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Abstract

We suggest a simple and fast method to determine the bandwidth in kernel regression.
The method can be viewed as a generalized cross-validation. We have proved asymptotic
optimality of the proposed bandwidth selector under the assumption that the observations are
strictly stationary and p-mixing. Simulation has been conducted to compare the performance
of various cross-validation bandwidth selectors applied to dependent data, which shows that
the ordinary cross-validation method is quite stable in regression estimation with random

design even when the data are highly correlated.
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1 Introduction

The goal of this paper is two-fold. First, we propose a new method to determine the bandwidth in
kernel regression. Second, a simulation study has been conducted to compare the performance of
various versions of cross-validation bandwidth selectors in regression estimation with dependent
data.

Of great importance in nonparametric kernel regression is the choice of the smoothing param-
eter h, also called the bandwidth. Suppose that we have n observations. Once h is specified, the
number of data that lie within one bandwidth of a given point is of the size nh. Effectively, only
these observations are used to estimate the regression function at this point. Intuitively, a large
bandwidth will lead to a very smooth estimator which inevitably incurs large bias. On the other
hand, a small bandwidth might reduce the bias, but the variability of the estimated curve could
be large since only a few data are used in the estimation. A good choice of h should be a tradeoff
between these two types of drawback. Therefore, at the core of most methods for selecting h is
the minimization of the mean squared error of the estimator (in an appropriate way). All the
methods discussed in this paper share this characteristic.

The choice of the smoothing parameter will always be influenced by the purpose for which the
parameter is to be used. For example, a good bandwidth for estimating an unknown curve is not
necessarily good for prediction (cf. Silverman 1986, Hardle 1990). Nevertheless, an automatically
selected bandwidth is often a useful starting point. The most frequently used technique for
automatic bandwidth selection is the cross validation.

In this paper, we propose a new method to select the bandwidth as follows. We use the first m
sample points to estimate the unknown function and choose the bandwidth such that the estimator
gives the minimum mean squared predictive errors (MSPE) for the last (n — m) sample points.
Then we reduce this preliminary bandwidth appropriately when applied to the entire sample.
The appropriate reduction (to be described in §2.2 below) will be based on some theoretical
considerations, in a manner similar to Marron’s (1987) partitioned cross-validation approach. We
shall prove that the bandwidth selected in the proposed way converges to the theoretical optimal
bandwidth (see Theorem 1 in §2.3 below). Perhaps the most obvious drawback of the method is
that the data have not been used in the most efficient way, compared with the ordinary cross-
validation method. On the other hand, it saves considerable computing time relative to other
cross-validation methods. Numerical examples show that in terms of the integrated squared error

(ISE) of the estimator curve, the proposed method is not as appealing as the “leave-(2/41)-out”



versions of cross-validation for I = 0,1, ..., due to the afore-mentioned inefficiency of the former
in using the data. However, it gives competitive performance in prediction (see §3 below).

On the other hand, it has been well documented that if the observations are dependent, the
cross validation will not always produce good bandwidths. For instance, if the errors of the model
are positively correlated, the cross-validation will produce small bandwidths which result in rough
kernel estimates of regression functions (See, for example, Altman 1990, Hart 1991, 1994). In order
to cope with possible dependence among data, it has been suggested that the cross validation,
if retained, will require some modification. For example, the modification could simply be the
“leave-(2l+1)-out” version of cross-validation (cf. Hart and Vieu 1990, Chu and Marron 1991,
Hérdle and Vieu 1992). Intuitively, the stronger is the dependence, the larger is the value of [
needed. However, a further scrutiny into the above observation is needed. For regression models,
such as models with fixed designs in which the nearest neighbours in the time space of an observed
point are also its nearest neighbours in the state space, leaving more than one out in the cross
validation leads to a significant improvement when the data are dependent (cf. Altman 1990,
Chu and Marron 1991, Hart 1991 and 1994). However, for general regression models in which
the regressors are random, we argue that it is unclear whether a “leave-(2/+1)-out” version of
cross-validation method is still appealing (see Remark 2 in §3). Simulation studies indicate that
the ordinary cross-validation method is reasonably safe to use.

The paper is organized as follows. §2 deals with the bandwidth selector. Although we restrict
our discussion to the locally linear regression, the method can be readily applied to other kernel
regression estimations. §3 reports the results of simulation studies on two stochastic regression

models and a time series model. Some asymptotic results and their proofs are given in §4.

2 Bandwidth selectors

2.1 Locally linear regression

Suppose that {X;, Y;} is a strictly stationary discrete-time process and both X; and Y; are
scalar. It is of interest to estimate the regressive function f(z) = E{Y7|X; = z}. In the case that
X: = Y1, f(.) is the autoregressive function for the time series {¥;} . Given the observations
{(X, Y3); 1 <t < n}, one of the conventional nonparametric estimators of f(z) is the Nadaraya-

Watson kernel regression estimator, which can be viewed as the minimizer of the following least



squares problem

n X _

Z{Yt - (J,}2K ( : 'T) )

t=1 h

where K(.) is a kernel function and h > 0 is the bandwidth. However, if the derivative of f at

the point = exists, by Taylor’s expansion, we have

f(2) = f(z) + f(2)(z - 2).

~

This suggests the locally linear regression estimator: fn,h(x) = 4, where (d,b) minimize

n X _

S (Y —a - b(X, - 2)}2K (J) .

— h

t=1

As a by-product, b is a natural estimator for f (z). It has been pointed out that the locally linear
regression method has various advantages over other popular kernel methods, e.g. the Nadaraya-
Watson method (see, for example, Fan 1992). Further, Fan et al. (1993) proposed the use of
locally polynomial fitting if the estimators for the derivatives of f(.) are also of interest.

Let B, = (fnh(a:), f.n’h(a:))T. The least squares theory gives
B=(X"WX) ' X"WY, (2.1)

where Y = (V1,...,Y,,)", W = diag(K(£472),..., K(£3=%)), and X is an n x 2 matrix with

(1, X; — z) as the i-th row. More specifically,

N 1 & X;—z “
foal®) = oW (S5 ) Ve Faale) = ZW“(

where

Lo)Vi (22

Wna(t,z) = (1,0)8, " (2) (1, 1)K (), (2.3)
Wa(t,z) = (0,1)S, 1 (z)(1,8)" K (),

and Sy (z) is a 2 x 2 matrix with the (7, j)-th element s;;_o(z), and

_ % 3 (Xt - $) (Xth_ a”) . (2.4)

t=1

2.2 Bandwidth selection

Before introducing a new method for choosing bandwidths for locally linear regression with depen-
dent data, let us look at the theoretical optimal bandwidth which minimizes the Mean Squared

Error (MSE) of the estimator f,,(z). Tt follows from Theorem 2 in Section 4 below that

KQ
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where 08 = [u?K (u)du, 0%(z) = Var(Y1|X1 = z), p(z) is the marginal density function of X;.
To minimize the above approximate expression of MSE, the bandwidth should be chosen as a
function of z and should be equal to
1 9 K2 1/5
() = — (D K (w)du) (2.5)
nt/5 \ p(a)og{f(z)}?

The above bandwidth cannot be directly applied in practice because it depends on various un-

known functions. However, it does indicate that a reasonable bandwidth is such that
1
hxn™s, (2.6)

which motivates the following proposal for choosing h.

We split the sample into two pieces {(X;,Y:), 1 <t < m}, and {(X,Y:), m <t < n}. We
estimate f(.) using the first m observations. The estimator given by (2.2) is denoted as fm,h(.).
We choose h such that fm,h(.) gives the best prediction for Y; for m < ¢t < n in the sense that

h = h,, minimizes

ECV,, (h)

S (¥ Fn (X Pu(Xy), (2.7)

t m—+1

over H,,, where w(.) is a weight function, and
Hp, = [am*%*a’, bm*%“‘)], (2.8)

where 0 < a < b < 00, and & € (0, 13;) are some constants. In the light of (2.6), for the estimator
fn,h which is based on the whole sample, we use the bandwidth

R R 1/5
by = fom (@) . (2.9)

n

The above approach could still be viewed as a generalization of the cross validation. We leave
out the last n — m observations for validation. In fact, the proposed method is fast. For example,
the ordinary cross-validation method entails n(n—1) kernel evaluations while the proposed method
requires only m(n —m) kernel evaluations. For m = %n, it is over 4 times faster than the ordinary
cross-validation method.

Equation (2.9) gives a constant bandwidth over the sample space, which can be sufficient if
f(.) is not very ‘wiggly’. Clearly such a bandwidth will fail to do a good job if the unknown curve
has a rather complicated structure; this is usually the case in multi-step prediction, especially
when the underlying model (skeleton) is chaotic. In order to capture the complexity of such a

curve, a variable bandwidth is necessary. The following modification to (2.7) and (2.9) can be



applied for this purpose. Suppose we want to estimate f at z. First we estimate f(.) using the

first m sample points with bandwidth

~

hm(z) = argminge y,, —— Z {Yy = frnp (X0) P (X — ), (2.10)
t m—+1

where fm,h is given as in (2.2) but with m instead of n, wy,(.) is a weight function, and wy,(z) — 0
as m — oo for any |z| # 0. It is intuitively clear that we may set

o () = o () (T)I/S (2.11)

n

as the bandwidth for estimating f(x) when using the whole sample. We shall justify this later.

Further spatial adaption can be carried out in the spirit of Fan and Gijbels (1995).

2.3 Asymptotical optimality

We proceed with the case of a variable bandwidth h, () of (2.11), since it is technically more
involved. We make some remarks on the case of a constant bandwidth h, of (2.9) whenever
appropriate.

Note that the best (pointwise) prediction for Y; based on X; is f(X;) = E{Y;|X;}. To justify
the above approach, we compare the izn(x) with the bandwidth which minimizes the average
squared errors of the fictitious post samples {(X;,Y;), t=n+1,...,n+m'}

n+m/

M, (z, h) = mi S {Fan(Xs) — F(X0) 2wa(X: — ). (2.12)
t=n+1

If m'/n converges to a positive constant, Theorem 3 (ii) (in §4 below) shows that
W 4 i e L o 2
Mo(a,h) ~ " ob @) Pple) + —-o*(@) [ K2 ) (2.13)
The minimizer of the RHS of the above expression is h,(z) given as in (2.5). The following the-
orem shows that the proposed method yields an estimate which is asymptotically equivalent to

hn(x) in an appropriate sense.

Theorem 1. Let w,(.) = b 'w(./b), where w(.) is a density function with a bounded support,
and b~! = O(n®9/2) as n — co. Assume m is chosen in such a way that both m/n and (n —m)/n
converge to some positive constants as n — oco. Then, under conditions (A1) — (A6) given in §4

below, for z € {p(z) > 0},




where h,, () is given as in (2.11).

Proof of Theorem 1. We notice that

Min(ah) = —— 3 {frunl(0) = F(X0) 0 (X, — 2. (214)
t=m+1

By Theorem 3 (i), M,,(z,h) has a similar asymptotic expansion as (2.13). The minimizer of the

asymptotic expansion is h,, (z) = (n/m)"/5h,(z). By (2.11) and (2.5), we only need to prove that

Vi () = B ()] 25 0, (2.15)

ot =

m

where fi, (2) is defined as in (2.10). Let

U=

D(a, 1) = T o ) 2p(a) +

1
m%h

o?(z) / K?(u)du.

For any fixed z, D(z, h) has a unique minimum value at h,,(z) over h € H,,, where H,, is defined
as in (2.8). Further, Dy = D(z, h,,(x)) is a positive constant independent of m. It is also easy to

see that for any given ¢ > 0, there exists a § > 0 such that
D(z,h) > Do+ 6, forallms|h — hy(z)| > e, (2.16)

and § > 0 is also independent of m.
Now, suppose that ms |hum () — B ()| does not converge to 0 in probabiltiy. Then there exists

a subsequence of {m}, say {m'}, for which
P{(m')3 | (2) = how ()] 2 €} > 1 >0,

for all m’ > m{ > 0, where 1 and my, are constants. It follows from (2.16) that for all m' > my,

D (@, b () Kl
P{D(x,hm,(w)) ZHDO} >

Note that M, (z,h) = m~*/>D(z, h){1 + 0,(1)} uniformly for h € H,, (cf. Theorem 3 (i) in §4

below). Therefore, for all sufficiently large m/,

M (2, by (z)) 4
P{MZHD—O} >n/2 >0,

which contradicts Theorem 4 in §4 below. Hence, ms |y () = By ()] 5.



Remark 1. For h,, given in (2.9), if we choose w(.) as a density function with a bounded support
contained in the support of p(.), then it can be proved that under the conditions of Theorem 1,

b (b — hy) 25 0, where

n

1 K wdu fo2(x)w(m)dx}%
n nl/f’{ A [ @ Ppayw)de | (247

3 Simulation studies

Three simulated models have been used to illustrate the finite sample behaviour of the newly pro-
posed method, and also the ‘leave-k-out’ versions of the cross-validation method, simply referred
to as the CV (k) method in the discussion below, for ¥ = 1,3,5,7, and 9. The first model has the
independent observations from the regressor but auto-correlated errors. The second model has
the auto-correlated observations from the regressor but independent errors. The third model is
a nonlinear AR(1) process. We compare all the above selectors with the bandwidth h,,: which

minimizes the integrated squared error

ISE() = [{fun(z) — f(2) u(e)do (3)

for simulated data, where f,, »(.) is defined as (2.2), and w(.) is a weight function. We choose w(.)
as the indicator function of the (estimated) 95% inner sample space of X;. The Gaussian kernel is
used throughout the calculation. The mean squared predictive errors for 100 post sample points

based on
100

MSPE(h) = 1 Z{ it — Frp(Xnst) 2
are also calculated for each of the data-driven bandwidths. We always set n = 300 for the sample
size, m = 200 for the estimation of an given in (2.9). For each model, we replicate the Monte
Carlo experiment 100 times. The selected bandwidths and the corresponding values of both ISE
and MSPE are presented in box-plots.

Remark 2. The examples indicate the following interesting features.

(a) Hart and Vieu (1990) claimed that the ordinary cross-validation CV(1) is robust to mod-
erate amounts of dependence in the data, but some improvement can be obtained by taking
CV(2l+1) with [ > 1 when the data are sufficiently highly dependent. However, for all the exam-
ples shown below, the CV (2! + 1) methods with [ > 1 do not furnish any systematic improvement
over CV(1) in terms of both the ISE and the MSPE even though the data are sufficiently highly



dependent (see Figures 2, 3, 5, 6, 8 and 9). It is easy to see that when the regressor X; is random,
data points X;4; for [ = 1,2,... are not likely to be nearest neighbours of X;. Note that only
the data points near X; in space are effectively used in estimating f(z) at z = X;. Therefore, it
does not make any significant difference whether we leave out X;1; (I = 1,2, and etc.) or not,
unless the neighbours in the time space coincide with the neighbours in the state space such as
some low-frequency time series data. This explains why in most of the following examples, the
CV(2l+1) methods with different values of | perform roughly the same. For the regression models
with fixed design X; = t/n, Chu and Marron (1991) has developed an interesting central limit
theorem which explains how the effect of dependence on cross-validation is alleviated as the value
of [ is increased. However, their theory does not apply to our setup. For example, the asymptotic
expansion (3.1) of Chu and Marron (1991) is no longer valid when X; is random (cf. (A.25) and
(A.26) of Hirdle and Vieu 1992, and also (4.3) and (2.13)).

(b) The cross-validation does not over-smooth the negatively correlated data (see Figures
1(d,e) and 4(d,e)). The situation again seems different from the fixed designed models (cf. Altman
1990, Chu and Marron 1991, for example). On the other hand, our results seem to follow the
tendency that cross-validation methods undersmooth rough realizations (eg. Figure 7(b,c)) and
oversmooth relatively smoother samples (eg. Figure 7(a)). (Cf. Hall and Johnstone 1992.)

(c) For the given sample size n = 300, the new method (2.11) leads to the largests averages of
the ISE values (see Figures 2, 5 and 8). The large variation of (2.11) and its corresponding ISE
and MSPE is due to the inefficiency in the use of the data. However, it provides a competitive

performance in prediction (see Figures 3, 6 and 9).

Example 1. We start with the exponential model
Lo
Y, =23 exp{—EXt } + 0.25¢, (3.2)
where {X;} is a sequence of independent and standard normal random variables, €; is from an

€ = per—1+ /1 — pPey,

and e;, t > 1, are independent N (0, 1) random variables, for each ¢, e; is independent of { Xy, k <

AR(1) process, i.e.

t}, and p € (—1,1) is a constant. It is easy to see that ¢, ~ N(0,1). The simulation is carried out
for five different values of p : 0.9, 0.5, 0, —0.5, and —0.9. The boxplots of the bandwidths selected
by the new method (2.9) and the CV (k) methods (k = 1,3,5,7, and 9), together with hgy, in the

100 replications are presented in Fig.1. Figs.2 and 3 are the boxplots of the corresponding the



ISE values and the MSPE values. Fig.1 indicates clearly that the cross-validation method CV(k),
even with large values of k, tends to give smaller bandwidths than hy;. The bandwidth selected

by (2.9) is closer to h,p;. However, its variation is larger too.
(Fig.1 — Fig.3 are about here)
Example 2. Consider another exponential model
1o
Y, =23 eXP{_EXt }+ 0.25¢, (3.3)

where {¢;} is a sequence of independent and standard normal random variables, X; is from the

AR(1) process
Xt = pXi1 +14/1— pe,

and {e;, t > 1} are independent N(0,1) random variables, for each ¢, e; is independent of
{Xk, k <t}, and p € (—1,1) is a constant. Obviously, X; ~ N(0,1). A Monte Carlo experiment
with 100 replications was carried out for each of five different values of p. Fig.4(a) suggests that

CV(k) with £ > 1 chooses the bandwidth which is closer to hgy than that selected by CV(1)

when p = 0.9. However, the situation is opposite when p = —0.9 (see Fig.4(e)).
(Fig.4 — Fig.6 are about here)
Example 3. Let us consider the quadratic model
X1 = 0.23X,(16 — X;) + 0.3¢, (3.4)

where {€;} is a sequence of i.i.d random variables, and €; has a standard normal distribution
truncated on the interval [-12, 12]. We consider three cases: Y; = X4, for p = 1,2,3. For each
case, a Monte Carlo experiment with 100 replications was conducted. The results are reported in
Fig.5 and Fig.6. Compared with h,p, all the methods yield a larger bandwidth when p = 1 and
a smaller bandwidth when p = 2, 3.

(Fig.7 — F'ig.9 are about here)

4 Asymptotical properties

Theorems 2, 3 and 4 stated in this section are not only useful for §2 but also of independent

interest.

10



We use the same notation as in §2. To discuss the asymptotic properties, we need the following
assumptions. We denote by g(.|z) the conditional density function of Y7 given X; = z, and by
p(.) the marginal density function of X;. We use ¢ to denote a generic constant which may be

different at different places.

(A1) Let ¥(x) = [9%g(y|r)dy. The marginal density function p and 1 have continuous first

derivatives.

(A2) EY? < 00, and f(z) = E{Y1|X; = 2} has continuous third derivative and |f(z)| < ¢ < 00

for all z € {p(z) > 0}.

(A3) The joint density of the distinct elements of (X1,Y1, X, Yy) (kK > 0) is bounded by a

constant independent of k.
(A4) The strictly stationary process {(X;,Y;),i > 1} is p-mixing, i.e.

pj =sup{  sup |Corr(U, V)|} — 0,

>l UeF|,VeFy,

where F/ is the o-field generated by {(Xy,Y;) : k = 4,...,j}(j > i). Further, we assume

3

that > p2 pr < 00

(A5) K(.) is a bounded symmetric density function with a bounded support in R. Further
[zK(z)dx =0, [2?K(z)dx = 03 > 0, and |K(z) — K(y)| < c|z — y| for any z,y € R.

(A6) For ey given in (2.8), there exists d,, — oo as n — oo, such that d, = o(n%_‘lgo), and

S g, Pk = o(n”5750),

The condition of bounded support of kernel function is imposed for the brevity of proofs,
which can be removed at the expense of longer proofs. In particular, Gaussian kernels are al-
lowed. The assumption that the process is p-mixing is also for technical convenience. In fact, an
autoregressive process satisfying some mild conditions is p-mixing (cf. Section 4.4 of Gyérfi et
al 1989). More detailed discussion on different mixing conditions can also be found in Bradley

(1986). Condition (A6) is not the weakest possible either.

Theorem 2. Suppose that conditions (A1) — (A5) hold. Then for h € H,, and z € {p(z) > 0},

Vih{ fan(@) = £() = 50203 f @)} <4 N©,p7 (0)0(s) [ K2 (w)du),

11



where 02 = [u?K (u)du, 0%(z) = Var(Y1|X; = z).

Theorem 3. Let wy,(.) = b~!w(./b), where w(.) is a density function with a bounded support,
and b~! = O(nf/?) as n — co. Suppose that conditions (A1) — (A6) hold, and = € {p(z) > 0}.
(i) Assume m is chosen in such a way that both m/n and (n —m)/n converge to some positive

constants as n — oo. Then, for h € H,, uniformly,

4 .
Mn(2,1) = b F @) p(e) + —0(@) [ K2 ()dutop(h! + ), (4.1)

(ii) Assume m/' is chosen in such a way that m'/n converges to a positive constant. Then, for

h € H,, uniformly,

4 .
Ml ) = "o @) Pp(@) + —0%(0) [ K2 )du+ op(t + ), (4.2

where M,,,(z,h) and M,,(z,h) are defined in (2.14) and (2.12) respectively.

Remark 3. Similar to Theorem 3, we can prove that if w(.) is a density function with a compact

support contained in the support of p(.), then

= h;ag /{f(x)}Qp(z)w(m)dm + % /02(m)w(x)dx/K2(u)du + op(h* + n_lh) (4.3)
Theorem 4. Let w,(.) = b~!w(./b), where w(.) is a density function with a bounded support,
and b~! = O(n®/?) as n — co. Assume m is chosen in such a way that both m/n and (n —m)/n
converge to some positive constants, as n — oo. Then, under conditions (Al) — (A6),

My, (z, by () P
1
fper. Mp(z,h)

where M, (z,h) is defined as in (2.14) and H,, is defined as in (2.8).

Theorem 2 is a corollary of Theorem 1 of Yao and Tong (1996). We now prove Theorems 3
and 4 in a sequence of lemmas.
Lemma 1. Assume that conditions (A1) — (A5) hold. Then for any compact subset G C R,

sup  |s;(z) — E{sj(x)}| 20, j=0,1,2,
z€G,h€Hy

12



where s;(.) is defined as in (2.4).

Proof. To indicate the dependence of s; on h, we write s;(z,h) = sj(z) when necessary.

For any z € G, h € H,, and ¢ > 0, it follows from Tchebychev inequality that

«(%))
{(th (Xk - m) X (th— :c) X (th— x)}
(Xl ) (P ﬂ}

c 2 1—x 2(X1—:1:>
< = E K
- nh+nh2e2 {( h ) Zpk

< ecn = Tp-

P{|33( z) — Esj(z)| >

st e{ (%

IN

)
)

nh2

We cover G x H,, by a finite number of open balls By, centered at (zj, h®)), k=1,...

such a way that
G x H, CUr By, I, =00 (logn)?),
and for (z,h) € By,
z — x| + [h — h®)| < n=21/5+20)  1og .
Hence, for (z,h) € By,

Xt—.’lj Xt—CCk

‘Xt—x Xt—xk

‘Xt—a:k Xt—ilIk

h(k) h h(k)
_ 1 | X — $k| (k)
X, —
< max {c, %} nV/50 o — z| + |h — BO}
< max {c, M} n~(1/5+20) /1og n.

h

Therefore, by condition (A5), we have that

Xt—.’,C Xt—.’,C 1 Xt—iL'k J Xt—.’,Ck
h( h >K< h >_h(k)( h(F) )K< Q) )‘

—z X;—z 1 _
— - th(k) | = O((logm) ™).

k 1
< — — —
<5 +c\h

The above limit holds uniformly for all ¢. Consequently,

P{ sup |[sj(z) —Es;(z)| > ¢}
r€G,heHy,

13

(4.4)

yIn, In



= P{ sup |sj(z,h)—Bsj(z,h)| 2 e}
reG,heH,

= P{max |s;(ow b)) - Bs;(op, h9)] + O((logn) ™) > e}

< lp-mp+o(l) =0, (4.6)

and the limit follows from (4.4). The proof is completed.

Lemma 2. Assume that conditions (A1) — (A6) holds. Then uniformly for h € H,, and z in any
compact subset of {p(z) > 0},
(i) T Y KA (X5E) T 02(x) [ K*(u)du, where ¢ = Y — f(Xy),

(ii) sy S (X572)2 K (X=2) 25 2.

The proof of Lemma 2 is similar to that of Lemma 1 and is omitted here.

Lemma 3. Assume that the conditions of Theorem 3 hold. Then uniformly for h € H,, and
z € {p(z) > 0},

. _ A _ (414

(1) iy s S 2 (X F (00K (B2 Y (X — ) = o (m~ (4450,

X Vw, (X — )

Xk_Xi)K(th

(ii) m S hemi1 Di<ici<n P (Xp)eig K (245
FH),

= Op(m_(
(i) o2y S €f (X0)wn (X — ) = op(m~(H40)),
(V) sy St Ty ep ™ (KK (275 ) wa (X — 2) = op(m=(G40)).

Proof. We only show (i). The proofs of the rest are similar in principle, although more technical
details will be involved in the proof of (ii).

Let I1(h) denote the LHS of the equality in (i). By the definition of p-mixing condition,

ELM) < — S S g {Var(e)}

m(n—m) i

. {Va,r [f(Xk)P_l(Xk)wn(Xk _2)E {K (u> ‘ XkH }%
ch2  mVem)

4

< Y o € Y = ofm ). (47)
( mb, S n(n—m) =

We decompose the variance into four parts as follows.

Var(ih)) = ¢ X X 4+ X X Y Y o+ Y%

m<k=I<n1<i=j<m m<k=I<n 1<i,j<m m<k,i<n 1<j=j<m  m<k,l<n 1<i,j<m
i#j k£l k£l i#£j

14



h2
m2(n —m)?

Foxp e (T2 ) wa - o))

Cov { (e (et (FE ) (X — ),

= I+ I+ i3 + I14- (4.8)
Note that
i < e 2 % (B (Feitior o s (F5)
- K (Xl ;Xj)k:n(Xklij x)wn (X; — x)) ‘
+ [ (Fp ek (P2 ) wa(X - o)
e (Foup ek (P2 ) wn(xi - 0)) |
< — (2h2 m<kzl<n 1<l<2]<m pj—i{Var( 61)}% (Va,r{E [K (@)‘X;ﬂ]
k#L i#]
- f(X@f'(Xl)p—l(Xk)p—l(Xl)ejK (B2 w5, s (- ) )
+m7 X eV (e}
k#l l#]fm X
: (Var {f'(Xk)p—l(Xk)wn(Xk —2)E [K <L> ‘ Xk] }) :
ch?’1 ch*
< m2(n — m)2b mchKn 1<§<m pj=i T m2(n — m)2b1/2 M;Sn 15i<zjgm Pk—i

k#l i£j k£l i£j

On the other hand, it is easy to see that Iy = O(m 2h3b 1Y), I1s = O(m 'h*~!), and I3 =
O(m~'h*~1). Tt follows from (4.8) that

3l
Var(I1(h)) = O <h—2) =o0 <m7350m*2(%+45°)) =T,

mb

for all h € H,,, where the last equality follows from the fact that ¢y < ﬁlo, and b~! = O(no/?).
We cover H,, by a finite number of open intervals By, centred at h¥), k =1,...,l,,, in such a
way that
Hy CU By, by = O(m*° logm),

and for h € By,
|h — h®)| < m=1/5=%0 [ log m.

15



By (A5), for h € By,

Xy — Xy k) - [ Xk — Xi X — Xy Xy — Xy
‘hK( h )_h K{—w <hiK h A0

Xe — X5 — X k k —1/5—
+K( 7R )‘h R < =B =R b= )| elh — WO < em™H/5m%0 [ log m.

Consequently, for any h € By, (1 <k <),

m

I (h) — T ()] < Cm_l/s_go/logmm Z > p T X (Xk)erwn (X — ),
k: m+1t=1

which is independent of k and is of the order O,(m /=50 /logm).
For any & > 0, let e(m) = e(h* + #) Then,

P{ sup |I1(h) — EL(h)| > €(m)}

heHp,

: P{m 80) RO + s 100~ 580 om0 > o
< Z P{IL(H®) = E{L (BD)}] > e(m)/2} + P {o,(m™"/70) > e(m) /2]

< 4{e(m)}? 2 Var{I; (h")} + o(1) — 0.
k=1

Now, (i) follows from (4.7) immediately. The proof is completed.

Proof of Theorem 3. Let G C {p(z) > 0} be a compact subset, and h € Hp,. It follows

immediately from Lemma 1 that for £ € G uniformly

-1

(See (2.4)). It follows from (2.1) and (2.3) that

@) = oy LK (T il 4 oy

uniformly for z € G. Similar to (2.1), we have 8 — 8 = (X"WX) ' X"W (Y — X). Note that

K(.) has a bounded support. We have that for z € G, uniformly,
X m
Frp(2) = (2) {mhp a2k
1 -z
B {mhp ( > at

- {mhp ; (Xt ) + %f‘(w)hZU(z)} {1+ 0p(1)}, (4.9)

%) - 1(a) - @)X - x)}} {1+ 0p(1)

f )(Xi — ) + Op(hQ)}} {1+0p(1)}

16



the last equality being a consequence of Lemma 2 (ii). By Lemma 2 (i),

~ 4 m .
(nate) - 1007 = { @b+ s 3 e (225)

t=1

mp(z) Pt h
1 X, —x X
+Wwwmkg%;@K(,l)K(1h)}ﬂ+%m}

)

Therefore,

My () ={Eﬁ 1 f:ﬁmm%mm—m

4 n—m el
5 0 (Xk) .
! mh/ lc:%—l—l p(Xk) wn(X =)
O = € -1 Xt _Xk w .
" m(n_m) k—zm:+ltglf(Xk) v (Xk)K< h > n( Xk —2)

e Y —— Z > eep A(Xp)K (@)

m? Ic m+11<i<j<m
X;— X
-K(JT—men—m}u+%m}

By Lemma 3 (i) and (ii), the last two terms on the RHS of the above expression are of the order
op(ht + #) The asymptotic expansion (4.1) follows from the Ergodic Theorem immediately.

The proof of (4.2) is similar and omitted here.

Proof of Theorem 4. Let

CVp(z,h) =

Z (Vs = fnn(X0) Pon (X, — ).

t m—+1
Similar to Hardle and Vieu (1992), in order to prove Theorem 4 it is sufficient to show that
My, (z, h h') + CVp(z, h') — CVip(z, b
wup Mn(@.h) = Mun(, 1) + OVin(a, 1) = CVin(a, )|,
h,h € Hi Mim(x, h)

0. (4.10)

For each m, let hy,, h!, € H,, be the maximizers of the LHS of the above expression. Note that

for any h,

CVip(z,h) — My (z,h) =



= Z ee{ f(Xt) — fm,h(Xt)}wn(Xt —x)

L L —
Hence,
My (2, h) — My (, ') + CVin (2, 1) — CVin (3, 1)|
2 n A
< T t:%l e f(Xt) = frnn(Xe) }wn (X — 2)
2 n .
t o t:%l e{f(Xt) = fmp (Xt) }wn (X — z)) .
By (4.9),
L SN ) — o (K0 (X — ) = =0 SN F O (X, — )
n = t t m,hm t n t — 2(71/ — m) o t t n t

+m i f:th_l(Xt)K (th:nXt) wn(Xt —.’L‘).

M t—m+1 =1

It follows from Lemma 3 (iii) and (iv) that
M (2, hin) — Mo (2, Bly) + CVin (@, hi) = CVin (@, )| = 0p(m~(5F450)),

On the other hand, by (4.1),

My (z, hpy) = Op(hfn + L) — Op(m*(%+4€0)).
mhm,

Therefore, (4.10) holds. The proof is completed.
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Captions

Fig.1. The boxplots of the selected bandwidths by hgp, the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.2) with (a) p =10.9, (b) p=0.5, (c) p=0, (d) p= —0.5, and (e)
p=—0.9.

Fig.2. The boxplots of the ISEs corresponding to hep, the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.2) with (a) p =10.9, (b) p=0.5, (c) p =10, (d) p = —0.5, and (e)
p=—0.9.

Fig.3. The boxplots of the MSPEs corresponding to the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.2) with (a) p =10.9, (b) p=0.5, (¢) p=0, (d) p= —0.5, and (e)
p=—0.09.

Fig.4. The boxplots of the selected bandwidths by h,y, the new method (2.9), and CV(k) for
k=1,3,57 and 9 for model (3.3) with (a) p=0.9, (b) p=0.5, (c) p=10, (d) p = —0.5, and (e)
p=—0.9.

Fig.5. The boxplots of the ISEs corresponding to hep, the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.3) with (a) p =0.9, (b) p=0.5, (c) p =10, (d) p = —0.5, and (e)
p=—009.

Fig.6. The boxplots of the MSPEs corresponding to the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.3) with (a) p =0.9, (b) p=0.5, (c) p=10, (d) p= —0.5, and (e)
p=—0.9.

Fig.7. The boxplots of the selected bandwidths by hgy, the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.4) with (a) p =1, (b) p =2, and (c) p = 3.

Fig.8. The boxplots of the ISEs corresponding to hept, the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.4) with (a) p =1, (b) p =2, and (c) p = 3.

Fig.9. The boxplots of the MSPEs corresponding to the new method (2.9), and CV(k) for
k=1,3,5,7 and 9 for model (3.4) with (a) p=1, (b) p =2, and (c) p = 3.
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