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1 Introduction

Motivated by the problem of predicting a future value from observations of a particularly
heavy-tailed but stationary time series, we consider robust nonparametric methods for
estimating location from time-series data. When the marginal distribution has relatively
light tails, and in particular finite variance, prediction is typically accomplished using
the conditional mean. However, such techniques generally give poor performance when
variance is infinite. We discuss the conditional median as an alternative in such cases,
and suggest a local least-absolute-deviations estimator of the median, given the recent

past.

Our method borrows ideas from robust approaches to nonparametric regression for
independent data, where L; methods based on local polynomials have been considered
by several authors; see Fan and Gijbels (1996, p. 199ff) for discussion, and the literature
survey at the end of this section for further references. In the time-series case, related
techniques based on local medians, equivalent to locally fitting a polynomial of order 0,
have been considered by, for example, Truong (1989, 1991, 1992a,b) and Truong and
Stone (1992). Our analysis differs substantially from that of other authors, in that
we employ local-linear fits and focus sharply on the case where variance is infinite and
data are correlated. The local-linear approach gives substantially reduced bias at the

boundary.

We take the view that the virtues of robust methods are clearest when the conditions
under which their more conventional, least-squares competitors are defined are violated.
Thus, when we treat conventional least-squares local-linear methods (see section 3) we
assume that the sampled data are generated by a mixing process for which the error
distribution is in the domain of attraction of a stable law. In that context, consistency
is only assured when 1 < o < 2, where « is the index of the stable law, and even then

the limiting distribution is non-normal.

We show that when 1 < o < 2, and relative to the case where error variance is finite,
the order of the error about the mean of the least-squares estimator is inflated by a factor
(nh)(2=®)/(22) ¢(n), where h represents bandwidth (depending on sample size, n) and ¢
is a generic function that is slowly varying at oo. Since, in asymptotic terms, nh — oo

as n increases, then the inflation of stochastic error can be substantial. Moreover, an



additional term, which can be as large as (nh)~(@~D/@ f(n), is incorporated in the bias
expansion. The net result is that both bias and error about the mean of least-squares
estimators are liable to be substantially larger when variance is infinite than in the
finite-variance case. Importantly, these two penalties can be virtually the size; even if

the stochastic term could be suppressed, bias could render the estimator uncompetitive.

We prove that, by way of comparison, local-linear methods applied in the L; norm
have the same orders of variance and bias, when applied to very heavy-tailed time series
(in particular, to processes with stable marginals), as they do when variance is finite. See
section 2. Of course, the ‘target’ function here is different from that in the least-squares

case, although the two agree when the error distribution is symmetric.

There is a substantial literature on nonparametric regression with time-series data,
including for example work of Robinson (1983), Truong (1991, 1992b) and Yakowitz
(1985a, 1985b, 1987) on kernel and k-nearest neighbour methods for prediction, Truong
(1994) on local polynomial techniques in the least-squares setting, Roussas, Tran and
Toannides (1992), Tran, Roussas, Yakowitz and Truong Van (1996) and Robinson (1997)
on kernel nonparametric regression with fixed design, Roussas and Tran (1992) on re-
cursive kernel methods for time series, Csorgé and Mielniczuk (1995a,b,c) on regression
for both short- and long-range dependent data, Hall and Hart (1990) and Deo (1997) on
the case of long-range dependence, and Chu and Marron (1991), Robinson (1994) and
Ray and Tsay (1996) on bandwidth choice. Gyorfi, Hardle, Sarda and Vieu (1989) and
Hérdle (1990, Chapter 7) reviewed the literature up to the late 1980’s, in addition to

making their own contributions.

The practical importance of robust methods for parametric regression has motivated
extensive study of related techniques in nonparametric contexts. Some have their roots in
approaches suggested by Héardle (1984) and Hérdle and Gasser (1984). Mallows (1980),
Velleman (1980), Truong (1989), Hardle (1990, p. 69f) and Fan and Hall (1994) addressed
local median smoothing for independent data, Tsybakov (1986) and Fan, Hu and Truong
(1994) developed robust methods for fitting local polynomials, Truong and Stone (1992)
and Truong (1991, 1992a,b) discussed robust nonparametric regression for time-series
data, Wang and Scott (1994) developed L; methods for robust nonparametric regression,
Leung, Marriott and Wu (1993) and Wang (1994) considered bandwidth choice in robust

nonparametric settings, Smith and Kohn (1996) treated Bayesian methods for robust



nonparametric regression, and Welsh (1996) suggested robust quantile methods and M-

estimation methods in the context of nonparametric regression.

2 Definition and parametric models

2.1 Conditional medians

Let {Y;} be a real-valued time series. Our goal is to predict future values Y,,,,, for m =
1,2,... from observed values Y,,,Y,,_1,.... If ¥; has finite variance, the most frequently
used point predictor is the conditional mean E(Y;ymn|Ys, Y1, ..), which is optimal in
the sense of minimising the mean squared error E{(Y,, 1, —a)?|Yy, Yo 1,...} over a € R.
When variance is infinite, one natural choice is the conditional median of Y, ,, given
Y., Y, 1, ..., which we denote by M (Y, 11 |Yn, Yau_1,-..). When E|Y;| < oo, the predictor
Yoim(n) = M(Yaim|Yn, Yo 1,...) is optimal in the sense that it minimises the mean
absolute deviation E{|Yym —al||Yn, Ya_1...}. Further, when E|Y;| = oo but E|Y;|° < oo
for some 0 € (0,1), Y4 (n) is still optimal in the sense that

sg0{Ymin(n)} [Yimin(n)]® = argmin £ {Isen(Yoim) [Yaim|' = af | Yo, Yarr,. b (21)

When {Y;} is Markovian of order p (i.e. Y; is independent of {Y; ,.;,4 > 1} given
Yi1,-.-, Y;f—p)a Yoim = M(Yn+m|Yna S Yn—p+1)-

2.2 ARMA(p,q) models

Suppose {Y;} is defined by an ARMA equation
Y; — CL1Y;5_1 — ... CLpY't_p =&+ b1€t_1 + ...+ bqgt_q , (22)

where {e;} is a sequence of independent and identically distributed random variables.

We assume that Y} is causal, in the sense that it has an MA(oco) representation,
o
Y, =) cjey, forallt, (2.3)
§=0
where ¢y = 1. We also suppose that the process is invertible, in the sense that

€ = Zde;_j, for all ¢ (2.4)
3=0
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where dy = 1. Explicit regularity conditions are given at (2.8) and (2.9) below. Then

the following statements hold.
(a) Let M(Z) denote the median of a random variable Z. Then,
p q
Yn—l—l(n) = M(8n+1) + Z a;Yni1-; + Z bj6n+1—j .
=1 j=1

When M(e;) # 0, Y,41(n) is not a homogeneous linear function of the se-
quence Y, Y, _1,.... Therefore, we deal with predictors different from those

of Cambanis and Soltani (1984), and Cline and Brockwell (1985).

(b) It follows from (2.3) and (2.4) that for any m > 1,

m—1 00
Yn+m(n) = M( Z Cj5n+mj> + Zcmﬂsn,i (25)
=0 i=0
m—1 00
_ M(sn+m S A Yn,Yn_l,...) S iV
j=1 =0

Further, Y;,,,, can be expressed as Yy m = > o<j<cm—1 Cj€ntm—j+ 2i>0 PiYn i
Correspondingly, Ynim(n) = M(Xi<j<m CiEnim—j) + LisoPiYn—i, Where
{g;} is a sequence of constants.

(c) If the distribution of &; is symmetric (about 0), so too is the distribution
of Y;. Further, the conditional distribution of Y,,,,, given Y,,,Y,,_1,... is then

symmetric about Y;,,,(n), which is a linear combination of ¥;,,Y;_1,.... In

fact for any m > 1,
D q
Yoim(n) = Z a;Ynim—j(n) + Z bi€nim—i(n), (2.6)
j=1 =1

where Y;(n) = Y; and €;(n) = ¢; for j < n, and ¢j(n) = 0 for j > n. (See
model (2.2).) With the additional condition that E|e;| < oo, it holds that
Yn+m(n) - E(Ym+n|Yn, Ynfl, .. .).

2.3 Stable ARMA (p, ¢) models

A typical example of time series with infinite variance is an ARMA process defined in

terms of a sequence of independent and identically distributed stable disturbances (see



Mikosch et al., 1995). A random variable Z has a stable distribution, with shape (or
index), scale, skewness and location parameters a, o, § and p respectively, denoted by
Z ~ Su(0, B, 1), if its log characteristic function has the form

log B(¢7) = iut — o®|t|*{1 — ifsgn(t) tan(re/2)} a#1, 2.7)

ipt — oft|{1 + iBsgn(t) (2/m)log|t[} a=1,
where o € (0,2], 0 > 0, p € (—00,00), and 8 € [—1,1]. It is easy to see that when
a#1,(Z—p))o~Su(1,5,0). When o = 2, Z is a normal random variable with mean
p and variance 20?. When o = 1 and 8 = 0, Z has a Cauchy distribution. For further
properties of stable distributions we refer to Zolotarev (1986) and Samorodnitsky and

Taqqu (1994).

Let {&;} be sequence of independent random variables with the common distribution
Sa(0,B,0). For the sake of simplicity, we assume § = 0 if « = 1. Given constants
Co, - - - Cq, define Y; = 375 ¢jen—j. Then, {Y;} is a strictly stationary MA(g) process. Its
marginal distribution is still stable with index a and location parameter 0. In fact, the
doubly infinite series Y c;e; converges absolutely, with probability 1, to a stable random
variable with index «, provided Y |¢;]° < oo for some 0 < § < min(a,1). Hence,
the ARMA equation (2.2) defines a unique, strictly stationary time series {Y;} with an

a-stable marginal distribution, under the condition that

l—az—...—ap2?P #0 forallz|<1. (2.8)
Further, Y; is invertible if

I1+bix+...+b2?#0 forall |z| <1. (2.9)

We assume that both (2.8) and (2.9) hold, and the two equations have no common roots.

Below we discuss two special stable ARMA processes.

The main difficulty when o =1 and 8 # 0 is that of certering the error distribution
and hence the distribution of Y;. For a > 1 the mean is finite, and means may be
taken as the centers of either distributions. When a < 1, centering is necessary only for
notational convenience, and does not play a substantive role. But for o = 1 centering is
important, the mean of ¢; is not well defined, and a suitable center for distributions of

g; and Y; will not necessarily be 0 unless g = 0.



(a) Symmetric ARMA processes

Let the distribution of £; be symmetric, namely ¢, ~ S,(0,0,0). Then Y; ~
Sa(04,0,0) where o, = 0 (T50 |¢i|*)"/* (see (2.3)). For any linear form &, = 350 ¥;Ya—;
such that ;5 [1;|* < oo for some d € (0, ), Ypin — & is an a-stable random variable

with scale parameter
m—1 00 1/a
(X Il + 3 lemes—wil") "
From (2.5) we may deduce that this parameter attains its minimum value when &, =
Y, +m(n). Therefore, for symmetric stable ARMA time series, the conditional median is
also the optimal linear predictor in the sense of minimising the scaling parameter of the

predictive error, which is also the minimum dispersion predictor studied by Cline and

Brockwell (1985). Note too that for any 6 € (0, «),
1/6 m—1 N 1/a 1/6
{EWain = Yoem@)} " = (X lesl®)  (Bl)

=0

which is the minimum value of E(|Y, m — &,|°) over all linear &, specified above. When
g = 0 (i.e. when {Y;} is an AR(p) model), the above é-norm predictive error can be
expressed in terms of the autoregressive coefficients:

{E‘Yn—km - Yn+m(n)|5}1/6 = )‘m (E“Strs)l/a ’ (2'10)

where A, > 0 is a constant depending on ay,...,a,. In fact \y = 1, A\, = (A%, +

[lm_1|%)"/* for m > 1, where £; = Y i<j<min(ip) @jli—j for i > 1 and £y = 1.

(b) MA (oo)-representation with non-negative coefficients

Here we assume that e; ~ S,(0,3,0) and all the coefficients ¢; in (2.3) are non-
negative. The latter property is implied by the condition that in model (2.2) all b;’s are
non-negative and all roots of the equation 1+ 37, a;x? = 0 are greater than 1. The
assumed conditions imply that Y; ~ S, (04, 5,0), with the same o, as before. It follows

from (2.5) that

m—1 l/a m—1
Yiim — Yoim(n) ~ Sa{< Z cj‘) o, B3, —M( Z Cj€n+m_i) } )
Jj=0 Jj=0

Note that M (Y o<j<m—1 CiEntm—-i) = (Zo<j<m—1 c?)l/a M (e¢). Hence, for any § € (0, a),

(B = Yarnol) " = (£ )" {olec - arte)

1/6
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For AR(p) models, the coefficient (X o<;j<m 1 c;?‘)l/"‘ can be replaced by \,,, defined as
in (2.10).

3 Nonparametric estimation

For parametric models, such as linear autoregressions, we predict Y, m by Yoim(n) =
Y1<j<p @ Xnim—j(n) (compare (2.6)) with all a;’s replaced by their estimates. For es-
timation of those autoregressive parameters we refer to Davis, Knight and Liu (1992),
Resnick (1997) and references within. Although the linear autoregressive model offers
attractive features for analysis, the class of linear autoregressive models is arguably too
small for modelling real data with heavy tails. See Resnick (1997) and its discussion by
R.J. Adler.

When we do not have sufficient knowledge about the underlying model, one possible
approach is to use nonparametric methods. In the prediction context we would estimate
(e, ..., xp) = M(Yoim|Yn = 21,..., Yopt1 = x,) from observed data {Y7,...,Y,} in
order to predict Y, ,,. To avoid the difficulties associated with the ‘curse of dimension-
ality’, p would be chosen small. In the sequel we assume p = 1, for the sake of simple

presentation. Similar results also hold for p > 1; see Remark 6.

Thus, we wish to estimate the conditional median p(z) = M(Y;|X; = z) from ob-
served values {(X;,Y;),1 < i < n} of a strictly stationary process {(X, Y;)}. In the

context of m-step ahead prediction for a time series {Y;}, we would take X; = Y;_,,.

3.1 Least absolute deviations estimation

Note that p(z) is the minimiser of E(]Y; — a| |X; = x) over a. Hence, we may define

fi(z) = 6;, where (6;,6,) minimises

i_il Y; — 6 —92(Xi—ac)|K(Xih_ x) , (3.1)

K is a kernel function and A > 0 is a bandwidth. This is the local linear least-absolute-

deviations estimator.

Theorem 1 below states that the estimator fi(z) is asymptotically normal with mean
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w(z)+0O(h?) and variance of size (nh)~!. To state the theorem we first introduce notation.
Let f(-) denote the marginal density of X, let g(-|x) be the conditional density function of
Y; given X; = z, and put g,(z) = g{u(z)|z}. We write m(z) = (0/0z) m(z) and m(z) =
(0/0z)* m(z). Let k1 = [K?, 09 = [u? K(u)du and o(z)? = k1/{4 f(z) gu(z)?}. We
shall use C' to denote a generic positive constant. The theorem holds under the following

regularity conditions.

(C1) For fixed z, f(z) > 0 and g(y|z) > 0 is continuous at y = u(z). In
a neighbourhood of z, p(-) has continuous second derivative, both f(-)
and g(y|-) have continuous first derivatives, and E(]Y;|’|X; = -) < oo

for some § > 0.

(C2) The kernel K is a symmetric, bounded and non-negative function with

compact support.

(C3) The process {(X¢,Y;)} is strong mixing , i.e.

a(j)=  sup |P(A)P(B)—P(AB)| -0 as j — o0,

AEF,, BEF]

where F/ denotes the o-field generated by {(X;,Y;) : # < k < j}.

Further, 3,5, (7)%/(1+%) < o0 for some &y < 1.

(C4) h = h(n) — 0 as n — oo, and liminf,_,, nh*2% > 0.

Remark 1: Mixing condition. The strong mixing condition assumed in (C3) is mild in
the sense that the mixing coefficients are permitted to decay only polynomially fast. Any
process which admits representation (2.3) with exponentially decaying coefficients {c¢;}
and continuous ¢; is absolutely regular, therefore also strong mixing, with exponentially

decaying mixing coefficients; see Pham and Tran (1985).

Remark 2: Motivation for bandwidth condition. The method of proof of Theorem 1 in-
volves approximating fi by a linear estimator, and the latter involves the derivative of p(-).
Our demonstration that the linear approximation is sufficiently accurate requires the es-
timated derivative of u to be O,(1), and for that, the condition liminf,_, nh**2% > 0
is sufficient. The latter assumption is of little consequence in practice, however, since
it will follow from Theorem 1 that the optimal bandwidth is asymptotic to a constant

multiple of n~1/5, for which nh!*t?%0 — co.



Theorem 1. Suppose conditions (C1)—(C4) hold. Then as n — oo,
vnh {ﬁ(m) — u(z) — L h% 0y ,u(x)} 4y N (0,0(3:)2) :

Remark 3: Local constant estimators. Robinson (1984) discussed the local constant
version of regression by least absolute deviations. There the function estimator is given
by fi(z) = 61, and 0, is defined as the minimiser of (3.1) subject to 6, = 0. Local
constant estimators are more commonly encountered in a least-squares setting, where
they are equivalent to the Nadaraya-Watson estimator. In both the local constant and
local linear version of regressions by least squares, regularity conditions for a central limit
theorem generally require that F(Y?|X; = z) < oo, which is a substantial strengthening
of the moment condition in (C1). This reflects the fact that the variance of the limiting
distribution of a least-squares estimator if p is proportional to the variance of the Y

process.

Remark 4: Bandwidth choice. The theorem implies that, to first order, the asymptoti-
cally optimal bandwidth is ho(z) = {n(z) n}~'/°, where n(x) = oy |ji(x)|/o(z). We may
compute an empirical bandwidth 710 that is consistent for hg, in the sense that izo [ho — 1

in probability, by arguing as follows. Observe that

n(x) = ks |i(z)| fxy{n(x),z} f(ﬂﬁ)fl/2 )

where k3 = 0o/ lﬁi/ ? is known and fxy denotes the joint density of X and Y. Statistically
consistent, pilot estimators of f and fxy may be computed using conventional kernel
methods. Their properties for dependent data satisfying a mixing condition are well
known; see e.g. Hart (1984), Hart and Vieu (1984), Gyorfi, Hérdle, Sarda and Vieu
(1989) and Wand and Jones (1995 section 6.2.1). Moreover, Theorem 1 shows that, in
order to be consistent for u, i need only be computed using a bandwidth A that satisfies
condition (C4), so optimal bandwidth choice is not essential at this step. Likewise it may
be proved that under conditions (C1)-(C3), and (instead of (C4)) h = h(n) — oo and
liminf nh” > 0, ji may be estimated consistently from a local quadratic or local cubic
fit. Combining these properties we see that we may produce a consistent estimate 7(x)

of 7(z). Taking hg = {/(z) n}~'/> we obtain the desired plug-in bandwidth estimator.

Remark 5: Comparison with local medians. Local median estimators are defined by

minimising -, |Y; — 0| K{(X; —z)/h} with respect to 6, instead of minimising the series

9



at (3.1). In the time-series case, see for example the methods and results of Truong
and Stone (1992), where K is in effect the uniform kernel. These estimators share with
ours the orders h? and (nh)~! of bias and variance, respectively, at interior points of
the design interval. However, the absolute value of their bias increases to O(h) at the
boundary, where it may be shown that our techniques continue to enjoy O(h?) bias. A

proof of this property is similar to that of Theorem 1, and so is not given here.

Remark 6: Generalisations to higher dimensions and higher degrees. There are no dif-
ficulties extending Theorem 1 to the case of p-variate regressands X. There, asymptotic
bias remains at order h?, and asymptotic variance changes to order (nh?)~!. Conditions
(C1)—(C3) should be modified in obvious ways, and (C4) should be altered by asking
that h — 0 and lim inf nhA?*? > 0. High-order generalisations of the method, to L, fitting
of polynomials of arbitrary degree, produce estimators of p(z) with biases of the same
orders as in the Ly case (see Ruppert and Wand (1994) for the latter) and variances of
order (nh)~! (provided p = 1).

3.2 Least-squares estimation

As in the parametric case we can also consider least-squares estimation of u(-). For
example, suppose the process {(Xy, Y;)} is generated from model Y¥; = ¢(X;) + &;, where
{e:} is a sequence of independent and identically distributed random variables, and ¢;
is independent of {(X;,Y;_1) : 7 < t}. Then u(z) = ¢(z) + uo, where py denotes the
median of &;. The least-squares local-linear regression estimator is defined as @(z) = o,

where (61,02) is now the minimiser of

g{” 0 - 0%, — ) K (FL0).

As a prelude to deriving the rate of convergence of @(x) we assume that the distri-

bution of ¢; varies regularly at infinity with index —«. That is,
P(ley| > 2) = 2 “L(z), (3.2)

where the function L is slowly varying at infinity. It is easy to see that for such a
distribution, the second moment is infinite when a < 2, and the mean fails to exist when

a < 1. In the sequel we always assume a € (0,2). We also suppose that the tails of the
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distribution of ¢, are balanced, in the sense that
215130 P(ey > 2)/P(lee] > 2) =p € ]0,1]. (3.3)

Under (3.2) and (3.3), the normalised partial sum of {¢;} converges in distribution to a
stable distribution with index «. See Section 17.5 of Feller (1971). Finally, we assume
that

(C5) For fixed z, f(z) > 0 is continuous at z. In a neighbourhood of z, ¢(-)

has second continuous derivative.

(C6) The kernel K (-) is symmetric and non-negative with compact support.

Further, K(-) is bounded away from both 0 and oo on its support.

(C7) The process {(X;,Y;)} is p-mixing, i.e.

p(7) = sup |Corr(U, V)| - 0 asj — oo,
UEL2(F;), VEL2(FY)

where F/ denotes the o-field generated by {(X,,Y;) : i < t < j}.
Further, 375, p(j) < oc.

(C8) Asn — oo, h — 0 and nh — oc.

Put Ky = K{(X; — x)/h}, let a, be the infimum of values satisfying
P(le K| > an) <1/n, (3.4)
and define b, = F{e; K; I(|e:K:| < a,,)} when « € [1,2), and b, = 0 otherwise.

Theorem 2. Assume that 0 < «a < 2, that conditions (C5) — (C8) hold, that the
distribution of ¢; satisfies (3.2) and (3.3), that p = 1/2 when o = 1, and that E(g;) =0
when o > 1. Then,

" o) {510) — ola) ~ 1235} — by L

as n — oo, where the random variable S* admits the representation

o0

s =3 [6r; = @p-nE{r;"10<1;" <1}]
j=1

11



T; = YL, Wi, {W;} is a sequence of exponential random variables with unit mean, {&;}
is a sequence of 0-1 random variables with P(§; = 1) = p, and the variables W;, ; for

1 > 1 are totally independent.

Remark 7: Consistency of ¢ for ¢. If a € (1,2) then nh/a, — oo and b,/h — FEe; =0,
implying that @(x) is a consistent estimator of ¢(z). However, nh/a, — 0 when « < 1,
and does not necessarily diverge to +00 when a = 1. It follows from Theorem 2 that

@(x) is not consistent in such cases.

Remark 8: Rate of convergence of ¢ to ¢. To assess the size of a,, let us suppose
that h is asymptotic to a constant multiple of n7¢ for some 0 < ¢ < 1,and 1 < a < 2.
Then, a, = (nh)® ¢ (n), where ¢; denotes a function that is slowly varying at oo.
Therefore, the error of the estimator ¢ about its mean is of order (nh)~(@=V/2f,(n),
which increase from virtually order (nh)~'/? (the value it has when the error variance
is finite) when « is close to 2, to (nh)~", for n arbitrarily small, when « is close to 1.
Moreover, while b, vanishes in the case of a symmetric error distribution, b, /h can be as
large as (nh)~(@=1/2¢3(n). In view of Theorem 2, there is a contribution of this size to
the asymptotic bias of ¢, and this is additional to the standard bias term, of order AZ.
Moreover, modulo a slowly varying function, (nh)~(®~1)/2/f3(n) has the same behaviour
as (nh)~(@=V/@f,(n), representing stochastic error. The net result is that, although ¢ is

consistent for ¢ when 1 < a0 < 2, the rate of convergence can be particularly poor.

Remark 9: Comparison with parametric cases. Asymptotic properties of parametric
estimators are radically different from those presented in Theorems 1 and 2 above. As
an illustration, consider the simple AR(1) model Y; = aY; | + &, where |a| < 1 and
e, satisfies both (3.2) and (3.3). A ‘compensation’ for the difficulties associated with
heavy tails is the fact that a parametric estimator @ converges to a in probability at
a rate faster than n~ /9 for any § > «, and in particular faster than the rate n~'/? in
the case of finite variance. Here, @ could be either the least-squares estimator or the
least absolute deviations estimator (Davis, Knight and Liu, 1992). Cox (1966) gave an

intuitive explanation of this phenomenon. See also Hannan and Kanter (1977).

The price paid for this fast convergence rate is the particularly slow rate at which the
distribution of @ can converge to its stable limit; see Adler, Feldman and Gallagher (1997,

section 3.4). The rate can be slower than n~" for any given n > 0; for example, this rate
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obtains if the slowly-varying function L(z) at (3.2) has the form C; 4+ Cy2=*" 4 0o(2~*"),
for constants C; > 0 and Cy # 0. From a statistical viewpoint, this problem is brought
about by the fact that the least-squares approach used to construct @ can be far from
optimal when the marginal distribution of {Y;} is heavy-tailed. In marked contrast, it
may be shown that under smoothness conditions (as distinct from tail conditions) on
the distribution of ¢;, the rate of convergence of the distribution of fi to its limit is
O{(nh)~/2}, in the sense of a Berry—Esseen bound. As a result, tests or confidence pro-
cedures based on local-linear methods in L; can have greater level or coverage accuracy

than their parametric counterparts.

Appendix: Qutline Proofs of Theorems

A.1 Proof of Theorem 1

We prove the theorem only in the case Jy > 0, and divide the proof into two steps,

addressing 6 > 1 and § < 1 respectively.

Step 1: When 6 > 1, E|Y;| < co. The main idea of the proof is to approximate the series

t (3.1) by a quadratic function whose minimiser is asymptotically normal, and then
show that our estimator is close enough to the minimiser to share the latter’s asymptotic
behaviour, as implied by the convexity lemma of Pollard (1991). We sketch the proof

below.

Let K; = K{(X;—xz)/h}, Z; = (1,(X; —x)/h)", Y;* = Y; — u(z) — pu(x) (X; — z) and
0 = vVnh (i(z) — p(z), h{f(z) — iu(z)})T. For 8 = (61, 6,)T € R2, define

)= 3 ¥e — (67 2k — Y K, (A1)

i=1

R(0) = G(0) = f(z) gu(x) (67 + 6300) +

1

0" > Z; D(Y;) K;, (A.2)
where D(y) = I(y > 0) — I(y < 0). Then @ is the minimiser of G(6).

We first prove that R(6) — 0. In view of (A.1) and (A.2), R(§) = Yi<icn Ti —

13



f(z) gu(z) (0% + 6300), where
= [[V;" = (0" Zi/Vnh)| = |Y;'| + {67 Z:D(Y;") /V/nh}| K
After algebraic manipulation we obtain,
E(T)) — n~ ' f(z) gu(z) (62 + 0200) = o(n™"). (A.3)

Hence, E{R(f)} — 0. Therefore, in order to prove that R(f) — 0 we need only show
that Yy<icn (T3 — ET;) — 0. Note that

[la+ 0] —[a] = D(a) b[ < 2[b| I(|a] < [b]),

that K(-) has a compact support, and that g,(z) > 0, whence it follows that for any
v 20,

3

) < gy E{O7 2 K 1y < oV

= 0 (n—(3/2+7)h—(1/2+7)) ]

B (17

Applying Theorem 3 in Doukhan (1994, p. 9), with r = 1+ ;' and p = ¢ = 2(1 + &),

we may show that

7

n—1 1
< Ch) V2 +C Y (n— i) a(i)o/0+6) (n—(3/2+50) h—(1/2+50)) /
i=1

— O {(nh) /2 4 120500} po(2i0) 20000}

n—1

>6} < E:ET2 +2 > (n—1i) Cov(T1, Tit1)

=1

n

3 (T; - ETy)

=1

1460)

which converges to 0 since the second term on the right-hand side is of smaller order
than (nh?®)~1/{20+%)} see condition (C4).

Since R() — 0 then the convex function G(6) — (nk) /26T Yici<n Zi D(Y}) K;
converges to f(z) g.(x) (07 +6305). By the convexity lemma (Pollard, 1991), the conver-
gence is uniform on compact sets in R%. Using the arguments of Pollard (1991, p. 193)
we may show that the difference between the minimiser of 8 of G(6) and the minimiser
of

ﬁe i:ZlZiD(Yi)Ki‘i‘f(ﬂﬁ) gu(z) (67 + 0507)

14



converges to 0 in probability. This implies that

VAR (7))} = G )

n

DY) K; + op(l) . (A4)
1
Note too that

E{D(Y?) Ki} = 00 h® f(2) gu() () + o(h*),  E{D(Y]") K;}* = f(=) /K2+0(1)-

The required asymptotic normality now follows from Theorem 1 of Doukhan (1994,

p. 46).

Step 2: In Step 1, the condition E|Y;| < oo was used only in deriving (A.3). Hence, we
need only show that R(6) — 0 when E|Y}| = co. To this end, define

Yio = V(Y] <02, Yy = Yin — pla) — is(e) (X, — 2)

Further, let G,(0) and R,(f) be as at (A.1) and (A.2), with {Y;*} there replaced by
{¥;.}. It can be shown that u(z) — M(Y;,|X; = ) = O(n™?). Since g(y|x) is positive
and continuous at y = p(z), and E{|Y;,||X; = 2} < oo, we may show that (A.3) still
holds with {Y;*} replaced by {Y;%,}, and therefore R,(0) L.

On the set {|Y;| < n*°}, ¥;* = Y};,. Hence, for any 1 > 0 and sufficiently large n,

P{IGO) = Ga(®)| >n} < nP{||Y; = (67Z/Vnh)| - |¥}
— [V, = (07 Zi/Vnh)| + V3| | > n/n}
< nP (|Y;| > nz/‘s) =0(nn"?) =0,
In the same manner we may prove that 3, Z;{D(Y;") — D(Y;%,)}K; = op{(nh)'/?}. Fi-
nally,

R(0) = B (0) + G(6) = Gul) = 70" 3 ZAD(Y) = D)} K L5 0.

as had to be shown.

A.2 Proof of Theorem 2

By standard arguments, based on the explicit formula for @, it may be proved that

o) = plo) ~ b gle) = B S ek (FE) (g
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Thus, we need only show that a,' 3, (¢; K; — by) LN So. This may be done using
methods leading to Theorems 2 and 3 of Davis (1983), and to Theorem 2 of LePage,
Woodroofe and Zinn (1981), on noting that

(a) for any z > 0, limy_, limsup,,_, . Sk (2) = 0, where

[n/k]
Sk,n(Z) =N Z (tjl 4+ ...+ tj4)
7j=2
and ¢, for 1 < j < 4, runs over the values of P(+e1 K1 > anz, £6,K; > a,2)

for the four different combinations of the £ signs; and

(b) it holds that

lim limsup ~5 3" |Cov{er K, I(|esKi| < an), €51 1(|e;5] < anr)}| = 0.

T—0 n—o0 n ]:2
To prove (a), note that by (3.2) and (3.4) we have for any z > 0,
nli_)ngonP(|61K1| > apz) =2 ¢ (A.6)

Hence, from the definition of p(j) it follows that for C' > 0 sufficiently large,

[n/k] ]
Skal2)] < 4n S {P(eki] 2 @)} (1 +00— D} € = D {145 — 1)} < 20/k,

i=2

=
~
=

<.
||
N

which implies (a) .
To prove (b), first note that in view of the regular variation of the distribution of &,

a2 P(|le1Ky| > a,T)
E{e?K?I(le1Ky| < a,7)}

— a/{(2-a)r?}
as n — oo. From this result, (A.6) and the fact that

‘Cov{lel I(le1Kq| < a,7), ;K I(|e;K;| < anT)}‘
< p(j = 1) E{&K} I(je1Ky| < anT)}

we may prove that as n — oo,

2—«o
e

n
2P {2K7 (e Ky| < anT)} — -

Claim (b) follows from this result and condition (C7).
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