Bootstrap Tests For Simple Structures in Nonparametric Time Series Regression

Jens-Peter Kreiss and Michael H. Neumann
Institut für Stochastik, Technische Universität Braunschweig, Pockelsstraße 14
D-38106 Braunschweig, Germany

Qiwei Yao∗
Department of Statistics, London School of Economics, Houghton Street
London, WC2A 2AE, UK

Abstract
This paper concerns statistical tests for simple structures such as parametric models, lower order models and additivity in a general nonparametric autoregression setting. We propose to use a modified L_2-distance between the nonparametric estimator of regression function and its counterpart under null hypothesis as our test statistic which delimits the contribution from areas where data are sparse. The asymptotic properties of the test statistic are established, which indicates the test statistic is asymptotically equivalent to a quadratic form of innovations. A regression type resampling scheme (i.e. wild bootstrap) is adapted to estimate the distribution of this quadratic form. Further, we have shown that asymptotically this bootstrap distribution is indeed the distribution of the test statistics under null hypothesis. The proposed methodology has been illustrated by both simulation and application to German stock index data.

KEY WORDS: Absolute regular, additive models, autoregression, kernel estimation, local polynomial estimation, lower order models, nonparametric regression, parametric models, wild bootstrap.

Running head: Bootstrap Tests in Time Series Regression

∗Partially supported by an EPSRC Research Grant.
1 Introduction

Testing on parametric structures is an important issue in nonparametric statistics. In the context of time series modeling, this problem has also been addressed by many authors. For example, Hjellvik and Tjøstheim (1995, 1996) proposed linearity tests based on nonparametric estimates of conditional means and conditional variances. Their tests are based on average L_2-distances between parametric and nonparametric estimators of mean (or conditional variance) functions. Hjellvik, Yao and Tjøstheim (1998) established the asymptotic theory of the tests. Further, simulation conducted in that paper clearly demonstrates that the approximation from the first order asymptotic theory is far too crude to be useful in practice unless the sample size is tremendously large. Following the lead of Hjellvik and Tjøstheim (1995, 1996), Hjellvik, Yao and Tjøstheim (1998) adopted a parametric bootstrap scheme to estimate the critical values of tests, which amounted to resampling estimated residuals from the best fitted linear autoregressive model. This bootstrap procedure was proposed in Kreiss (1988); see also Bühlmann (1997) and Kreiss (1997). Again by simulations, Hjellvik, Yao and Tjøstheim (1998) demonstrate that the bootstrap approximation for the distribution of the test statistic is much more accurate than a first-order asymptotic approximation. However, there has been no theoretical justification of using bootstrap method in this context. One goal of this paper is to fill in this gap.

In this paper, we propose statistical tests for simple structures such as parametric models, lower order models and additivity in a general setting of stochastic regression model which includes autoregression as a special case. Our test statistic can be viewed as a generalized form of L_2-distance between nonparametric regression and its counterpart under null hypothesis. The idea to use the L_2-distances as test statistics goes back to Härdle and Mammen (1993), where the regression is considered with independent observations. In fact, Härdle and Mammen considered various kinds of bootstrap methods and concluded that the wild bootstrap method was most relevant to regression type of problems. Our test statistic is an improved version of that used by Härdle and Mammen. The improvement is effectively due to the introduction of a weight function in the statistic, which is proportional to the squared marginal density of the regressor. This not only stabilizes the statistic against the so-called boundary effect in nonparametric regression, but also delimits the influence from the areas where data are sparse. Furthermore, it simplifies theoretical derivation considerably. Following Härdle and Mammen’s suggestion, we also use wild bootstrap method. However different from Härdle and Mammen, we only use it to estimate the
distribution of a quadratic form of innovations which has an uniform form for all the three types of
null hypotheses considered in the paper. Indeed this quadratic form is asymptotically equivalent
to the test statistics under the null hypotheses. This means that practically we bootstrap from
a population which always reflects the null hypothesis concerned (Hall and Wilson 1991). This
resampling scheme is nonparametric, which retains conditional heteroscedasticity in the model.
For further discussion on using regression types of resampling techniques in autoregression, we

The rest of paper is organized as follows. We present the bootstrap test and the three types
of null hypotheses in §2. In §3, the finite sample properties of the proposed methodology will
be demonstrated by simulation and later by the application to German stock index data. The
asymptotic properties in §4 guarantee that the bootstrap distributions are asymptotically the
same as the null hypothesis distributions of the test statistics. All technical proofs are relegated
in the Appendix.

\section{Bootstrap tests}

\subsection{Model and hypotheses}

Suppose that \(\{X_t, Y_t\} \) is a strictly stationary discrete-time stochastic process with \(X_t \in \mathbb{R}^d \) and
\(Y_t \in \mathbb{R} \). Given observations \(\{(X_t, Y_t) : 1 \leq t \leq T\} \), we are interested in testing whether the
conditional expectation \(m(x) = \mathbb{E}\{Y_t|X_t = x\} \) is of some simple structure. We write
\[Y_t = m(X_t) + \varepsilon_t, \quad t \geq 1, \quad (2.1) \]
where \(\mathbb{E}\{\varepsilon_t|X_t, (X_s, Y_s)_{s=1,...,t-1}\} = 0 \) for all \(t \). This setting includes the autoregressive model as a
special case in which \(X_t \) consists of some lagged values of \(Y_t \). We do not assume that the random
variables \(\varepsilon_t, \ t \geq 1 \), are independent. This, in particular, allows us to include the conditional
heteroscedasticity in the model (see an application in §3.2 below). In fact, our original motivation
is to test whether an autoregressive function has some simple forms such as, for example, a given
parametric representation.

In this paper, we consider three types of null hypotheses on \(m(\cdot) \):
\[
\begin{align*}
H_p & : \ m(\cdot) \in \{m_\theta(\cdot) | \ \theta \in \Theta\}, \\
H_o & : \ m(x_1, \ldots, x_d) = m_0(x_1), \\
H_a & : \ m(x_1, \ldots, x_d) = m_1(x_1) + \ldots + m_d(x_d).
\end{align*}
\]
As a simple example of H_p, we may think of testing for a linear regression, namely $m_\theta(x_1, \ldots, x_d) = \sum_{i=1}^d \theta_i x_i$. Another example would be to test for a parametric threshold model (Tong 1990). For applications in econometrics, it is interesting to test for a so-called ARCH-structure (Engle 1982), i.e. to test the validity of the model

$$X_t = \sigma_\theta(X_{t-1}, \ldots, X_{t-d}) e_t,$$

where $\sigma_\theta(x_1, \ldots, x_d) = \sqrt{\theta_0 + \sum_{i=1}^d \theta_i x_i^2}$.

In the above expression, it is assumed that $Ee_t = 0$ and $Ee_t^2 = 1$. This problem can be formulated as a special case of testing for H_p by writing $Y_t = X_t^2$. (See §3.2 below.) Although hypothesis H_o specifies a one-dimensional model only, our approach can be apply to test for the hypothesis of a d_0-dimensional model for some $d_0 < d$. In view of the curse of dimensionality which makes nonparametric methods in high dimensions problematic, it is often appealing to assume, for example, the additivity in nonparametric modeling. To date, most work on additive modeling has focused on the estimation aspect, whereas little attention has been paid on testing the validity of the additivity. The method proposed in this paper provides a bootstrap test for this purpose.

2.2 The test statistic

Let $\tilde{m}(\cdot)$ be a corresponding estimator of $m(\cdot)$ under the relevant null hypothesis, namely,

$$\tilde{m}(x_1, \ldots, x_d) = \begin{cases} m_\theta(x_1, \ldots, x_d) & \text{if } H_p \text{ holds}, \\ \tilde{m}_0(x_1) & \text{if } H_o \text{ holds}, \\ \tilde{m}_1(x_1) + \ldots + \tilde{m}_d(x_d) & \text{if } H_a \text{ holds}. \end{cases} \quad (2.2)$$

We propose to use the test statistic

$$S_T = \int_{R^d} \left(\frac{1}{T} \sum_{t=1}^T K_h(x - X_t) \{Y_t - \tilde{m}(X_t)\} \right)^2 w(x) \, dx, \quad (2.3)$$

where $K_h(\cdot) = h^{-d}K(\cdot/h)$, $K(\cdot)$ is a kernel function on R^d, $h > 0$ is a bandwidth, and $w(\cdot)$ denotes a weight function.

The statistic defined above can be viewed as a modified version of the following statistic used by Härdle and Mammen (1993) for testing the hypothesis H_p based on independent observations

$$\int_{R^d} \left(\frac{\sum_{t=1}^T K_h(x - X_t) \{Y_t - m_\theta(X_t)\}}{\sum_{t=1}^T K_h(x - X_t)} \right)^2 w(x) \, dx. \quad (2.4)$$
Their basic idea is to use the average L_2-distance between a parametric estimator $\hat{m}_{\theta}(\cdot)$ and a nonparametric estimator

\[
\hat{m}_h(\cdot) = \frac{1}{T} \sum_{t=1}^{T} Y_t K_h(\cdot - X_t) / \sum_{t=1}^{T} K_h(\cdot - X_t)
\]

as a test statistic. To compensate the bias in nonparametric estimation, they smooth $m_{\theta}(\cdot)$ as well. We omit the estimator of the stationary density $\pi(\cdot)$ of X_t in the denominator of the integrand in (2.3), which could be interpreted as that we add a factor $\pi^2(\cdot)$ into the weight function in (2.4). This means that we consider the difference of the two estimators only at the values of x within the support of $\pi(\cdot)$ and pay substantially less attention in areas where the data are sparse (see §3.2, especially Figure 3.5). Further, this modification not only simplifies the theoretical derivations, but also makes the statistic stable in practice – regardless the choice of weight function $w(\cdot)$. In fact, we can choose $w(\cdot) \equiv 1$ for testing H_p.

Our test statistics for the three different null hypotheses H_p, H_o and H_a have a common representation S_T as given in (2.3). The respective estimators for the regression function $m(\cdot)$ under different hypotheses are building blocks in defining S_T (see (2.2)). We specify those estimators as follows.

For testing a parametric hypothesis H_p, we assume that $\hat{\theta}$ is a \sqrt{T}-consistent estimator of θ_0 (the true parameter) for which

\[
m_{\theta}(\cdot) - m_{\theta_0}(\cdot) = (\hat{\theta} - \theta_0)^\top \hat{m}_{\theta_0}(\cdot) + O_P \left(\frac{\| \cdot \|^2}{\sqrt{T \log T}} \right),
\]

where $\hat{m}_{\theta}(\cdot)$ denotes the derivative of $m_{\theta}(\cdot)$ with respect to θ.

For testing the one-dimensional nonparametric regression model H_o, we use a local polynomial estimator of order p, where $[p/2] > 5d/16$, ([$p/2$] denotes the integer part of $p/2$), i.e. we estimate $m_0(x_1)$ by $\hat{m}_g(x_1) = \hat{a}$, where

\[
(\hat{a}, \hat{b}_1, \ldots, \hat{b}_p) = \arg \min_{a, b_1, \ldots, b_p} \sum_{t=1}^{T} \left(Y_t - a - b_1(x_1 - X_{t,1}) - \ldots - b_p(x_1 - X_{t,1}) \right)^2 W \left(\frac{x_1 - X_{t,1}}{g} \right),
\]

W is a kernel function on R, $g > 0$ is a bandwidth, and $X_{t,1}$ is the first component of X_t. We use a local polynomial estimator with a sufficiently high order (i.e. $[p/2] > 5d/16$) rather than a conventional kernel (i.e. local constant) estimator in order to keep the bias in estimation of $m_0(\cdot)$ small enough in the first place. Note that the way of defining the statistic S_T involves the further smoothing on the estimator of $m_0(\cdot)$, which inevitably increases its bias further.
We use the so-called nonparametric integration estimators for the additive conditional mean function \(m(x) = m_1(x_1) + \ldots + m_d(x_d) \), which, as proved by Fan, Härdle and Mammen (1998) achieve the usual one-dimensional rate of nonparametric curve estimators. This indicates that obtained results for testing on a one-dimensional nonparametric hypothesis immediately carry over to the additive nonparametric case.

2.3 Bootstrapping

It is easy to see that

\[
T h^{d/2} S_T = T h^{d/2} S_T^t - \frac{2h^{d/2}}{T} \int \left(\sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right) \left(\sum_{s=1}^{T} \sum_{t=1}^{T} K_h(x - X_s) \{ \tilde{m}(X_s) - m(X_s) \} \right) w(x) dx
\]

\[+ \frac{h^{d/2}}{T} \left(\sum_{t=1}^{T} K_h(x - X_t) \{ \tilde{m}(X_t) - m(X_t) \} \right)^2 w(x) dx , \tag{2.8}
\]

where

\[
S_T^t = \frac{1}{T^2} \int \left(\sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right)^2 w(x) dx , \tag{2.9}
\]

which is a quadratic form of the innovations \(\{ \varepsilon_t \} \) and is invariant under the three null hypotheses. Theorem 1 in §4 below shows that under the null hypotheses, \(T h^{d/2} S_T \) is asymptotically normal, and more importantly its asymptotic distribution is the same as that of \(T h^{d/2} S_T^t \). (The dominating role played by the quadratic term was also observed by Härdle and Mammen (1993) for regression with independent observations.) This indicates that we may mimic the distribution of \(S_T \) by bootstrapping the quadratic form \(S_T^t \) only. Note that the distribution of \(S_T^t \) does not depend on whether the null hypothesis holds or not, although \(S_T \) does. Therefore, the derived bootstrap test automatically follows the first guideline set by Hall and Wilson (1991). Namely our bootstrap approximation to the null hypothesis distribution of \(S_T \) is always valid even the data \(\{ Y_t, X_t \} \) were drawn from a population under which the null hypothesis does not holds. (See Figure 3.3 in §4 below for an illustration.) This ensures the reasonable power of the bootstrap test against the departure from the null hypothesis.

Härdle and Mammen (1993) studied three different bootstrap procedures and concluded that the wild bootstrap is the most pertinent method for testing the regression structure. Following their lead, we adopt a wild bootstrap scheme to estimate the distribution of (2.9). To this end,
we define the bootstrap statistic

$$S_T^* = \frac{1}{T^2} \int \left(\sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t^* \right)^2 w(x) dx,$$ \hspace{1cm} (2.10)$$

where the bootstrap innovations $\varepsilon_1^*, \ldots, \varepsilon_T^*$ are conditionally independent given the observed data \(\{(X_t, Y_t) : 1 \leq t \leq T\} \), and

$$E^* \varepsilon_t^* = 0 \quad \text{and} \quad E^* (\varepsilon_t^*)^2 = (Y_t - \hat{m}_h(X_t))^2,$$

where \(E^* \) denotes the expectation under bootstrap distribution (i.e. the conditional distribution given \(\{(X_t, Y_t) : 1 \leq t \leq T\} \)), \(\hat{m}_h(\cdot) \) is defined as in (2.5). In practice, we can define $\varepsilon_t^* = \tilde{\varepsilon}_t \cdot \eta_t$, where \(\{\eta_t\} \) is a sequence of \(i.i.d. \) random variables with zero mean and unit variance. We reject the null hypothesis if $S_T > t^*_\alpha$, where t^*_α is the upper α-point of the conditional distribution of S_T^*. The latter can be evaluated via repeated bootstrap samplings. In fact, the p-value of the test is the relative frequency of the event \(\{S_T^* \geq S_T\} \) in the bootstrap replications. We have proved that this bootstrap test is asymptotically correct in the sense that its significance level converges to α as $T \to \infty$ (Corollary 1 in §4 below).

3 Numerical properties

In this section, we investigate the finite sample properties of the proposed method by both simulation and application with a real data set. As an illustration, we deal only with the parametric hypothesis H_p. We always use the kernel $K(u) = 3/4 (1 - u^2) I_{[-1,1]}(u)$ in our calculations, whereas the standard Gaussian kernel is also possible, and weight function $w(\cdot) \equiv 1$. We use the cross-validation to choose bandwidths for nonparametric regression estimation.

3.1 Simulations

We conduct simulation with five different models. It turns out that the bootstrap scheme provides fairly accurate approximations to the significance levels of the tests. The simulated power of tests are also reported. Finally, we demonstrate by example that the bootstrap approximation stays closely to the distribution of S_T^*, which is equal to the null hypothesis distribution of S_T asymptotically, even when S_T is calculated from the data generated from a nonlinear model.

We consider three linear autoregression models

\[(M1) \ X_t = -0.9 \cdot X_{t-1} + \varepsilon_t, \ t = 1, \ldots, T, \]
Simulated density of $\mathcal{L}(Th^{d/2}S_T)$ (thick) and six bootstrap approximations (thin)

(M2) $X_t = 0.9 \cdot X_{t-1} - 0.5 \cdot X_{t-2} + \varepsilon_t$, $t = 1, \ldots, T$,

(M3) $X_t = 0.9 \cdot X_{t-1} - 0.5 \cdot X_{t-2} + 0.3 \cdot X_{t-3} + \varepsilon_t$, $t = 1, \ldots, T$,

and two nonlinear autoregression models

(M4) $X_t = 0.9 \cdot \sin(X_{t-1}) + \varepsilon_t$, $t = 1, \ldots, T$,

(M5) $X_t = -0.9 \cdot X_{t-1} + \sin(X_{t-2}) + \varepsilon_t$, $t = 1, \ldots, T$.

We always assume that innovations in the above models are i.i.d. Their distribution may be normal, double exponential (heavier tails), logistic or shifted exponential (in order to have zero mean). All the five models are stationary. We replicate simulation 500 times with sample size $T = 100, 200$ and 500 respectively. We replicate bootstrap sampling 500 times.
<table>
<thead>
<tr>
<th>model</th>
<th>T=100</th>
<th>L(ε₁)</th>
<th>T=200</th>
<th>L(ε₁)</th>
<th>T=500</th>
<th>L(ε₁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.048</td>
<td>logistic</td>
<td>0.036</td>
<td>logistic</td>
<td>0.050</td>
<td>logistic</td>
</tr>
<tr>
<td>M2</td>
<td>0.066</td>
<td>logistic</td>
<td>0.048</td>
<td>logistic</td>
<td>0.036</td>
<td>logistic</td>
</tr>
<tr>
<td>M3</td>
<td>0.066</td>
<td>normal</td>
<td>0.045</td>
<td>normal</td>
<td>0.030</td>
<td>normal</td>
</tr>
<tr>
<td>M4</td>
<td>0.052</td>
<td>double exp.</td>
<td>0.048</td>
<td>double exp.</td>
<td>0.046</td>
<td>double exp.</td>
</tr>
<tr>
<td>M5</td>
<td>0.048</td>
<td>normal</td>
<td>0.034</td>
<td>normal</td>
<td>0.028</td>
<td>normal</td>
</tr>
</tbody>
</table>

Table 3.1, nominal level $\alpha = 0.05$

<table>
<thead>
<tr>
<th>model</th>
<th>T=100</th>
<th>L(ε₁)</th>
<th>T=200</th>
<th>L(ε₁)</th>
<th>T=500</th>
<th>L(ε₁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.074</td>
<td>logistic</td>
<td>0.055</td>
<td>logistic</td>
<td>0.086</td>
<td>logistic</td>
</tr>
<tr>
<td>M2</td>
<td>0.106</td>
<td>logistic</td>
<td>0.100</td>
<td>logistic</td>
<td>0.068</td>
<td>logistic</td>
</tr>
<tr>
<td>M3</td>
<td>0.078</td>
<td>exponential</td>
<td>0.044</td>
<td>exponential</td>
<td>0.062</td>
<td>exponential</td>
</tr>
<tr>
<td>M4</td>
<td>0.106</td>
<td>normal</td>
<td>0.080</td>
<td>normal</td>
<td>0.082</td>
<td>normal</td>
</tr>
<tr>
<td>M5</td>
<td>0.124</td>
<td>double exp.</td>
<td>0.084</td>
<td>double exp.</td>
<td>0.058</td>
<td>double exp.</td>
</tr>
<tr>
<td>M4</td>
<td>0.076</td>
<td>exponential</td>
<td>0.060</td>
<td>exponential</td>
<td>0.064</td>
<td>exponential</td>
</tr>
<tr>
<td>M5</td>
<td>0.096</td>
<td>normal</td>
<td>0.092</td>
<td>normal</td>
<td>0.066</td>
<td>normal</td>
</tr>
</tbody>
</table>

Table 3.2, nominal level $\alpha = 0.10$

Tables 3.1 and 3.2 report the actual levels of the proposed bootstrap tests for all five models with different innovation distributions. For the first three models we test for linearity, while for model four and five we test for the parametric hypothesis $m(x) \in \{\theta \sin(x)\}$ and $m(x_1, x_2) \in \{\theta_1 x_1 + \theta_2 \sin(x_2)\}$ respectively. It can be seen from Tables 3.1 and 3.2 that the actual levels of the proposed bootstrap tests are very stable around or below the nominal level α. Even when the distribution of innovations in model (M2) is exponential, which is strongly asymmetric, the proposed test tends to make the right decision. Note that it is not always trivial to separate nonlinearity from non-normality, and some classical test procedures would reject a linearity hypothesis for a linear model with strongly skewed innovations.

Now we apply the bootstrap test for the linearity hypothesis for models (M4) and (M5). Tables 3.3 and 3.4 report the simulated values of the power function of the proposed bootstrap test. Comparatively, the proposed test is more powerful to detect the nonlinearity in model (M5).
than that in (M4). The wider dynamic range of X_t in model (M5) than that in (M4) is certainly more helpful to identify the nonlinearity.

<table>
<thead>
<tr>
<th>nominal level α</th>
<th>$T=100$ $\mathcal{L}(\varepsilon_1)$</th>
<th>$T=200$ $\mathcal{L}(\varepsilon_1)$</th>
<th>$T=500$ $\mathcal{L}(\varepsilon_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.540 double exp.</td>
<td>0.878 double exp.</td>
<td>1.000 double exp.</td>
</tr>
<tr>
<td>0.05</td>
<td>0.432 exponential</td>
<td>0.806 exponential</td>
<td>1.000 exponential</td>
</tr>
<tr>
<td>0.10</td>
<td>0.676 double exp.</td>
<td>0.950 double exp.</td>
<td>1.000 double exp.</td>
</tr>
<tr>
<td>0.10</td>
<td>0.614 exponential</td>
<td>0.914 exponential</td>
<td>1.000 exponential</td>
</tr>
</tbody>
</table>

Table 3.3
underlying model (M4), test on first order linear autoregression

<table>
<thead>
<tr>
<th>nominal level α</th>
<th>$T=100$ $\mathcal{L}(\varepsilon_1)$</th>
<th>$T=200$ $\mathcal{L}(\varepsilon_1)$</th>
<th>$T=500$ $\mathcal{L}(\varepsilon_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.992 normal</td>
<td>1.000 normal</td>
<td>1.000 normal</td>
</tr>
<tr>
<td>0.10</td>
<td>0.998 normal</td>
<td>1.000 normal</td>
<td>1.000 normal</td>
</tr>
</tbody>
</table>

Table 3.4
underlying model (M5), test on second order linear autoregression
Finally, we look more closely at models (M2) and (M4). We plot the density functions of the test statistic $T h^{d/2}S_T$ (obtained from a simulation with 1000 replications) and a couple of its bootstrap approximations in Figure 3.1 for model (M2) with $T = 200$ and in Figure 3.2 for model (M4) with $T = 100$. The null hypothesis concerned here is the correct parametric form specified in model (M2) and (M4) respectively. For testing the linearity for model (M4), we plot the distributions of $T h^{d/2}S_T$ and $T h^{d/2}S'_T$ together in Figure 3.3. Since now the null hypothesis no longer holds, the distributions of $T h^{d/2}S_T$ and $T h^{d/2}S'_T$ are quite different. The bootstrap approximations are always close to the null hypothesis distribution of $T h^{d/2}S_T$ whenever the underlying models reflect null hypothesis (Figures 3.1 and 3.2) or not (Figure 3.3).

3.2 Application

We apply our test to the daily German stock index DAX (S_t) for the period January 2, 1990 — December 30, 1992 plotted in Figure 3.4. It is of practical interest to test whether the first order ARCH-model is an appropriate parametric form for the so-called returns $R_t \equiv \log S_t - \log S_{t-1}$, $t = 1, \ldots, T = 746$. The implied ARCH model is

$$R_t = \sqrt{\alpha_0 + \alpha_1 R_{t-1}^2} \cdot \epsilon_t,$$
which can equivalently be expressed as,

\[R_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2 + \left(\alpha_0 + \alpha_1 R_{t-1}^2 \right) \cdot (e_t^2 - 1), \]

where the innovations \(\{e_t\} \) are assumed to be i.i.d. random variables with zero mean and unit variance. Our test statistic is based on the average \(L_2 \)-distance of the parametric estimator \(\hat{\alpha}_0 + \hat{\alpha}_1 x^2 \) and the nonparametric estimator of \(E [R_t^2 | R_{t-1} = x] \), the volatility function, over the interval \([-0.02, 0.02]\) (in which we find 91.4% of our data) and parts of it. Note that we are now dealing with a model with (conditional) heteroscedasticity.

In a first step we use the statistic (2.3) with weight function \(w \) equal to one. As is explained in Subsection 2.2 this means that we implicitly make use of an intrinsic weight function proportional to the square of the stationary density, i.e. we weight down regions where the observations are sparse. The value of the test statistic is \(T\sqrt{hS_T} = 1.2 \cdot 10^{-6} \), where the bandwidth \(h = 9.0 \cdot 10^{-3} \) has been
nonparametric estimator $\hat{m}_h(x)$, parametric estimator $\hat{\alpha}_0 + \hat{\alpha}_1 x^2$ of $E[R_t^2|R_{t-1} = x]$ and density of the underlying data times 10^{-5} (broken)

selected by cross-validation. From 5000 bootstrap replications we obtain the bootstrap critical value $t^{*}_{0.10} = 3.1 \cdot 10^{-6}$ (at a level of 10 per cent), which implies that the first order parametric ARCH-model for the returns of the German stock index (1990-1992) cannot be rejected. Figure 3.5 depicts both parametric estimator and nonparametric estimator of the regression function, together with the estimated marginal density function. It is clear that the ARCH structure is predominant when the density function is reasonably large and it fades away when we look at more extreme values of returns (which could be positive or negative). Note that the estimated density function takes very small values in the areas where the returns take extreme values. The intrinsic weight function in our test statistic weighs down the discrepancy of the two estimators in those areas automatically.

In a second step we don’t use the simplified statistic (2.3) but instead the statistic (2.4) with two different weight functions w given below. This means that we don’t want to weight down regions where the data are sparse as we did above. In order to be able to detect asymmetry of the conditional expectation of the squared returns we use the following two weight functions $w_1 = 1_{[-0.020,-0.005]}$ and $w_2 = 1_{[0.005,0.020]}$, i.e. we separately test for the same parametric ARCH-structure on a part of the negative and positive axes. Recall that we could not reject the ARCH-model at a level of 10 per cent above. Now, at the stricter level of 5 per cent, the bootstrap
test applied to the test statistic (2.4) with weight function w_2 yields a clear cut rejection and no rejection for the same test with w_1 of the parametric ARCH-structure. Thus, our results are in line with the common conception of a non-symmetric volatility function for such data.

4 Asymptotic properties

To study the asymptotic properties of the proposed method, we need to introduce some regularity conditions as follows.

(A1) The process $\{(X_i, Y_i)\}$ is absolutely regular, i.e.

$$
\beta(j) \equiv \sup_{i \geq 1} E \left\{ \sup_{A \in F^j_i} \left| P(A|F^j_i) - P(A) \right| \right\} \to 0, \text{ as } j \to \infty,
$$

where F^j_i is the σ-field generated by $\{(X_k, Y_k) : k = i, \ldots, j\}$ ($j \geq i$). Further it is assumed that $\{\beta(j)\}$ decay at a geometric rate.

(A2) X_t has a bounded density function $\pi(\cdot)$. Further, the joint density of distinct elements of $(X_1, Y_1, X_s, Y_s, X_t, Y_t)$ ($t > s > 1$) is continuous and bounded by a constant independent of s and t.

(A3) $E\{\varepsilon_t|X_t, F^{t-1}_t\} = 0$ for all t, $\sigma^2(x) = \text{Var}\{Y_t|X_t = x\} = E[\varepsilon_t^2|X_t = x]$ is continuous, and $E\{[m(X_t)]^{16} + Y_t^{16}\} < \infty$.

(A4) K is a product kernel, i.e. $K(x) = \prod_{i=1}^d W(x_i)$, and W is a symmetric density function with a bounded support in R, and $|W(x_1) - W(x_2)| \leq c|x_1 - x_2|$ for all x_1 and x_2 in its support.

(A5) $h \in [aT^{-\frac{1}{2p+2}}/\log T, bT^{-\frac{1}{2p+2}}\log T]$, where $0 < a < b < \infty$ are some constants.

(A6) This assumption differs for the three different null hypotheses.

- For testing the hypothesis H_p, it is assumed that $E_{\Theta_0}||\hat{m}_{\Theta_0}(X_1)||^2 < \infty$, and $w(\cdot) \equiv 1$.

- For testing H_o, it is assumed that $m_0(\cdot)$ is $(p+1)$-times differentiable with a bounded $(p+1)$-th order derivative, and $g \in [aT^{-\frac{1}{2p+2}}/\log T, bT^{-\frac{1}{2p+2}}\log T]$, where $[p/2]$ denotes the integer part of $p/2$ and $0 < a < b < \infty$ are some constants. Further, we assume that $[p/2] > 5d/16$. The weight function $w(\cdot)$ has a compact support contained in the support of $\pi(\cdot)$.
Further, for any $M < \infty$ and arbitrary compact subset B contained in the
support of $X_{t,1}$, there exists a constant $C_{M,B} < \infty$ such that

$$\sup_{x \in B} \left\{ E \left(|\varepsilon_t|^M \big| X_{t,1} = x \right) \right\} \leq C_{M,B} \text{ for all } t .$$

- For testing H_a, smoothness conditions on $m_k(\cdot)$ ($1 \leq k \leq d$) and suitable
assumptions on the bandwidth are assumed in order to ensure that all the
estimators for $\{m_k(\cdot)\}$ achieve the one-dimensional convergence rate and the
uniform convergence over compact sets contained in the support of $\pi(\cdot)$.

Some remarks are now in order.

Remark 1. We impose the boundedness on the support of $W(\cdot)$ for brevity of the proofs; it may
be removed at the cost of lengthier proofs. In particular, the Gaussian kernel is allowed. The
assumption of the convergence rate of $\beta(j)$ is also imposed for technical convenience.

Remark 2. We assume all the bandwidths taking values around their optimal orders (with
symmetric kernels) in the sense which minimize the risks in estimation of regression functions. (For
practical implementation we recommend to use data-driven bandwidths such as cross-validation
which achieve these orders.) Lepski and Spokoiny (1999) showed that the bandwidths which
provide the most powerful tests against *local* alternatives are of slightly different orders. To
achieve the best power, they proposed to use the supremum of a family of statistics instead of
just one single statistic. They adopted a slightly conservative rule to determine the critical value
based on Bonferroni’s inequality. We do not opt for their method simply to keep our approach
simple and easy to implement.

Remark 3. The theoretical results presented in this paper are proved for nonrandom bandwidths.
It is conceivable that they should also hold for some data-driven bandwidths, for which it remains
to be proved that the difference between the test statistics based on two types of bandwidths
are negligible. Neumann (1995) proved such a result in the context of confidence intervals of
regression function.

Remark 4. In testing H_0, we need to use p-th order local polynomial estimator for $m_0(\cdot)$ with
$\lceil p/2 \rceil > 5d/16$, which always favors an even value of p if we wish to keep p as small as possible.
For example, we have to use at least local quadratic estimation in order to test whether the model
is one-dimensional against a two- or three-dimensional alternative.

Remark 5. Concerning suitable assumptions in order to ensure (A6) for testing H_a we refer to
Yang, Härdle and Nielsen (1999). Also see Fan, Härdle and Mammen (1998)
Theorem 1. Suppose that one of the null hypotheses H_0, H_o or H_a holds, and that the statistic S_T given in (2.3) is defined in terms of one of the estimators specified in (2.6) – (2.8) according to the null hypothesis concerned. We also suppose that assumptions (A1) – (A6) hold. Then, as $T \to \infty$,

(i) $S_T = S'_T + o_p(T^{-1/2}h^{-d/2})$, where S'_T is defined as in (2.9).

(ii) $(Th^{d/2})\{S'_T - E(S'_T)\} \xrightarrow{d} N(0, V)$ as $T \to \infty$, where

$$
E(S'_T) = \frac{1}{Th^d} \int_{R^d} \int_{R^d} K^2(u)w(x + hu)\pi(x)\sigma^2(x) \, dx \, du ,
$$

$$
V = 2 \int_{R^d} \sigma^4(x)\pi^2(x)w(x) \, dx \int_{R^d} K(u)K(v)K(u - z)K(v - z) \, du \, dv \, dz .
$$

Theorem 2. Assume that the conditions of Theorem 1 hold. For the bootstrap statistic S^*_T defined as in (2.10), we have that as $T \to \infty$,

$$
Th^{d/2}[S^*_T - E^*(S^*_T)] \xrightarrow{d} N(0, V)
$$

conditionally on $\{(X_t, Y_t), 1 \leq t \leq T\}$, where V is the same as given in Theorem 1, and $Th^{d/2}|E(S'_T) - E^*(S^*_T)| \to 0$ in probability.

Corollary 1. Assume that the conditions of Theorem 1 hold. Let t^*_α be the upper α-point of the conditional distribution of S^*_T given $\{(X_t, Y_t), 1 \leq t \leq T\}$ and $\alpha \in (0, 1)$. Then as $T \to \infty$,

$$
P\{S_T > t^*_\alpha\} \to \alpha$$

under the corresponding null hypothesis.

The above corollary follows immediately from Theorems 1 and 2. The proofs of Theorems 1 and 2 are given in the Appendix.

Appendix: Proofs

A.1 Proof of Theorem 1

We first prove Theorem 1 (ii). Then we present the proof of Theorem 1 (i) for the case of testing H_0 only, since it is technically more involved than the case of testing H_p. We always use δ to denote an arbitrarily small positive constant.

Proof of Theorem 1 (ii). It is easy to see that

$$
Th^{d/2}S'_T =
$$
The last term does not depend on \(x \) and the weights \(\bar{w} \) (1996), this term is asymptotically normal with mean 0 and asymptotic variance.

By the Ergodic Theorem, the first term on the right-hand side of the above expression is equal to

\[
E \left\{ h^{-3d/2} \int K^2 \left(\frac{x - X_t}{h} \right) w(x) \sigma^2(X_t) \, dx \right\} + O_P(1/\sqrt{Th^d}),
\]

where

\[
E \left\{ h^{-3d/2} \int K^2 \left(\frac{x - X_t}{h} \right) w(x) \sigma^2(X_t) \, dx \right\} = h^{-d/2} \int K^2(u) w(x + hu) \pi(x) \sigma^2(x) \, dx \, du.
\]

Assumption (A3) ensures that the second term has mean 0. By Theorem A of Hjellvik et al. (1996), this term is asymptotically normal with mean 0 and asymptotic variance

\[
2h^{-3d} \int \epsilon_t^2 \int K \left(\frac{z - X_t}{h} \right) K \left(\frac{z - X_s}{h} \right) \, dP(X_t, Y_t) \, dP(X_s, Y_s)
\]

\[
= 2h^{-3d} \int \sigma^2(u_1) \sigma^2(u_2) \pi(u_1) \pi(u_2) K \left(\frac{u_1 - z_1}{h} \right) K \left(\frac{u_2 - z_1}{h} \right) \cdot K \left(\frac{u_1 - z_2}{h} \right) K \left(\frac{u_2 - z_2}{h} \right) \, du_1 \, du_2 \, dz_1 \, dz_2 \rightarrow V.
\]

To prove Theorem 1 (i) (for the case of \(H_\alpha \)), we introduce two lemmas first. Recall that \(\hat{m}_g(\cdot) \) is the local polynomial estimator of \(m_0(\cdot) \) with bandwidth \(g \) (see (2.7)). We write

\[
X_t = (X_{t,1}, \ldots, X_{t,d})^\top, \quad x = (x_1, \ldots, x_d)^\top.
\]

Let \(B \) denote any compact subset contained in the support of \(X_{t,1} \). It follows from Propositions 2.1 and 2.2 of Neumann and Kreiss (1998) that uniformly in \(x_1 \in B \),

\[
\hat{m}_g(x_1) - m_0(x_1) = \sum_{t=1}^T \hat{w}_g(x_1, X_{t,1}) \epsilon_t + b_\infty(x_1) + O_P \left(\frac{(\log T)^{3/2}}{Tg} + \frac{g^{p+1} \log T}{\sqrt{Tg}} \right). \tag{4.1}
\]

The last term does not depend on \(x_1 \) and \(b_\infty \) denotes a non-random function with

\[
\sup_{x_1 \in B} |b_\infty(x_1)| = O(g^{p+1}), \tag{4.2}
\]

and the weights \(\hat{w}_g(x_1, X_{t,1}) \) are given as

\[
\hat{w}_g(x_1, X_{t,1}) = \sum_{k=0}^p d_k(x_1)^{\infty} W \left(\frac{x_1 - X_{t,1}}{g} \right) \left(\frac{x_1 - X_{t,1}}{g} \right)^k. \tag{4.3}
\]
\(d_k^{(\infty)}(x_1) \) denotes the \((1, k + 1)\)-th element of the inverse of a \((p + 1) \times (p + 1)\) matrix with
\[
TE \begin{bmatrix}
\frac{x_1 - X_{i1}}{g} & \frac{x_1 - X_{i1}}{g} & \ldots & \frac{x_1 - X_{i1}}{g}
\end{bmatrix}^{i+j-2}
\] as its \((i, j)\)-th element. The minimal eigenvalue of this matrix is of order \(Tg \), which immediately implies \(d_k^{(\infty)}(x_1) = O(1/(Tg)) \).

Lemma 1. Suppose that assumptions \((A1) \ldots (A6)\) hold. Under hypothesis \(H_o \),
\[
\sup_{x_1 \in B} \left| \sum_{t=1}^{T} \bar{w}_g(x_1, X_{t,1}) \varepsilon_t \right| = O_P \left(\log T/\sqrt{Tg} \right),
\]
(4.4)
\[
\sup_{x_1 \in B} \left| \sum_{t=1}^{T} \tilde{w}_g(x_1, X_{t,1}) \varepsilon_t \right| = O_P \left(\log T/\sqrt{Tg^3} \right),
\]
\[
\sup_{x_1 \in B} \left| \sum_{t=1}^{T} \tilde{w}_g(x_1, X_{t,1}) \varepsilon_t \right| = O_P \left(\log T/\sqrt{Tg^5} \right),
\]
where \(\tilde{w}_g(x_1,.) \) and \(\bar{w}_g(x_1,.) \) denote the first and second order derivative with respect to \(x_1 \).

Proof of Lemma 1. We prove (4.4) only, the two other equations can be proved in a similar way.

Without loss of the generality we assume \(B = [a, b] \). First we divide \([a, b]\) into \(I = I(T) = O(T^2)\) small intervals with the same length. Let \(b_0 = a < b_1 \ldots < b_I = b \) be the endpoints of the intervals and \(B_i = [b_{i-1}, b_i] \). It is obvious that
\[
\sup_{x_1 \in B} \left| \sum_{t=1}^{T} \bar{w}_g(x_1, X_{t,1}) \varepsilon_t \right| \leq \max I \sup_{x_1 \in B_i} \left| \sum_{t=1}^{T} \left\{ \bar{w}_g(x_1, X_{t,1}) - \bar{w}_g(b_i, X_{t,1}) \right\} \varepsilon_t \right| + \max I \sup_{x_1 \in B_i} \left| \sum_{t=1}^{T} \bar{w}_g(b_i, X_{t,1}) \varepsilon_t \right|.
\]
(4.5)

Since \(W(.) \) is bounded and has a compact support, it follows from (4.3) that \(|\bar{w}_g(x_1, X_{t,1})| = O_P(T^{-1}g^{-2}) \) holds uniformly in \(x_1 \in B \) and \(t = 1, \ldots, T \). Therefore,
\[
\max I \sup_{x_1 \in B_i} \left| \sum_{t=1}^{T} \left\{ \bar{w}_g(x_1, X_{t,1}) - \bar{w}_g(b_i, X_{t,1}) \right\} \varepsilon_t \right|
\leq \max I \sup_{x_1 \in B_i} \frac{1}{Tg^2} \sum_{t=1}^{T} |\varepsilon_t||x_1 - b_i| = O_P \left(\frac{1}{g^{2}T} \right) = O_P \left(\frac{\log T}{\sqrt{Tg}} \right).
\]
(4.6)

Now we apply Lemma 2.1 (ii) of Neumann and Kreiss (1998) to the second summand on the right hand side of (4.5). Because of \((A3)\) we have that \(Tg \bar{w}_g(b_i, X_{t,1}) \varepsilon_t \) satisfies the assumptions of that lemma. Since
\[
\text{Var} \left(Tg \bar{w}_g(b_i, X_{t,1}) \varepsilon_t \right) = O(g)
\]
we obtain for some \(C > 0 \)
\[
P \left\{ \left| \sum_{t=1}^{T} \bar{w}_g(b_i, X_{t,1}) \varepsilon_t \right| > C \frac{\log T}{\sqrt{Tg}} \right\} = O(T^{-\lambda}),
\]
18
Lemma 2. Suppose that assumptions (A1) — (A6) hold. Under hypothesis H_o,
\[
\sup_{x_1 \in B} |\tilde{m}_g(x_1) - m_0(x_1)| = O_P \left(\frac{\log T}{\sqrt{Tg}} + g^{p+1} \right).
\]
Lemma 2 follows immediately from Lemma 1 and (4.1).

Proof of Theorem 1 (i). We decompose $Th^{d/2}S_T$ as in (2.8). The first term on the right-hand side of (2.8) is $Th^{d/2}S'_T$. We denote the last two terms by $-2R_{T,1}$ and $R_{T,2}$. Theorem 1 (i) follows from (a) $R_{T,1} \to 0$ and (b) $R_{T,2} \to 0$ in probability. We establish (a) and (b) in the sequel.

Substituting $\{\tilde{m}_g(x) - m_0(x)\}$ by the right-hand side of (4.1), we have that
\[
|R_{T,1} - R_{T,2} - R_{T,3}| \leq R_{T,1}',
\] (4.7)
where
\[
R_{T,1}' = \frac{h^{d/2}}{T} \int \left| \sum_{t=1}^{T} K_h(x - X_t) \epsilon_t \right| \sum_{s=1}^{T} K_h(x - X_s) w(x) dx \cdot O_P \left(\frac{(\log T)^{3/2}}{Tg} + \frac{\log T g^{p+1}}{\sqrt{Tg}} \right),
\]
\[
R_{T,2}' = \frac{h^{d/2}}{T} \int \sum_{t=1}^{T} K_h(x - X_t) \epsilon_t \sum_{s=1}^{T} K_h(x - X_s) b_{\infty}(X_{s,1}) w(x) dx,
\]
\[
R_{T,3}' = \frac{h^{d/2}}{T} \int \sum_{t=1}^{T} K_h(x - X_t) \epsilon_t \sum_{s=1}^{T} \sum_{k=1}^{T} \tilde{w}_g(X_{s,1}, X_{k,1}) \epsilon_k w(x) dx.
\]

We split $R_{T,2}'$ into the following two terms
\[
\frac{h^{d/2}}{T} \int \sum_{t=1}^{T} K_h(x - X_t) \epsilon_t \sum_{s=1}^{T} \{K_h(x - X_s) b_{\infty}(X_{s,1}) - E[K_h(x - X_s) b_{\infty}(X_{s,1})]\} w(x) dx,
\] (4.8)
\[
\frac{h^{d/2}}{T} \int \sum_{t=1}^{T} K_h(x - X_t) \epsilon_t E\{K_h(x - X_s) b_{\infty}(X_{s,1})\} w(x) dx.
\] (4.9)

By Cauchy-Schwarz inequality, the expectation of the absolute value of (4.8) is bounded by
\[
\frac{h^{d/2}}{T} \int \left\{ E \left(\sum_{t=1}^{T} K_h(x - X_t) \epsilon_t \right)^2
\times \ E \left(\sum_{s=1}^{T} \{K_h(x - X_s) b_{\infty}(X_{s,1}) - E[K_h(x - X_s) b_{\infty}(X_{s,1})]\} \right)^2 \right\}^{1/2} w(x) dx.
\]
where \(\tilde{\rho} \) strong mixing processes (Corollary 1.1, Bosq (1996)), we have that mixing with mixing coefficients decaying at the same rate. Applying the covariance inequality for

\[
E \left(\sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right)^2 = O(Th^{-d}) .
\]

Recall that the absolute regularity with geometrically decaying mixing coefficients implies strong mixing with mixing coefficients decaying at the same rate. Applying the covariance inequality for strong mixing processes (Corollary 1.1, Bosq (1996)), we have that

\[
E \left(\sum_{s=1}^{T} \{ K_h(x - X_s)b_\infty(X_{s,1}) - E[K_h(x - X_s)b_\infty(X_{s,1})] \} \right)^2
\leq O(T) \cdot \left(E|K_h(x - X_s)b_\infty(X_{s,1})|^{2+\delta} \right)^{2/2+\delta} = O(Th^{-d(1+\delta)}g^{2(p+1)}) .
\]

The last equality uses the fact (4.2). Hence, (4.8) is of the order

\[
O_P(T^{-1}h^{d/2}(Th^{-d}Th^{-d(1+\delta)}g^{2(p+1)})^{1/2}) = O_P(g^{p+1}h^{-d(1+\delta)/2}) = o_P(1) .
\]

The expectation of the square of (4.9) is equal to

\[
\begin{align*}
&h^d \sum_{t=1}^{T} E \left\{ \int K_h(x - X_t)E[K_h(x - X_1)b_\infty(X_{1,1})]\sigma^2(x)w(x)dx \right\}^2 \\
&= Th^dE \left\{ \int K(u - X_t/h)E[K_h(hu - X_1)b_\infty(X_{1,1})]\sigma^2(hu)w(hu)du \right\}^2 \\
&= O(Th^d g^{2(p+1)}) \rightarrow 0 .
\end{align*}
\]

To obtain the last equality we make use of (4.2).

We have proved that both (4.8) and (4.9) converge to 0 in first or second moment. Consequently, \(R_{T,2}^r \) \(\rightarrow 0 \) in probability. In a similiar way, it can be proved that \(R_{T,1}^r \) \(\rightarrow 0 \) in probability.

To deal with \(R_{T,3}^r \), we first make a Taylor expansion

\[
\tilde{w}_g(x_{s,1}, k) = \tilde{w}_g(x_1, k) \tilde{w}_g(x_1, k) (X_{s,1} - x_1) + \frac{1}{2} \tilde{w}_g(x_{s,1}, k) (X_{s,1} - x_1)^2,
\]

where \(\tilde{X}_{s,1} \) is between \(X_{s,1} \) and \(x_1 \) (and also possibly depends on \(X_{k,1} \)). Accordingly, we split \(R_{T,3}^r \) into the following three terms:

\[
\begin{align*}
\frac{h^{d/2}}{T} & \int \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \sum_{s=1}^{T} K_h(x - X_s) \sum_{k=1}^{T} \tilde{w}_g(x_1, k) \tilde{w}_g(x_1, k) \varepsilon_k w(x) dx , \\
\frac{h^{d/2}}{T} & \int \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \sum_{s=1}^{T} K_h(x - X_s)(X_{s,1} - x_1) \sum_{k=1}^{T} \tilde{w}_g(x_1, k) \varepsilon_k w(x) dx , \\
\frac{h^{d/2}}{2T} & \int \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \sum_{s=1}^{T} K_h(x - X_s)(X_{s,1} - x_1)^2 \sum_{k=1}^{T} \tilde{w}_g(X_{s,1}, k) \varepsilon_k w(x) dx .
\end{align*}
\]
We further split (4.10) into the following two terms:

\[
\frac{h^{d/2}}{T} \left| \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right| \sum_{s=1}^{T} \left\{ K_h(x - X_s) - E K_h(x - X_s) \right\} \sum_{k=1}^{T} \overline{w}_g(x_1, X_{k,1}) \varepsilon_k w(x) dx \right| \tag{4.13}
\]

\[
\frac{h^{d/2}}{T} \left| \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t E K_h(x - X_1) \sum_{k=1}^{T} \overline{w}_g(x_1, X_{k,1}) \varepsilon_k w(x) dx \right. . \tag{4.14}
\]

Using Lemma 1, we can prove that (4.13) is of order \(O_P \left(\log T / \sqrt{T h^{d(1+\delta)}} \right) = o_P(1) \) in the same way as the proof for that of (4.8). Using Lemma 1 again, (4.14) can be bounded by

\[
\sqrt{\frac{h^d}{T}} \log T \int_R \left\{ \int_{R^{d-1}} K_h(x - X_t) E K_h(x - X_1) w(x) dx_2 \ldots dx_d \right\} \varepsilon_t \mid dx_1 \cdot O_P(1) .
\]

The expectation of the whole integral in the above expression is less than

\[
\int_R \left[E \left(\sum_{t=1}^{T} \int_{R^{d-1}} K_h(x - X_t) E K_h(x - X_1) w(x) dx_2 \ldots dx_d \right) \right]^{1/2} \mid dx_1
\]

\[
= \left(\int_R \left[E \left(\sum_{t=1}^{T} \int_{R^{d-1}} K_h(x - X_t) E K_h(x - X_1) w(x) dx_2 \ldots dx_d \right) \right]^{1/2} \mid dx_1
\]

\[
= \sqrt{T} \left[E \left(\int_{R^{d-1}} K_h(x - X_t) E K_h(x - X_1) w(x) dx_2 \ldots dx_d \right) \right]^{1/2} \mid dx_1
\]

\[
\leq O(\sqrt{T}) \cdot \int_R \left[EW_h^{2}(x_1 - X_{1,1}) \right]^{1/2} \mid dx_1 = O(\sqrt{T}) .
\]

Therefore, (4.14) is of the order \(O_P(h^{(d-1)/2} g^{-1/2} \log T) = o_P(1) \). Combining what we have shown for (4.13) and (4.14), we conclude that (4.10) converges to 0 in probability. In a similar way, we can also show that (4.11) is of the order

\[
O_P \left(g^{-3/2} \log T \{ T^{-1/2} h^{-d(1+\delta)/2+1} + Th^{(d+1)/2} \} \right) = o_P(1) .
\]

Using Lemma 1, (4.12) may be bounded by

\[
\frac{h^{d/2} \log T}{T^{3/2} g^{5/2}} \int \left| \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right| \sum_{s=1}^{T} \left\{ K_h(x - X_s)(x_1 - X_{s,1})^2 \right\} w(x) dx \cdot O_P(1) .
\]

The integral in the above expression is smaller than the sum of the following two terms:

\[
\int \left| \sum_{t=1}^{T} K_h(x - X_t) \varepsilon_t \right| \sum_{s=1}^{T} \left\{ K_h(x - X_s)(x_1 - X_{s,1})^2 - E[K_h(x - X_s)(x_1 - X_{s,1})^2] \right\} w(x) dx ,
\]

\[
(4.15)
\]
Along the same lines as the proof of that for (4.8), we can show that (4.15) is of order $O_P(T h^{2-d(1+\delta)})$. Note that $E[K_h(x - X_s)(x_1 - X_{s,1})^2] = O(h^2)$, which entails that the expectation of (4.16) is of order $O(T^{3/2} h^{(4-d)/2})$. Consequently, we have that (4.12) is of the order $O_P \left(\log T \sqrt{\frac{h^d}{T^3 g^5} (Th^{2-d(1+\delta)} + T^{3/2} h^{(4-d)/2})} \right) = o_P(1)$.

Since we have proved that all three terms in (4.10) – (4.12) converge to 0 in probability, we obtain that $R_{T,3}' \to 0$ in probability. Now it follows from (4.7) that (a) has been established.

The proof of (b) is much simpler. It follows from Lemma 2 that

$$|R_{T,2}| \leq \left\{ \sup_{u \in B} |\hat{m}_g(u) - m_0(u)| \right\}^2 \frac{h^{d/2}}{T} \int \left\{ \sum_{t=1}^T K_h(x - X_t) \right\}^2 w(x) dx = o_P \left((\log T)^2 \left\{ \frac{h^{d/2} g^{-1}}{T h^{d(1+\delta)/2}} \right\} \right) = o_P(1).$$

The first equality in the above expression makes use of the fact that the expectation of the integral is of the order $(T^2 + T/h^{d(1+\delta)})$, which has been proved before. This completes our proof.

A.2 Proof of Theorem 2

It is easy to see that $Th^{d/2}[S_T^* - E^*(S_T^*)] \xrightarrow{d} N(0, V^*)$, where $V^* = V + o_P(1)$. In contrast, the proof of $Th^{d/2}[E(S_T^*) - E^*(S_T^*)] \to 0$ requires more work.

We have

$$E^* Th^{d/2} S_T^* = \frac{h^{d/2}}{T} \sum_{t=1}^T K_h^2 \left(\frac{x - X_t}{h} \right) w(x) dx \tilde{\varepsilon}_t^2.$$

First, we split up

$$\tilde{\varepsilon}_t^2 = \varepsilon_t^2 + [\hat{m}_h(X_t) - m(X_t)]^2 + 2\varepsilon_t [\hat{m}_h(X_t) - m(X_t)].$$

We get, by the Ergodic theorem,

$$\frac{h^{d/2}}{T} \sum_{t} K_h^2 \left(\frac{x - X_t}{h} \right) w(x) dx \varepsilon_t^2 = h^{-d/2} \int K^2(u) w(x + hu) \pi(x) \sigma^2(x) dx du + O_P \left(1/\sqrt{Th^d} \right).$$

Further,

$$\frac{h^{d/2}}{T} \sum_{t} K_h^2 \left(\frac{x - X_t}{h} \right) w(x) dx [\hat{m}_h(X_t) - m(X_t)]^2 = O_P \left(h^{-d/2} \left\{ \frac{1}{Th^d} + h^{2p+2} \right\} \right) = o_P(1).$$
since \(2p + 2 > d/2\) and therefore \(h \gg T^{-2/(3d)}\).

Analogously to (4.1), we can show that, uniformly in \(x \in B\),
\[
\hat{m}_h(x) - m(x) = \sum w_h(x, X_s) \epsilon_s + b_\infty + O_P \left(\frac{(\log T)^{3/2}}{Th^d} + \frac{h^{p+1} \log T}{\sqrt{Th^d}} \right),
\]
where \(b_\infty = O(h^{p+1})\). This implies
\[
\frac{h^{d/2}}{T} \sum_t \int K_h^2 \left(\frac{x - X_t}{h} \right) w(x) dx \ [\hat{m}_h(X_t) - m(X_t)] \epsilon_t
\]
\[
= \frac{h^{d/2}}{T} \sum_{s,t} \int K_h^2 \left(\frac{x - X_t}{h} \right) w(x) dx \ w_h(X_t, X_s) \ \epsilon_s \epsilon_t
\]
\[
+ O_P \left(\frac{h^{d/2}}{T} h^{p+1} h^{-d} \sqrt{T} \right) + O_P \left(h^{-d/2} \left[\frac{(\log T)^{3/2}}{Th^d} + \frac{h^{p+1} \log T}{\sqrt{Th^d}} \right] \right)
\]
\[
= O \left(h^{-3d/2} T^{-1} + h^{-d} T^{-1} \right) + O_P \left(h^{p+1} / \sqrt{Th^d} \right)
\]
\[
+ O_P \left(h^{-d/2} \left[\frac{(\log T)^{3/2}}{Th^d} + \frac{h^{p+1} \log T}{\sqrt{Th^d}} \right] \right)
\]
\[
= o_P(1),
\]
which completes the proof of the desired result.

References

