not necessarily chaotic models. However,
if the model is chaotic, a small noise can be amplified very quickly through the time evolu-
tion at some initial values, thereby decreasing the reliability of the prediction dramatically.
Further, if the model is chaotic, small shifts in some initial values can lead to considerable
errors in prediction, which can be monitored by the newly defined Lyapunov-like indices. For
the nonparametric predictor constructed by the locally linear regression method, the mean
squared error may be decomposed into two parts: the conditional variance and the divergence
resulted from a small shift in initial values. In fact, the decomposition also holds for more
general predictors. A consistent estimator of the Lyapunov-like index is also constructed
by the locally linear regression method. Both simulated and real data have been used as

illustrations.
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1 Introduction

The predominance of the assumption of linearity in time series analysis until quite recently
has perpetuated the misconception that the reliability of the prediction is independent of the
state. Indeed many standard text books in time series analysis have given “error bounds” for the
point forecasts which are uniform over the state space. Whilst uniformity may well be true for the
case of linear least squares prediction, it is certainly untrue for the case of nonlinear prediction.
The non-uniformity is not surprising to anybody who has had a first hand experience with the
stock market! Although some recent authors (e.g. Tong, 1990 and the references therein) have
recognized this fact for particular cases, the literature lacks a precise quantification for the general
situation. Moreover, it is of practical significance to analyse the effect of a perturbation of the
initial values on the prediction. As long ago as 1956, Wiener warned of the danger of ignoring
“the very real possibility of the self-amplification of small details in the weather map” (Wiener,
1956 p.247).

In the chaos literature, the concept of a Lyapunov exponent has been developed to characterize
the sensitive dependence on the initial value of a deterministic system, which may take, for
example, the form of a nonlinear autoregressive model without noise. Naturally, the concept
of the sensitivity to initial conditions as well as the Lyapunov exponent has to be substantially
extended in order to cope with a stochastic model. This paper will not present a definitive
description of stochastic chaotic systems. However, a heuristic exploration of chaos in stochastic
systems will help us to understand the influence of initial values on the prediction of nonlinear
time series. It is intuitively clear that the stochastic dynamic noise will, by permeating through
the system dynamics, interact with any perturbation of the initial value. First, a small shift
in the initial value can lead to considerable change in the distribution of the state variable
conditionally on the fixed initial value in the short or medium term, a phenomenon which we
call the sensitive dependence on initial values. Next, the stochastic noise in the system can be
amplified very rapidly through the time evolution, a feature which is wholly stochastic in that
it disappears for a purely deterministic system. In fact, the noise amplification in a nonlinear
(not necessarily chaotic) system is not always monotonic (cf. §6.2.2 of Tong 1990). In the
context of nonlinear prediction, the influence of initial values may be decomposed into two parts.
First, the (theoretical) accuracy of the prediction, which may be represented by the conditional
variance, varies with the different initial values. This is a typical feature of nonlinear but not
necessarily chaotic models. However, if the model is chaotic, the conditional variance can increase

very quickly, but not always monotonically, at some initial values due to the noise amplification



through the time evolution. Secondly, the errors in the prediction due to the perturbation in
the initial values can be considerable if the model is chaotic, which will be closely monitored by
the Lyapunov exponent type quantity, or more specifically the Lyapunov-like index defined in
Section 2. The above decomposition will be quantified in Theorem 1 in Section 3. As far as we
are aware, the decomposition is new. The non-monotonicity of conditional variance implies the
possibility that the error of a (m + 1)-step prediction can be smaller than that of the m-step
prediction from the same initial value. This is another interesting feature of nonlinear (but not
necessarily chaotic) models.

The plan of the rest of the paper is as follows. Section 2 provides a brief sketch of chaos in a
stochastic system with the emphasis on its application in nonlinear prediction. We introduce the
Lyapunov-like index, which characterizes the divergence of conditional expectations of the first
components of two trajectories with nearby initial values in the short and medium terms. We
also present a quantitative description of how a small noise can be amplified rapidly in a chaotic
system, and when the non-monotonicity of conditional variance can happen in the case of small
noise. In Section 3, the m-step predictors for nonlinear time series, as well as the estimators of
the Lyapunov-like indices, are constructed by using the locally linear regression method (cf. Fan
1992). The asymptotic decomposition of the mean squared error of the predictor is developed
for the strictly stationary and absolutely regular time series, which shows that the reliability
of the prediction does depend on the initial values. The consistency of the estimator of the
Lyapunov-like index is proved. In Section 4, the method is illustrated with two sets of simulated
data and also the Canadian lynx data and the Wolf’s sunspot numbers. All mathematical proofs
are relegated to Section 5.

Finally in this section, we introduce some convention on the notation. We always use vectors
in the column form. A” denotes the transpose of matrix (or vector) A. A = o(1) means that all
components of A are o(1), and other ‘order’ notations are similarly interpreted. ||- || denotes the

Euclidean norm. C' denotes a generic constant which may be different at different places.

2 Stochastic chaotic systems

2.1 Chaos in dynamical systems

It is almost impossible to give a precise mathematical definition of deterministic chaos which at
the same time encapsulates all that the term implies in the diverse literature. However, we are all

agreed that the sensitive dependence on initial conditions is a typical feature of a chaotic system,



and which is characterized by the well-known Lyapunov exponents (cf. Eckmann and Ruelle
1985, Chatterjee and Yilmaz 1992, Berliner 1992, and the references therein). Conventionally, a
system is chaotic if it is sensitive to its initial conditions (cf. Eckmann and Ruelle 1985), although
there are quite a few different operational definitions available in the literature (cf. Tong 1990,
Nychka et. al. 1992, Wolff 1992 and others).

A simple system that may generate chaos is the deterministic discrete-time dynamical equa-
tion

Xt = F(X¢-1) (2.1)

for ¢ > 1, where X; denotes a state vector in R%, and F is a real vector-valued function. We
assume that each argument of F' has bounded continuous second partial derivatives. Usually
in chaos study, F' is assumed to be bounded, though we do not put forward this assumption
explicitly here. It is well known that the existence of at least one positive Lyapunov exponent
is a necessary (but not sufficient) condition for a deterministic system to be chaotic. To see this
more precisely, let {X;(z), t > 0} denote the trajectory starting at Xo = z € R?% and z, z + 6

be two nearby initial values. Then, after m iterates,

Xon(2 + ) = Xn(2) = FO (@ + 8) = F™ (2) ~ ~ {70 ()},

dx™
where F(™) denotes the m-fold composition of F. To simplify the discussion, let us consider the
one-dimensional case (d = 1) for the moment. Then, by the chain rule, the (local) Lyapunov
exponent (at initial value z) is defined as

k(z) = lim —log\—{F )(z)} = lim — Z log | F' (X;(z))], (2.2)

m—o0 Mm, m—0o0 M,

if the limit exists (cf. Ruelle 1989). Hence, we have the approximation
| Xm(z 4 0) — Xm(z)| =~ |0] ™)

Thus, if k(z) > 0 for some z, two trajectories with nearby initial values around z diverge at an
exponential rate. Notice that the above relation usually does not hold for small m because of the
asymptotic nature of x(z). Therefore, it could not be used generally in short-term prediction.
Neither does it make sense for very large m because of the global boundedness of the attractor;
the trajectories simply keep twisting when they diverge. Hence, we would take the view that the
Lyapunov exponent is a useful qualitative characteristic indicating possible deterministic chaos
rather than a parameter with which we develop specific quantitative analysis. For the prediction
study in a stochastic dynamical system, we need to introduce some Lyapunov-like measures to

describe the divergence over a short time in a statistical setup.



A stochastic dynamical system with additive noise can be described by the equation
Xi=F(X;1) te (2.3)

for t > 1, where F' is the same as in (2.1), {e;} is a d-dimensional noise process, and

E(et| Xp,...,X;-1) = 0. We do not attempt to give a rigorous mathematical definition of chaos
for such a stochastic system. Operationally, we say that a stochastic system is chaotic if (i) for
some m > 1, the conditional distribution of X, given Xy = z depends on the initial value z
sensitively for some values of z; (ii) for all ¢ > 1, the noise e; is amplified very rapidly starting
at some initial values of X, through the time evolution. We shall describe manifestations of (i)
and (ii) later.

Intuitively, we would expect that the conditional distribution of X,,, given Xy = z can, under
certain conditions, depend sensitively on z for some small or moderate rather than large m
because of the accumulation of noise through the time evolution. It would seem unlikely that
after a long time, the stochastic system still has a strong memory of its initial value, especially
when the amount of noise is considerable in comparison with the magnitude of the system signal.
We do not rule out the possibility that conditions (i) and (ii) might be equivalent. However,
it remains an open problem as to how to formulate them properly and prove (or disprove) the
general equivalence. On the other hand, it seems not always proper to say that the stochastic
system (2.3) is chaotic if its skeleton (2.1) (cf. Tong 1990) is deterministically chaotic, because if
the noise tends to be overwhelming in (2.3), the stochastic system would behave like a stochastic
noise process no matter what the skeleton is. A challenging question is to quantify the amount
of permissible noise {e;} on the dynamic F'(.) without smearing the qualitative characteristics of
the latter. A relevant result for continuous-time systems can be found in Kresting (1991).

To prepare the grounds for the prediction study in Section 3, we discuss two characteristic
features of stochastic chaotic systems from some special angles in the following Sections 2.2 and
2.3. More general discussion on the sensitivity of the conditional distribution to initial values
will be reported elsewhere. Some remarks on ‘Lyapunov exponents’ in stochastic systems will be

given in Section 2.4.

2.2 Lyapunov-like indices

Suppose that {X;, ¢t > 1} are given as in (2.3). For z € R and m > 1 let

Fon(2) = E(Xn|Xo = 7).



Suppose that  and x + § are two nearby initial points of the process. Then after time m, the

divergence of the conditional expectations of X, is
Frn(z +0) — F(x) = Am(2)d + o]l 4 ), (2.4)

where Ay, (z) = dF,(z)/dz”™ is a d X d matrix, especially A(z) = Ai(z) = dF(z)/dz". It follows
from (2.3) that

Fon() = B{F(Xpu_1)|Xo = &} = B{F(F(X_3) + em1)| Xo = a}

=E{F(...(F(z) +e1)+ ...) +em1)| Xo=z}

By the chain rule of matrix differential, A,, can be expressed as
m
Ap(z) = E{H A Xk-1) | Xo = z}. (2.5)
k=1
Roughly speaking, assuming that all the factors in the RHS of the above expression are of
comparable size, it seems plausible that A(z) grows (or decays) exponentially with m. Let v2, ()

denote the largest eigenvalue of A7, (z)A,,(z). It follows from (2.4) that
| Ein( + 6) = Foo(2) [|< [vm ()| | 6] +o ([ 6 ]])- (2.6)

In the special case d = 1, vp(z) = E{[I}; %F(Xk_l) | Xo =z}, and Fp(z + 0) — F(z) =
Vm(x)d. Thus, for the values of z such that |v,,(z)| is large, a small shift § in the initial value can
lead to considerable divergence in the conditional expectations. This means that the conditional
expectation Fy,(z) depends on z sensitively when |v,(x)| is large. This can be considered a
manifestation of the sensitive dependence of the conditional distribution on the initial value.
Since, in practice, the observations will almost certainly be subject to measurement or rounding
errors, it seems necessary to take account of this divergence in m-step prediction. However,
in the context of prediction, the task is usually to predict one component of X; instead of the
whole vector X;. Hence, the approximation (2.6) is rather rough. We would concentrate on the
divergence in the first component of the system. Let Y; denote the first component of X;. It
follows from (2.3) that
Y: = f(Xi-1) + e,

where f(-), and ¢; denote respectively the first component of F(-) and the first component of e;.
For m > 1, and z € R%, let

fm(z) = E(Yn|Xo = ).

Obviously, f1(z) = f(z). Then from (2.4), we have

fm(@ +6) = fm(2) = 6" Am(2) + (][ 4 ), (2.7)



where A\, (z) = df,(z)/dz, which is equal to the transpose of the first row vector of the matrix
Ap(z) in (2.5). We call \p,(.) the m-step Lyapunov-like indez, or simply the m-LI. When d = 1,
Am(T) = E{H F(Xg-1) | Xo =1} = E{H M (Xg-1) | Xo =z} (2.8)

k=1

We will see in Section 3 that the m-LI plays an important role in the m-step prediction.

2.3 Noise amplification in a stochastic system

Unlike a deterministic system, a stochastic system is typically contaminated by noise. The
amplification of noise varies with the initial values, and is not necessarily monotonic in time
evolution. This is a typical feature of nonlinear (but not necessarily chaotic) models. Further,
a small noise is expected to be amplified rapidly through the dynamics if the system is chaotic.
To highlight this interesting phenomenon, we restrict our discussion here to one-dimensional
systems.

Suppose the process begins at the initial value Yy = z € R, and for ¢t > 1,
Y = f(Yi-1) + &,
where {€;,t > 1} is a noise process with
E(e|Yy, k <t) =0, o= Var(e) = Var(es|Vz, k < t). (2.9)

Therefore E(ees|Yy, k < t) = 0 for all t > s. We also assume that for all ¢ > 1, || < ¢ a.s.,

where ¢ > 0 is a small constant. By Taylor’s expansion, it is easy to see that for m > 1,

Yo = F™ (@) + € + Af™ V(@) ]emer + ... + {nﬁl)\[f(k)(x)]} e1 4+ 0,(¢?), (2.10)
k=1

where A(z) = df (z)/dz, and f*) denotes the k-fold composition of f. Let 02,(x) = Var(Y;,|Yy = ).

Then o?(x) = 02 and for m > 1,

0-7271(33) = Nm(x)o'2 + O(C?’), (2'11)

where

m—1 [ m—1 2
pm(z) = 1 + Z{ 11 A[f”“)(:v)]} . (2.12)

i=t | k=

If the absolute value of the one-step Lyapunov-like index Ai(z) = A(z) is greater than 1 for
a large range of values of z, yup,(z) can be very large for moderate (and even small) m (cf.
Fig. 3 in Section 4). The rapid increase of 02,(x) with respect to m is a manifestation of

noise amplification. It is easy to see from (2.8) and (2.7) that in this one-dimensional case, the



conditional expectation also depends on the initial value sensitively when |A(z)| is greater than

1 for a large range of values of . On the other hand, (2.12) implies that

pm 1 () = 1+ (@) {ALF ) (2)]}

Thus, pmi1(z) < pm(z) if {A[f)(2)]}2 <1 —1/pn(z). By (2.11), it is possible that for such
z and m, o2, ,(z) < o2(z). This suggests that from the same initial value, the error of a
(m + 1)-step ahead prediction could be smaller than that of the m-step ahead prediction in some
cases.

In the case that f(.) is linear, A(.) is a constant, and the remainder in the RHS of (2.10) is
zero. Since the noise is homogeneous as assumed in (2.9), 02,(z) does not depend on z, and is

monotonically increasing as m increases.

Deissler and Farmer (1989) have discussed noise amplification of a deterministic system.

2.4 Some remarks

The purpose of this paper is to indicate the dependence of nonlinear prediction on its initial
values, which will be further explored later on in this paper. To this end, it is inevitable that
we should touch on the notion of a stochastic chaotic system. For a stochastic system as defined
in (2.3), it seems to us that the problem as to how to define the Lyapunov exponent is still not
completely resolved, although quite a few attempts have been made. For example, Crutchfield
et al. (1982) has taken the probability average in the conventional definition of the Lyapunov
exponent (initially designed for a deterministic system), which however seems to lose its intuitive
appeal. Recently, Nychka et.al. (1992) has adopted a measure which describes the divergence of
the trajectories under the assumption that the different trajectories have the same realization of
random noise. We ourselves have difficulties in perceiving the existence of such trajectories in
practice.

Perhaps an alternative direction worthy of exploration is as follows. Suppose the system is
one-dimensional (d = 1). Define

1 d 1 m-l g
k(z) = lim —logl—me(w)l = Tr}gnoogloglE{il;[O %F(Xi) | Xo =z}, (2.13)

which can also be expressed in terms of the m-LIs, namely x(z) = lim;, 0 % log | A (z)|. If
r(z) exists, we have |Fy,(z +6) — Fj, ()| = e™(*)|§|. Positive x(x) entails a possible exponential
divergence of the conditional expectations of the trajectories with nearby initial values. When

the noise fades away (e; = 0), k(z) reduces to the well-known Lyapunov exponent of a deter-

ministic system (cf. (2.2) ). However, k(z) defined in (2.13) only makes sense when the noise



is relatively small, or more precisely the ratio of signal to noise is large, because if the noise
becomes overwhelming, the system tends to have a ‘short memory’ of its history. In this case,
F(z) = E{X,,|Xo = z} could be nearly a constant when m is sufficiently large. Further, for
a stochastic chaotic system, as we mentioned in Subsection 2.1, it makes more practical sense
to focus the sensitivity of the conditional distributions (on the initial values) on the short and
moderate (rather than the long) terms. This suggests that asymptotics are unlikely to yield a
practically useful characteristic exponent. Yet another possible direction is to explore how the
ergodic theory of random transformations (e.g. Kifer 1986) could be brought to bear in the

present context.

3 m-step prediction

By using the ideas developed in Section 2, we study the prediction of nonlinear time series.
From (2.11), we expect that the ‘error bounds’ of the prediction will vary with the initial value.
This is a typical feature of nonlinear (but not necessarily chaotic) model. If the model is stochas-
tically chaotic, (2.12) indicates that a small noise can be amplified quickly when the system starts
at some initial values, which means that the m-step prediction based these initial values could
be unreliable even for small m. Further, when the m-LI A, (z) is large, a small change in the
initial value z would lead to considerable divergence in the states at time m (cf. (2.7)). In this
case, it is worthwhile to take account of the error in prediction due to the measurement error in
the initial value.

Since we do not assume any specific form of the model, we choose as our technical tool
the nonparametric kernel regression method based on locally linear fit (or simply, locally linear
regression, cf. Fan 1992, Ruppert and Wand 1992) to estimate both the prediction functions and
their derivatives (i. e. the Lyapunov-like indices) simultaneously. As far as we know, this is the

first time that the locally linear regression method has been adopted in a time series context.

3.1 Model

Suppose that {Y;, —oo < t < oo} is a one-dimensional strictly stationary time series, and

the following equality holds for m > 1
E{Yt+m‘YkakSt}:E{YYt+m|Xt}a —OO<t<OO, (31)

where X; = (V3,Yi—1,...,Yi—411)7, and d > 1 is a known integer. Obviously, condition (3.1) is

weaker than the assumption that {Y;} is a Markov process in d steps. Given the observations



{Y;, —d+ 1 <t < n}, we shall predict the random variables Y, ,, for m = 1,2,.... In fact, the
time series model can be considered a special case of a stochastic dynamical system. To see this,

let f(z) = E(Y1|Xo = z). Then Y; can be expressed as
Vi = f(Xi1) + e, (3.2)

where ¢, = Y; — f(X;—1). Define F(X; 1) = (f(X4-1),Ys-1,--.,Yi—4+1)", e = (€&,0,...,0)7.
Then equation (2.3) holds. In what follows, the time series model is said to be chaotic if the
corresponding stochastic dynamic system is chaotic. When f(.) is a linear function, we have the
usual linear AR model.

To study the m-step prediction, we define
fm(z) = E(Yy | Xo=1),
for z € RY and m > 1. Tt follows from (3.1) that for all ¢, Y;,,, can be expressed as
Yitm = fm(Xe) + eg—n?)n’

with
B{™ | Vi, k<t} =0, as. (3.3)

3.2 Predictor

It is easy to see from (3.3) that the (theoretical) least squares predictor of Y, based on
{Y;,t <n}is f,,(X,), which only depends on the latest vector X,, = (Y,,...,Y, 4+1)"- In what
follows, an estimator of the function f,,(z) is constructed by using the locally linear regression
method, which also produces an estimator of the m-LI A\, (z) = df,(z)/dz. The idea of the
locally linear regression is very simple: for a small shift § € R, the equality (2.7) holds. Hence,
the estimation problem can be described as a weighted least-squares problem, namely finding f,,

and A, to minimize

S (Yot = fnle) = M) (X — )2 K (2521, 3.4

t=1
where K(-) is a probability density function on R? and h = h(n) is a bandwidth. Simple

calculation yields
fn(@) = {To(2) — 7 ()S5} (2)T1(2)}/{So () — 5T () S5 ()1 (2) + h?}, (3-5)

Am(x) = {S2(2) — S1(x) S (2)/So(2)} " {S1(2)To(z)/So () — Ti(2)}, (3.6)



where

1 = .’E—Xt
So(zx) = z— X)) K z— X7, 3.7
o) = o 3 o= XK () (- ) (3.7
and
To(x) = n_lm ; Yt+mK(”” _hXt>, Ti(z) = n_lm g(w—xt)mmfc(x _hXt). (3.9)

For technical reasons, we add h? into the denominator in (3.5), which has little effect for large

3.3 Asymptotic properties

To discuss the asymptotic properties of f,(z) and A (z), we need the following assumptions.

(A1) All second partial derivatives of f,,(z) are bounded and continuous.

(A2) X; has the probability density function p, and |p(z) —p(y)| < C || z — y || for any
z,y € R%

(A3) The conditional variance
02 (z) = Var(Y;,| X = ) (3.9)

is bounded and continuous.

(A4) E|Y:|?* < oo for some a > 2.

(A5) Let B, = FE Lsuopoo|P(A|%(loo) — P(A)||, where Q} is the o-field generated by {Y; : ¢ =
k,...,n} (n > k). ThenEB:L = O(n~2+M/n) for some constant 7 in (0, — 2), where « is given in
(A4). Furthermore, there exists a positive integer ny = ni(n) such that for ny = [n/(2n1)] > 0,

limsup(1 + 6\/55%("”1))"2 < 00. (3.10)

n—oo
(A6) K(-) is a bounded density function on R%, and
/.’BK(ZE)d.’L‘ =0, /mxTK(x)dx = o2y, / | z||® K(z)dz < oo,

where I; denotes the d x d identity matrix.
(A7) The bandwidth h = n~% with € in (0, (2 +d)~!/2).

(A8) For ny given in (A5) and 6 given in (A7), limsup n;/n%% < cc.
n—oo

10



Assumption (A5) implies that the process {Y;} is absolutely regular. The condition £, =
O(n~(*n/n) is for technical convenience, which is not the weakest possible. Condition (3.10),
together with (A7) and (A8), allows us to apply a probability inequality of Roussas and Ioan-
nides (1988) on triangular arrays of weakly dependent random variables. The other conditions

are self-explanatory.

Theorem 1. Assume that (Al) — (A8) hold for some m > 1. Then, for z € {p(z) > 0} and
§€R?

nlggo E{[Ynim — fm(x)]2|X =z+6} = U?n(x +4) + {5T)\m(x)}2 + Ry, as., (3.11)

where R, = o(|| § ||?) as || 6 || = 0, A(z) = dfyn(z)/dz is the m-LI, and o2, () is the conditional

variance given in (3.9).

Theorem 2. Assume that (A1) — (A8) hold for some m > 1. For z € {p(z) > 0}, as n — oo,

Am(z) converges to Am(z) in probability.
The proofs of the theorems will be given in Section 5.

Theorem 1 shows that the mean squared error of the predictor fm at the initial value =, which
has a small shift from the true but unobservable value X,, = z + §, can be decomposed into two
parts: (i) the conditional variance; (ii) the error due to the small shift at initial value which is

related to the m-LI. When ¢ =0, i. e. X, is fully known, (3.11) becomes
. _ 2 _ _ 2
Tim B{ Yot — f@)? | Xo =0} = 02(2) as.

which shows that the accuracy of the prediction in a nonlinear (but not necessarily chaotic)
model does depend on the initial value x, which is strikingly different from the case of a linear

prediction. (In a linear model with homogeneous noise as indicated in (2.9), 02,(.) is a constant.)

2

() can be very large for some moderate or even small m (cf. (2.11)

But if the model is chaotic, o
and (2.12)). When the measurement error § is small but not zero, such as rounding errors in
measurement etc., usually the right hand side of (3.11) is dominated by the conditional variance
o2 (x+6) = o2,(z) + O(]| § ||), because the second term is of the order of ||§||2. For example,
in the case that the model is linear (and stationary), the m-LI A, (z) is a constant vector with

norm less than one and the term {67 \,,(z)}? can therefore be ignored. However, for a chaotic

system, the m-LI A\, (z) can be very large for some values of z (cf. (2.7) and (2.8)), in which case

11



the term {67\, (x)}? can no longer be ignored. In this sense, we say that the m-step prediction
is sensitive to the initial values when the model is chaotic.

In (3.2), the noise term ¢; is not necessarily homogeneous as indicated in the second expression
in (2.9). However if it is, 0?(z) = o7 is a constant. In this case, the variation of the asymptotic
mean squared prediction error is dictated by A (z).

Theorem 2 shows that \,, is a weakly consistent estimator of the m-LI A,,. In fact, it can be
proved that strong consistency also holds, but the proof will be considerably more complicated.
Yao and Tong (1992b) have established the asymptotic normality for more general estimators
which include fn(z) and An,(z) as special cases.

In fact, the asymptotic decomposition (3.11) dose not depend on the special choice of fm
It also holds when fm is the conventional Nadaraya-Watson estimator (or any other estimator
which converges to f,,, in mean square). Note that the Nadaraya-Watson kernel estimator for f,,
can be interpreted as the weighted least-squares solution of (3.4) with the restriction A,,, = 0. Fan
(1992) has shown that the Nadaraya-Watson estimator has a larger bias (of the order h?) than
the locally linear regression estimator, especially in the case when || A, (z) || is large, which is a
typical feature of the chaotic system. However, in most practical cases, the difference between the
two methods in estimating f,, is not so obvious. Our preference for the locally linear regression
stems mainly from the fact that it offers a natural and convenient estimator for A\, by virtue of
the weighted least-squares formulation around (3.4).

In the above approach, we only consider the effect of measurement errors on the prediction
through the initial values. Perhaps it could be argued that we should also consider the effect on
the estimation of f,,(.) and A, (.). This will lead to an interesting exploration of the robustness
of locally linear regression against measurement errors. Since the resulted effect on prediction is
not directly due to the nonlinearity of the model, it will not be considered in this paper.

We will not discuss in any detail how to choose the bandwidth . A frequently used bandwidth
selection technique is the cross-validation method (cf. Stone 1977). A more refined method for

local linear smoothers has been developed by Fan and Gijbels (1993).

3.4 Conditional variances

2

To use (3.11) in practice, we need to estimate the conditional variance oy,

(). In principle,
we can use the locally linear regression method to estimate the second conditional moment

E(Y2| Xy = z) by

Cm(z) = {Vo(z) — 57(2)Sy ! (@)Vi(2)}/{So(x) — 5 ()5, (2)S1()},
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where Si(-), £ =0,1,2, are as given in (3.7), and Vi(-), ¥ = 0,1, are defined in the same way as

2
m

Ty(-) with Y2, replacing Y;4, (cf. (3.8)). Now, we get an estimator for o

6 (2) = (@) = [fm (@))%, (3-12)

where fm is given in (3.5). It can be proved that the estimator ém is consistent under some
conditions (cf. Lemma 4 of Yao and Tong 1992a). Therefore, the estimator in (3.12) is also
consistent. Any smooth regression method would suggest using different bandwidths for the first
and second conditional moments. In practice, for the sake of convenience, we tend to adopt the
same bandwidth whilst bearing in mind the possibility of misleading results sometimes (cf. Fig.
3 in Section 4). Note that the positivity of 62,(-) cannot always be guaranteed even though the
same bandwidth is used in estimating the first and second conditional moments.

The discussion in Section 2.2 offers us a tentative way to estimate a ‘profile’ of o2, (z) when
the noise terms are small. In the case d = 1, it is easy to see from (2.11) that the variation
of o,,(z) is dominated by the variation of the functions pu,,(z). Equation (2.12) suggests the

following estimator for p,,

m—1 m—1 2
fm(z) =1+ > { I Ailfe(@)] } , (3.13)
g=1 | k=j

where f, and | are given in (3.5) and (3.6). Simulations show that this estimator is quite
good in small-noise experiments (cf. Fig. 3 in Section 4) and suggest the possibility of avoiding

estimating o2, () directly by estimating pi,,(z) instead.

4 Examples

We have shown, via asymptotics, that the performance of m-step-ahead prediction is influ-
enced by the initial values. However, its finite-sample behaviour is unknown. In this section,
we use two simulated examples and two real data sets to illustrate its finite-sample behaviour.
In all of them, the Gaussian kernel is used. In each case, we use the cross validation method
to choose a primary value of the bandwidth, and then adjust it upwards by a small amount in
the light of Hall and Johnstone (1992). For the sake of simplicity, we use the same bandwidth
for estimating both regression function and its derivative. In order to show the performance of
fm(z) with m =1,2,3,4,... etc., we add small amounts of (stochastic) dynamic noise to chaotic
deterministic systems in Examples 1 and 2. It is obvious that an ‘interval predictor’ is much more
relevant than a point predictor for a stochastic system, especially in the case of a relatively large

noise. Yao and Tong (1992b) have developed nonparametric regression estimation for conditional
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percentiles and expectiles, which can be used to construct prediction intervals. We shall report

some of the work in this direction elsewhere.

Example 1. We begin with the simple one-dimensional model
Y =0246Y;1(16 = Yi—1) +&  t2>1, (4.1)

where ¢, t > 1, are independent random variables with the same distribution as the random
variable 0.057, and 7 is equal to the sum of 48 independent random variables each uniformly
distributed on [—0.5,0.5]. According to the central limit theorem, we can treat €; as being nearly
a normal random variable with mean 0 and variance 0.12. However, it has a bounded support
[-1.2, 1.2]. Note that bounded support of €; is necessary for the stationarity of the time series
(cf. Chan and Tong 1994). In fact, the skeleton of (4.1) is a transformed logistic map with
the coefficient 3.936 (= 16 x 0.246). We have adopted the transformation in order to enlarge
the dynamic range of the model. A sample of 1200 is generated from model (4.1). Note that
0? = 0.01; therefore the one-step prediction is uniformly good for different initial values. Hence,
the case is not reported here. The scatter plots of Yii,,, for m = 2, 3,4, against Y; are displayed
in Fig. 1, which show obvious change of the variability of Y;,, with respect to the different values
of Y;. For example, in the case m = 3, the variability of Y;,, is at its largest when Y; is around 8,
and at its smallest when Y; is about 5 and 11 (see Fig. 1(b)). We use the first 1000 observations
to estimate f,(-), Am(-), 02,(-) and so on (i.e. n = 1000). The last 200 observations are used to
demonstrate the quality of prediction. The predicted values for those 200 observations together
with their absolute prediction errors and the estimated conditional variance 62,(z) (cf. (3.12))
are plotted in Fig. 2 for the cases of two, three, and four steps ahead. Since rounding errors
in the calculation are below 107°, the accuracy is dominated by the conditional variance. For
example, Fig. 2(b) shows that the three-step-ahead prediction is at its worst when the initial
value is around 8, and at its best when the initial value is near 5 or 11, which is in agreement with
the observation from Fig. 1(b). Similar remark applies to two-step and four-step predictions.
Fig. 3 displays the estimated curves 62, (x) accompanied by i, (z) (cf. (2.12)) and its estimator
fim(z) (cf. (3.13)), for m = 2,3,4. It can be proved that o2 (z), like po(z), attains its maximum
at ¢ = 8. However, d2(x) is misleading around z = 8 (Fig. 3 (a)). Similar remark applies to the

cases of m = 3 and m = 4. Fig. 3 also shows that the estimators fin,(z),m = 2,3,4, as given in

(3.13), are obviously better than the corresponding 62,(x). We would suggest relying on ji,(z)

2

= (z) at least in the small noise case.

rather than &

Fig. 4(a) shows that uz(z) is less than po(z) when z is near 5 or 7. A similar situation
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can be seen for the estimated conditional variances in Fig. 4(b). Fig. 4(c) shows that at a few
initial values near 5 and 11, the absolute errors of the three-step-ahead prediction are smaller
than those of the two-step-ahead prediction.

To see how a small shift in the initial values affects the prediction, we round an initial value
z to the nearest value from amongst [z], [z] + 0.5, and [z] + 1, where [z] denotes the integer part
of z. Hence, |§| < 0.5. Fig. 5 shows that for m = 1,2, the absolute prediction error increases
as |Am ()| increases, which is consistent with the asymptotic conclusion presented in Theorem
1. There, A, is estimated by using (3.6). Notice that when z is near 8, the prediction errors are

less than 0.5.

(Fig. 1 - Fig. 5 are about here.)

Example 2. We clothe a Hénon map with dynamic noise to obtain
Y; =6.8—0.19Y2, +0.28Y; o +¢ t>1 (4.2)

where ¢;, t > 1, are independent random variables with the same distribution as random variable
0.027, and 7 is the same as in Example 1. Hence, ¢; can be approximately considered to be normal
with mean 0 and variance 0.22. But it has a bounded support [~2.4,2.4]. A sample of 1200
observations is generated from this model. Similar to Example 1, the first 1000 observations are
used for estimation, and the remaining 200 observations for checking the prediction. Although
there are two components for each initial value (or rather initial vector), we only plot the data
against its first component, namely Y;_; of (Y_1,Y;_5). Fig. 6 reports the predicted values
together with the corresponding true values. The estimated values of the conditional variance
at these points are shown in Fig. 7, which indicate the accuracy of the prediction. (Note the
occasional negative estimates as discussed in Section 3.4.) For example, when the first component
of the initial value is near —6.8 or 6.5, the two-step prediction is good (compare Fig. 6 (a) with
Fig. 7 (a)). It can also be seen in Fig. 6 that when the first component of the initial value is near
0, the curve has two branches depending on the signs of the second component. The prediction
is evidently better when the second component is negative.

In Fig. 8, we have rounded the first half of the checking sample in the same way as in Fig. 5.
(Using the complete checking sample would clutter the figure with too many points.) Note that

Am is a two-dimensional vector now and we plot || Ay, || instead of Ap,.

(Fig. 6 — Fig. 8 are about here.)
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Example 3. On applying the analysis to the Canadian Lynx data for 1821-1934 (listed in Tong
1990), the results for m = 1 and 2 are reported in Table 1. Here, we choose d = 4. We use the
data for 1821-1924 (i.e. n = 104) to estimate fp,(-), Am(+) etc., and the last 10 data to check the
predicted values. The bandwidth is chosen as 0.55 for one-step prediction and 0.50 for two-step
prediction. The column under 42 is not complete due to the omission of a negative estimate.
Roughly speaking, the prediction is reasonably good though there is evidence of under-prediction.
For the case of one-step ahead, the prediction errors are less than 0.1 when || A (z) | is less than
1. They tend to be larger when || A;(z) || is ‘large’. Occasionally (e.g. in 1934) the error is
small even though || Ai(z) || is ‘large’. For the two-step prediction, 62 and || Xy || provide some
indication of the prediction reliability. Typically, in 1927 the values of both 62 and || Ao || are

large, and the error of the prediction is also large.

(Table 1 is about here.)

Example 4. In many respects, the Wolf’s annual sunspot numbers are known to be quite a
challenging set of data (see e.g. Tong 1990). We use the data for 1700-1978 (i.e. n = 279) to
estimate the predictor function and its related functions, and the data for 1979-1991 (i.e. 13
points) to check the prediction reliability as monitored by || A; ||. In the fitting, we adopt d = 4
and h = 6.43. The results are summarized in Table 2. The overall impression is that || A; ||
tends to be small (around 1 say) for the ‘trough-years’ and large for the ‘peak-years’. With the
exception of 1985 and 1987, the prediction reliability is fairly closely monitored by reference to

(3N

(Table 2 is about here.)

5 Proofs

We use the same notations as in Section 3. Further, we always assume that conditions (A1)-(A8)
hold for a fixed m > 1. The proofs of Theorem 1 and Theorem 2 will be presented in a series of
lemmas. We only give the proofs for the special case d = 1. The case d > 1 requires more details

but does not involve fundamentally new ideas.

Lemma 1. As n — oo,
E Si(z) = p(z)Wh¥tE 4 O(RdtE+D) for k=0,1,2;
E Ty (z) = fu(2)p(z)Wihdtk 4 O(RATF+L) for k=0,1,
where Wy = 1, W1 = 0 € R%, Wy = 021, and o is as given in (A5).
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Lemma, 1 follows from standard techniques in kernel density estimation.

Lemma 2. As n — oo, for any € > 0
P{|| Sk(z) — ESk(x) || /h™* > e} = o(h') for k=0,1,2; (5.1)

| Ti(z) — ETp(z) || /h** 50 for k=0,1. (5.2)

Proof. When d =1, we have a uniform expression for kK = 0,1, 2,

z—X
thK<Tt>.

For some large M,, > 0, which will be specified later, define

Sk(z)

:1

S+ z — Xy

Xy kK( )I{w—lezMn}’
1

and S, (z) = Sk(z) — S; (z). It follows from assumptions (A2), (A6) that

Bls{ @)l < [

|z —y|" K ($ — y) p(y) dy
{|e—y|>Mn} h

= p(a) BF*1 /{ oy IR 5 (1 o(1)

2
< C’p(:z:)h’”'1 {/{|z|>M P K(z)dz} (1+40(1)),

where the last inequality follows from Cauchy-Schwarz inequality. Consequently by Chebyshev’s
inequality and (A6), for any € > 0

P{|8{ (z) — ES{ (z)|/h**t > ¢} < 27 'h~*HVE|SH ()] < C(h/Mp) (1 +0(1)).  (5.3)
On the other hand, it follows from Theorem 3.1 of Roussas and Ioannides (1988) that
P{|S; (z) — ES; (z)|/h**! > ¢} < Coexp{—C1®h** D (n —m)/M?2} (5.4)

for 0 < € < CysM,h~(k+1) /nl, where C;, i =1,2,3, are some positive constants. Take M,, = n¢
for some ¢ € (0,1/2—36). Then the right hand side of (5.3) tends to 0 faster than ~*. Assumptions
(A7) and (A8) guarantee that there exists some positive constant e for which the inequality (5.4)
holds for all n > 1. Furthermore, the right hand side of (5.4) is also equal to o(h*). The relation
(5.1) follows from (5.3) and (5.4) immediately.

Note that for k£ = 0,1,

1 n—m

Tule) = —— 3 fulX0)o - XK (22

t=1
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_I_

3 -tk (251, 5:5)

Mg
It follows from (3.3) and (A4) and (A6) that

2
1 n—m m T — Xt
E{"—m Zeg“)"(w_Xt)kK( h )}
t (m) _(m)
~ (n—m)? Z z E {6t+m€sTm($ - Xt)k(iv - Xs)k

t=1 s=(t—m+1)Al

o K(av —hXt> K(x —th>} — O(h22F+D) /). (5.6)

Therefore

~X
) (z — X,) K(w . t) = o, (h*11).

Similar to the proof of (5.1), it can be proved that the same limit holds for the first term on the
right hand side of (5.5). Consequently, (5.2) holds.

Lemma 3. As n — oo, for z € {p(z) > 0}, E{fn(z) — f(z)}*> = 0.
Proof. We give the proof in the case d = 1. Let

p(z) = {So(z) — S%(z)/S2(z) + h*}/h.
It follows from Lemmas 1 and 2 that for any ¢ > 0
P{|p(z) — p(z)| > €} = o(h?). (5.7)
From (3.5), we have the following inequality
E{fn(z) = fu(2)}? < AB{[To(2) — So(&) fm(2)]h" /B(2)}?

+ 4E{S)(2)T1(2) Sy (@)h ™! [p()}* + 4f7(x) B{S}(2)S, " (z)/B(x)}*
= 4.(R1 + R2 + R3), s5ay. (58)

By Cauchy-Schwarz inequality,

N[

S1(x)/S2(x) < So(@);  S1(2)Ti(x)/S2(x) < {So(2)Ti()}2, (5.9)

where T\.(z) = Ly " }QimK(wlef) . Hence, for z € {p(z) > 0},

Ry < (p(x)/2)"*h’E{ [Ty(z) — So(@) fm(2)]”; |p(z) — p(z)| < p(z)/2}
+ hUE{ [To(z) — So(x) fm(2)]?5  [B(z) — p(z)] > p(=)/2 }. (5.10)

Under (A1)-(A4) and (A6), it is easy to prove that E{Ty(z) — So(x) fm(z)}*/h* < co. Lemmas 1
and 2 entail that {To(z) — So(z) frm(z)}/h % 0. By the mean convergence theorem, the first term
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on the right hand side of (5.10) converges to 0. It follows from Cauchy-Schwarz inequality and
(5.7) that the second term on the right hand side of (5.10) also tends to 0. Therefore R; — 0.
With the inequalities in (5.9), it can be proved in the similar way that Re and Rj also tend to

0. The lemma follows from the inequality (5.8).

Proof of Theorem 1. It is easy to see from Lemma 3 that
E{[fn(z) = fm(2)*|Xn} = 0, as. (P).
Hence by Cauchy-Schwarz inequality, assumption (A3) and the definition of f,,,, we have

E{[Yn—l—m - fm(m)]2|Xm =x+ 5}
= E{[Yaotm — fm(z +6) + fm(z + 6) — fm(z) + frm(z) — fm(x)]2|X =z +6}

= 02 (x+6) + {fm(z +6) — frm(z)}? +0(1). a.s. (P).

The theorem follows from the simple Taylor’s expansion of {f,,(z + 6) — fm(z)}>.

Proof of Theorem 2. In the case d = 1, (3.6) can be expressed as

A () = {S1(2)To(x) — So(2)T1(2)}/{S2(x)So(x) — 5F(x)}- (5.11)

It follows from (5.5) and (5.6) that

1

Sl(w)TO(x) - SO(‘T)Tl(‘T) = m Z{fm(Xt) - fm(Xs)}(-T - Xs)
t#£s
X K(CC —hXt> K(HI —th) —I—op(h4) = h4{ R + op(l) 1, say. (5.12)

For s,t,> 1, define

H(X0,X,) = {fnlX0) = fn(X)}OG - XK (5750 ) K (£522)),

H(X,) = / H(X,,9)p(y)dy, and Hy = E{H(X,)}.
It follows from assumptions (A3) and (A4) that
BIH(X, X)) <00, and [ |H(y,2)"py)p(z) dydz < oo,

where « is as given in (A4). By (A5) and Lemma 2 of Yoshihara (1976),

mZ{H(Xme) — H(X;) — H(X,) + Ho} = o(n™"). (5.13)
t#£s
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Similar to the proof of Lemma 2, it can be shown that

S {H(X;) — Ho} = op(h*).

=1

1 n—m
n—m t

Together with (5.13), we have

R = 7h:4 ~ST{H(X, X,) — H(X,) — H(X;) + Ho}
2(n —m) i
4 n—m Cm—
b ) S ) i T
(n —m) = 2 mn—m

1 _
= —Eh Hy + op(1).

Some integration operations yield

Ho = ~ipa) [ I I ZLaEZ I G 2 dy s (14 o).

Assumptions (A1) and (A6) imply that for all sufficiently small A,

|fm(x - hz) - fm(w - hz)'
/ iy = )| W

where C is a finite constant independent of h. Therefore,

—2)?’K(y)K(2)dydz < C,

Hy ~ —h4p(x)/\m(ac)/(y—z)QK(y)K(z) dydz = —2h*o2p(z)Am(z).

Consequently, R ER o3p(x) A\ (z). On the other hand, it follows from Lemmas 1 and 2 that
{Sy(z)So(z) — S?(z)}/h* KR ogp(z). The theorem follows from (5.11) and (5.12) immediately.

This completes the proof of Theorem 2.
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Figure Captions

1 The scatter plots of Y;;,, against Y; for (a) m = 2; (b) m = 3; (c) m = 4.

2 The plots of the 200 m-step predicted values and the corresponding absolute prediction

errors against their initial values, as well as the estimated conditional variance 62,(z): (a)

m = 2 (h =0.13); (b) m = 3 (h = 0.09); (c) m = 4 (h = 0.07). Diamonds — predicted

values; impulses — absolute prediction errors; solid curve — 62,(z).

2 (z), the function p,,(z) and its estimator fi,(z):

The estimated conditional variance &
(a) m = 2; (b) m = 3; (c) m = 4. Solid curve — 62,(z); dashed curve — pm(z)/cm

(c2 = 30,c3 = 50, cq = 70); dotted curve — [ () /-

(a) The function g, (z). Solid curve — ps(x); dashed curve — ps(z). (b) The estimated

2
m

(7). Solid curve — 63 (z); dashed curve — 62(z). (c¢) The absolute

conditional variance &,
errors of m-step-ahead predictions against initial values. Solid impulses (upwards) — ab-
solute errors of two-step-ahead prediction; dashed impulses (downwards) — absolute errors

of three-step-ahead prediction.

The plots of absolute prediction errors against their (rounded) initial values, and the esti-
mated function |\, (z)|; (a) m =1 (b = 0.19); (b) m = 2. Diamonds — absolute errors;

dashed curve — |Ap, ().

The plots of the 200 m-step predicted values and the corresponding true values against
the first component of their initial values: (a) m = 2 (h = 0.47); (b) m = 3 (h = 0.45).

Diamonds — predicted values; crosses — true values.

The plots of the 200 estimates values of 62, against the first component of their initial

values: (a) m =2; (b) m = 3.

The plots of the 100 absolute prediction errors and the corresponding estimated values ||
Am || against the first component of their first (rounded) initial values: (a) m =1 (h = 0.5);
(b) m = 2. Diamonds — predicted errors; crosses — || Ap, || (Note that some of the initial
values, after rounding, may be coincident. This leads to fewer crosses than diamonds in

some columns.)
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Table 1

Prediction of the Canadian Lynx data (on natural log scale)

Year | True value | error (f1) || Ay || | error (f2) 62 || Ao ||
1925 8.18 -0.05 0.58 -0.13 0.08 0.77
1926 7.98 -0.23 2.67 -0.39 0.69 1.04
1927 7.34 -0.16 2.49 -0.60 1.99 421
1928 6.27 0.22 3.12 0.13 1.60  2.30
1029 6.18 -0.43 1.94 -0.45 0.61 3.42
1930 6.50 -0.28 2.34 -0.60 - 3.38
1931 6.91 -0.19 1.23 -0.46 0.37 235
1932 7.37 0.02 0.70 -0.21 1.17  1.43
1933 7.88 -0.26 1.21 -0.22 0.08 0.59
1934 8.13 -0.07 2.28 -0.22 0.51 2.02
Table 2

Prediction of the Sunspot numbers

Year | True value | error (f1) || Ay ||
1979 155.4 - 8.88 2.64
1980 154.7 -47.26 6.32
1981 140.5 - 5.83 2.98
1982 115.9 -32.0 12.59
1983 66.6 2.80 1.10
1984 45.9 1.01 0.96
1985 17.9 17.94 1.16
1986 13.4 -2.57 0.64
1987 29.2 -19.73 0.92
1988 100.2 -53.67 3.92
1989 157.6 35.56 8.27
1990 142.6 34.51 9.84
1991 145.7 -11.63 3.08
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