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Abstract

We use local polynomial approximation to estimate the conditional mean and conditional vari-
ance, and test linearity by using a functional measuring the deviation between the nonparametric
estimates and the parametric estimates based on a linear model. We also employ first and second
order derivatives for this purpose, and we point out some advantages of using local polynomial
approximation as opposed to kernel estimation in the context of linearity testing. The asymptotic
theory of the test functionals is developed in some detail for a special case. It is used to draw
qualitative conclusions concerning the bandwidth, but in order to apply the asymptotic distribu-
tion to specific testing problems very large sample sizes are needed. For moderate sample sizes we
have examined a bootstrap alternative in a large variety of situations. We have tried bandwidths

suggested by asymptotic results as well as bandwidths obtained by cross-validation.



1 Introduction

Recently Hjellvik and Tjgstheim (1995,1996) have derived linearity tests based on nonparametric
estimates of the conditional mean and the conditional variance. A more general problem of this
type was considered by Héardle and Mammen (1993). In all of these cases the estimation was
carried out using kernel (Nadarya-Watson) type estimates.

Local polynomial estimation is an alternative to the kernel method. It has been promoted in
particular by Fan (1992, 1993), and it has been applied for example to study the interface between
nonparametrics and chaos (Yao and Tong 1994, and Fan, Yao and Tong 1996). In this paper we
examine its potential in linearity testing. For example it is convenient to look at derivatives of
nonparametric estimates in this framework, and one can construct new tests of linearity exploiting
that the first order derivative is a constant, and the second order derivative is zero for a linear
model. It is also easier to look at the transition between parametric and nonparametric modeling.
This transition is intimately connected to the choice of bandwidth. Choosing the bandwidth is an
important aspect of nonparametric linearity testing, but it was virtually neglected in Hjellvik and
Tjgstheim (1995,1996). In the present paper it is studied in some detail and both data driven and
theoretically determined bandwidths are investigated.

In contrast to Hjellvik and Tjgstheim (1995,1996) we have worked out a fair amount of asymp-
totic theory. One reason for this is that the asymptotic theory yields useful input to the problem
of choosing the bandwidth. Also the asymptotic theory is of interest in itself, and in Lemma
3.2 we extend some results on degenerate U-statistics, which has hitherto only been proved for
independent and identically distributed (iid ) random variables. The details of the derivations are
quite technical and due to considerations of length they had to be omitted in the present version.
They are included in Hjellvik et al. (1996), however. Again it is found that very large sample sizes
are needed to obtain a good approximation to the asymptotic distribution of the test functionals.
For moderate and small sample sizes a much better approximation is achieved by bootstrapping.
We present a number of examples, both simulated and real, to illustrate our procedures. We also

discuss briefly the interpretation of very low p-values.

2 Preliminaries

Suppose that {X;,Y;} is a strictly stationary discrete-time stochastic process with X; € R? and

Y; one-dimensional. Let p(-) denote the smooth density function of X;. Given observations



{(X1,Y:) 1 <t < n}, we are basically interested in testing whether the conditional expectation

m(z) = E{Y;|X; = z} is a linear function. We write
Yé = m(Xt) + €¢, t Z 1, (2.1)

where E{e;|X;} = 0 for all . This setup includes the autoregressive model as a special case in
which X; consists of some lagged variables of Y;. We do not assume that {€;,¢ > 1} are #id . This,
in particular, allows for the case of conditional heteroscedasticity.

Assume that EY; = 0 and EX; = 0. Our hypothesis can be specified as
Hy : m(-) is linear, i.e. m(z) = 276, § € R* unknown,
where 7 denotes the transpose, against
H; : m(-) is nonlinear.

The curse of dimensionality means that it is difficult to estimate m(-) nonparametrically unless d
is small, and we have chosen (cf. Hjellvik and Tjgstheim 1995,1996) to use the one dimensional
quantities {my(z) = E(Y;|X:x = 2),1 < k < L} where Xy is the k-th component of X; and

where L is a given number. The hypothesis could then be specified as
Hj: {my(-),1 < k < L} is linear

against

H] : At least one myg(-) is nonlinear.

For Gaussian processes Hy implies H{), but there exist non-Gaussian ARMA processes for which
this is not the case. Thus there are theoretical problems involved in comparing Hy and Hj. We will
take a pragmatic view, and in practice reject the hypothesis of linearity if the difference between
my(-) and the corresponding lag-k linear predictor is large. This corresponds roughly to looking
at plots of the nonparametric regression at various lags and rejection means that there exists at
least one k for which the lag-k nonlinear predictor is better than the lag-k linear predictor. As
will be seen, the asymptotic theory is most easily derived in the case of Hy, however. Finally, as
in Hjellvik and Tjgstheim (1995,1996), it should be noted that the bootstrap version of the test is
constructed modulo an autoregressive or autoregressive moving average approximation in the first

stage, so in this case it is Hy which is tested based on functionals motivated by Hj).



We construct the tests using the local polynomial regression estimator of my/(+), and its deriva-

tives. Locally at the point z, by a Taylor expansion of order T', we have

T m(z

I
i—0 v

(z —x)° (2.2)

()

where m,.’(z) denotes the i’th derivative of my(z) (we will also use primes to denote the first

and second derivative). Now consider the following least squares problem: Let 4;, i = 0,...,T
minimize )
n T
A ; X, k— T
> 4v- X B - )| K (T, (2.3
t=1 0 h

where K is a nonnegative function, which serves as a kernel function, and A is the bandwidth,
controlling the size of the local neighbourhood. Then, 4; estimates mg) (), i = 0,...,T. Let

v = (mg(z), m,(cl) (z),... ,m,(CT) (2))". The least square theory provides the solution
= (X"TWX) 1 X"WY, (2.4)

where Y = (Y1,...,Y,)", W = diag(Kn(X1k — 2)-- -, Kn(Xnk — 7)), Kn(-) = h 1K (-/h), and X
is a m x (T + 1) matrix with the i-th row (1, (X; 5 — 7),..., (Xix — )T /T!). The special case with
T = 0 corresponds to the ordinary kernel method of estimation. The theory of local polynomial
regression has recently been developed in a number of papers (cf. Fan 1992 and 1993, Fan et al
1993, and Ruppert and Wand 1994).

If the model is linear in the sense that my(z) = Oz, then m)(r) = 0 and m}(z) = 0, and

therefore we would expect
g(z) = Opz, k(z) =0, mi(z)~0, forallze R

where 6, is the LSE of 6, under Hj. Based on this observation, we define the following statistics

for testing the linearity of model (2.1):

1 & N
E Z 'mk th 0kXt,k)2w(Xt,k), T 2 0 (25)
t=1
. 1< . A
Ly (my) = — (W (Xew) = Ok)*w(Xip), T>1 (2.6)
t=1
N 1&
Ly (my) = — > (Xop) w(Xpk), T >2 (2.7)
t=1

where w(+) is a continuous weight function. In fact, it can be proved that as the sample size tends

to infinity, all of the above statistics converge to 0 when my(-) is linear (cf. Theorem 3.1 below).



Therefore large values of the statistics indicate possible departure from linear models. Following a
suggestion by the referee, in principle the joint limit distribution of the statistics in (2.5)—(2.7) can
be derived. This could be used to construct a suitable quadratic form involving the three statistics
and use this as a single limiting chi-square statistic for linearity testing.

To ease the analytical derivations, we express the solution of (2.4) as follows:

@Dy s (X =T .
my,’ (z) = ) t:Zan,z (T,m) Y, i=0,...,T (2.8)
in which the vector function W, ;(-, -) is defined as
Wa,i(tsw) = e[ 1S, (@) (1,4, 8, . #T)TK (1) (2.9)

where e; is the unit vector with the :’th element equal to 1, S,(z) is a (T + 1) x (T'+ 1) matrix

with the (4, j)-th element s;{;_o, and

=) = -3 (£ 20Y Ky - ), (2.10)

3 Asymptotic Properties

There are at least two reasons for considering asymptotic properties. First, it is desirable to
establish that our statistics have reasonable properties as n — 0o, even though, as will be seen in
Section 5, very large sample sizes are required to obtain a good approximation to the asymptotic
distribution. The other reason for deriving asymptotics is the problem of choosing the bandwidth.
Its connection with the asymptotic distribution is discussed in Section 4.

For reasons of simplicity and space we only consider the local quadratic regression (T' = 2) for
model (2.1) with a one-dimensional regressor (d = 1). The statistics of interest are the functionals
defined as in (2.5)—(2.7) with £ = 1. (Note that m1(-) = m(-) when d = 1.) For the cases with
d > 1, the asymptotic results still hold but with more complicated notation.

We start by stating some regularity conditions:

(A1) The kernel function K is a symmetric density function with a bounded support in R, and
|K(z1) — K(z2)| < c|z1 — 2| for all 1 and z9 in its support. The weight function w(-) is

continuous and with compact support contained in {p(z) > 0}.

(A2) Forallt, E{e | Xy, Xy—1,...;Yi—1,Yio0,... } =E{e& | X; } = 0. E{X}} < 00, and E {V}}} < 0.
Further, E{Y?|X = z} is a bounded function of z.



(A3) The joint density of distinct elements of (X7, Y1, X, Ys, X, Y;) (t > s > 1) is continuous and

bounded by a constant independent of s and %.

(A4) The process {(X¢,Y:)} is absolutely regular, i.e.

i>1 AEFE;

B(j) = supE{ sup |P(A|.7:1i) — P(A)\} —0, as j— oo,

where .7-"ij is the o-field generated by {(Xy,Yx) : k =14,...,7}, (j > 4). Further, for a constant
§ € (0,0.5), 52, k2674 (k) < oo.

(A5) Asn — oo, then h — 0 and nh%/logn — 0.

An autoregressive process would satisfy (A2)—(A4) under mild assumptions on the generating
mechanism. The condition on the boundedness of K (-) in (A1) is imposed for the brevity of proofs.
The assumption on the convergence rates of h in (A5) is also for technical convenience. It can be
weakened by applying Collomb’s inequality (Lemma 2.2 of Gyorfi et al. 1989), which involves more
technical details (cf. §2.3 of Gyorfi et al. 1989). The assumption of the convergence rates of 3(j)
is also not the weakest possible. Note that under condition (A4), the process is strongly mixing
(cf. Bradley 1986). Conditions (A2) and (A4) ensure that the bias of the estimators converge to
zero (see Rios 1996).

Lemma 3.1. Under conditions (A1), (A4), and (A5), for sj(z) defined as in (2.10) ( = 0,1,...,4),
P
sup |sj(2) — B{s;(@)}] — 0

for any compact subset G in R.

Proof. We prove this only for the case with j = 0. For any € > 0 and z € G,

P{lso(z) - Blso(@)}] > €} < e *Var{so(2)} < 5 gE{mXi o))’
e 5 o () 5 (5572)) - o (55

1 1 &
N E —C /2 y =
S C { ’]’Lh + nh27co ]:118 0 (])} = Tn (31)

where ¢y € (0,1) is a constant. The last inequality follows from Lemma 1 of Yoshihara (1976).



We cover G by a finite number of open intervals By centered at xj in such a way that

ln

G C U By, sup |z — zx| < h?/logn, I, < coh2logn, (3.2)
k=1 TEBy,

where ¢ > 0 is a constant. Consequently, for x € By, |Kp(X; — ) — Kp(X¢ — zx)| < ¢/logn for

all X;, where ¢ is independent of k. Thus

P{SHP Iso(z) — E{so(z)}| > e}
= P{lg}cax |so(zk) — E{so(zx)}| + O((logn) ") > e}
< lpmp +o(1).
The last inequality follows from (3.1). Condition (A5) and (3.2) ensure that ,m, — 0. The proof

is completed.

A result similar to that of Lemma 3.1 has been established by Ango Nze and Rios (1995). It

follows that for any compact G C {p(z) > 0}, uniformly for z € G,
-1

pa — 2
1 0 po 1a—p3 0 pa—p3
— P — —
Spt@) —p @) | 0 pp 0 =p'@| o L o |, (3.3)
e O pa urf&% 0 pa—p3

where p; = [t/ K(t)dt, j > 1.
iFrom (2.4), we have that
H—y=(X"WX)"IXTW(Y — X7).
Note that under Hy, m(z) = 6z, m'(z) = 6, m"(z) = 0, and m(X;) = m(z) + (X; — z)m/(z).

Similar to (2.8), under Hy, we have the expressions

R 1 & X, —x
m(z) — 0z = vy > W (Tax)
i=1

’ﬁLI — hZZW”1< >€z, h?’ZWnQ( )eu

where ¢; is given as in (2.1). By (2.9) and (3.3) (cf. Rios 1996 for the bias calculations), uniformly

for z € G,

st (52 o (552 i,

z:l




m'(x>—e={ > () e (Ko ””)}(Hop(l)), (3.5)

nh?uop(z) S\ b

m"(x)‘{nh3<u4—2u2)()g{(& ) “2}6“(&{ x)}(”"p(”"

The next lemma, plays a key role in deriving the asymptotical distribution of the statistics

in testing nonlinearity and independence by using the local polynomial regression method. Hall
(1984) and de Jong (1987) discussed similar results for independent observations.

To state our result, we introduce some notation. Suppose ¢, (+,-) is a symmetric Borel function
defined on RP x RP, which may depend on the sample size n. We also assume that there exists a

sequence of o-algebras 1 C F» C ... for which §; € F;, and further
(1) E{on(z,&)} =0, foranyz € RP,
(11) E{(pn(flafj)‘fjfl} = 07 for any 1< .7

The statistic of interest is in the form of

Un = Z (P(fiaéj)'

1<i<j<n

As pointed out by Hall (1984), U, can be expressed as a partial sum of a sequence of martingale

differences: .

n —
Un=» Vio and Vi=1Y onl&, &) (3.6)

k=2 i=1

The index n is suppressed in the notation V.
Let ij = on(&,&;), o5, = Var(y;;), and o2 = EKKK" ;;- For some constant § > 0, define
My = | Jnax max{E|801g<Pzg| /|801j<Pij|1+6dP(£1)dP(fi,fj)},
<i<j<n
2(1+49 2(1+40
My = 1<I?gx§nmax {E|<P1j90ij| (1+ ), /|<P1j§0ij| (14 )dP(fl)dP(gi,gj),

/|901j<,0z'j|2(1+6)dp(§1,fz‘)dP(fj)a /\<P1j<,0ij|2(1+6)dP(§1)dP(§i)dP(§j)},

M,s = max E M,s = max {max / 020 qp 3.7
n3 1<i<;<n |(P1](Pz_7| n4 '1<£,33§S2nt P |8011803k| ’ ( )
57, ifferen

2(1+9)
; /‘/Wlﬁﬂljdp(&l)

2

2(1+0)

M,s = ]_1£1Za>xl max {E ‘/(Pli(Plde(gl)

P(&-)dP(ﬁj)} ;

?

Mg = max ‘ [ oupniare)

7



where the maximization over P in the equation for M, is taken over the four probability mea-

sures P(&1,8:,85,&k), P(§1)P (&, &5, &k), P(€1)P(&ir) P(&iy,&is), and P (&) P(&)P(&;) P (&r), where

(i1,142,73) is the permutation of (i,7,k) in the ascending order. We assume that all of the above

constants are finite.

Lemma 3.2. If for some 6 > 0, Y32, kQ{ﬂ(k)}I% < 00, and

1 1 1
max — { {Ml+fs M 4 M2Y, nd (M 4 M2, + M2<1+5> } —0,  (3.8)

n
as n — 0o, where My, ..., My,4 are defined as in (3.7), then o,,'U, is asymptotically normal with
mean value 0 and variance 1.

The proof of this central limit result is lengthy and it is contained in Appendix 1 of Hjellvik
et al. (1996).

The following three theorems present the asymptotic behavior of the statistics Ly(m), Lo(m')
and Lo(m'), defined in (2.5)(2.7). We use the notation X ~ AN (u,0?) to denote that o~ ! (X —
p) -5 N(0,1).

Theorem 3.1. Let conditions (A1)—(A5) hold. Under the hypothesis Hy, Lo(m) 0,

Ly(m") 250 and Ly(m") L5 0asn— oo

Theorem 3.2. Let conditions (A1)-(A5) hold. Under the hypothesis Hy,

() La(m) ~ AN(ar/(nh),0%/(n?h)), (3.9)
(ii) ﬁg(m') ~ AN(aQ/(nh?’),U%/(thE’)), (3.10)
(iii) Lp(m") ~ AN(as/(nh%),02/(n?h%)), (3.11)
where
o = ﬁ [ (s = ma? K> @)t [ 0* @yl
1
ag = N—%/t2K2(t)dt/02(a:)w(w)dw,
a5 = ﬁ [ - R0t [ @iz,
ot = o [ @@ [ Gn ) s o) s — s = 2)°)

8



x{ps — pa(v — 2)*} K (u) K (v)K (u — 2)K (v — z)dudvdz,

o3 = /% 04(:c)w2(:c)dx/uv(u —2)(v—2)K(u)K(v)K(u — z)K(v — z)dudvdz,
05 = (k4 i2113)4 /04($)w2($)d$/(“2 — p2)(v* = po){(u — 2)* — p2}

x{(v—2)? — o} K (u)K (v)K (u — 2)K (v — z)dudvdz.

In the above expressions, u; = [t/ K (t)dt, and 0?(z) = Var(Y1|X; = z).

Theorem 3.3. Let conditions (A1)-(A5) hold. Under the hypothesis Hi,

A

(i) Lo(m) ~ AN(as,0%/n),

A

(i) Ly(m') ~ AN(as,02/n),

A

(iii) Lo(m"”) ~ AN(as,08/n),
where

as = E{[m(X1) — 0X1Pw(X1)} +o(1), and o? = Var{[m(X;) — 0X1]2w(X;)},
as = E{[m'(X1) — 0]*w(X1)} + 0(1), and o2 = Var{[m'(X1) — 0*w(X1)},

ag = E{m"(X1)*w(X1)} +0(1), and of = Var{m"(X1)*w(X)}.

In the above expressions, # = {Var(X;)} 1Cov(X1,Y7).

Theorem 3.1 shows that all of the test statistics will converge to zero in probability if the
model is linear. Therefore, large values of the statistics will indicate departure from the linearity
hypothesis. The asymptotic approximations for the significance level and power of the tests Ly (m),
Lo(m') and Lo(m") are given in Theorems 3.2 and 3.3, respectively. The main idea in the proofs
of all of the theorems is to perform the Hoeffding’s decomposition on the test statistics and then
apply asymptotic results for U-statistics (cf. Yoshihara 1976, Denker and Keller 1983, and Lemma
3.2 above. For example, under the hypothesis Hy, the statistic Ly(m’) is asymptotically equivalent
to the sum of a constant and a quadratic form (see (a) — (e) in Appendix 2 of Hjellvik et al. 1996).
Theorem 3.2 shows that nhgﬁg(m' ) is approximately normal with variance o5 , but the mean
diverges to infinity. The asymptotics in such a form have been noted before in similar problems
(cf. Proposition 1 of Hardle and Mammen 1993). The results of Theorem 3.3 are somehow trivial.
One could instead assume that the alternative hypothesis H; deviates from Hy at a certain rate

related to the sample size (cf. Hardle and Mammen 1993). Since it is arguable whether such a



hypothesis has any practical implications in the current context, we do not pursue this any further.

A proof of Theorem 3.2 (ii) is given in Appendix 2 of Hjellvik et al. (1996).

4 The Role Played by the Bandwidth

It has been pointed out that local polynomial regression methods perform better in various respects
than some conventional kernel regression methods (cf. Fan 1992 and 1993, Hastie and Loader 1993).
In this section, we point out two interesting features in using the local quadratic regression method
in linearity testing.

To see how the bandwidth h varies in local polynomial regressions with the different orders
of the polynomials, let us consider the estimators of m(-) in the case that d = 1. For the local
quadratic regression, similar to (3.4), for z € {p(z) > 0}, it can be proved that

@ e () fer s (B2 fnsnon,

nh(m — u3)p(z) =

m(x)—m(x) = {

where

() = m(X:) = m(z) - () (X; - 2) = S0 (2) (X; — ).

By Theorem 7.8.4 of Shiryayev (1984), it can be shown that

. i — pop '
Vnh {m(z) —m(z) — h424‘éT_2u§){m(4) () + 2m® (z)p (w)/p(w)}}

p(z)(pa — p3)?
where m(*) denotes the k-th derivative of m(-), and v}, = [t*K?(t)dt (cf. Appendix 2 of Hjellvik

4y N (0, 02(z)(pa — 2papovs + M%V4)> ,

et al. 1996). Hence, the approximate MSE of the estimator can be defined as

2
MSE,(h) =fﬁ(ﬁ:ﬂ%%>{m@<wam@<)<VM)}

24(pa — pi5
1 o®(x) (g — 2papigve + p3va)
nh p(x) (s — p3)?

Hence, the (theoretical) optimal bandwidth which minimizes the above MSEy(h) is of the order

ha(z) o (4.1)

/o
If we impose the constraint 7; = 0,7 > 2 in the minimization of (2.3), the estimator derived

is a local linear regression estimator of m(-). Further, if in addition 7 is restricted to 0, we

10



get the local constant regression estimator of m(-), which is the conventional Nadaraya-Watson
kernel estimator. We will see that for local linear or local constant regression estimators, the
optimal bandwidths should be smaller than hs(z). In fact, based on the asymptotic normality, the

approximate MSE of the local linear regression estimator of m(-) is

1 o (z)vg

_ NQ "
MSE;(h) = h4f{m ()} + b (@)

To minimize MSE; (h), we should use the bandwidth

o?(z)u 15
() = n11/5 ( () om)}2> , (4.2)

p(z)pz{m" (

Similarly, if we use the Nadaraya-Watson kernel estimator of m(-). The approximate MSE is

4m'(m)p'(m)}2 L L@

_ HQ n
MSEy (h) = htH2 {m (z) + (z) nh p(z)

4

(cf. also Ango Nze and Doukhan 1993). The optimal bandwidth which minimizes MSEq(h) is

1 *(z) .
ho(z) = ( ST T A ) -
n'/5 \ p(z)pd{m" (z) + 4m/(z)p (z) /p(z)}?

It is seen that h;(z)/ha(z) — 0 as n — oo for s = 0,1. Further, although ho(z) and hi(z) are of

(4.3)

the same order, hg(z) is usually smaller than h;(z). Note that one more term 4m/'(z)p'(z)/p(z)
appears in the denominator of the right hand side of (4.3), which is due to the larger bias of
the Nadaraya-Watson estimator compared with the local linear regression estimator (see also Fan
1992). The above observation indicates that the bandwidth should be increased when the order
of the polynomial in a local polynomial regression estimation is increased. Intuitively, it is easy
to understand. For example, locally around z, a quadratic function can fit the curve m(-) in a
larger neighbourhood of z ‘as well as’ a linear function could fit m(-) in a smaller neighbourhood.
Therefore, local quadratic fit can encompass more local variation in the data.

Another advantage of using the local quadratic regression method in our tests is that they be-
come less sensitive to the choice of bandwidth, in particular they are more robust to oversmoothing.

To see the effect of a very large bandwidth, consider the following extreme case. For a given
sample {(X¢,Y:), 1 <t < n}, we minimize (2.3) with 7' = 2 to estimate the functions of interest.
Suppose we let h tend to infinity, and that the kernel function K is chosen so that Kj(-) converges

to a positive constant as h — oo. Then (2.3), with 7' = 2, is proportional to

n

Y Vi —a—b(Xpp — z) — o(Xpp — z)°)
t=1

11



n
= Z{Yt —ap — Xy — 043Xt2,k}2a
t=1

where a1, ay and a3 are properly defined constants. Now, to minimize (2.3) over (a,b,c) is
equivalent to the problem of minimizing the above function over (a1, s, a3), which means that
the local quadratic regression reduces to regress Y; as a global quadratic function of X; . If the
function my/(+) is not linear, this global parametric fitting could be capable of showing the departure
from the linearity hypothesis. This explains why our test statistics with large values of h still have
power to detect the nonlinearity, which is illustriously different from the statistics based on local
linear or local constant regression estimators. Cox (1981) suggested the use of quadratic or cubic
regression to test nonlinearity.

The larger robustness of local polynomial based tests to the choice of bandwidth is confirmed

by simulation experiments reported in Section 6.

5 Evaluation of finite sample properties of the tests

Based on the experience of Hjellvik and Tjgstheim (1995,1996), it is essential to examine the finite
sample properties of the tests. We have done a number of simulation experiments in a time series
setting, and it is convenient to introduce the notation My(z) = E{X{|X;—x = z}, which was
used in Hjellvik and Tjgstheim (1995,1996), as a special case of my(z) = E{Y;|X;, = z}. The
corresponding sum of squares to be minimized for a T-th order local polynomial approximation is
2
Zn: {Xt - i %(thk - 37)i} K (%) :
t=k+1 i=0
We have used a Gaussian kernel function here and elsewhere in the paper. To detect nonlinearity
in the conditional variance, we also introduce Vj(z) = var(X;|X;—p = z). Linearity in terms
of the conditional variance is taken to mean that Vi(z) = ¢ where c¢ is a positive constant, and
Vi(z) = 0. However, as in Hjellvik and Tjgstheim (1995,1996) we conduct the variance tests
on the residual process {e;} from the best autoregressive fit, rather than on {X;} itself. We
then get Vj(e) = var(etle;—r = e) where e, = Xy — a1 Xy—1 — ... — apX;—, for an autoregressive
approximation of order p. Note that {e;} denotes the residual process from the autoregressive
approximation whereas {¢;} denotes the true residual process, and Vi(e) may be non-constant

even though Vi (€) is constant. When using the test functionals, we standardize both {X;} and

12



{et} so that they have zero mean and variance one. We now have the following statistics:

- 1

L) = 300X - 4Xu(Xe), T3>0 .
BrOM) = 530X = pofu(X), 71 (52
Er(Ml) = %éM,’c’(Xt)Qw(Xt), T>2 (5.3)
Bh) = 5 3 (e —eiuia), 720 5.4
B = 15 5 Tieruia), T2 55

where p is the estimated order of the best autoregressive fit, py is the autocorrelation between X;
and X;_j and 02 is the empirical variance of {e;}, which is equal to 1 due to the standardization.
As an upper limit for p we have used n/10, and as weight function we have used the trapezoidal
function w(z) = 1(|z| < k) + (3 — 2|z|/k) 1(k < |z| < 3k/2) with k = 2 in the bootstrap approach
and k = 1 in the evaluation of the asymptotic theory. Other weight functions have also been tried
with roughly similar results.

We only examine the difference between the asymptotic distribution and the finite sample
distribution in the trivial case of a Gaussian white noise process {X;} = {€:}, where {¢;} consists of
#4d random variables. Such a simple example suffices to demonstrate the poorness of the asymptotic
approximation. The results are given in Table 1, and it is seen that even for very large sample
sizes the approximation is not very good. In fact a rectangular weight function on [—1,1] gave
somewhat better results, the empirical sizes for Lo(My), Lo(M]) and Lo(M]') being 0.032, 0.062
and 0.066, respectively for a sample size of n = 2?!. Note that the tabulated empirical sizes give a.
direct indication of the convergence in distribution implied by Theorem 3.2. We believe that the
slow convergence is typical, as indicated by experiments in Hjellvik and Tjgstheim (1995,1996). We
think that the reason for the bad approximation is that unlike a standard parametric situation, the
next order terms in the Edgeworth expansion of our statistics are very close to the leading normal
approximation terms given in Theorem 3.2. An example illustrating this phenomenon for a similar
nonparametric test functional is given in Skaug and Tjgstheim (1993). Better approximation in a

spesial case using a fixed experimental design have been reported by Poggi and Portier (1996).
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6 The bootstrap approach

The outcome of the experiment in the preceding section means that for small and moderate
sample sizes the asymptotic distribution cannot be used to construct the null-distribution of the
functionals. An alternative is to create the null-distribution and the critical region corresponding

to a nominal significance level by bootstrapping the residuals
P
er=X1— ) ai Xy
i=1

from the best linear autoregressive (or ARMA) fit to {X;}. Bootstrapped values L*(-) of the

functional in the null-situation are created by inserting bootstrapped linear versions

p
* A Yk *
X; =Y aX;+e

i=1
of {X;}. By taking a sufficiently large number of bootstrap replicas {ej} of {é;}, in this way we
can construct a null-distribution for ﬁ*() Both the conditional mean and the conditional variance
functionals can be treated in this way, and for more details we refer to Hjellvik and Tjgstheim
(1995,1996).

In the following, as a standard, 40 bootstrap replicas will be used to create the null-distribution.
This distribution is smoothed by a nonparametric integrated kernel type estimate (cf. Hjellvik and
Tjgstheim 1996), and the critical region corresponding to an a-level test thus is obtained by
selecting the (1 — «)-quantile ¢, of the bootstrap distribution, and the hypothesis of linearity is
rejected if L(-) > ¢, where L(-) is the value of L as computed from the original data series {X;}.

Ideally one would like to evaluate the merits of the bootstrap approach theoretically. Asymp-
totic theory is lacking for the bootstrap in this situation, although it should be possible to develop
such a theory (Franke, Kreiss, Mammen 1995). However, this is a highly non-trivial task, which
may require large sample sizes to be accurate. Possibly one should rather look at the random-
ization test aspect of the bootstrap and consider the approximation obtained using bootstrapped
estimated residuals instead of permuted true residuals. If the latter were known, exact p-values
could be obtained (cf. Skaug and Tjgstheim 1996). In the absence of a suitable theory we have re-
verted to an examination of the bootstrap approach by an extensive set of simulation experiments
and by application to a wide range of real data sets. Much of the emphasis will be on the choice
of bandwidth and the new aspects brought in by using local polynomial approximation. A power

experiment on a wide class of nonlinear models listed in Table 2 has been conducted in Section 6.3.
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Plots of the conditional mean and variance for these models are depicted in Figures 1 and 2 of

Hjellvik et al. (1996).

6.1 The role played by the bandwidth

In Hjellvik and Tjgstheim (1995,1996) as a standard we used the bandwidth & = n~'/5 on a
normalized data series having zero mean and variance one. The results of Section 4 suggest that a
more flexible approach to choosing the bandwidth should be taken in the case of local polynomial
approximation. Figure 1 depicts the empirical size of the tests as a function of bandwidth for the
statistics given in (5.1)-(5.3) for T'=0,...,4. The nominal size is 0.05, and the bootstrap is used

to form the null-distribution as described above. The model used is linear autoregressive
Xi=aXi 1+ €, ¢~ N(O, 1) (61)

with ¢ = 0.5. By comparison to Table 1 it is seen that the results obtained represent a vast
improvement over those which could be achieved using asymptotic theory. In a sense this could
be expected when it is taken into consideration that the bootstrap approach comes close to being
a randomization test. It is seen that f)o(Ml) collapses when h > 1.0, whereas the other statistics
seem to be quite independent of h. This can be expected since T' = 0 corresponds to using the
kernel method, and for h large, everything will be smoothened flat, i.e. M (z) = 0, whereas pz # 0,
and the procedure breaks down. As indicated in Section 4, for linear models this does not happen
for T' > 1, as we then get global parametric estimates as h — oco. In practice h = oo is achieved
by setting the kernel function K (-) =1 in (2.3).

The empirical power clearly depends much more on h, as can be seen from Figure 2. The

model used here is exponential autoregressive
X; = (0.5 + bexp(—0.5X7 )Xy 1 + €, e~ N(0,1) (6.2)

with b = 1.3 and we see as a general trend that the optimal value of h increases as the order T’
in the Taylor expansion increases. This is consistent with the results of Section 4 although those
results were derived with another optimality criterion. We also see that for a given T, the optimal
h increases with the derivatives. This is in accordance with general nonparametric estimation
theory as a derivative of a regression estimate typically should be smoothed more (cf. Fan et al
1993). For ﬁo(Ml), the power drops quite fast for the same reason as for the level.

For h very large, ﬁo(Ml) and ﬁl(Ml) have no power since the parametric approximation to

M;(z) obtained as h — oo in Section 4 is constant and linear, respectively. Due to the specific
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symmetry properties of model (6.2), also the quadratic approximation turns out to be nearly linear,
so the power for .fJQ(Ml) is rather low. But for 7 = 3 and T' = 4 the parametric approximation
gives good results. For model Ic) of Table 2, however, where M;(z) is approximately quadratic
(see Figure 1 of Hjellvik et al. 1996), as can be expected the best result is achieved with 7' = 2
and h = oo.

For the IA}(Vl)—tests the size tends to be too low. Similar results were obtained in Hjellvik and
Tjgstheim (1995,1996). Still the results are much better than those obtained using asymptotic
theory.

Figure 3 shows the power of the L(V)-tests for model la) of Table 2, and we see the same
general trend as for the f/(M )-tests; the optimal h increases with 7' and the derivative. Here
L1(V1) also has some power for h = oo because Vi(-) is constant under the null hypothesis. The
estimated functional Lo(V;) is much more robust than Lo(M;), and this is the case for the other

models listed in Table 2 as well.

6.2 Cross-validation of the bandwidth

When we cross-validate the bandwidth, we choose the value of h that gives the least prediction

error. That is, we choose the h that minimizes

K n
33 (X — My (Xii) Pu(Xoi) (6.3)

k=1t=k+1

where Mk_ (X;—k) is the leave-k-out kernel estimator based on the data (X1, Xx11),-.-, (Xe—p—1,Xt-1),
(X1, Xtvka1)s -+ (Xnk, Xn). We have used K = 3 in the following.

Taking h = oo means that we get a parametric approximation to M (z): a polynomial of order
T. So it is of interest to see whether h = oo is chosen by the cross-validation procedure when we
have a linear model and use 7' = 1 or when we have a white noise model and use 7' = 0. (Of course
h = oo is precluded from the asymptotic theory of Sections 3 and 4. Moreover, a polynomial M(-)
with 7' > 1 would result in a transient time series model). Figure 6 in Hjellvik et al. (1996) shows
that for model (6.1) h = oo is chosen in approximately 65 % of the cases relatively independent
of the value of a when we use T' = 1. Increasing n to 500 gives nearly the same result. For a
negative coeffisient a, the result is approximately as for a positive. With T' = 0, the percentage
of h = o0 is 63.4, 27.4 and 2.0 for a = 0.0, 0.2 and 0.4, respectively. The decreasing percentage
as the coefficient a increases in value again is expected since for the kernel method M () = 0 as

h — oo.
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The bootstrap test is not well-defined for 7" =0 or 7' = 1 combined with h = 0o. In particular
when we have a nonlinear model, we do of course not want h = oo to be chosen when 7" = 0 or
T = 1, but with a small autocorrelation, this may well happen for T' = 0. In fact h = 0o was chosen
in 136 of 500 realizations of model lc) of Table 2 which is clearly nonlinear (cf. Figure 1 of Hjellvik
et al. 1996). Similarly, h = oo was chosen in many cases with relatively strong nonlinearity of
model (6.2). This shows a weakness of the cross validation procedure if h is allowed to vary freely.
Traditionally a much more restricted range of h-values is used, and there are both logical and
empirical reasons for not including h = oo in the allowable set of h’s for T < 1. The routine
implemented in the test, chooses h among the values in the upper part of Table 3. We do not
cross-validate h for each bootstrap replica, but use the same h as for the original dataset.

For the L(V)-tests we choose the h that minimizes

K n
Yo > el — My (€)Y wles) (6.4)

k=1t=k+1
Here h = 0o may give som power for 7' = 1 since the conditional variance is constant, under Hy,
and we choose h according to the last two lines of Table 3.
Cross-validating with these values of h generally produced sizes somewhat higher than with h

data independent, but more experiments are needed to make this firmer.

6.3 A power experiment for a wide set of models

We have performed a power experiment for the models listed in Table 2, where ¢; ~ N(0,0.62) in
model 1d) - If), ¢, ~ N(0,0.72) in Ig) - 1j) and ¢ ~ N(0,1) in the other models. Models la) - 1j),
aa) - ag) and Aa) - Ag) are discussed in Luukkonen et al. (1988), Ashley et al. (1986) and An
and Cheng (1991), respectively. In this paper we mainly restrict ourselves to look at lag 1. For
some of the models the nonlinearity is revealed at higher order lags.

Figure 4 shows the power for fJT(Ml) with h cross-validated for the models listed in Table 2
with T'=0,...,3. The + symbol indicates the power achieved in Hjellvik and Tjgstheim (1995).
In most cases this is higher than the cross-validated power for Lg (M7). One explanation is that the
cross-validation procedure tends to pick out too large h’s. Actually, in a rerun of the experiment
of Figure 4 with a fixed bandwidth, on average somewhat better power was obtained.

Figure 5 shows the power for Lp (Vi) with h cross-validated for T = 0,...,3. Models Ib)
- 1j) more or less have a constant conditional variance, and we have no comparable results in

Hjellvik and Tjgstheim (1995). Therefore we have not run the L(V) tests on these. For the other
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models T' = 2 seems on average to be the best choice. Globally this corresponds to an ARCH-type
dependence, which is seen from Figure 2 in Hjellvik et al. (1996) to be the predominant behavior of
the conditional variance function. But we also see that f)o(l/i) in most cases gives a higher power
than that achieved in Hjellvik and Tjgstheim (1995). This is probably because the bandwidth
h = n~1/% used there is to small for the variance test. For some models (ae,Ab,Af) there is a
dramatic improvement in power compared to Hjellvik and Tjgstheim (1995). Using derivatives on

average gave inferior results.

6.4 The size for low nominal levels

So far we have far used a nominal level of 0.05 where our procedure of using 40 bootstrap replicas
and the nonparametric approximation to the null distribution described by equation (3.5) in Hjel-
lvik and Tjgstheim (1996) works quite satisfactory. At low nominal levels (< 0.01) however, this
method gives a too high empirical level since the nonparametric estimate applied behaves rather
poorly in the tails of the null distribution. This means that low p-values can not be trusted, and
for a given real data set it will be difficult to interpret what a very low p-value really means. There
is at least two ways in which this problem can be countered. The most obvious is to use more boot-
strap replicas, but even at a nominal level of 0.001 more than 500 bootstrap replicas are needed,
and it increases computer time. An effective way to reduce the number of bootstrap replicas is to
apply the adaptive nonparametric density estimate described in Silverman (1985, p. 100 ff). This
procedure uses a broader kernel in regions of low density, so the estimate of the tails of the null
distribution becomes smoother, and we get some probability mass squeezed into the area in which
we are interested. As can be seen from Figure 6 we now need only about 100 bootstrap replicas to
get reasonable results for a nominal level of 0.001 for the white noise example. With 500 bootstrap
replicas we can even approximate a nominal level of 0.00001. In fact using 500 bootstrap replicas
leads to a too low empirical level at nominal levels 0.01, 0.001 and 0.0001. Clearly, there are many

theoretical and practical problems left to be solved, and a separate investigation is really needed.

7 Some real data sets

In Hjellvik and Tjgstheim (1995) we presented some p-values for three real datasets: the sunspot
data (n = 361), the lynx data (n = 114) and the blowfly data (n = 288). Some of these p-values

were very low. Considering the results in Section 6.4 they were probably too low since they were
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based on only 80 bootstrap replicas and the non-adaptive approximation to the null distribution.
In Hjellvik and Tjgstheim (1995) we considered more general test statistics, which in the notation

of this paper are defined by

R . . 1 3.
Lrsup(M19) = sup Lt (M), L ave(Myo) = — Y Ly (My),
k<10 10
. . . 1 39 .
Ly gsup(Vio) = sup Lr(Vy), Ltave(Vio) = <= > Lr(Vy)-
k<10 10 7~

If we compare the results in Table 4 based on 500 bootstrap replicas and the adaptive approxima-
tion to those in Table 8 in Hjellvik and Tjgstheim (1995), we see that for all but one of the cases
in Table 8 with p-values less than 0.01, the corresponding p-values in Table 4 are higher. In Fig-
ure 7 the bandwidth is cross-validated, and the results for 7' > 0 included. For the log(lynx) data
fJO,sup(Vl()) and fJO,ave(‘/lO) give rejection of linearity at level 0.05 in Figure 7, but not in Table 4.
This is because the estimated order of the best autoregressive fit in Figure 7 is 11 (= n/10), whereas
the upper limit in Table 4 is 10 (= the maximum order of Table 8 in Hjellvik and Tjgstheim 1995)

and the estimated order is 2.
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Figure captions

Figure la-c: The figure is based on 500 realizations of the autoregressive model (6.1) with ¢ = 0.5
and n = 100. It shows the empirical size of Lp(M;), Lr(M}) and L(M]") as a function of h for
T =0,...,4. The numbers 0, 1, 2, 3, 4 in the plots denote the values of T". The nominal size is
0.05.

Figure 2a-c: The figure is based on 500 realizations of the exponential autoregressiv model (6.2)
with b = 1.3 and n = 100. It shows the empirical power of Ly(My), Lp(M}) and Ly(M]') as a
function of h for T'=0,...,4. The numbers in the plots denote the values of T'. The nominal size

is 0.05.

Figure 3a-b: The figure is based on 500 realizations of model la) with n = 100. It shows the
empirical power of Ly (V1), Lp(V/) and Ly (V") as a function of h for T = 0,...,4. The numbers

in the plots denote T'. The nominal size is 0.05.

Figure 4: The figure is based on 500 realizations of the models in Table 2. It shows the power of
Ly (M) with h cross-validated and n = 100, 250 and 204 for models la) - 1i), aa) - ag) and Aa)
- Ag), respectively. The numbers 0, 1, 2, 3 denote the values of T. The + symbol indicates the
power achieved in Hjellvik and Tjgstheim (1995). The nominal size is 0.05.

Figure 5: The figure is based on 500 realizations of the models in Table 2 and shows the power of
Ly(V1) with h cross-validated and n = 100, 250 and 204 for models la), aa) - ag) and Aa) - Ag),

respectively. The numbers denote the values of T. The nominal size is 0.05.

Figure 6: The figure is based on 1000 and 20 000 (underlined symbols) realizations with n = 100
of model (6.1) with a = 0, and it shows the average empirical size of Lo(M)), ..., Lo(Mo) as
a function of the number of bootstrap replicas (m) and of the sensitivity parameter a used in
the adaptive density estimate (cf. Silverman 1985, p. 100 ff) with @ = 0 corresponding to a non-
adaptive density estimate. Here a, b, ¢, d, e and f denote nominal levels of 0.1, 0.05, 0.01, 0.001,
0.0001 and 0.00001, respectively. The bandwidth is b = n~1/5.

Figure 7: The figure is based on 500 bootstrap replicas and the adaptive approximation to the null

distribution. It shows for some real data sets the p-values for IAJT,sup(M 10)s IA/T,ave(M 10), IA/T,SUP(VN)
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and L ave(Vio) in that order (‘s’ denotes ‘sup’ and ‘a’ denotes ‘ave’). The numbers 0, 1, 2, 3 denote
the values of T'. The bandwidth is cross-validated according to Table 3, and the upper limit of the

estimated order of the autoregressive fit is p = n/10.

Table captions

Table 1: The ratio between the asymptotic values given by Theorem 3.2 and simulated values for
the mean and standard deviation of Ly (M), Ly(M}) and Ly(MY'), and the empirical sizes for these
statistics when they have been centered by the asymptotic mean and scaled by the asymptotic
standard deviation of Theorem 3.2. A critical value of 1.645 corresponding to a nominal size of
0.05 for the standard normal distribution has been used. The model is X; = ¢, the bandwidth is

h = n~1/% and the number of realizations are 500.

Table 2: Various nonlinear models. Models 1a) - 1j), aa) - ag) and Aa) - Ag) are discussed in

Luukkonen et al. (1988), Ashley et al. (1986) and An and Cheng (1991), respectively.

Table 3: The values among which the cross-validation routine implemented in the test chooses h.

For the various tests the possible values are marked with an x.

Table 4: p-values for IAlo,sup(Mlo), IAlo,ave(Mlo), -EO,sup(VIO) and fzo,ave(Vm) for some real data
sets. The table is based on 500 bootstrap replicas and the adaptive approximation to the null
distribution. The data independent bandwidth A = n~/5 is used, and the upper limit of the

estimated order of the autoregressive fit is p = 10.
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Table 1 Asymptotic properties.

n: 128 256 512 210 gt gl2 o 9ls 96 olT 98 9lo 920 921

mean | 1.76 1.64 1.69 1.59 1.56 146 ... 138 1.34 138 131 1.27 125 1.23

Lo(My) sd | 175 150 164 157 145 149 ... 140 128 130 127 1.17 117 1.20
size | .004 .020 .012 .010 .020 .016 ... .012 .022 .020 .024 .024 .026 .030

mean | .480 .516 .590 .620 .656 .668 ... .777 .803 .874 .886 .887 .889 .912

Lo(M!) sd | .520 .537 .641 .684 .672 .748 ... .870 .840 919 .937 .919 .895 .968
size | .294 .248 .236 .214 .188 .202 ... .140 .138 .100 .092 .100 .122 .080

mean | .423 .462 527 .572 616 .646 ... .760 .794 .863 .902 .901 .880 .929

Ly(M!') sd | .492 481 575 .618 .632 .732 ... .775 .811 .945 .951 .962 .883 .998
size | .356 .300 .258 .256 .214 222 ... .158 .140 .106 .092 .098 .122 .084

Table 2 Nonlinear models.

(lay ARCH: X;=06X; 1+, 1= €(0.2+0.8p7 )2

(Ib)  Bilinear: X =(—09-0.1¢_1) X1 + €& +2.0

(lc)  Bilinear: X =(03-02¢-1)Xt—1+e+10

(d) EXPAR: Xy = {0.9exp(—X2 ;) — 0.6} Xs—1 + €

(le) EXPAR: X, = {0.9exp(—X2 ;) — 0.6} X1 + € + 0.3

(fy EXPAR: Xy = {0.9exp(—X2 ,) — 0.6} X;_1 + € + 1.0

(lg) SETAR: Xy = —0.3X,_11(Xe_1 > 0.2) — 0.6X;_11(Xs_1 < 0.2) +

(lh) SETAR: X, =0.3X, 11(Xe 1 > 0.2) — 0.6X, 11(X; 1 < 0.2) + &

(i)  SETAR: Xy = (0.3Xy—1 — 1.0)L(Xe_y > 0.2) — (0.3X;_1 +0.5)1(Xs_1 < 0.2) + ¢
(j)  SETAR: X, = (0.3X_1 + 1.0)1(X;—; > 0.2) — (0.3X;_; — L.O)L(X;—1 < 0.2) + €.
(aa) Bilinear: X =07X; 26,1+ €

(ab)  Nonlinear MA : X; =0.8€_2611 + €

(ac) Extended NLMA: X =086 1+€ 2 2,(0.8) %€ ;

(ad) Bilinear: X;=(05+056 1)X 1+ €

(ae) SETAR X; = —0.5X;_11(Xe_q < 1) + 04X, 11(Xymy > 1) + &

(af)  Generalized SETAR:  X; = — (0.1 + 0.4|Xy_1)Xs—11(|Xy—1| < 1) — 05X, 11(|Xp—1| > 1) + &

(ag) EXPAR: X; ={0.9+0.1exp (—X2 )} X¢—1 — {02+ 0.1exp (— X2 1)} Xi—2 + &

(Aa) EXPAR: {0.3 - 0.8exp (= X2 )} Xi—1 + &

(Ab) Bilinear: 05—-04X; 1 +04X; 16,1+ €

(Ac) SETAR: (=0.5X; 1 + 11Xy <0) + (05X — DI(X—1 > 0) + &
(Ad) SETAR: (05X 1 +2)1( X1 <1)+ (04X 1 +05)1(Xs1>1) + &
(Ae) Nonlinear MA : € — 0.4e,_1 + 0.3¢4_2 + 0.5€64_o

(Af) Nonlinear MA : € —0.3€; 1 + 026, 2+ 0.4€; 169 — 0.25¢2_;

(Ag) Bilinear : 04X; 1 —03X; 2+ 0.5X¢ 1641 +0.8¢;1 + €



h: 0.2 03 04 05 06 08 1.0 20 o
T=0]| x X X X X X X
Ly(M;)) T=1 Xx x X X X X X
T>2 X X X X X X X
. T=0 X X X X X X X
Ly (V1)
T>1 X X X X X X X

Table 4 Real data sets. Kernel estimates.

Blowfly log(blowfly) Lynx log(lynx) Sunspot sqrt(sunspot)

flo’sup(M1o) 72789 23772 57301 .03071 .00997 .01021
fzo,ave(MIO) .89241 .33802 46900  .02568 .02028 .02586
.z/(),sup(‘/l()) .02706 .01105 00283  .55474 .00709 .00011

flo,ave(mo) .00107 .00053 .01907  .50939 .00451 00272



