
Nonlinear Regression Estimation Using Subset-based Kernel

Principal Components

Yuan Ke

Department of ORFE

Princeton University

Princeton, 08544, U.S.A.

Degui Li

Department of Mathematics

University of York

York, YO10 5DD, U.K.

Qiwei Yao

Department of Statistics

London School of Economics

London, WC2A 2AE, U.K.

24 October 2015

Abstract

We study the estimation of conditional mean regression functions through the so-called

subset-based kernel principal component analysis (KPCA). Instead of using one global kernel

feature space, we project a target function into different localized kernel feature spaces at dif-

ferent parts of the sample space. Each localized kernel feature space reflects the relationship

on a subset between a response and its covariates more parsimoniously. When the observations

are collected from a strictly stationary and weakly dependent process, the orthonormal eigen-

functions which span the kernel feature space are consistently estimated by implementing an

eigenanalysis on the subset-based kernel Gram matrix, and the estimated eigenfunctions are

then used to construct the estimation of the mean regression function. Under some regularity

conditions, the developed estimation is shown to be uniformly consistent over the subset with

a convergence rate faster than those of some well-known nonparametric estimation methods.

In addition, we also discuss some generalizations of the KPCA approach, and consider using

the same subset-based KPCA approach to estimate the conditional distribution function. The

numerical studies including three simulated examples and two real data sets illustrate the reli-

able performance of the proposed method. Especially the improvement over the global KPCA

method is evident.

Keywords: Conditional distribution function, eigenfunctions, eigenvalues, kernel Gram matrix,

KPCA, mean regression function, nonparametric regression.

1



1 Introduction

Let Y be a scalar response variable and X be a p-dimensional random vector. We are interested

in estimating the conditional mean regression function defined by

hpxq “ EpY |X “ xq, x P G, (1.1)

where G Ă Rp is a measurable subset of the sample space of X, and PpX P Gq ą 0. We allow

that the mean regression function hp¨q is not specified except certain smoothness conditions,

which makes (1.1) more flexible than the traditional parametric linear and nonlinear regression.

Nonparametric estimation of hp¨q has been extensively studied in the existing literature such as

Green and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996), Fan and Yao (2003)

and Teräsvirta et al. (2010). When the dimension of the random covariates p is large, a direct use

of the nonparametric regression estimation methods such as spline and the kernel-based smoothing

typically perform poorly due to the so-called “curse of dimensionality”. Hence, some dimension-

reduction techniques/assumptions (such as the additive models, single-index models and varying-

coefficient models) have to be imposed when estimating the mean regression function. However,

it is well known that some dimension reduction techniques may result in systematic biases in

estimation. For instance, the estimation based on a additive model may perform poorly when the

data generation process deviates from the additive assumption.

In this paper we propose a data-driven dimension reduction approach through using a Kernel

Principal Components Analysis (KPCA) for the random covariate X. The KPCA is a nonlinear

version of the standard linear Principal Component Analysis (PCA) and overcomes the limita-

tions of the linear PCA by conducting the eigendecomposition of the kernel Gram matrix, see, for

example, Schölkopf et al. (1999), Braun (2005) and Blanchard et al. (2007). See also Section 2.2

below for a detailed description on the KPCA and its relation to the standard PCA. The KPCA

has been applied in, among others, feature extraction and de-noising in high-dimensional regres-

sion (Rosipal et al. 2001), density estimation (Girolami 2002), robust regression (Wibowo and

Desa 2011), conditional density estimation (Fu et al. 2011; Izbicki and Lee 2013), and regression

estimation (Lee and Izbicki 2013).

Unlike the existing literature on KPCA, we approximate the mean regression hpxq on different

subsets of the sample space of X by the linear combinations of different subset-based kernel

principal components. The subset-based KPCA identifies nonlinear eigenfunctions in a subset,
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and thus reflects the relationship between Y and X on that set more parsimoniously than, for

example, a global KPCA (see Proposition 1 in Section 2.2 below). The subsets may be defined

according to some characteristics of X and/or those on the relationship between Y and X (e.g.

MACD for financial prices, different seasons/weekdays for electricity consumption, or adaptively

by some change-point detection methods) and they are not necessarily connected sets. This is a

marked difference from some conventional nonparametric regression techniques such as the kernel

smoothing and nearest neighbour methods. Meanwhile, we assume that the observations in the

present paper are collected from a strictly stationary and weakly dependent process, which relaxes

the independence and identical distribution assumption in the KPCA literature and makes the

proposed methodology applicable to the time series data. Under some regularity conditions,

we show that the estimated eigenvalues and eigenfunctions which are constructed through an

eigenanalysis on the subset-based kernel Gram matrix are consistent. The conditional mean

regression function hp¨q is then estimated through the projection to the kernel spectral space

which is spanned by a few estimated eigenfunctions whose number is determined by a simple ratio

method. The developed conditional mean estimation is shown to be uniformly consistent over the

subset with a convergence rate faster than those of some well-known nonparametric estimation

methods. We further extend the subset-based KPCA method for estimating the conditional

distribution function

FY |Xpy|xq “ PpY ď y|X “ xq, x P G, (1.2)

and establish the associated asymptotic property.

The rest of the paper is organized as follows. Section 2 introduces the subset-based KPCA

and the estimation methodology for the mean regression function. Section 3 derives the main

asymptotic theorems of the proposed estimation method. Section 4 extends the proposed subset-

based KPCA for estimation of conditional distribution functions. Section 5 illustrates the finite

sample performance of the proposed methods by simulation. Section 6 reports two real data

applications. Section 7 concludes the paper. All the proofs of the theoretical results are provided

in an appendix.

2 Methodology

Let tpYi,Xiq, 1 ď i ď nu be observations from a strictly stationary process with the same marginal

distribution as that of pY,Xq. Our aim is to estimate the mean regression function hpxq for x P G,
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as specified in (1.1). To make the presentation clear, this section is organized as follows: we

first introduce the kernel spectral decomposition in Section 2.1, followed by the illustration on the

kernel feature space and the relationship between the KPCA and the standard PCA in Section 2.2,

and then propose an estimation method for the conditional mean regression function in Section

2.3.

2.1 Kernel spectral decomposition

Let L2pGq be the Hilbert space consisting of all the functions defined on G which satisfy the

following conditions: for any f P L2pGq,
ż

G
fpxqPXpdxq “ E

“

fpXqIpX P Gq
‰

“ 0,

and
ż

G
f2pxqPXpdxq “ E

“

f2pXqIpX P Gq
‰

ă 8,

where PXp¨q denotes the probability measure of X, and Ip¨q is an indicator function. The inner

product on L2pGq is defined as

xf, gy “

ż

G
fpxqgpxqPXpdxq “ Cov tfpXqIpX P Gq, gpXqIpX P Gqu , f, g P L2pGq. (2.1)

Let Kp¨, ¨q be a Mercer kernel defined on G ˆ G, i.e. Kp¨, ¨q is a bounded and symmetric

function, and for any u1, ¨ ¨ ¨ ,uk P G and k ě 1, the kˆk matrix with Kpui,ujq being its pi, jq-th

element is non-negative definite. For any fixed u P G, Kpx,uq P L2pGq can be seen as a function

of x. A Mercer kernel Kp¨, ¨q defines an operator on L2pGq as follows:

fpxq Ñ

ż

G
Kpx,uqfpuqPXpduq.

It follows from Mercer’s Theorem (Mercer, 1909) that a Mercer kernel admits the following spectral

decomposition:

Kpu,vq “
d
ÿ

k“1

λkϕkpuqϕkpvq, u,v P G, (2.2)

where λ1 ě λ2 ě ¨ ¨ ¨ ě λd ą 0 are the positive eigenvalues of Kp¨, ¨q, and ϕ1, ϕ2, ¨ ¨ ¨ are the

orthonormal eigenfunctions in the sense that

ż

G
Kpx,uqϕkpuqPXpduq “ λkϕkpxq, x P G, (2.3)
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and

xϕi, ϕjy “

ż

G
ϕipuqϕjpuqPXpduq “

$

&

%

1 i “ j,

0 i ‰ j.
(2.4)

As we can see from the spectral decomposition (2.2), d “ maxtk : λk ą 0u and is possible to

be infinity. We say that the Mercer kernel is of finite-dimension when d is finite, and of infinite-

dimension when d “ 8. To simplify the discussion, in this section and Section 3 below, we assume

d is finite. This restriction will be relaxed in Section 4. We refer to Ferreira and Menegatto (2009)

for Mercer’s Theorem for metric spaces.

The eigenvalues λk and the associated eigenfunctions ϕk are usually unknown, and they need

to be estimated in practice. To this end, we construct the sample eigenvalues and eigenvectors

through an eigenanalysis of the kernel Gram matrix which is defined in (2.6) below, and then

obtain the estimate of the eigenfunction ϕk by the Nyström extension (Drineas and Mahoney,

2005).

Define
 

pY G
j ,X

G
j q, j “ 1, ¨ ¨ ¨ ,m

(

“
 

pYi,Xiq
ˇ

ˇ 1 ď i ď n, Xi P G
(

, (2.5)

where m is the number of observations Xi P G, and define the subset-based kernel Gram matrix:

KG “

¨

˚

˚

˚

˚

˚

˚

˝

KpXG
1 ,X

G
1 q KpXG

1 ,X
G
2 q ¨ ¨ ¨ KpXG

1 ,X
G
mq

KpXG
2 ,X

G
1 q KpXG

2 ,X
G
2 q ¨ ¨ ¨ KpXG

2 ,X
G
mq

...
...

. . .
...

KpXG
m,X

G
1 q KpXG

m,X
G
2 q ¨ ¨ ¨ KpXG

m,X
G
mq

˛

‹

‹

‹

‹

‹

‹

‚

. (2.6)

Let pλ1 ě ¨ ¨ ¨ ě pλm ě 0 be the eigenvalues of KG , and pϕ1, ¨ ¨ ¨ , pϕm be the corresponding m

orthonormal eigenvectors. Write

pϕk “
“

pϕkpX
G
1 q, ¨ ¨ ¨ , pϕkpX

G
mq

‰T
. (2.7)

By (2.3), (2.6) and the Nyström extension of the eigenvector pϕk, we may define

rϕkpxq “

?
m

pλk
¨

m
ÿ

i“1

Kpx,XG
i qpϕkpX

G
i q and rλk “ pλk{m, where x P G, k “ 1, ¨ ¨ ¨ , d. (2.8)

Proposition 3 in Section 3 below shows that, for any x P G, rλk and rϕkpxq are consistent estimators

of λk and ϕkpxq, respectively.
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Another critical issue in practical application is to estimate the dimension of the Mercer

kernel Kp¨, ¨q. When the dimension of the kernel Kp¨, ¨q is d and d ! m, we may estimate d by

the following ratio method (c.f., Lam and Yao, 2012):

pd “ arg min
1ďkďtmc0u

pλk`1{
pλk “ arg min

1ďkďtmc0u

rλk`1{
rλk, (2.9)

where c0 P p0, 1q is a pre-specified constant such as c0 “ 0.5 and tzu denotes the integer part of

the number z. The numerical results in Sections 5 and 6 indicate that this ratio method works

well in finite sample cases.

2.2 Kernel feature space and KPCA

Let MpKq be the d-dimensional linear space spanned by eigenfunctions ϕ1, ¨ ¨ ¨ , ϕd, and

dim tMpKqu “ d “ maxtj : λj ą 0u.

Then we have MpKq Ă L2pGq. By spectral decomposition (2.2), MpKq can also be viewed as a

linear space spanned by functions gup¨q ” Kp¨,uq for all u P G. Thus we call MpKq the kernel

feature space as it consists of the feature functions extracted by the kernel function Kp¨, ¨q, and

call ϕ1, ¨ ¨ ¨ , ϕd the characteristic features determined by Kp¨, ¨q and the distribution of X on set

G. In addition, we call ϕ1pXq, ϕ2pXq, ¨ ¨ ¨ the kernel principal components of X on set G, and one

can see they are nonlinear functions of X in general. We next give an interpretation to see how

the KPCA is connected to the standard PCA.

Any f PMpKq whose mean is zero on set G admits the following expression,

fpxq “
d
ÿ

j“1

xf, ϕjyϕjpxq for x P G.

Furthermore,

||f ||2 ” xf, fy “ Var
 

fpXqIpX P Gq
(

“

d
ÿ

j“1

xf, ϕjy
2.

Now we introduce a generalized variance incited by the kernel function Kp¨, ¨q,

VarKtfpXqIpX P Gqu “
d
ÿ

j“1

λj xf, ϕjy
2, (2.10)
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where λj is assigned as the weight on the “direction” of ϕj for j “ 1, ¨ ¨ ¨ , d. Then it follows from

(2.2) and (2.3) that

ϕ1 “ arg max
fPMpKq, ||f ||“1

ż

GˆG
fpuqfpvqKpu,vqPXpduqPXpdvq

“ arg max
fPMpKq, ||f ||“1

d
ÿ

j“1

λj xf, ϕjy
2

“ arg max
fPMpKq, ||f ||“1

VarKtfpXqIpX P Gqu,

which indicates that the function ϕ1 is the “direction” which maximizes the generalized variance

VarKtfpXqIpX P Gqu. Similarly it can be shown that ϕk is the solution of the above maximization

problem with additional constraints xϕk, ϕjy “ 0 for 1 ď j ă k. Hence, the kernel principal

components are the orthonormal functions in the feature space MpKq with the maximal kernel

induced variances defined in (2.10). In other words, the kernel principal components ϕ1, ϕ2, ¨ ¨ ¨

can be treated as “directions” while their corresponding eigenvalues λ1, λ2, ¨ ¨ ¨ can be considered

as the importance of these “directions”.

A related but different approach is to view MpKq as a reproducing kernel Hilbert space,

for which the inner product is defined different from (2.1) to serve as a penalty in estimating

functions via regularization; see section 5.8 of Hastie et al. (2009) and Wahba (1990). Since the

reproducing property is irrelevant in our context, we adopt the more natural inner product (2.1).

For the detailed interpretation of KPCA in a reproducing kernel space, we refer to section 14.5.4

of Hastie et al. (2009).

We end this subsection by stating a proposition which shows that the smaller G is, the lower the

dimension of MpKq is. This indicates that a more parsimonious representation can be obtained

by using the subset-based KPCA instead of the global KPCA.

Proposition 1. Let G˚ be a measurable subset of the sample space of X such that G Ă G˚,

and Kp¨, ¨q be a Mercer kernel on G˚ ˆ G˚. The kernel feature spaces defined with sets G and G˚

are denoted, respectively by MpKq and M˚pKq. Furthermore, for any eigenfunctions φ˚kp¨q on

M˚pKq, assume that there exists x P G such that φ˚kpxq ‰ 0. Then dimtMpKqu ď dim tM˚pKqu.
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2.3 Estimation for conditional mean regression

For the simplicity of the presentation, we assume that the mean of the random variate hpXq “

EpY |Xq on set G is 0, i.e.

E rhpXqIpX P Gqs “ E rEpY |XqIpX P Gqs “ E rY IpX P Gqs “ 0.

This amounts to replacing Y G
i by Y G

i ´ Ȳ
G in (2.5) with Ȳ G “ m´1

ř

1ďjďm Y
G
j . In generalMpKq

is a genuine subspace of L2pGq. Suppose that on set G, hpxq “ EpY |X “ xq PMpKq, i.e. hpxq

may be expressed as

hpxq “

ż

yfY |Xpy|xqdy “
d
ÿ

k“1

βkϕkpxq, x P G, (2.11)

where fY |Xp¨|xq denotes the conditional density function of Y given X “ x, and

βk “ xϕk, hy “

ż

xPG
ϕkpxqPXpdxq

ż

yfY |Xpy|xqdy “ E rY ϕkpXq IpX P Gqs .

This leads to the estimator for βk which is constructed as

rβk “
1

m

m
ÿ

i“1

Y G
i rϕkpX

G
i q, k “ 1, ¨ ¨ ¨ , d, (2.12)

where pY G
i ,X

G
i q, i “ 1, ¨ ¨ ¨ ,m, are defined in (2.5), and rϕkp¨q are given in (2.8). Consequently the

estimator for hp¨q is defined as

rhpxq “
d
ÿ

k“1

rβk rϕkpxq, x P G. (2.13)

When the dimension of the kernel Kp¨, ¨q is unknown, the sum on the right hand side of the above

expression runs from j “ 1 to pd with pd determined via (2.9).

The estimator in (2.13) is derived under the assumption that on set G, hpxq PMpKq. When

this condition is unfulfilled, (2.13) is an estimator for the projection of hp¨q onMpKq. Hence the

goodness of rhp¨q as an estimator for hp¨q depends critically on (i) kernel function K, (ii) set G

and PXp¨q on G. In the simulation studies in Section 5 below, we will illustrate an approach to

specify G. Ideally we would like to choose a Kp¨, ¨q that induces a large enough MpKq such that

h PMpKq. Some frequently used kernel functions include:

• Gaussian kernel: Kpu,vq “ expp´||u´ v||2{cq,

• Thin-plate spline kernel: Kpu,vq “ ||u´ v||2 logp||u´ v||q,

8



• Polynomial kernel (Fu et al. 2011): Kpu,vq “

$

&

%

r1´ pu1vq``1s{p1´ u1vq, if u1v ‰ 1,

`` 1, otherwise.

where || ¨ || denotes the Euclidean norm, c is a positive constant, and ` ě 1 is an integer. Also

note that for any functions in ψ1, ¨ ¨ ¨ , ψd P L2pGq,

Kpu,vq “
d
ÿ

k“1

ψkpuqψkpvq (2.14)

is a well-defined Mercer kernel. A possible choice of the kernel function is to let tψ1puq, ¨ ¨ ¨ , ψdpuqu

be a set of basis functions of u, e.g. Fourier series, polynomial series, wavelets, B-spline, etc. The

numerical studies in Sections 5 and 6 use (2.14) with appropriately chosen functions ψk in the

estimation and dimension reduction procedure, which performs reasonably well. The following

proposition shows that the dimension of MpKq with Kp¨, ¨q defined above is controlled by d.

Proposition 2. For the kernel function Kp¨, ¨q defined in (2.14), dimtMpKqu ď d.

3 Large sample theory

In this section, we study the asymptotic properties for the estimators of the eigenvalues and

eigenfunctions of the Mercer kernel as well as the mean regression estimation. We start with

some regularity conditions which are sufficient to derive our asymptotic theory.

Assumption 1. The process tpYi,Xiqu is strictly stationary and α-mixing (or strongly mixing)

dependent with the mixing coefficient satisfying

αt “ Opt´κq, κ ą 2δ˚ ` p`
3

2
, (3.1)

where p is the dimension of the random covariate, 0 ď δ˚ ă 8 such that the volume of the

set G has the order mδ˚ .

Assumption 2. The positive eigenvalues of the Mercer kernel Kp¨, ¨q are distinct and satisfy

0 ă λd ă ¨ ¨ ¨ ă λ2 ă λ1 ă 8.

Assumption 3. The eigenfunctions ϕj , j “ 1, ¨ ¨ ¨ , d, are Lipschitz continuous and bounded on

the set G. Furthermore, the kernel Kp¨,xq is Lipschitz continuous on the set G for any x P G.
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In Assumption 1, we allow the process to be stationary and α-mixing dependent, which is

mild and can be satisfied by some commonly-used time series models; see e.g., Section 2.6 of

Fan and Yao (2003) and the references within. For example the causal ARMA processes with

continuous innovations are α-mixing with exponentially decaying mixing coefficients. Note that

for the processes with exponentially decaying mixing coefficients, (3.1) is fulfilled automatically,

and the technical arguments in the proofs can be simplified. We allow set G to expand with the

size of the sub-sample in G in the order of mδ˚ , and δ˚ is 0 if G is bounded. Assumptions 2 and 3

impose mild restrictions on the eigenvalues and eigenfunctions of the Mercer kernel, respectively.

They are crucial to ensure the consistency of the sample eigenvalues and eigenvectors constructed

in Section 2.1. The bounded condition on ϕj and Kp¨,xq in Assumption 3 can be replaced by the

2p2 ` δq-order moment conditions for some δ ą 0. Proposition 3 below still holds at the cost of

more lengthy arguments.

Proposition 3. Suppose that Assumptions 1–3 are satisfied. Then we have

max
1ďkďd

ˇ

ˇ

ˇ

rλk ´ λk

ˇ

ˇ

ˇ
“ max

1ďkďd

ˇ

ˇ

ˇ

ˇ

1

m
pλk ´ λk

ˇ

ˇ

ˇ

ˇ

“ OP

´

m´1{2
¯

(3.2)

and

max
1ďkďd

sup
xPG

|rϕkpxq ´ ϕkpxq| “ OP pξmq , (3.3)

where ξm “ m´1{2 log1{2m.

Proposition 3 presents the convergence rates of the estimated eigenvalues and eigenfunctions

of Mercer kernel Kp¨, ¨q. The result is of independent interest. It complements some statistical

properties of the KPCA in the literature such as Braun (2005) and Blanchard et al. (2007). Note

that it is implied by PpX P Gq ą 0 that m is of the same order as the full sample size n. Hence,

the convergence rates in (3.2) and (3.3) are equivalent to OP
`

n´1{2
˘

and OP

´

n´1{2 log1{2 n
¯

,

which are not uncommon in the context of functional principal component analysis (e.g., Bosq,

2000; Horváth and Kokoszka, 2012). Based on Proposition 3, we can easily derive the following

uniform consistency result for php¨q.

Theorem 1. Suppose that Assumptions 1–3 are satisfied, Er|Y |2`δs ă 8 for some δ ą 0 and

hp¨q PMpKq. Then it holds that

sup
xPG

ˇ

ˇ

ˇ

rhpxq ´ hpxq
ˇ

ˇ

ˇ
“ OP pξmq , (3.4)

where ξm is defined in Proposition 3.
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As stated above, the uniform convergence rate in (3.4) is equivalent to OP

´

n´1{2 log1{2 n
¯

,

which is faster than the well-known uniform convergence rate OP

´

pnbq´1{2 log1{2 n
¯

in the kernel

smoothing method (c.f., Fan and Yao, 2003), where b is a bandwidth which converges to zero as

n tends to 8. The intrinsic reason of the faster rate in (3.4) is that we assume the dimension

of the subset-based kernel feature space is finite, and thus the number of the unknown elements

in (2.11) is also finite. Section 4 below shows that the increasing dimension of the kernel feature

space slows down the convergence rates.

4 Extensions of the estimation methodology

In this section, we consider two extensions of the methodology proposed in Section 2: the estima-

tion for the conditional distribution function, and the case when the dimension of a kernel feature

space diverges together with the sample size.

4.1 Estimation for conditional distribution functions

Estimation of the conditional distribution function defined in (1.2) is a key aspect in various

statistical topics (such as the quantile regression), as the conditional mean regression may be not

informative enough in many situations. Nonparametric estimation of the conditional distribution

has been extensively studied in the literature including Hall et al. (1999), Hansen (2004) and

Hall and Yao (2005). In this section, we use the subset-based KPCA approach discussed above

to estimate a conditional distribution function in low-dimensional kernel feature space when the

random covariates are multi-dimensional.

Let F˚py|xq “ FY |Xpy|xq ´ c˚, where c˚ “ PpY ď y,X P Gq. Then E rF˚py|Xqs “ 0. In

practice c˚ can be easily estimated by the relative frequency. Suppose that F˚py|¨q PMpKq, i.e.

F˚py|xq “ FY |Xpy|xq ´ c˚ “

ż y

´8

fY |Xpz|xqdz ´ c˚ “
d
ÿ

k“1

β˚kϕkpxq, x P G. (4.1)

Note that the coefficients β˚k in the above decomposition depend on y. The orthonormality of ϕi

implies that

β˚k “ xF˚py|¨q, ϕky “

ż

G
ϕkpxqPXpdxq

„
ż y

´8

fY |Xpz|xqdz ´ c˚



“

ż

Ipz ď y, x P GqϕkpxqfY |Xpz|xqdzPXpdxq ´ c˚

ż

G
ϕkpxqPXpdxq

“ E rIpY ď y, X P GqϕkpXqs ´ c˚E rIpX P GqϕkpXqs .
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This leads to the following estimator for β˚k :

rβ˚k “
1

m

m
ÿ

i“1

IpY G
i ď yqrϕkpX

G
i q ´

rc˚
m

m
ÿ

i“1

rϕkpX
G
i q, (4.2)

where pY G
i ,X

G
i q are defined in (2.5), rϕkp¨q are defined in (2.8), and

rc˚ “
1

n

n
ÿ

i“1

I pYi ď y, Xi P Gq , (4.3)

n is the full sample size. Consequently, we obtain the estimator for the conditional distribution

rFY |Xpy|xq “
d
ÿ

k“1

rβ˚k rϕkpxq ` rc˚. (4.4)

The estimator rFY |Xp¨|xq is not necessarily a bona fide distribution function. Some further nor-

malization may be required to make the estimator non-negative, non-decreasing and between 0

and 1 (e.g., Glad et al. 2003).

By the classic result for the α-mixing sequence, we may show that rc˚ is a consistent estimator

of c˚ with a root-n convergence rate. Then, by Proposition 3 and following the proof of Theorem

1 in the appendix, we have the following convergence result for rFY |Xpy|xq.

Theorem 2. Suppose that Assumptions 1–3 are satisfied and F˚py|¨q PMpKq. Then it holds that

sup
xPG

ˇ

ˇ

ˇ

rFY |Xpy|xq ´ FY |Xpy|xq
ˇ

ˇ

ˇ
“ OP pξmq (4.5)

for any given y, where ξm is defined in Proposition 3.

4.2 Kernel feature spaces with diverging dimensions

We next study the case when the dimension of the kernel feature space dm ” maxtk : λk ą 0u

depends on m. It may diverge to infinity as m tends to infinity. In order to derive a more general

asymptotic theory, we need to modify Assumption 2 in Section 3.

Assumption 2˚. The positive eigenvalues of the Mercer kernel Kp¨, ¨q are distinct and satisfy

0 ă λdm ă ¨ ¨ ¨ ă λ2 ă λ1 ă 8,
řdm
k“1 λk ă 8 and

d2
m logm

mρ2
mλ

2
dm

“ op1q, ρm “ min tλk ´ λk`1, k “ 1, ¨ ¨ ¨ , dm ´ 1u .

12



The following proposition shows that the diverging dm would slow down the convergence rates

in Proposition 3.

Proposition 4. Suppose that Assumptions 1, 2˚ and 3 are satisfied, and the α-mixing coefficient

decays to zero at an exponential rate. Then it holds that

max
1ďkďdm

ˇ

ˇ

ˇ

rλk ´ λk

ˇ

ˇ

ˇ
“ max

1ďkďdm

ˇ

ˇ

ˇ

ˇ

1

m
pλk ´ λk

ˇ

ˇ

ˇ

ˇ

“ OP pdmξmq (4.6)

and

max
1ďkďd

sup
xPG

|rϕkpxq ´ ϕkpxq| “ OP pdmξm{pρmλdmqq . (4.7)

When mÑ8, dm Ñ8 and usually ρm Ñ 0 and λdm Ñ 0. This implies that the convergence

rates in (4.6) and (4.7) would be slower than those in (3.2) and (3.3). Let ci, i “ 0, 1, ¨ ¨ ¨ , 4, be

positive constants. For any two sequences am and bm, am 9 bm means that 0 ă c3 ď am{bm ď

c4 ă 8 when m is sufficiently large. If dm “ c0 logm, ρm “ c1 log´1m and λdm “ c2 log´1m, we

have

dmξm 9 m´1{2 log3{2m, dmξm{pρmλdmq 9 m´1{2 log7{2m.

Using the above proposition and following the proof of Theorem 1 in the appendix, we can

easily show the uniform convergence rate for the conditional mean regression estimation and the

conditional distribution estimation is of the order OP
`

d2
mξm{pρmλdmq

˘

, which is slower than those

in Theorems 1 and 2.

5 Simulation Studies

In this section, we use three simulated examples to illustrate the finite sample performance of the

proposed subset-based KPCA method and compare it with some existing estimation methods,

i.e. the global KPCA and cubic spline. Throughout this section, the kernel function is either the

Gaussian kernel or formulated as in (2.14) with tψ1puq, ¨ ¨ ¨ , ψdpuqu being a set of normalized

(i.e. with the unit norm) polynomial basis functions of u “ pu1, ¨ ¨ ¨ , upq
T up to order 2, i.e.,

 

1, uk, u
2
k, k “ 1, ¨ ¨ ¨ , p

(

, where p is the dimension of u. For the latter case, we have d “ 2p ` 1

and call the kernel as the quadratic kernel for the simplicity of presentation. In practice, d

is estimated by the ratio method as in (2.9). The simulation results shows (2.9) can correctly

estimate pd “ d with frequency close to 1. The subset is chosen to be the tκnu nearest neighbors,
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where n is the sample size and κ P p0, 1q is a constant bandwidth. The bandwidth κ and the

tuning parameter c in the Gaussian kernel are selected by a 10-fold cross validation.

We start with an example to assess the out-of-sample estimation performance of conditional

mean regression function based on a multivariate nonlinear regression model. Then, in the second

example, we examine the one-step ahead out-of-sample forecast performance based on a multivari-

ate nonlinear time series. Finally, in the third example, we examine the finite sample performance

of the estimation of conditional distribution function.

Example 5.1. Consider the following model:

yi “ gpx2iq ` sintπpx3i ` x4iqu ` x5i ` logp1` x2
6iq ` εi,

where xk1, ¨ ¨ ¨ , xk6 and εi are independently and Np0, 1q, and gpxq “ e´2x2 for x ě 0, and

gpxq “ e´x
2

for x ă 0. In the model, the covariate x1i is irrelevant to yi.

We draw a training sample of size n and a test sample of size 200. We estimate the regression

function (1.1) using the training sample, and then calculate the mean squared errors over the

testing sample as follows:

MSE “
1

200

200
ÿ

i“1

”

phpxiq ´ yi

ı2
. (5.1)

By repeating this procedure over 200 replications, we obtain a sample of MSE with size 200. The

estimation performance is assessed by the sample mean, median and variance of MSE. The size of

the training sample n is set to be 500 or 1000. The simulation results are reported in Table 1. In

this simulation, for the quadratic kernel, the ratio method in (2.9) can always correctly estimate

pd “ 13. According to the results in Table 1, the subset-based KPCA with the quadratic kernel

outperforms the other methods as it has smaller sample mean, median and variance of MSE. In

addition, the quadratic kernel performs better than the Gaussian kernel due to the fact that the

quadratic kernel captures different degree of smoothness on different directions.

Example 5.2. Consider the following time series model:

yt “ sinp0.02πyt´1q ` expp´y2
t´2q ` lnp1` |yt´3|q ´ 0.3|yt´4| ` 0.2εt,

where tεtu is a sequence of independent Np0, 1q random variables. We want to estimate the

conditional mean Epyt|yt´1, ¨ ¨ ¨ yt´4q and denote the estimator as pyt. Note pyt is a one-step-ahead

predictor for yt.

We generate a time series from the above model with the length n ` 100. For each k “

1, ¨ ¨ ¨ , 100, we predict the value of yn`k by pyn`k which is estimated based on the n observations

14



Table 1: Out-of-sample estimation performance in Example 5.1

n “ 500 n “ 1000

MSE Mean Median Variance Mean Median Variance

sKPCA+Quadratic 1.3002 1.2941 0.0169 1.2438 1.2365 0.0137

sKPCA+Gaussian 1.5729 1.5855 0.0259 1.5310 1.5282 0.0253

gKPCA+Gaussian 3.0228 2.0214 0.0933 3.0151 2.9900 0.0859

Cubic spline 1.3864 1.3828 0.0181 1.3707 1.3720 0.0052

“sKPCA+Quadratic” stands for the subset-based KPCA with the quadratic kernel;

“sKPCA+Gaussian” stands for the subset-based KPCA with the Gaussian kernel;

“gKPCA+Gaussian” stands for the global KPCA with the Gaussian kernel.

yk, ¨ ¨ ¨ , yn`k´1. The performance is measured by the mean squared prediction error (MSPE) and

mean relative prediction error (MRPE) defined as:

MSPE “
1

100

100
ÿ

k“1

ppyn`k ´ yn`kq
2, MRPE “

1

100

100
ÿ

k“1

ˇ

ˇ

ˇ

pyn`k ´ yn`k
yn`k

ˇ

ˇ

ˇ
.

We set n “ 500, and repeat the experiment 200 times, leading to a sample of MSPE and a

sample of MRPE with size 200 for each of the estimation methods. The sample means, medians

and variances of MSPE and MRPE are presented in Table 2. Similar to Example 5.1, the subset-

based KPCA method with the quadratic kernel provides the most accurate forecasting with the

cubic spline as a close second best in terms of MSPE. Judging by MRPE, the subset-based KPCA

method with the quadratic kernel still outperforms the other three methods. But the cubic spline

method is no longer attractive as its mean MRPE is greater than that of both the subset-based

KPCA method with the Gaussian kernel and the global KPCA method. Figure 1 plots a typical

path together with their one-step-ahead forecasts for each of the four methods. The typical path

is the one with its MSPE equal to the sample median. Figure 1 indicates that the forecasted path

from the subset-based KPCA method with the quadratic kernel follows the true path closely.

This is also true, to some extent, for the subset-based KPCA method with the Gaussian kernel

and the cubic spline method. However the global KPCA method fails to capture the dynamic

variation of the series and tends to forecast the future values by the overall mean value, which is

not satisfactory.
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Table 2: One-step ahead forecasting performance in Example 5.2

MSPE MRPE

Mean Median Variance Mean Median Variance

sKPCA+Quadratic 0.0435 0.0428 3.9 ˆ 10´5 0.2192 0.2162 3.8 ˆ 10´4

sKPCA+Gaussian 0.0756 0.0751 4.1 ˆ 10´4 0.2529 0.2527 0.0011

gKPCA+Gaussian 0.2172 0.2211 0.0038 0.3889 0.3901 0.0028

Cubic spline 0.0455 0.0443 0.0049 0.6712 0.4797 0.0325
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Figure 1: One-step ahead out-of-sample forecasting performance based on
the replication with median MSPE for each method. The black solid line is
the true value and the red dashed line is the predicted value.

Example 5.3. Consider now the model:

X1 „ Np0, 1q, X2 „ Np0, 1q,

Y |pX1, X2q „ NpX1, 1`X2
2 q,

Now the conditional distribution of Y given X ” pX1, X2q
T is a normal distribution with mean

X1 and variance 1`X2
2 . The aim is to estimate the conditional distribution function FY |Xpy|xq

based on the method proposed in Section 4.1.

We draw a training sample of size n and a test sample of size 100. The estimated condi-
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tional distribution rFY |Xpyi|xiq is obtained using the training data. We check the performance by

calculating the mean squared errors over the test sample as follows:

MSE “
1

100

100
ÿ

i“1

”

rFY |Xpyi|xiq ´ FY |Xpyi|xiq
ı2
.

By repeating this experiment 200 times, we obtain a sample of MSE of size 200. Table 3 lists the

sample means, medians and variances of the MSE for n “ 300 and n “ 500. Also reported in

Table 3 is the largest absolute error (LAE):

LAE “ sup
ty,xuPΩ˚

ˇ

ˇ

ˇ

rFY |Xpy|xq ´ FY |Xpy|xq
ˇ

ˇ

ˇ
,

where Ω˚ is the union of all validation sets. As those values of LAE are very small, the proposed

method provides very accurate estimation for the conditional distribution functions.

Table 3: Estimation of the conditional distribution function

MSE LAE

Mean Median Variance

n “ 300 6.0 ˆ 10´4 4.1 ˆ 10´4 3.6 ˆ 10´7 0.098

n “ 500 3.7 ˆ 10´4 2.8 ˆ 10´4 8.6 ˆ 10´8 0.080

6 Real data analysis

In this section, we apply the proposed subset-based KPCA method to two real data examples.

The kernel functions and the choices for the subsets and the tuning parameter are specified in the

same manner as in Section 5.

6.1 Circulatory and respiratory problem in Hong Kong

We study the circulatory and respiratory problem in Hong Kong via an environmental data set.

This data set contains 730 observations and was collected between January 1, 1994 and December

31, 1995. The response variable is the number of daily total hospital admissions for circulatory and

respiratory problems in Hong Kong, and the covariates are daily measurements of seven pollutants

and environmental factors: SO2, NO2, dust, temperature, change of temperature, humidity, and
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ozone. We standardize the data so that all covariates have zero sample mean and unit sample

variance.

The objective of this study is to estimate the number of daily total hospital admissions for

circulatory and respiratory problem using the collected environmental data, i.e. estimate the con-

ditional mean regression function. For a given observation py,xq, we define the relative estimation

error (REE) as

REE “

ˇ

ˇ

ˇ

ˇ

ˇ

pξ ´ y

y

ˇ

ˇ

ˇ

ˇ

ˇ

,

where pξ is the estimator of the conditional expectation of y given x. In this study, the estimation

performance is measured by the mean and variance of the REE, which are calculated by a boot-

strap method described as follows. We first randomly divide the data set into a training set of 700

observations and a test set of 30 observations. Then for each observation in the test set, we use

the training set to estimate the conditional mean regression function and calculate the REE. By

repeating this re-sampling and estimation procedure 1,000 times, we obtain a bootstrap sample

of REEs with size 30,000. The sample mean and variance are used as the mean and variance of

the REE.

We compare the performances of the three methods: the subset-based KPCA with the quadratic

kernel, the subset-based KPCA with the Gaussian kernel and the global KPCA with the Gaussian

kernel. The results are presented in Table 4. According to the results in Table 4, the sKPCA

with the quadratic kernel has the best estimation performance. The subset-based KPCA method

outperforms the global KPCA method as the latter has the largest mean and variance of REE.

Table 4: Estimation performance for the Hong Kong environmental data

REE

Method Mean Variance

sKPCA + Quadratic 0.1601 5.9 ˆ 10´4

sKPCA + Gaussian 0.1856 7.7 ˆ 10´4

gKPCA + Gaussian 0.3503 1.9 ˆ 10´3
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6.2 Forecasting the log return of CPI

The CPI is a statistical estimate that measures the average change in the price paid to a market

basket of goods and services by the urban customers. The CPI is often used as an important

economic indicator in macroeconomic and financial studies. For example, in economics, CPI is

considered as closely related to the cost-of-living index and used to adjust the income eligibility

levels for government assistance. In finance, CPI is considered as an indicator of inflation and

used as the deflater to translate other financial series to inflation-free ones. Hence, it is always of

interest to forecast the CPI.

We perform one-step-ahead forecasting for the monthly log return of CPI in USA based on

the proposed subset-based KPCA method with the quadratic kernel. The data concerned are

collected for the period from January 1970 to December 2014 with the total 540 observations.

Instead of using the traditional linear time series models, we consider the log return of CPI follows

a nonlinear AR(3) model:

yt “ gpyt´1, yt´2, yt´3q ` εt,

where gp¨q is an unknown function and εt denotes an unobservable noise at time t. For a comparison

purpose, we also forecast yt based on a linear AR(p) model with the order p determined by AIC.

Suppose the forecast period starts form time t and ends at time t`S, the forecast error is measured

by the mean squared error (MSE) defined as

MSE “
1

S

S
ÿ

s“1

ppyt`s ´ yt`sq
2,

where pyt`s is the estimator of y at time t` s.

For each of the 120 months in the period of January 2005 – December 2014, we forecast

its log return based on the models fitted using the data up to its previous month. The MSPE

are calculated over the 120 months. The MSE of the subset-based KPCA method based on the

nonlinear AR(3) model is 2.9ˆ 10´6 while the MSPE of the linear AR model is 1.5ˆ 10´5. The

detailed forecast results are plotted in Figure 2, which shows clearly that the forecast based on

the subset-based KPCA method is more accurate as it captures the local variations much better

than the linear AR modelling method.
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Figure 2: One step ahead out-of-sample forecast for the log return of CPI
from January 2005 to December 2014. The black solid line is the true
value, the red dashed line is the forecast value obtained by the subset-based
KPCA, and the blue dotted line is the forecast value obtained by the linear
AR model.

7 Conclusion

In this paper, we have developed a new subset-based KPCA method for estimating nonparametric

regression functions. In contrast to the conventional (global) KPCA method which builds on a

global kernel feature space, we use different lower-dimensional subset-based kernel feature spaces

at different locations of the sample space. Consequently the resulting localized kernel principal

components provide more parsimonious representation for the target regression function, which

is also reflected by the faster uniform convergence rates presented in Theorem 1. See also the

discussions immediately below Theorem 1. The reported numerical results with both simulated

and real data sets illustrate clearly the advantages of using the subset-based KPCA method over

its global counterpart. It also outperforms some popular nonparametric regression methods such

as cubic spline and kernel regression. (The results on kernel regression are not reported to save
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the space.) It is also worth mentioning that the quadratic kernel constructed based on (2.14)

using normalized univariate linear and quadratic basis functions performs better than the more

conventional Gaussian kernel for all the examples reported in Sections 5 and 6.

Appendix: Proofs of the theoretical results

This appendix provides the detailed proofs of the theoretical results given in Sections 2 and 3.

We start with the proofs of Propositions 1 and 2.

Proof of Proposition 1. By Mercer’s Theorem, for u,v P G˚, the kernel function has the

following spectral decomposition:

Kpu,vq “
d
ÿ̊

k“1

λ˚kϕ
˚
kpuqϕ

˚
kpvq, (A.1)

where λ˚1 ě λ˚2 ě ¨ ¨ ¨ ě 0 are the eigenvalues of Kp¨, ¨q on set G˚, ϕ˚1 , ϕ˚2 , ¨ ¨ ¨ are the corresponding

orthonormal eigenfunctions, and d˚ “ max tk : λ˚k ą 0u “ dim tM˚pKqu. Recall that tλk, ϕku,

k “ 1, ¨ ¨ ¨ , d, are pairs of eigenvalues and eigenfunctions of Kp¨, ¨q on set G with d “ dim tMpKqu.

Hence, we next only need to show that d ď d˚. Note that for any k “ 1, ¨ ¨ ¨ , d,

ϕ˚kpxq “
d
ÿ

j“1

akjϕjpxq, x P G, (A.2)

where akj “ xϕ˚k, ϕjy “
ş

G ϕ
˚
kpxqϕjpxqPXpdxq. By the assumption in the proposition, we may

show that at least one of akj is non-zero for j “ 1, ¨ ¨ ¨ , d; otherwise ϕ˚kpxq “ 0 for any x P G. In

view of (2.2)–(2.4), (A.1) and (A.2), we may show that, for any k “ 1, ¨ ¨ ¨ , d,

λ˚k “

ż

G˚ˆG˚

ϕ˚kpuqKpu,vqϕ
˚
kpvqPXpdvqPXpduq

“

ż

GˆG
ϕ˚kpuqKpu,vqϕ

˚
kpvqPXpdvqPXpduq `

ż

G˚ˆG˚´GˆG
ϕ˚kpuqKpu,vqϕ

˚
kpvqPXpdvqPXpduq

ě

ż

GˆG
ϕ˚kpuqKpu,vqϕ

˚
kpvqPXpdvqPXpduq

“

d
ÿ

j“1

a2
kjλj ą 0,

where the first inequality holds as the kernel function is non-negative definite and the last strict

inequality holds as λj ą 0, j “ 1, ¨ ¨ ¨ , d and at least one of akj , j “ 1, ¨ ¨ ¨ , d, is non-zero.

Hence, we can prove that d˚ “ maxtk : λ˚k ą 0u ě d “ maxtk : λk ą 0u, which indicates that

dim tM˚pKqu ě dim tMpKqu and completes the proof of Proposition 1. �
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Proof of Proposition 2. Let λ˛1, λ
˛
2, ¨ ¨ ¨λ

˛
d˛ be the eigenvalues of the Mercer kernel Kp¨, ¨q

defined in (2.14) and let ϕ˛1, ϕ
˛
2, ¨ ¨ ¨ , ϕ

˛
d˛ be the corresponding orthonormal eigenfunctions. Then,

by Mercer’s Theorem, we have

Kpu,vq “
d˛
ÿ

j“1

λ˛jϕ
˛
j puqϕ

˛
j pvq, u,v P G, (A.3)

in which λ˛1 ě λ˛2 ě ¨ ¨ ¨ ě λ˛d˛ ą 0. We next show that the conclusion of d˛ ą d would lead to a

contradiction. For ψjp¨q, j “ 1, ¨ ¨ ¨ , d, we may show that ψjpxq “
řd˛

k“1 a
˛
jkϕ

˛
kpxq, x P G, where

a˛jk “ xϕ
˛
k, ψjy. Let A be a dˆ d˛ matrix with the pj, kq-entry being a˛jk,

ψp¨q “ rψ1p¨q, ¨ ¨ ¨ , ψdp¨qs
T , ϕ˛p¨q “ rϕ˛1p¨q, ¨ ¨ ¨ , ϕ

˛
d˛p¨qs

T .

Then, we have

ψpxq “ Aϕ˛pxq, x P G, (A.4)

and the rank of A is strictly smaller than d˛ when d ă d˛. However, by (A.4) and the definition

of Kp¨, ¨q in (2.14),

Kpu,vq “ ψpuqTψpvq “ ϕ˛puqTATAϕ˛pvq,

which, together with (A.3), indicates that ATA has d˛ positive eigenvalues. Hence, it is not

possible to conclude that d˛ ą d, which completes the proof of Proposition 2. �

To prove Proposition 3 in Section 3, we need to make use of the following technical lemma on

uniform consistency.

Lemma 1. Suppose that Assumptions 1–3 are satisfied. Then we have

max
1ďkďd

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

Kpx,XG
i qϕkpX

G
i q ´ λkϕkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pξmq . (A.5)

where ξm “
a

plogmq{m

Proof. To simplify the presentation, we let Zikpxq “ Kpx,XG
i qϕkpX

G
i q. By (2.3), it is easy to

verify that E rZikpxqs “ λkϕkpxq for any 1 ď k ď d and x P G. The proof of (A.5) is standard by

using the finite covering techniques. We consider covering the set G by a finite number of subsets

Gj which are centered at cj with radius ξm. Letting Nm be the total number of these subsets,

Nm “ Opmδ˚{ξpmq which is diverging with m.
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Observe that

max
1ďkďd

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

Kpx,XG
i qϕkpX

G
i q ´ λkϕkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

“ max
1ďkďd

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

tZikpxq ´ E rZikpxqsu

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďkďd

max
1ďjďNm

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

tZikpcjq ´ E rZikpcjqsu

ˇ

ˇ

ˇ

ˇ

ˇ

`

max
1ďkďd

max
1ďjďNm

sup
xPGj

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

rZikpxq ´ Zikpcjqs

ˇ

ˇ

ˇ

ˇ

ˇ

`

max
1ďkďd

max
1ďjďNm

sup
xPGj

|λk rϕkpxq ´ ϕkpcjqs|

” Πmp1q `Πmp2q `Πmp3q. (A.6)

By the Lipschitz continuity in Assumption 2, we readily have

Πmp2q `Πmp3q “ OP pξmq. (A.7)

Therefore, to complete the proof of (A.5), we only need to show

Πmp1q “ OP pξmq. (A.8)

Using the exponential inequality for the α-mixing sequence (e.g., Theorem 2.18 (ii) in Fan and

Yao, 2003), we may show that

P tΠmp1q ą C1ξmu “ P

#

max
1ďkďd

max
1ďjďNm

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

tZikpcjq ´ E rZikpcjqsu

ˇ

ˇ

ˇ

ˇ

ˇ

ą C1ξm

+

ď

d
ÿ

k“1

Nm
ÿ

j“1

P

#ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

tZikpcjq ´ E rZikpcjqsu

ˇ

ˇ

ˇ

ˇ

ˇ

ą C1ξm

+

ď OP

´

Nm expt´C1 logmu `Nmq
κ`3{2m´κ

¯

,

where C1 is a positive constant which can be sufficiently large and q “ tm1{2 log1{2mu. Then, by

(3.1), we may show that

P tΠmp1q ą C1ξmu “ op1q, (A.9)

which completes the proof of (A.8). The proof of Lemma 1 has been completed. �

We next prove the asymptotic theorems in Section 3.

Proof of Proposition 3. The proof of (3.2) is a generalization of the argument in the proof

of Theorem 3.65 in Braun (2005) from the independence and identical distribution assumption to

the stationary and α-mixing dependence assumption.
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By the spectral decomposition (2.2), the pi, jq-entry of the mˆm kernel Gram matrix can be

written as

KpXG
i ,X

G
j q “

d
ÿ

k“1

λkϕkpX
G
i qϕkpX

G
j q. (A.10)

Therefore, the kernel Gram matrix KG can be expressed as

KG “ ΦmΛmΦT
m (A.11)

with Λm “ diagpmλ1, ¨ ¨ ¨ ,mλdq and

Φm “
1
?
m

»

—

—

—

–

ϕ1pX
G
1 q ¨ ¨ ¨ ϕdpX

G
1 q

...
. . .

...

ϕ1pX
G
mq ¨ ¨ ¨ ϕdpX

G
mq

fi

ffi

ffi

ffi

fl

.

Then, using the Ostrowski’s Theorem (e.g., Theorem 4.5.9 and Corollary 4.5.11 in Horn and

Johnson, 1985; or Corollary 3.59 in Braun, 2005), we may show that

max
1ďkďd

ˇ

ˇ

ˇ

pλk ´mλk

ˇ

ˇ

ˇ
ď max

1ďkďd
|mλk| ¨

›

›ΦT
mΦm ´ Id

›

› , (A.12)

where Id is a dˆ d identity matrix, and for a dˆ d matrix M

}M} “ sup
xPRd,}x}“1

}Mx}.

By (A.14) and Assumption 2, we readily have

max
1ďkďd

ˇ

ˇ

ˇ

ˇ

1

m
pλk ´ λk

ˇ

ˇ

ˇ

ˇ

ď OP
`›

›ΦT
mΦm ´ Id

›

›

˘

. (A.13)

When d is fixed, by (2.4), Assumptions 1 and 3 as well as Theorem A.5 in Hall and Heyde (1980),

we can prove that
›

›ΦT
mΦm ´ Id

›

› “ OP

´

m´1{2
¯

, (A.14)

which together with (A.13), completes the proof of (3.2).

We next turn to the proof of (3.3), which can be seen as a modification of the proof of Lemma

4.3 in Bosq (2000). By Lemma 1 and (3.2), we may show that

max
1ďkďd

›

›

›

›

1

m
KGϕk ´

rλkϕk

›

›

›

›

ď max
1ďkďd

›

›

›

›

1

m
KGϕk ´ λkϕk

›

›

›

›

` max
1ďkďd

›

›

›
λkϕk ´

rλkϕk

›

›

›

“ OP

´

ξm `m
´1{2

¯

“ OP pξmq, (A.15)
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where ϕk “
1?
m

“

ϕkpX
G
1 q, ¨ ¨ ¨ , ϕkpX

G
mq

‰T
and ξm “

a

plogmq{m. On the other hand, note that,

for any 1 ď k ď d,

›

›

›

›

1

m
KGϕk ´

rλkϕk

›

›

›

›

2

“

m
ÿ

j“1

›

›

›
x 1
mKGϕk, pϕjy ´

rλkxϕk, pϕjy
›

›

›

2

ě p1` oP p1qq ¨min
j‰k

|λj ´ λk|
2 ¨

m
ÿ

j“1,‰k

δ2
kj , (A.16)

where δkj “ xϕk, pϕjy. By (A.15), (A.16) and Assumption 2, we readily have

max
1ďkďd

∆2
k ” max

1ďkďd

m
ÿ

j“1,‰k

δ2
kj “ OP pξ

2
mq, (A.17)

where ∆2
k “

řm
j“1,‰k δkj .

For any 1 ď k ď d, we may write ϕk as

ϕk “
b

}ϕk}
2 ´∆2

k ¨ pϕk `
m
ÿ

j“1,‰k

δkj ¨ pϕj . (A.18)

In view of (2.8), (3.2) and (A.18), we have

rϕkpxq “
1

pλk

m
ÿ

i“1

Kpx,XG
i qϕkpX

G
i q `

?
m

pλk

m
ÿ

i“1

Kpx,XG
i q

„

pϕkpX
G
i q ´

1
?
m
ϕkpX

G
i q



“
1

λk
¨

1

m

m
ÿ

i“1

Kpx,XG
i qϕkpX

G
i q `

ˆ

1´
b

}ϕk}
2 ´∆2

k

˙

¨

?
m

pλk

m
ÿ

i“1

Kpx,XG
i qpϕkpX

G
i q `

m
ÿ

j“1,‰k

δkj ¨

?
m

pλk

m
ÿ

i“1

Kpx,XG
i qpϕjpX

G
i q `OP

´

m´1{2
¯

” Ξkp1q ` Ξkp2q ` Ξkp3q `OP

´

m´1{2
¯

. (A.19)

By Lemma 1, (3.2) and some standard arguments, we have

max
1ďkďd

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

1

λk
¨

1

m

m
ÿ

i“1

Kpx,XG
i qϕkpX

G
i q ´ ϕkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pξmq (A.20)

and

max
1ďkďd

sup
xPG

|Ξkp2q| “ max
1ďkďd

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

p1` oP p1qq

ˆ

1´
b

}ϕk}
2 ´∆2

k

˙

¨
1

λk
?
m

m
ÿ

i“1

Kpx,XG
i qpϕkpX

G
i q

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP

¨

˝ max
1ďkďd

ˇ

ˇ

ˇ

ˇ

1´
b

}ϕk}
2 ´∆2

k

ˇ

ˇ

ˇ

ˇ

sup
xPG

«

1

m

m
ÿ

i“1

K2px,XG
i q

ff1{2
˛

‚

“ OP pξmq . (A.21)
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By the spectral decomposition (2.2), (3.2), (A.17) and the Cauchy-Schwarz inequality, we may

show that, uniformly for 1 ď k ď d and x P G,

Ξkp3q “ p1` oP p1qq ¨
1

λk

m
ÿ

j“1,‰k

δkj
?
m

m
ÿ

i“1

Kpx,XG
i qpϕjpX

G
i q

“ p1` oP p1qq ¨
1

λk

m
ÿ

j“1,‰k

δkj
?
m

m
ÿ

i“1

«

d
ÿ

l“1

λlϕlpxqϕlpX
G
i q

ff

pϕjpX
G
i q

“ p1` oP p1qq ¨

»

–ϕkpxq
m
ÿ

j“1,‰k

δ2
kj `

d
ÿ

l“1,‰k

λl
λk
ϕlpxqδklδll `

d
ÿ

l“1,‰k

λl
λk
ϕlpxq

m
ÿ

j“1,‰k,‰l

δkjδlj

fi

fl

“ OP pξ
2
m ` ξmq “ OP pξmq. (A.22)

Then we complete the proof of (3.3) in view of (A.19)–(A.22). The proof of Proposition 3 has

been completed. �

Proof of Theorem 1. Observe that

rhpxq ´ hpxq “

d
ÿ

k“1

rβk rϕkpxq ´
d
ÿ

k“1

βkϕkpxq

“

d
ÿ

k“1

prβk ´ βkqrϕkpxq `
d
ÿ

k“1

βk rrϕkpxq ´ ϕkpxqs .

For any 1 ď k ď d, by (3.3) in Proposition 3, we have

rβk ´ βk “
1

m

m
ÿ

i“1

Y G
i rϕkpX

G
i q ´ βk

“
1

m

m
ÿ

i“1

Y G
i ϕkpX

G
i q ´ βk `OP pξmq

“ OP

´

m´1{2 ` ξm

¯

“ OP pξmq,

which indicates that

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“1

prβk ´ βkqrϕkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pξmq. (A.23)

Noting that max1ďkďd |βk| is bounded, by (3.3) in Proposition 3 again, we have

sup
xPG

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“1

βk rrϕkpxq ´ ϕkpxqs

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pξmq. (A.24)

In view of (A.23) and (A.24), we complete the proof of (3.4). �

Proof of Proposition 4. The proof is similar to the proof of Proposition 3 above. Thus we

next only sketch the modification.
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Following the proof of Lemma 1, we may show that

max
1ďj,kďm

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

ϕjpX
G
i qϕkpX

G
i q ´ Ipj “ kq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pξmq,

which indicates that
›

›ΦT
mΦm ´ Idm

›

› “ OP pdmξmq . (A.25)

Using (A.25) and following the proof of (3.2), we may complete the proof of (4.6).

On the other hand, note that when dm is diverging,

max
1ďkďdm

›

›

›

›

1

m
KGϕk ´

rλkϕk

›

›

›

›

ď max
1ďkďdm

›

›

›

›

1

m
KGϕk ´ λkϕk

›

›

›

›

` max
1ďkďdm

›

›

›
λkϕk ´

rλkϕk

›

›

›
“ OP pdmξmq,

(A.26)

and

›

›

›

›

1

m
KGϕk ´

rλkϕk

›

›

›

›

2

“

m
ÿ

j“1

›

›

›
x 1
mKGϕk, pϕjy ´

rλkxϕk, pϕjy
›

›

›

2
ě p1` oP p1qqρ

2
m ¨

m
ÿ

j“1,‰k

δ2
kj . (A.27)

By (A.26), (A.27) and Assumption 2˚, we readily have

max
1ďkďdm

∆2
k ” max

1ďkďdm

m
ÿ

j“1,‰k

δ2
kj “ OP pd

2
mξ

2
m{ρ

2
mq. (A.28)

Using (A.28) and (A.19)–(A.22) (with slight modification), we may complete the proof of (4.7).

The proof of Proposition 4 has been completed. �
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