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ABSTRACT. We discuss moving-maximum models, based on weighted maxima
of independent random variables, for extreme values from a time series. The mod-
els encompass a range of stochastic processes that are of interest in the context
of extreme-value data. We show that a stationary stochastic process whose finite-
dimensional distributions are extreme-value distributions may be approximated ar-
bitrarily closely by a moving-maximum process with extreme-value marginals. It is
demonstrated that bootstrap techniques, applied to moving-maximum models, may
be used to construct confidence and prediction intervals from dependent extrema.
Moreover, it is shown that bootstrapped moving-maximum models may be used
to capture the dominant features of a range of processes that are not themselves
moving maxima. Connections of moving-maximum models to more conventional,
moving-average processes are addressed. In particular, it is demonstrated that a
moving-maximum process with extreme-value distributed marginals may be approx-
imated by powers of moving-average processes with stably-distributed marginals.
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1. INTRODUCTION

We discuss moving-maximum models for exceedences of stationary time series
over a threshold. It is shown that when the marginal distribution of the data is
one of the three classical extreme-value distributions, the class of moving-maximum
processes is dense in the class of stationary processes whose finite-dimensional dis-
tributions are extreme-value of a given type. We prove that a moving-maximum
process with Type III extreme-value marginals may be expressed as the limit, as
the exponent converges to 0, of a moving average of independent, stably-distributed
disturbances. Bootstrap methods for moving-maximum models, leading to new ap-
proaches to constructing both confidence and prediction intervals for dependent

extrema, are also described.

Tavares (1977, 1980, 1981), Deheuvels (1983, 1985), Sim (1986) and Lewis
and McKenzie (1991) discussed models based on moving extrema of exponential
or Weibull random variables. Processes of moving maxima are related to max-
stable processes, introduced by de Haan (1984) and discussed by, for example, de
Haan and Pickands (1986) and Balkema and de Haan (1988). Moving-maxima
processes are closely related to max—ARMA and max-linear processes, introduced
by Davis and Resnick (1989). Prediction methods for these and related processes
have been discussed by Davis and Resnick (1989, 1993), where existence of consistent
predictors was proved. Alternative approaches to inference for extrema of time series
include both parametric and semi-parametric methods; see e.g. Tawn (1988), Coles

and Tawn (1991), Ledford and Tawn (1997) and De Haan and Ronde (1998).

Our main results are outlined in section 2. In particular, theoretical proper-
ties are summarised in section 2.7, which also discusses asymptotes of the marginal
distribution of a moving-maximum process, and large-sample properties of the dis-

tributions of estimators. Technical arguments are deferred to section 3.

2. METHODOLOGY AND PROPERTIES

2.1. Definition. Let Y;, —oco < ¢ < oo, denote independent and identically dis-
tributed random variables with distribution function F, and let {a;} and {b;} be
sequences of constants, the former nonnegative. We define a multiplicative process

of moving maxima, {X;}, by

X, =sup{a;_;Y;, —00 < i < oo}, (2.1)



and its additive version, {X,}, by
X; =sup{Y; +b;_;, —00 <% < oo}. (2.2)

The former is appropriate when the distribution F' has support on the positive
half-line and is in the domain of attraction of a Type III extreme-value distribution
(i-e. the distribution exp(—z~7), for > 0, where v > 0), and the latter, when F' is
attracted to a Type I extreme-value distribution (i.e. the distribution exp(—e™*),

for —o0o < z < 0).

To motivate the second, additive model, suppose Y represents the strength
of the maximum windgust associated with the jth of a sequence of storms that
are travelling across a region. Observations of windgust strengths are made as the
storms progress through the point O, which they pass at a rate of one per unit
time. The effects of the jth storm may be noticed some time before or after its
peak, which arrives at O at time j. At time 7 units after the peak has passed,
the observed windgust strength is less by an amount —b; than it was at the time
at which the peak arrived; thus, we expect by = 0 and b; < 0 for each 7. The
maximum windgust strength, X; say, observed at time j is therefore the maximum
of the gust associated with the storm whose peak occurred at that time, along with
the downweighted values of windgust strengths (downweighted as described in the
previous sentence) from storms that were on their way or had recently departed at
that time. Mathematically, the maximum windgust strength is therefore given by

formula (2.2).

Of course, similar arguments apply in the contexts of other types of extrema, as-
sociated for example with events of an environmental or financial nature. And since
there is a trivial connection between the two cases represented by (2.1) and (2.2),
evident on taking logarithms of the multiplicative process (for strictly positive Y;),
then physical motivation for one of the models is readily obtained from that for the
other. For the sake of brevity we shall confine attention to multiplicative moving
maxima in the Type III case, noting that Type I and Type 1I settings admit similar
treatments. Section 2.7 will discuss conditions that are sufficient for the process
{X;} at (2.1) to be well defined.

Moving-average and autoregressive models are generally constructed so as to
express the current value of a time series in terms of past and current values of

independent disturbances, rather than future disturbances. Practical considerations



suggest that this would usually be appropriate for moving-maximum processes too.
Therefore, we would expect the weights a; to vanish for all sufficiently large negative
values of 7. Without loss of generality, a; = 0 for 4 < 0. We shall generally make
this assumption when discussing models and methods for data analysis, although
it will be clear that our procedures are easily modified to encompass more general

contexts.

A moving-average model captures both the “shocks” from large, new indepen-
dent variables, and the subsequent “decay” of those events. For example, if a; =0
for 1 < 0, if ap = max; a;, and if a; gradually decreases as ¢ increases through pos-
itive integers, then the full force of the shock from the independent variable X is
experienced at time ¢, after which its impact gradually decays at a rate determined

by the a;’s.

We shall say that the process at (2.1) is of order m if, except for a consecutive
sequence of length no more than m + 1, we have a; = 0. The process is of course
stationary. More general definitions of moving-maxima processes, in terms of tri-
angular arrays of constants {a;;} rather than the linear array {a;}, or triangular
arrays of possibly non-identically distributed random variables Y};, may be used to

model nonstationarity.

The distribution of X; may be expressed in terms of the distribution of the
independent disturbances Y;:
P(X;<z;,1<j<k)= H Flmin{a;}z;, 1<j<k}], 1<j<k.

—00< 1< 00

(2.3)
To derive this formula, note that X; < z; for 1 < j <k if and only if a;_;Y; < z;
for all 2 and 1 < 57 < k, or equivalently, if and only if ¥; < a;_lia:j for all 4 and
1 < j < k. Since we do not constrain the a;’s to be strictly positive (they may
take the value 0) then we should insist that each Y;, and hence each X;, be strictly

positive with probability 1, and interpret aJ_liX j as +ooif aj_; = 0.

2.2. Relationship to multivariate extreme-value distributions. If F' is a Type III
extreme-value distribution, say F(x) = exp(—bz~") where b,y > 0, then each
X; has distribution function exp(—bcz~") where ¢ = )", a]. Moreover, all finite-
dimensional distributions of the process { X} are multivariate extreme-value distri-
butions of Type III, and the closure of the class of possible distributions of { X} is

the class C of stationary processes {§;, —0o < i < oo} all of whose finite-dimensional



distributions are multivariate extreme-value distributions of Type III. Specifically,
if {¢;} is in C then, for each e > 0 and each positive integer k, there exists a moving-
maximum process {X;} with the same marginal, univariate distribution as {¢;},

and such that

sup ‘P(ﬁl <x1ye. & <zp)— P(Xy1<zq,..., Xk gxk)| <e. (24)

— 00K L ey T KOO
In this sense, the class of moving-maximum processes with extreme-value marginals
is indistinguishable from the class of stationary process with multivariate extreme-
value distributions. Marshall and Olkin (1983) have discussed conditions for the

weak convergence of extrema to limiting multivariate extreme-value distributions.

Result (2.4) may be proved from classical characterisations of multivariate ext-
reme-value distributions (Geffroy, 1958; Tiago de Oliveira, 1958, 1984; Sibuya,
1960), and the fact that the maximum {max, XJ“), —00 < j < oo} of any fi-
nite number of independent moving-maximum processes {X J@), —0 < j < oo}
with Type ITI marginals may be approximated arbitrarily closely, in the sense of k-
variate distributions for any k, by a single moving-maximum process with Type III
marginals. The approximation is effected by superimposing translates of the corre-
sponding weight sequences {age), —00 < i < 0o}, where the translations are chosen
so that large components of any one vector are added to negligibly small components
of all the others. The class of superpositions of ‘two point’ dependence functions,

introduced in the next section, is an example of such superimposed translates.

2.3. Bivariate distributions of moving-maximum processes. The circumstances un-
der which many processes of extrema are recorded tend to relegate in favour of
weak dependence. To appreciate why, note that if Z; represents the j’th occasion
on which a high level is exceeded by a time series, the time between successive
exceedences is likely to be relatively large, and so consecutive Z;’s will tend to be
only weakly associated. In such cases, much of the dependence of the process {Z;}

will be captured by fitting models to bivariate distributions.

To address bivariate distributions of a moving-maximum process of Type 111
extremes, suppose the weight sequence a = {a;} has been standardised so that
> ;a] =1, and put b; = a]. Then, the dependence function of the bivariate

(2

distribution (see e.g. Pickands 1981, 1989) is

Ag(u) = Z max{by_;u, by_;(1 —u)}. (2.5)



Note that A, satisfies the characterising conditions of such a function: it is convex,
it passes through the points P, = (0,1) and P, = (1,1), and it lies within the

triangle 7 determined by P;, P, and P3 = (%, %)

Moreover, any function A satisfying these conditions may be obtained as the
limit, as a varies, of a sequence of functions A, defined at (2.5), where we may
restrict attention to weight sequences a that are of finite order. In particular,
the constant dependence function A(u) = 1, representing total independence, is
obtained with a;, = 1 for any iy and a; = 0 otherwise, while A(u) = min(u, 1 — u),
representing total dependence, is obtained as the limit as m — oo of the case

a; =m~ 7 for ip <1 <1ip+ m and a; = 0 otherwise, where iy is any integer.

Reflecting the case of total dependence, functions A that protrude lower into
the triangle 7 require sequences a of relatively high order if we are to achieve
a good approximation. The case where just two, adjacent a;’s are nonzero, i.e.
a=(..,0,t,1—1¢,0,...) and 0 < ¢ < 1, gives the triangular dependence function
Aq(u) = max{t + (1 — t)u, 1 — tu}, which always lies within the smaller triangle 7’
defined by P;, P> and P} = (3,2). Any dependence function A lying wholly within
7’ may be obtained as the limit of superpositions of these two-point dependence

functions. In particular, given € > 0 we may choose m > 1 and t4,...,t, € [0,1]

such that, with

a=m"Y7(...,0,0,6t/7, (1 - t1)*7,0,
8/ (1= t2)Y7,0,...,0,657, (1 — t)Y/7,0,0,...),

we have supg<, <1 |A(u) — Ag(u)| < e

2.4. Relationship to moving averages and stable processes. Univariate extreme-
value distributions of Type III may be derived as limits of stable distributions as the
exponent converges to 0. Specifically, the characteristic function of a general stable
law with exponent a € (0,2) satisfying o # 1, and with tail-balance parameter

B € [0, 1], after standardisation for location, is

Y(tla, B,c) =exp [ —c|t|* {1 —iB tan (3ar) sgnt}], (2.6)

where i = \/—1. If the random variable S(«, 3, c) has this distribution then the

limit, as o — 0, of the law of |S(e, B, ¢)|*/7 is Type III extreme value:

P{|S(a,ﬁ,c)|"‘/7 <z} o F@)=exp(—cz™), 0<z<oc, (2.7)



as a — 0. The convergence is uniform in 8 and z, for ¢ fixed; this constant should

be interpreted identically in (2.6) and (2.7).

The property that a sum of independent stably-distributed random variables is
stably distributed implies that dependent sequences with stably-distributed marg-
inals may be simulated very simply as moving averages. To appreciate how this may
be done, note that if {W;, —oo < i < 0o} are independent and identically distributed
random variables with the distribution at (2.6), and if {b;, —0c0 < i < oo} are
nonnegative constants satisfying » . b& = 1, then V; =Y. b;_;W; defines a stable

process with the same marginal distribution as W;.

This result may in turn be used as the basis of an approximation to mov-
ing maximum processes by stable distributions. To appreciate how, note that the
(a/7y)’th power of the absolute value of this moving average process converges, as
a — 0, to a moving-maximum process with extreme-value marginals. Specifically,
if b; = b;() varies with « in such a way that b3 converges to a; (not depending on
@) as a — 0, in the strong sense that ), [b® —a| — 0, then all finite-dimensional
distributions of the process {|V;|*/7, —oo < j < 0o} converge to those of the process
{X;} defined at (2.1), where Y; should be taken to have distribution F' at (2.7). An

outline proof will be given in section 3.1.

2.5. Estimating F' and the weights a;. Let {X;} be a moving-maximum process,
and assume a parametric model F'(-|0) is available for the distribution of ¥;. Given
a sample X = {X4,...,X,} we may compute estimators 0 of 0 and & = {a;} of
a, such that low order, finite dimensional, conditional distributions of the process
{X7}, defined by

X; =sup{a;_;¥;*, —o0 <i< oo}, (2.8)
approximate the corresponding distributions of {X,}. Section 2.7 will give appro-
priate regularity conditions, permitting {X;} to be more general than a moving-

maximum process. In (2.8), {Y;*, —oo < i < oo} is, conditional on X, a sequence

of independent random variables with distribution function F'(-|f).
Specifically, for all £ > 1 we may construct 0 and a such that

sup |P(Xik <z,...,X; < xk‘)\f') —P(X1<zy,..., X < a:k)| —0
— 00K L1 y.--, T < OO
(2.9)

in probability as n — oo. One approach is maximum likelihood, exploiting indepen-

dence of the variables Y; through the representation at (2.3). Assuming the model



is exact, this technique will produce estimates that reflect perfectly, with very high
probability, some of the characteristics of the model. To appreciate why, consider
attempting to fit a two-point moving-maximum model of the type discussed in Sec-
tion 2.3. Then without loss of generality, a; = 0 except for : = 1 or 2. It follows that
P(X;/X;-1 = aa/a1) > 0 for each j, and so with probability tending to 1 expo-
nentially quickly the mode of the empirical distribution of X;/X;_; equals az/a;.
Therefore, using maximum likelihood we can in principle estimate as/a; with ex-
traordinary accuracy. Similar remarks may be made about methods suggested by

Davis and Resnick (1989, section 5).

An alternative approach, not tied so closely to features of the exact model,
may be based on weighted least-squares approach and is described in the next
paragraph. It employs iterative methods to fit k-variate distributions to an m’th
order moving-maximum model, using the weight vector a(,) = (ao,...,amn) and
assuming m > k, and can achieve virtually root-n consistency in (2.9). (Theoretical
results in section 2.7 will show that this is achievable even when k diverges with n.)
We assume that scale is an unknown parameter of the distribution of Y;, but we
take the value of that parameter to equal 1, in effect incorporating scale into the
weights a;. Let F(:|6) denote the corresponding distribution function of Y;. For
example, in the extreme-value and generalised Pareto cases, 6 is a scalar v > 0,
and F(y|y) = exp(—y~7) and F(y|y) =1— (1+y)~7, respectively. In such cases it
would usually be convenient to separately compute an estimator 4 of -y, using for
example the method of Hill (1975), and fit a(,,) only after replacing 6 by 7 in the

procedures below; but this is not strictly necessary.

Define z = (z1,...,Tk),
R n—k
G(x)=(n—k) ! Z I(Xiyj1 <zjfor1 <j<k), (2.10)
=1

zw

Dy (0, agmy) = / (@(a:) -

F[min {aj__lia:j ,
i=2—

max(i, 1) < j

min(i + m, k) } ‘ 9]) w(z) dx,

where w is a nonnegative weight function. (Thus, @(az) represents an empirical
approximation to the probability that X; < z; for 1 < j < k. The identity (2.3)
motivates our definition of D,, (0, a(n)).) For m given, choose (0, a(y)) to minimise

Dy, (0, a(m)). We suggest stopping at a relatively low value of m; see sections 2.7



o)

and 3 for discussion. The resulting estimators of # and a will be denoted by 0 and

a, respectively.

The order of a fitted moving-maximum model may be interpreted as a smooth-
ing parameter. Increasing it tends to reduce the bias of bootstrap procedures but
increase their variability. When the model is fitted to bivariate distributions (or
to k-variate distributions for any fixed k), cross-validation may be used to select
the appropriate value of m. Provided m is not allowed to increase too quickly with
n, and the bivariate extreme-value distribution is smooth, it may be proved that
cross-validation gives consistent estimation of the bivariate distribution function.
An attractive practical procedure, valid when the marginal distribution is approx-
imately Type III extreme value, is to estimate the shape parameter using the Hill
estimator and fit a moving-maximum model, with relatively small m, to bivariate

distributions under the assumption of Type III univariate distributions.

2.6. Bootstrap methods for confidence and prediction intervals. Let 6 and a denote
the estimators of 6 suggested in section 2.5, and define the process { X7} as at (2.8).
Percentile-method confidence and prediction intervals may be constructed in the
usual way. For example, to calculate an a-level confidence interval for the r’th
component, 6, say, of 8, first compute the version 0* of O for the sample X* =
{X#,...,X*} rather than X, let §* be the r’th component of §*, and let A, a
function of X, be the solution of P(6* < Ay|X) = . Then, (—o0, As) is a nominal
a-level confidence interval for 6,. To compute the analogous prediction interval
for the largest of the next ny values of the process {X,}, i.e. for X,,11,..., Xnin,
define g, to be the solution of P(maxi<j<n, X5y > da|X) = . Then, [dq,00) is
a nominal a-level prediction interval for max;<;j<n, Xn4+;j. Both intervals may be

calibrated using the double bootstrap, so as to improve their coverage accuracy.

2.7. Theoretical properties. Assume that (i) F' has support on the positive half-line,
and is in the domain of attraction of a Type III extreme-value distribution. That
is, 1 — F' is regularly varying at infinity with exponent —+v, where v > 0. Suppose
too that (ii) each a; is nonnegative and, for some € € (0,7), 0 < >, a]™© < oo.
Then the following results hold: (a) the random variable X; defined at (2.1) is finite
with probability 1 [compare Proposition 2.1 of Davis and Resnick (1989)], (b) the
process {X;} satisfies the distributional mixing condition D(u,) (see Leadbetter,

Lindgren and Rootzén, 1983, Chapter 3), (c) if G denotes the distribution function



of X; then 1 — G is regularly varying at infinity with exponent —v, (d)

z—oo 1 — ,q:)

. 1-G(x) .
lim T( = ; a; ,
(e) if in addition to (i) and (ii), p = p(n) — oo and p/n — 0, then the Hill estimator

p —1
?p = (p_l Zlog Xn,n—i+1 - log Xnyn—P>

i=1
based on the largest p of the order statistics X,; < ... < Xy, of X is weakly
consistent for v, and (f) if b, = (1 — F)~(1/n) then

P( max ngbnm) —>exp(—ba:_7), 0<z <00,
1<j<n

where b denotes the finite, positive constant defined by
— 1 -1 ¥
b= nli)rgo n Z 1rsnjasxn ajyj-
1

In particular, b < )", a.

Property (f) asserts that to first order, the largest element of the dependent
sample X behaves identically to the largest among the independent disturbances
Yi1,...,Y,, except that scale is increased by a constant factor. However, this result
does not extend to multivariate extremes. In particular, if a; = a;41 = ... =
@i+p—1 = Max; a; for some 7, then the probability that the p largest values in X" are

equal to one another does not converge to 0 as n — oo.

The latter result, as well as (a), (¢), (d) and (f) above, may be deduced by
modifying standard theoretical methods used to prove limit theorems for extremes of
independent data. Property (b) follows from the following result: under conditions
(i) and (ii), for each € > 0 we may choose the positive integer m so large that the
probability that X, equals sup{a;_;Y;, |i| < m} exceeds 1 — e for each j. Result (e)
is derived in section 3.2. Methods in section 2 of Resnick and Starica (1997) may
be used to show that if (i) holds, if £ — oo sufficiently slowly (the rate depending
on F), and if a; = O(cl"l) as |i| — oo, for some ¢ € (0,1), then kY27, — 7) is
asymptotically Normal N(0, 02), where

0’2 = 72 [1 + A_l Z Z {a’jyl + a;ll—i-h B maX(a}l’a}r"jQ)}
Ji J2



and A=), a].

To conclude, we give a theorem which confirms that bootstrapped moving-
maximum processes can successfully approximate finite-dimensional distributions
of processes that are actually more general than moving maxima. As a prelude to
stating the theorem, assume that Yi(e), for —oo <7 < oo and £ > 1, are independent
and identically distributed random variables with either a Type III extreme-value
distribution, F'(z|y) = exp(—z~7), or a Pareto distribution, F(z|y) =1—(1+x)~"7.
Let age) and ¢y, for 0 < i < oo, be constants with the properties 0 < age) < Cypt
and 0 < ¢, < C1p*, where 0 < C; < oo and 0 < p < 1. Suppose too that
RIDN aﬁ‘) > 0. Put

X, — O y® _o<i< ) 2.11
; 3;11’ [ce sup {a;”,Y; 00 < i OO}] (2.11)

In the algorithm for constructing estimators é(m) and a(,,), assume that m =
m(n) — oo such that m = O{(logn)*2} for some Cy > 0, and that ¢ is infinitesi-
mal. Suppose too that the weight function w is the indicator of a rectangular prism

[0, C3]*, where 0 < C3 < oc.

Theorem. Under these conditions, (2.9) holds for each k > 1. Moreover, if

m > Cy(logn)? for Cy sufficiently large, then the rate of convergence in (2.9) is
Op(n=/2+9) for all § > 0.

Note particularly that the sequence {X;} defined at (2.11) is not, in general,
a moving-maximum process. In particular, it is not expressible in the form (2.1)
if at least two of the ¢;’s are nonzero. If the number of nonzero ¢,’s and az@’s
are both finite then, despite the infinite process {X;} not being expressible as a
moving maximum, all its finite-dimensional distributions are those of moving maxi-
mum processes. Nevertheless, if F'is a Type III extreme-value distribution then all
the finite-dimensional distributions of {X;} are multivariate extreme-value distribu-
tions. Therefore, the theorem confirms that moving-maximum process models can

capture all the finite-dimensional distributions of processes that are not themselves

of moving-maximum type.

Since, under the conditions of the theorem, (2.9) holds for all k¥ > 1, then it
remains true if k£ = k(n) — oo sufficiently slowly. A longer proof than that given
in section 3.@Q shows that it is sufficient for k£ to increase no faster than a constant

multiple of logn.
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3. TECHNICAL ARGUMENTS

3.1. Approximation by stable processes. Here we derive the result stated in the last
paragraph of section 2.4. We use notation from that section, and note that if W
(a generic W;) has the distribution of which the characteristic function is given by
(2.6), then the limit as o — 0 of the distribution of [W|®/7 is a Type I extreme-value

distribution with exponent ~:
P(|W|“‘/7 <z)—exp(—cz7) (3.1)

as a — 0, for each z > 0. The convergence is uniform in all values of the tail-balance
constant 3 in the stable law, and the result may be deduced from expansions of
densities of stable laws; see Ibragimov and Linnik (1971, p. 54f) and Zolotarev
(1986, p. 94f), but note that the argument of the sine function in Ibragimov and
Linnik’s Theorem 2.4.2 should be %Wn(2—oz)(ﬂ+1), and that in Zolotarev’s formula
(2.5.4), ‘s € should read ‘sin’.

Observe too that if b; = b;(«) satisfies >, b¢ = 1 and ), [b® —a]| — 0 as

a — 0, where a; does not depend on «, then ), a] =1, and as a — 0, for each j,
V;|2/7 — sup {aj_i\Wi\aM,—oo <i<oo} =0 (3.2)

in probability. It follows from (3.1) and (3.2) that any finite collection of the vari-
ables |V; |2/ converges in distribution to a vector of the same number of variables,
with joint distribution equal to that of the X;’s at (2.1), where the distribution
function of Y; is that on the right-hand side of (3.1), or equivalently, on the the
right-hand side of (2.7), and the Y;’s are independent.

3.2. Consistency of Hill estimator. We show that if conditions (i) and (ii) in sec-
tion 2.7 hold then the Hill estimator is consistent for . Our argument adapts
methods of Resnick and Starica (1995); see also Hsing (1991) and Rootzén, Lead-
better and de Haan (1998).

LIANG PENG TO PUT IN PROOF HERE, AND THEN RENUMBER
SUBSEQUENT EQUATIONS.

3.3. Proof of Theorem. Let Cs > 0 be so large that m < %05 logn and Cslogp <
0

if0 <1< N—-1and1 </ < N, and a; = 0 for all values of 7 that are not

—2, and let N = N(n) denote the integer part of Cslogn. Put asn—1)+i = cea

covered by this prescription. Let {Y;, —oco < i < oo} be a sequence of independent



random variables with the same distribution as Ti(e), and put X J’ = sup{a;_;Y;,

—00 < i < 0c0}. Then,

sup |P(X{<1,..., X, <zp)—P(X1 < 21,..., X < mp)| = O(n2H9)
— 00K L] yerey T KOO (3@1)
for all § > 0. Therefore, it suffices to prove the version of (2.9) where X is replaced
by X;. (We have approximated {X;} by a moving-maximum model {X}, albeit

one where the weights depend on n.)

Let @() be as at (2.10), put G(y) = P(X; < z; for 1 < j < k), and given a

sequence by = (bo,...,bp_1), define
2
dp(7,b(p)) = / {G(a:) - H F(mjlnbj__lzxj‘fy)} w(z)dr. (3.@2)

Now, sup, |G(z) — G(z)| = Op(n"Y/2), and so
Dy (7, b))% = dp (7, b)) + Op (n71/?) (3.3)

uniformly in v > 7o, 2 < p < m and b, for any positive 7o.

Let G’ denote the version of G when Xj is replaced by X7, and let d;, be the ver-
sion of d,, when G is replaced by G’ on the right-hand side of (3.@2). The argument
leading to (3.@1) may be employed to prove that d,(y, b)) = d (v, b)) Y2 +
O(n='%9), and so by (3.@3), Dy (7,bp)) /2 = dy (7, bp)) /2 + Op(n~1/2), uniformly
in v > v and in b(,y. If p > 2(Cslog n)? then v and by may be chosen so that
b’(p) (7,bp)) = 0; and if p = p(n) — oo then by and v may be chosen so that
dy(7;b(p)) — 0. The theorem now follows from a Taylor-expansion argument in-

volving no more than O{(logn)®e} variables, for some Cg > 0.
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