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Abstract

We propose to approximate the conditional expectation of a spatial random variable given

its nearest neighbor observations by an additive function. The setting is practically meaning-

ful and requires no unilateral ordering. It is capable of catching nonlinear features in spatial

data and exploring local dependence structures. Our approach is different from both Markov

field methods and disjunctive kriging. The asymptotic properties of the additive estimators have

been established for α-mixing spatial processes by extending the theory of the backfitting proce-

dure (Mammen et al. 1999) to the spatial case. This facilitates the confidence intervals for the

component functions, although the asymptotic biases have to be estimated via (wild) bootstrap.

Simulation results are reported. Applications to real data illustrate that the improvement in de-

scribing the data over the auto-normal scheme is significant when nonlinearity or non-Gaussianity

is pronounced.

Key words: Additive approximation, α-mixing, asymptotic normality, Auto-normal specification,

backfitting, nonparametric kernel estimation, spatial models, uniform convergence.
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1 Introduction

Markov random fields and kriging are two main tools for investigating continuous spatial data.

The former, including the auto-normal scheme of Besag (1974) and the framework for exponential

distribution families of Cressie (1993, chapters 6 and 7), is for data on a lattice (or a graph). The

latter is for irregularly positioned data; see Rivoirard (1994) and Chiles and Delfiner (1999, chapter 6).

They both rely on parametric assumptions on the underlying processes. In contrast, nonparametric

techniques have only found limited use in spatial modelling. This is largely due to the difficulties

associated with the ‘curse of dimensionality’. For example, a purely nonparametric estimation of

the conditional mean at one location given its (regularly spaced) four nearest neighbor observations

involves four-dimensional smoothing. Although semiparametric and nonparametric autoregressive

models with additive noise have proved to be successful in modelling time series, such a structure

has not been available for spatial processes simply because there exists no natural unilateral order

over a plane. On the other hand, the Markov assumption is more restrictive for spatial processes;

for instance a conditional Gaussian Markov model essentially implies linearity (Gao et al. 2006).

In this paper, we propose to approximate the conditional expectation of Y (s), the value of a

spatial process at location s, given its d nearest neighbor observations by an additive function,

and we estimate this additive approximation by adapting the backfitting algorithm of Mammen

et al. (1999) which involves upto two-dimensional smoothing only regardless of the value of d. Our

approach is linked to a lattice setting. Note that data on a regular grid and measured on a continuous

scale are becoming more and more common with the increasing use of computer technology. We refer

to section 5 for some tentative ideas of extending the approach to handle irregularly spaced data.

Our additive approximation may be viewed as a projection of the conditional expectation into

the Hilbert space spanned by additive functions. In fact the projection principle itself does not

require a lattice framework. In the context of spatial modelling, it has been used in the form of

disjunctive kriging (Matheron 1973, 1976, Rivoirard 1994, Chiles and Delfiner 1999, chapter 6).

Disjunctive kriging projects Y (s) into an additive space spanned by Y (si) for all si 6= s. Very

often of interest is a functional of Y (s) instead of Y (s) itself. Nevertheless the projection principle

still applies with Y (s) replaced by f(Y (s)) for some function f . For non-regularly spaced sites

it is difficult to use nonparametric estimation because of the lack of a repeatability of the spatial

1



pattern of neighbors as one moves from one site to another. Instead, disjunctive kriging introduces

parametric assumptions on the bivariate distributions for all pairs (Y (si), Y (sj)), which then, building

on appropriate isofactorial models, implies a parametric form for the projection of interest; see Chiles

and Delfiner (1999, chapter 6) and Rivoirard (1994).

Our approach is nonparametric and pragmatic; we do not impose any explicit form on the underly-

ing process. Instead we seek the best additive approximation to the unknown conditional expectation

which itself may not be additive. It enables us to describe local spatial dependence structure with a

potential application to texture analysis. For example, the nonlinear structure demonstrated in the

additive approximation for the straw data in section 4.2 is beyond the capacity of an auto-normal

fitting and would be difficult to describe using disjunctive kriging. Our approach also provides a

vehicle for testing isotropy and/or linearity; see a bootstrap test in Example 2 in section 4.1. It may

serve as a guide for choosing a parametric model. Of course those advantages come at some cost.

For example, abandoning the Markov framework implies that MCMC and other important analytical

tools are not at our disposal. This may be a severe obstacle when dealing with nonstationary spatial

processes.

Another way of circumventing the curse of dimensionality is to use semiparametric (partially

linear) additive approximation if some components are found to be linear, which is explored by

Gao et al. (2006) with the marginal integration technique (Linton and Nielsen 1995, Newey 1994 and

Tjøstheim and Auestad 1994). The marginal integration method is less efficient in practice than back-

fitting when d is large, in spite of its good asymptotic properties (Fan, Härdle and Mammen 1998).

Both methods require density estimation. It should be noted that nonparametric density estimation

for spatial processes can be traced back at least to Diggle (1985), Diggle and Marron (1988). More

recent development includes Carbon et al (1996), Hallin et al (2001, 2004a,b), and Yao (2003).

The rest of the paper is organised as follows. The methodology is laid out in section 2. Asymptotic

properties are stated in section 3. The asymptotic distributions of the estimators are used to construct

pointwise confidence intervals for component functions in the additive approximation, although the

asymptotic biases are estimated via wild bootstrap. Numerical illustrations with both simulated

and real data sets are reported in section 4. A brief discussion on possible extension to handling

irregularly spaced data is presented in section 5. All technical proofs are relegated to an Appendix.
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2 Methodology

2.1 Least-square additive approximation

Suppose {Y (s)} is a strictly stationary process defined on a two-dimensional lattice, i.e., s ≡ (u, v) ∈

Z2, where Z denotes the set consisting of all integers. Let i1, · · · , id be d fixed neighbor points of

(0, 0) in Z2, and x = (x1, · · · , xd)
τ ∈ Rd. It is of interest to approximate the conditional expectation

m(x) ≡ E{Y (s)|Y (s − iℓ) = xℓ, ℓ = 1, · · · , d} (2.1)

by an additive form

m0 + m1(x1) + · · · + md(xd). (2.2)

We seek the optimal approximation in a least square sense; see (2.4) below. To make the terms in

(2.2) identifiable, we require
∫

mj(y)f0(y)dy = 0, j = 1, · · · , d, where f0(·) denotes the marginal

density function of Y (s). If m(·) itself is of the form (2.2), it is easy to see that

mj(xj) = E{Y (s)|Y (s − ij) = xj} − m0 −
∑

1≤ℓ≤d
ℓ 6=j

E[mℓ{Y (s − iℓ)}|Y (s− ij) = xj ]. (2.3)

In general, we obtain an optimum additive approximation by minimizing

E
[
Y (s) − m0 −

d∑

ℓ=1

mℓ{Y (s− iℓ)}
]2

, (2.4)

or equivalently,

E
[
m{X(s)} − m0 −

d∑

ℓ=1

mℓ{Y (s − iℓ)}
]2

, (2.5)

over m0 +
∑d

ℓ=1 mℓ(·) ∈ Fadd, where X(s) = {Y (s− i1), · · · , Y (s − id)}τ , and

Fadd =
{
m0 +

d∑

ℓ=1

mℓ(xℓ)
∣∣∣ m0 ∈ R,

∫
mℓ(y)f0(y)dy = 0 for 1 ≤ ℓ ≤ d

}
. (2.6)

2.2 Estimators

Now we spell out how to estimate the best additive approximation for the conditional expecta-

tion (2.1). To simplify notation, we assume that observations {(Y (sℓ),X(sℓ)), 1 ≤ ℓ ≤ N} are

available. Further we assume that those data are taken from a rectangle in Z2, i.e. for example,

{s1, · · · , sN} = {(u, v) : u = 1, · · · ,N1, v = 1, · · · ,N2}, (2.7)
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where N1N2 = N . Other sampling schemes are possible; see the remark at the end of §3.1 below.

In practice we replace (2.5) by

∫ {
m̂(x) − m0 −

d∑

ℓ=1

mℓ(xℓ)
}2

f̂(x)dx, (2.8)

where x = (x1, · · · , xd)
τ , and

f̂(x) =
1

N

N∑

ℓ=1

Kh{x− X(sℓ)}, Kh(x) =

d∏

j=1

Kh(xj),

m̂(x) = r̂(x)/f̂(x), r̂(x) =
1

N

N∑

ℓ=1

Y (sℓ)Kh{x − X(sℓ)}. (2.9)

In the above expression, Kh(x) = h−1K(x/h), K(·) is a density function on R, and h > 0 is the

bandwidth. We also define

f̂j(xj) =
1

N

N∑

ℓ=1

Kh{xj − Y (sℓ − ij)}, m̂j(xj) =
1

Nf̂j(xj)

N∑

ℓ=1

Y (sℓ)Kh{xj − Y (sℓ − ij)},

f̂jk(xj , xk) =
1

N

N∑

ℓ=1

Kh{xj − Y (sℓ − ij)}Kh{xk − Y (sℓ − ik)}.

Note that f̂j and f̂jk are the marginal density functions from the joint density f̂ .

Let {m̃l} ∈ F̂add be the minimizer of (2.8), where

F̂add =
{

m0 +

d∑

ℓ=1

mℓ(xℓ)
∣∣∣ m0 ∈ R,

∫
mℓ(y)f̂ℓ(y)dy = 0 for 1 ≤ ℓ ≤ d

}
.

Then the least square property implies that

∫ {
m̂(x) − m̃0 −

d∑

ℓ=1

m̃ℓ(xℓ)
}{

m̃j(xj) − mj(xj)
}

f̂(x)dx = 0

for any mj(·), j = 0, 1, · · · , d. (We write m0(·) ≡ m0.) This leads to

m̃0 =

∫ {
m̂(x) −

d∑

ℓ=1

m̃ℓ(xℓ)
}

f̂(x)dx =

∫
m̂(x)f̂(x)dx =

1

N

N∑

ℓ=1

Y (sℓ) ≡ Ȳ , (2.10)

and for j = 1, · · · , d,

m̃j(xj) = m̂j(xj) − m̃0 −
∑

ℓ 6=j

∫
m̃ℓ(xℓ)

f̂jℓ(xj , xℓ)

f̂j(xj)
dxℓ. (2.11)
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We always follow the convention that x/y equals 0 if y = 0. It is easy to see that (2.11) intimately

resembles (2.3). It also naturally leads to the following backfitting algorithm: in the j-th step of the

r-th iteration cycle we define

m̃
(r)
j (xj) = m̂j(xj) − Ȳ −

∑

ℓ<j

∫
m̃

(r)
ℓ (xℓ)

f̂jℓ(xj , xℓ)

f̂j(xj)
dxℓ −

∑

ℓ>j

∫
m̃

(r−1)
ℓ (xℓ)

f̂jℓ(xj , xℓ)

f̂j(xj)
dxℓ. (2.12)

We chose the Nadaraya-Watson (i.e. local constant) estimation to keep our exposition as simple as

possible. For general discussion of smoothing backfitting algorithms including the one based on more

efficient local linear estimation, we refer to Mammen et al. (1999) and Nielsen and Sperlich (2004).

More recently, Mammen and Park (2005b) showed that if in (2.12) m̂j is replaced by a marginal

local linear estimator, and f̂jℓ/f̂j is replaced by a more sophisticated functional constructed using a

convolution kernel, the resulting backfitting method is asymptotically as efficient as the one based

on local linear estimation.

Finally we remark that the minimizer of (2.8) is the same as the minimizer of the following

expression

1

N

∫ N∑

j=1

{
Y (sj) − m0 −

d∑

ℓ=1

mℓ(xℓ)
}2

Kh{x − X(sj)}dx.

This lends support to the use of a simple leave-one-out cross-validation bandwidth estimator:

ĥ = arg min
h

N∑

j=1

[
Y (sj) − m̃0,−j −

d∑

ℓ=1

m̃ℓ,−j{Y (sj − iℓ)}
]2

, (2.13)

where m̃ℓ,−j is the backfitting estimator of mℓ without the j-th observation (Y (sj),X(sj)). Nielsen

and Sperlich (2004) proposed some modification to make this bandwidth selector computationally

more efficient. Three other data-driven bandwidth selectors for additive modelling based on backfit-

ting were proposed in Mammen and Park (2005a).

3 Asymptotic properties

3.1 Regularity conditions

In order to present asymptotic results, we define the α-mixing coefficients for spatial processes first.

For any A ⊂ Z2, let F(A) denote the σ-algebra generated by {(X(s), Y (s)), s ∈ A}. We write |A|
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for the number of elements in A. For any A,B ⊂ Z2, define

α(A,B) = sup
U∈F(A),V ∈F(B)

∣∣∣P (UV ) − P (U)P (V )
∣∣∣,

and d(A,B) = min{||s1 − s2|| | s1 ∈ A, s2 ∈ B}, where || · || denotes the Euclidean norm. We may

define an α-mixing coefficient for the process {(X(s), Y (s))} as

α(k; i, j) = sup
A,B⊂Z2

{
α(A,B) | |A| ≤ i, |B| ≤ j, d(A,B) ≥ k

}
, (3.1)

where i, j, k are positive integers and i, j may be infinite. For further discussions on the mixing for

spatial processes, we refer to §1.3.1 of Doukhan (1994) and §2.1 of Yao (2003) and references within.

Let C denote some positive generic constant which may be different at different places. The

following regularity conditions are imposed.

(C1) The density functions f of Y (s) and fjk of {Y (s − ij), Y (s − ik)} have continuous

second derivatives, and are bounded from above by a constant independent of ij − ik.

The conditional expectation mj(·) has continuous first derivative. The density functions

of X(s) conditional on Y (s), and {X(i),X(s)} conditional on {Y (i), Y (s)} are bounded

from above. Further for some λ > 0 and N−λ+3/2h−1/2 → 0,

E{exp(λ|Y (s)|)} < ∞. (3.2)

(C2) The kernel function K(·) is symmetric, compactly supported and Lipschitz contin-

uous.

(C3) As N = N1N2 → ∞, N1/N2 converges to a positive and finite constant, the band-

width h → 0 and

Nβ−5hβ+5(log N)−(3β+7) → ∞, (3.3)

where β > 5 is a constant.

(C4) It holds that α(k; k′,∞) ≤ Ck−β for any k and k′ = O(k2). Further,
∑∞

k=1 kd−1α(k; j, ℓ)

< ∞ for some j + ℓ ≤ 4, α(k; 1,∞) = o(k−d) and
∑∞

k=1 kd−1α(k; 1, 1)
δ−2

δ < ∞ for some

δ > 2.
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Conditions (C1) – (C2) are standard in kernel estimation. Both the assumption of the existence

of moment generating function of |Y (s)| and (3.3), which imply the optimum uniform convergence

rates (5.1) and (5.2), can be relaxed at the cost of lengthy arguments. On the other hand, for causal

and invertible (under the half-plane order) spatial ARMA processes satisfying some mild conditions,

α(k; k′,∞) decays at an exponential rate as k → ∞ (Remark 2.1 of Yao 2003). Therefore, condition

(C4) is fulfilled. For optimum bandwidth h = O(N−1/5), (3.3) is fulfilled for β > 7.5. Condition

(C3) requires two sides of the sampling rectangle increase to infinity. In fact this assumption can

be relaxed. For example, our theoretical results will still hold if the observations were taken over a

connected region in Z2, and the ratio of the minimal length of side of the squares containing the region

to the maximal length of side of the squares contained in the region converge to a constant in the

interval (0,∞). For a general discussion on the condition of sampling sets, we refer to Perera (2001).

3.2 Convergence of backfitting

Backfitting techniques have proved effective in handling complex model-fitting. However, its conver-

gence is typically difficult to handle. In the sequel, we apply Theorem 1 of Mammen et al. (1999)

to show that a modified version of backfitting (2.12) converges. The modification is in line with §5

of Mammen et al. (1999) in order to fulfil certain regularity conditions which simplified technical

arguments substantially.

Let A ⊂ Rd be a compact set on which the density function f1,··· ,d(·) of X(s) is positive. Define

p(x) ≡ p1,··· ,d(x) = f1,··· ,d(x)I(x ∈ A)/P{X(s) ∈ A}.

Then p(·) is a density function on Rd. As an illustration, Mammen et al. (1999) chose A = [0, 1]d.

Since the components of X(s) are dependent, sets of cylinder type are not always relevant. (For

example, the support of (Xt,Xt−1) for linear AR(1) time series would be around a line segment with

non-zero slope.) Denote, respectively, pj(xj) and pjk(xj , xk) the j-th univariate and the (j, k)-th

bi-variate marginal density functions of p(x). We require the following consistency condition on the

set A.

(C5) There exist compact sets Aj ⊂ {f(x) > 0} and Ajk ⊂ {fjk(xj , xk) > 0} such that
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for 1 ≤ j, k ≤ d and j 6= k,

pj(xj) =
f(xj)I(xj ∈ Aj)

P{Y (s) ∈ Aj}
, pjk(xj , xk) =

fjk(xj , xk)I{(xj , xk) ∈ Ajk}
P [{Y (s − ij), Y (s − ik)} ∈ Ajk]

.

Due to the stationarity, a relevant set A often exhibits certain symmetries. For example, we may

observe Ai = Aj and pi(·) = pj(·) for all i and j.

Different from §5 of Mammen et al (1999), we define estimators for pj and pjk as follows.

p̂j(xj) = I(xj ∈ Aj)

∑N
ℓ=1 Kh{xj − Y (sℓ − ij)}∑N
ℓ=1 I{Y (sℓ − ij) ∈ Aj}

, (3.4)

p̂jk(xj, xk) = I{(xj , xk) ∈ Ajk}
∑N

ℓ=1 Kh{xj − Y (sℓ − ij)}Kh{xk − Y (sℓ − ik)}∑N
ℓ=1 I[{Y (sℓ − ij), Y (sℓ − ik)} ∈ Ajk]

. (3.5)

Obviously p̂j and p̂jk are consistent estimators for pj and pjk respectively. Note K(·) is compactly

supported. For xj ∈ Aj , Kh{xj − Y (sℓ − ij)} may be non-zero for sufficiently large N only if

Y (sℓ − ij) ∈ A′
j, where A′

j is a compact set sandwiched between Aj and {f(x) > 0}. Therefore

similar to Mammen et al (1999), we effectively only use the observations in a compact set when

estimating p̂j. It is possible now that
∫

p̂jk(xj, xk)dxk 6= p̂j(xj). Similar to Mammen et al. (1999),

we modify the backfitting procedure (2.11) and (2.12) accordingly:

m̃j(xj) = m̂j(xj) − m̃0,j −
∑

ℓ 6=j

∫
m̃ℓ(xℓ)

{ p̂jℓ(xj , xℓ)

p̂j(xj)
−

∫
p̂jℓ(u, xℓ)du∫

p̂j(u)du

}
dxℓ, (3.6)

m̃
(r)
j (xj) = m̂j(xj) − m̃0,j −

∑

ℓ<j

∫
m̃

(r)
ℓ (xℓ)

{ p̂jℓ(xj , xℓ)

p̂j(xj)
−

∫
p̂jℓ(u, xℓ)du∫

p̂j(u)du

}
dxℓ

+
∑

ℓ>j

∫
m̃

(r−1)
ℓ (xℓ)

{ p̂jℓ(xj , xℓ)

p̂j(xj)
−

∫
p̂jℓ(u, xℓ)du∫

p̂j(u)du

}
dxℓ, (3.7)

where m̃0,j =
∫

m̂j(x)p̂j(x)dx/
∫

p̂j(y)dy. Note for xj ∈ Aj , m̂j(xj) defined in (2.9) may be written

as

m̂j(xj) = I(xj ∈ Aj)

∑N
ℓ=1 Y (sℓ)Kh{xj − Y (sℓ − ij)}

p̂j(xj)
∑N

ℓ=1 I{Y (sℓ − ij) ∈ Aj}
.

Theorem 1 below indicates that this backfitting procedure converges exponentially fast.

Theorem 1. Under conditions (C1) – (C5), with probability tending to 1, there exists a unique

solution {m̃j} of (3.6), and further for r ≥ 1 and x = (x1, · · · , xd)
τ being an inner point of A,

d∑

j=1

∫
{m̃(r)

j (xj) − m̃j(xj)}2pj(xj)dxj ≤ Cρ2r
(
1 +

d∑

j=1

∫
{m̃(0)

j (xj)}2pj(xj)dxj

)
,
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where ρ ∈ (0, 1), C > 0 are constants, m̃
(r)
j (xj) is defined by (3.7), and {m̃(0)

j (xj)} are the initial

values of the backfitting algorithm.

3.3 Asymptotic normality

From now on, we always assume that x = (x1, · · · , xd)
τ is an inner point of A. Let ε(s) = Y (s) −

m{X(s)}, and mo(x) = mo
0 +

∑d
j=1 mo

j(xj) be the minimizer of (2.5) over

F ′
add

=

{
m(x) = m0 +

d∑

j=1

mj(xj)

∣∣∣∣m0 ∈ R,

∫
mj(y)pj(y)dy = 0 for 1 ≤ j ≤ d

}
.

Then {mo
0,m

o
1(·), · · · ,mo

d(·)} is uniquely determined by the least square property. Define

β(x) =

d∑

j=1

{
ṁo

j(xj)
∂

∂xj
log p(x) +

1

2
m̈o

j(xj)
}∫

u2K(u)du, (3.8)

µ̂j(xj) = mo
j(xj) +

∑

k 6=j

∫
mo

k(xk)
p̂jk(xj , xk)

p̂j(xj)
dxk + h2

∫
β(x)

p(x)

pj(xj)

∏

k 6=j

dxk.

Let β0 +
∑d

j=1 βj(xj) be the minimizer of

∫ {
β(x) − β0 −

d∑

j=1

βj(xj)
}2

p(x)dx (3.9)

over F ′
add

.

Theorem 2. Let conditions (C1) – (C5) holds, and h = CN−1/5. Then

√
Nh




m̃1(x1) − mo
1(x1) − h2β1(x1)

...

m̃d(xd) − mo
d(xd) − h2βd(xd)




D−→ N(0,Σ(x)),

where Σ(x) is a diagonal matrix with

σj(xj)
2 ≡ Var

[
Y (s) − mo{X(s)}

∣∣Y (s − ij) = xj

] ∫
K(u)2du

/
fj(xj) (3.10)

as its j-th main diagonal element.

Remark 1. (i) Although we do not assume the true conditional expectation m(x) defined in (2.1)

to be of an additive form, the estimators do not have extra biases due to the discrepancy between

m(x) and its best additive approximation mo(x). This is due to the ‘orthogonality’
∫ {

m(x) − mo(x)
}
p(x)

∏

k 6=j

dxk = 0, 1 ≤ j ≤ d, (3.11)
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which is guaranteed by the least square property that mo(·) is the minimizer of (2.5) over Fadd. On

the other hand, the variance in (3.10) is equal to

(
Var

[
Y (s)−m{X(s)}

∣∣Y (s−ij) = xj

]
+Var

[
m{X(s)}−mo{X(s)}

∣∣Y (s−ij) = xj

]) ∫
K(u)2du

/
fj(xj).

The second term in the above expression disappears when m(x) itself is an additive function.

(ii) The proof of Theorem 2 entails that

m̃j(xj)−mo
j(xj)−h2βj(xj)+ op(h

2) =
1

Nf̂(xj)

N∑

ℓ=1

[Y (sℓ)−mo{X(sℓ)}]Kh{xj −Y (sℓ − ij)}. (3.12)

By Theorem 2, an approximate 95% pointwise confidence interval for mo
j(xj) would be of the

form m̃j(xj) − h2βj(xj) ± 1.96σj(xj)/
√

nh. However, the quantities βj(xj) and σj(xj) are unknown

in practice. Furthermore it is rather difficult to estimate βj(·); see (3.9) and (3.8). Below we outline

a heuristic method based on wild bootstrapping to estimate bias βj(xj) and variance σj(xj)
2.

Bootstrap estimation for βj(xj) and σj(xj)
2: Let {ε(s)} be i.i.d. random variables with mean 0

and variance 1. Draw a bootstrap sample Y (s1)
∗, · · · , Y (sN )∗ from the model

Y (s)∗ = m̃{X(s)} + ε(s)[Y (s) − m̃{X(s)}], (3.13)

where m̃(x) = m̃0 +
∑d

j=1 m̃j(xj). Then E∗{Y (s)∗|X(s) = x} = m̃(x). Let {m∗
j} be the estimators

obtained in the same way as {m̃j} but with sample {Y (sj),X(sj)} replaced by {Y (sj)
∗,X(sj)}. It

may be shown that m∗
j (xj)−m̃j(xj) shares the same asymptotic distribution as m̃j(xj)−mo

j(xj); see

Theorem 2 above. Hence we may use the sample mean and the sample variance of m∗
j (xj)− m̃j(xj)

obtained in a repeated bootstrap sampling (with a large number of replications) as the estimates

for the mean and the variance of m̃j(xj) − mo
j(xj). Combining with Theorem 2, this leads to an

approximate 95% pointwise confidence interval for mo
j(xj) (1 ≤ j ≤ d):

2m̃j(xj) − m̄∗
j(xj) ± 1.96s∗j (xj), (3.14)

where m̄∗
j (xj) is the sample mean of m∗

j(xj) in the repeated bootstrap sampling, and s∗j(xj) is the

sample standard deviation of m∗
j(xj) − m̃j(xj).

Remark 2. Note that the conditional expectation E∗{Y (s)∗|X(s) = x} = m̃(x) is an additive

function while E{Y (s)|X(s) = x} = m(x) may not be. This makes it difficult to construct confidence
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intervals directly based on bootstrapping. The confidence interval (3.14) is based on the asymptotic

normality of the estimator m̃j(xj). Bootstrapping was merely employed to estimate the unknown

asymptotic bias βj(xj) and variance σj(xj)
2, which relied on the fact that βj(xj) is determined by

the best additive approximation mo(x) of m(x) instead of m(x) itself; see (3.9) and (3.8). On the

other hand, it may be shown that

m∗
j(xj) − m̃j(xj) − h2βj(xj) + op(h

2) =
1

Nf̂(xj)

N∑

ℓ=1

[Y (sℓ)
∗ − m̃{X(sℓ)}]Kh{xj − Y (sℓ − ij)}

=
1

Nf̂(xj)

N∑

ℓ=1

ε(s)[Y (sℓ) − m̃{X(sℓ)}]Kh{xj − Y (sℓ − ij)}

=
1

Nf̂(xj)

N∑

ℓ=1

ε(s)[Y (sℓ) − mo{X(sℓ)}]Kh{xj − Y (sℓ − ij)}{1 + op(1)},

see (3.12). This would ensure that the bootstrap estimator admits the same asymptotic variance.

4 Numerical properties

4.1 Simulation

In this section, we illustrate the proposed backfitting procedure via two examples: a unilateral

additive model under the half-plane order (Whittle 1954), and a (bilateral) auto-normal model (Besag

1974). The bandwidth selection procedure (2.13) was implemented in Example 1. In Example 2 we

applied a parametric bootstrap test to test the null hypothesis of an auto-normal model. We always

let K be a Gaussian kernel in the numerical examples.

Example 1. (Unilateral additive model) Consider the model

Y (u, v) = sin{Y (u − 1, v)} + cos{Y (u, v − 1)} + e(u, v), (4.1)

where e(u, v) are independent N(0, 1) random variables. Hence

E{Y (u, v) |Y (u − 1, v), Y (u, v − 1), Y (u − 1, v − 1)} (4.2)

= m0 + m1{Y (u − 1, v)} + m2{Y (u, v − 1)} + m3{Y (u − 1, v − 1)}

with m0 = E{Y (u, v)}, m3(·) ≡ 0, and

m1(x) = sin(x) − E[sin{Y (u, v)}], m2(x) = cos(x) − E[cos{Y (u, v)}].
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We drew 100 samples from model (4.1) on the rectangle {(u, v) : 1 ≤ u ≤ 24, 1 ≤ v ≤ 28}. For each

sample we estimated the component functions mj(·) for j = 1, 2, 3 with the bandwidths h chosen

automatically by the leave-one-out procedure (2.13). The boxplots of the estimated curves over 13

regular grid points are presented in Figure 1. While the estimation is accurate over all, the variation

of the estimation is larger at the both ends due to boundary effects. The mean and variance of the

selected bandwidths over 100 replications are 0.416 and 0.064.
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Figure 1: Example 1 – Boxplots of the estimators for (a) m1(x) = sin(x) − E[sin{Y (u, v)}],
(b) m2(x) = cos(x) − E[cos{Y (u, v)}], and (c) m3(x) ≡ 0.

Example 2. (Besag’s first-order auto-normal scheme) Let the conditional distribution of Y (u, v)
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Figure 2: Example 2 – Boxplots of the estimators for (a) m1(x) = 0.2x, (b) m2(x) = 0.25x,
(c) m3(x) = 0.2x, and (d) m4(x) = 0.25x.

given {Y (i, j), (i, j) 6= (u, v)} be normal with mean

E{Y (u, v) |Y (i, j), (i, j) 6= (u, v)} (4.3)

= θ1{Y (u − 1, v) + Y (u + 1, v)} + θ2{Y (u, v − 1) + Y (u, v + 1)},

and variance Var{Y (u, v) |Y (i, j), (i, j) 6= (u, v)} = 1, where θ1 = 0.2 and θ2 = 0.25. Now {Y (u, v)}

13



are jointly normal with common mean 0, and

E{Y (u, v) |Y (u − 1, v) = x1, Y (u, v − 1) = x2, Y (u + 1, v) = x3, Y (u, v + 1) = x4}

= m1(x1) + m2(x2) + m3(x3) + m4(x4)

with m1(x) = m3(x) = θ1x, m2(x) = m4(x) = θ2x. See Besag (1974).

We conducted a simulation with 500 replications. For each sample taken on the rectangle {(u, v) :

1 ≤ u, v ≤ 20}, we applied the backfitting algorithm to estimate mj(·). The boxplots of the estimated

curves over 11 grid points are presented in Figure 2. To speed up the computation, we used a fixed

bandwidth h = 0.4. The linearity of mj(·) is well perceived in Figure 2. In fact a simple linear least

squares fitting for the estimated values of mj(·) led to the estimated slops 0.2013, 0.2425, 0.2049 and

0.2552, respectively, for j = 1, 2, 3 and 4, which were very close to the true values.

We also applied a parametric bootstrap method to test the null hypothesis of the auto-normal

scheme (4.3), i.e. the bootstrap samples were generated from the auto-normal process with θ1 and

θ2 in (4.3) estimated by the coding method (Besag 1974). Note that under the auto-normal scheme,

E[ε(s)I{X(s) ∈ B}] = 0 for any measurable B ⊂ R4, where ε(s) is defined as the difference between

Y (s) and the RHS of (4.3), and X(s) consists of the four nearest neighborhoods. This leads to the

test statistic

T =
1

N
sup

1≤k≤N

∣∣∣
N∑

j=1

ε̂(sj)I{X(sj) ≤ X(sk)}
∣∣∣, (4.4)

where X(sj) ≤ X(sk) is defined under the unilateral half-plane order (Whittle 1954), and

ε̂(sj) = Y (sj) − θ̂1{Y (uj − 1, vj) + Y (uj + 1, vj)} − θ̂2{Y (uj , vj − 1) + Y (uj , vj + 1)}.

Among the 500 replications, the percentages of rejecting the linear null hypothesis are 10.8% at the

level α = 10%, and 4.4% at the level α = 5%. To further assess the accuracy of the bootstrap

approximation, we took the upper 10th and 5th percentiles for the empirical distribution of the 500

simulated values T as the true critical values tα for the test at the level α = 10% and 5%, where

Figure 3 displays the boxplots of the relative frequencies of the event T ∗ > tα in the 200 bootstrap

replications. It shows that most frequencies are clustered around α for both α = 10% and 5%. This

indicates that the bootstrap approximation to the null distribution of T is reasonably accurate.
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Figure 3: Example 2 – Box plots of the relative frequencies of the event {T ∗ > tα} for (a) α = 0.1,
and (b) α = 0.05.

(a) (b)

Figure 4: Modelling Straw data: Images from the MR straws phantom, (a) depicting a longitudinal
section with indication of the trans-axial slices, and (b) showing the upper trans-axial slice.
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4.2 A real data example

Figure 4 displays a magnetic resonance image of two tubes filled with plastic straws of two different

diameters embedded in Gd-doped agarose gel with tissue equivalent relaxation times, where the

straws phantom was imaged with a weighted pulse sequence on a Siemens Vision 1.5 T MR scanner

using a slice thickness of 4 mm and an in-plane resolution of 0.6 mm × 0.6 mm. In the intensity plots

of Figure 4(b), the more white a voxel is, the stronger the intensity. The black region surrounding

the two cylinders has very low intensity.

For our analysis, we chose two stationary-like subsets of intensity image Figure 4(b), each of size

61×61. The subset images are plotted respectively in Figures 5A(a) and 6A(a). For each subset, we

approximated the conditional expectation

E{Y (u, v) |Y (u − 1, v) = x1, Y (u, v − 1) = x2, Y (u + 1, v) = x3, Y (u, v + 1) = x4} (4.5)

by an additive form

m0 + m1(x1) + m2(x2) + m3(x3) + m4(x4),

where m1(x1), m2(x2), m3(x3) and m4(x4) represent, respectively, the contributions from the nearest

neighborhood in the north, west, south and east direction. For comparison purposes, we also fitted

the data using Besag (1974)’s first-order auto-normal scheme, assuming the conditional variances over

different locations were the same. This leads to the assumption that the conditional expectation (4.5)

is of the form

α + β1(x1 − α) + β2(x2 − α) + β1(x3 − α) + β2(x4 − α). (4.6)

The coefficients βj and α were estimated using Besag’s coding method. The estimated additive

functions m̃j(x), together with the fitted straight lines β̂j(x− α̂), are plotted in Figure 5 for the large

diameter straws and in Figure 6 for the large diameter straws. As in Example 2 above, we also applied

the parametric bootstrap based on statistic (4.4) for testing the auto-normal null hypothesis for those

two subsets (with 200 bootstrap replications); leading to p-values equal to 0.00. This indicates that

the first order auto-normal scheme is inadequate for both the data sets. The histograms presented

in Figures 5A(b) and 6A(b) indicate bi-modal marginal density functions; the lower intensity mode

corresponds to voxels at the boundary between straws, and the higher intensity mode to voxels in
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the interior of the straws. The bends of the pointwise confidence intervals for mj(·) were obtained

using the standard normal ε(s) in (3.13) with 100 wild bootstrap replications; see (3.14).

The plots of the mj(·) functions as a rough approximation suggest isotropy, which is natural

given the set-up of the straws. Both the plots and bootstrap test point to nonlinearity. Note that

the bends at the ends of the curves cannot be attributed to boundary effects, as substantial number

of voxels fall into the end regions; see the histograms in Figures 5 and 6.

A possible explanation for the bends is as follows: for both the large and small diameter straws

there is a positive correlation among intensity values in the middle (the mj(·) curve has a positive

slop). These intensity values correspond to voxels in the center of the straws, for which it is seen

(from Figures 5A(a) & 6A(a)) that there is a positive spatial autocorrelation. For the small diameter

straws there is local negative correlation at both ends of the curves. Looking at the intensity plots

(Figure 6A(a)) it is seen that the lowest intensity values (most dark) voxels as expected are at the

boundaries. But it is also seen that there are voxels of very high intensity (very white) close to the

boundary. Similarly, the voxels of highest intensity are often found close to the boundary and have

low intensity voxels in their neighborhood; resulting in the local negative correlation for extreme

intensity values. For large diameter straws with low intensity voxels at the boundary, the same

pattern occurs but not to the same extent; see Figure 5A(a). The picture for voxels of high intensity

is less clear, as some of these are located close to the boundary surrounded by low intensity voxels,

others close to the center with high intensity neighbors. There is no clear dependence pattern for

high values, which is echoed by the flatness of the mj(·) plots for high intensities.

Overall the nonparametric additive approximations for conditional means describe the local cor-

relation structure of the straws quite well, whereas the auto-normal models fail to do so since they

only reproduce the dominating positive spatial autocorrelation in the interior of the straws.

5 Discussion

Observations taken on irregular grids often occur in practical spatial problems. We outline below

some tentative ideas to extend the method proposed in this paper to handle irregularly spaced data.

Our basic assumption is that the observation {Y (sj), j = 1, · · · ,N} (after detrending appropriately)

are taken over an irregular grid from a strictly stationary process Y (s) with index s varying continu-
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Figure 5: Modelling Subset I of Straw data – Panel A: (a) A subregion of interest (61 × 61 window)
from the bundle of large diameter straws in Fig.4(b), (b) the corresponding signal intensity histogram.
Pixel signal intensity in a.u. (12 bit range). Panel B: Additive estimators (solid lines), the boundaries
of pointwise confidence intervals (dotted lines), and auto-normal scheme estimators (dashed lines)
for (a) m1(x), (b) m2(x), (c) m3(x), and (d) m4(x), and m0 = 2278.615.
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Figure 6: Modelling Subset II of Straw data –Panel A: (a) A subregion of interest (61 × 61 window)
from the bundle of small diameter straws in Fig.4(b), (b) the corresponding signal intensity histogram.
Pixel signal intensity in a.u. (12 bit range). Panel B: Additive estimators (solid lines), boundaries of
pointwise confidence intervals (dotted lines) and auto-normal scheme estimators (dashed lines) for
(a) m1(x), (b) m2(x), (c) m3(x), and (d) m4(x), and m0 = 2089.465.
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ously on R2. Our goal is to estimate the best additive approximation, in the sense of (2.4) and (2.5),

for the conditional expectation at a fixed location given its d neighbourhood observations for small

d such as d = 3 or 4. Without loss of generality, we may assume that the location is at 0 = (0, 0)τ ,

and the d neighbourhood locations are i1, · · · , id. Put X(0) = {Y(i1), · · · ,Y(id)}τ . Our task is now

to estimate the best additive approximation for

m(x) = E{Y (0)|X(0) = x}.

First, for each location sk at which we have an observation Y (sk), we define its d neighbourhoods

selected among the other (N − 1) observations by minimising

d∑

j=1

||ij − (sj − sk)||,

where the minimization is taken over sj ∈ {s1, · · · , sN}, sj 6= sk, and s1, · · · , sd are all different from

each other. Let (sk1, · · · , skd) be the minimizer. Then X(sk) = {Y (sk1), · · · , Y (skd)}τ are the d

neighbourhood observations of Y (sk) as far as our task is concerned. Put

λk =

d∑

j=1

||ij − (sjk − sk)||,

which measures the discrepancy between the pattern of (s1k, · · · , sdk) in relation to sk and that of

(i1, · · · , id) in relation to 0. It is easy to see that λk = 0 if and only if (sk, s1k, · · · , sdk) is merely

a shift (without rotating) of (0, i1, · · · , id) in R2. The larger λk is, the larger is the discrepancy

between the two patterns. As far as the estimation for m(x) is concerned, we should not treat

all {Y (sk),X(sk)} equally, as we did for regularly spaced data. Instead we give more weights to

the observations {Y (sk),X(sk)} with smaller values of λk. By taking this into account, the similar

argument as in section 2.2 leads to the back-fitting estimation (2.12) in which, however, now

f̂j(xj) =

N∑

k=1

wkKh{xj − Y (sjk)}, m̂j(xj) =
1

f̂j(xj)

N∑

k=1

wkY (sk)Kh{xj − Y (sjk)},

f̂jℓ(xj , xℓ) =

N∑

k=1

wkKh{xj − Y (sjk)}Kh{xℓ − Y (sℓk)},

where the weight function wk = W (λk/b)
/ ∑N

j=1 W (λj/b), W (·) is a kernel function, and b > 0 is a

bandwidth. The associated issues on inference, computation and asymptotic properties are subject
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to further investigation. An alternative that could be explored is to replace i1, . . . , id by an average

set of d neighbourhood points i′1, . . . , i
′
d, where i′j = 1

N

∑N
k=1(s

′
kj − sk), j = 1, . . . , d, where s′kj is the

j-th nearest neighbour of sk.

Finally we note that for observations taken irregularly over space and regularly over time, the

method proposed in section 2.2 may be applied directly if we only use the data taken at the fixed

location but over different times in the estimation. Technically this reduces to a problem of multi-

variate time series modelling. However there is an added advantage; the inference does not rely on

the assumption of the stationarity over space.
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Appendix

A.1 Proof of Theorem 1

We only need to justify conditions (A1) – (A3) in Mammen et al. 1999). The required result follows

from their Theorem 1 immediately.

Condition (A1) requires that for j 6= k,

∫
p2

jk(xj , xk)

pk(xk)pj(xj)
dxjdxk =

∫

Aij

p2
jk(xj , xk)

pk(xk)pj(xj)
dxjdxk < ∞,

which is guaranteed by (C5). By Theorem 2 of Yao (2003),

sup
xj∈Aj

|p̂j(xj) − pj(xj)| = Op

{
h2 +

( log N

Nh

)1/2}
. (5.1)

Similarly we may show that

sup
(xj ,xk)∈Ajk

|p̂jk(xj , xk) − pjk(xj, xk)| = Op

{
h2 +

( log N

Nh2

)1/2}
. (5.2)

Further it is easy to see from Theorem 3 in the Appendix that

sup
xj∈Aj

|m̂j(xj) − Em̂j(xj)| = Op(1), sup
xj∈Aj

|Em̂j(xj)| ≤ C. (5.3)

Note that fjk(xj, xk) = fkj(xk, xj). (C5) implies that (xj , xk) ∈ Ajk if and only if (xk, xj) ∈ Akj for

any j 6= k. This together with (5.1) – (5.3) entail conditions (A2) and (A3) of Mammen et al. (1999).

A.2 Proof of Theorem 2

Let e(s) = Y (s) − m{X(s)}, and

m̂a
j (xj) =

I(xj ∈ Aj)

p̂(xj)
∑N

ℓ=1 I{Y (sℓ − ij) ∈ Aj}

N∑

ℓ=1

[e(sℓ) + m{X(sℓ)} − mo{X(sℓ)}]Kh{xj − Y (sℓ − ij)},

(5.4)
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m̂b
j(xj) =

I(xj ∈ Aj)

p̂(xj)
∑N

ℓ=1 I{Y (sℓ − ij) ∈ Aj}

N∑

ℓ=1

mo{X(sℓ)}Kh{xj − Y (sℓ − ij)}.

Then m̂j(xj) = m̂a
j (xj) + m̂b

j(xj). Let m̃a
j (xj) and m̃b

j(xj) be defined by (3.6) with m̂j(xj) replaced

by, respectively, m̂a
j (xj) and m̂b

j(xj). We first introduce two lemmas.

Lemma 1. Under conditions (C1) – (C5), it holds for any j 6= k that

∑

xk∈Ak

∣∣∣∣
∫

p̂jk(xj , xk)

p̂k(xk)
m̂a

j (xj)dxj

∣∣∣∣ = op(h
2),

and ∫
pk(xk)dxk

{ ∫
p̂jk(xj , xk)

p̂k(xk)
m̂a

j (xj)dxj

}2

= op(h
4).

Lemma 2. Under conditions (C1) – (C5), it holds that
∫

mo
j(xj)p̂j(xj)dxj = op(h

2), and

sup
xk∈Ak

∣∣∣∣m̂
b
j(xj) − µ̂j(xj)

∣∣∣∣ = op(h
2),

∫ ∣∣∣∣m̂
b
j(xj) − µ̂j(xj)

∣∣∣∣
2

pj(xj)dxj = op(h
4).

Based on (3.11), Lemma 1 may be proved in the same manner as the proof of (A6) in the

Appendix A of Mammen et al. (1999). The proof of Lemma 2 is similar to the proofs of (114), (112)

and (113) in Mammen et al. (1999).

Proof of Theorem 2. We sketch the proof now. Note that x = (x1, · · · , xd)
τ is an inner point

of A. Lemma 1 implies condition (A6) of Mammen et al. (1999) with ∆N = h2. By Theorem 3

below, condition (A9) of Mammen et al. (1999) also holds. By Theorem 3 of Mammen et al. (1999),

condition (A7) in their paper also holds. It may be proved that
∫

m̂a
j (x)p̂j(x)dx

/ ∫
p̂j(y)dy = Op(N

−1/2) = op(h
2).

Now it follows from Theorems 2 and 3 of Mammen et al. (1999) that

m̃j(xj) = m̂a
j (xj) + h2βj(xj) + op(h

2). (5.5)

Note that

E[e(sℓ)Kh{xj − Y (sℓ − ij)}] = E[E{e(sℓ)|X(sℓ)}Kh{xj − Y (sℓ − ij)}] = 0,

and

E[{m{X(sℓ)} − mo{X(sℓ)}}Kh{z − Y (sℓ − ij)}] (5.6)

=

∫
Kh(z − xj)

[ ∫
{m(x) − mo(x)}p(x)

∏

k 6=j

dxk

]
dxj = 0.

24



The last equality in the above expression follows from (3.11). Now the required CLT follows from

(5.5), (5.4), (5.6) and the theorem in Bolthausen (1982).

A.3 Uniform convergence rates for regression estimation

First we introduce some notation. Let {(Y (sj),X(sj)), 1 ≤ j ≤ N} be observations from a two-

dimensional strictly stationary spatial process with {s1, · · · , sN} given as in (2.7). Let f(·) be the

density function of X(s) and m(x) = E{Y (s)|X(s) = x}. We define the Nadaraya-Watson estimator

m̂(x) = r̂(x)/f̂ (x) with

f̂(x) =
1

N

N∑

j=1

Kh{x − X(sj)}, r̂(x) =
1

N

N∑

j=1

Y (sj)Kh{x − X(sj)}.

We introduce some regularity conditions.

(C1’) m(·) has continuous first derivative, f(·) has continuous second derivative, and the

joint density function X(s) and X(s + i) is bounded by a constant independent of i.

Further (3.2) holds.

(C4’) It holds that α(k; k′, j) ≤ Ck−β for any k, j and k′ = O(k2), where α is defined as

in (3.1) with X(s) replaced by X(s).

Theorem 3. Let A be a compact set contained in the support of f(·). Under conditions (C1’), (C2),

(C3) and (C4’), it holds that

sup
x∈A

∣∣m̂(x) − m(x)
∣∣ = Op

{( log N

Nh

)1/2
+ h2

}
, (5.7)

and

sup
x∈A

|m̂(x) − Em̂(x)| = Op

{( log N

Nh2

)1/2
+ h2

}
. (5.8)

Proof. We first prove (5.7). Let r(x) = m(x)f(x). For any aN > 0 and ε > 0 it holds that

P{sup
x∈A

aN |m̂(x) − m(x)| > ε}

≤ P
{ aN

infy∈A f̂(y)

(
sup
x∈A

|r̂(x) − r(x)| + max
z∈A

m(z) sup
x∈A

|f̂(x) − f(x)|
)

> ε
}

≤ P
{
C1aN sup

x∈A
|r̂(x) − r(x)| + C2aN sup

x∈A
|f̂(x) − f(x)| > ε

}
+ P

{
inf
x∈A

|f̂(x) − f(x)| > τ
}
,
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where C1, C2, τ > 0 are constants. It follows from Theorem 2 of Yao (2003) that the second term

of the RHS of the above expression may be arbitrarily small for all sufficiently large N . Then (5.7)

follows from Theorem 2 of Yao (2003) and

sup
x∈A

∣∣r̂(x) − r(x)
∣∣ = Op

{( log N

Nh

)1/2
+ h2

}
, (5.9)

which will be established now.

Partition A into L subinterval {Ij} of equal length. Let xj be the center of Ij. Since

|r̂(x) − r̂(x′)| ≤ 1

N

N∑

j=1

|Y (sj)||Kh{X(sj) − x} − Kh{X(sj) − x′}| ≤ 1

N

N∑

j=1

|Y (sj)|
C

h
|x − x′|,

it holds that |Er̂(x) − Er̂(x′)| ≤ C
h |x − x′|. Hence

sup
x∈A

|r̂(x) − Er̂(x)| ≤ max
1≤j≤L

|r̂(xj) − Er̂(xj)| + Op

( 1

Lh

)
. (5.10)

For large M > 0, define

r̂1(x) =
1

N

N∑

j=1

Y (sj)I{|Y (sj)| ≤ M}Kh{X(sj) − x},

r̂2(x) =
1

N

N∑

j=1

Y (sj)I{|Y (sj)| > M}Kh{X(sj) − x},

and

r1(x) = E[Y (sj)I{|Y (sj)| ≤ M}|X(sj) = x], r2(x) = E[Y (sj)I{|Y (sj)| > M}|X(sj) = x].

Then r̂(x) = r̂1(x)+ r̂2(x) and r(x) = r1(x)+r2(x). Since |Kh(·)| ≤ Ch−1, it follows from the second

inequality in Theorem 1 of Yao (2003) that

P{|r̂1(x) − Er̂1(x)| > ε} ≤ 8 exp
{
− ε2q2

8ν(q)2
}

+ 44
(
1 +

4CM

εh

)1/2
q2α([p1] ∧ [p2]; [p1p2],N),

where q = [(εM)1/2(N1 ∧ N2)], pi = Ni/(2q), and

ν(q)2 ≤ 32q4

N2

Cp1p2

h
+

CMε

h
=

C1

p1p2h
+

CMε

h
≤ C2Mε

h
,

where C,C1, C2 > 0 are constant. The first inequality in the above expression can be verified in the

similar manner as the variance expression in Proposition 1 of Yao (2003), and the second inequality

is obvious by setting M = log N and ε2 = 8aC log N
(N1∧N2)2h

for some constant a > 0. Now

exp
{
− ε2q2

8ν(q)2
}
≤ exp

{
− ε2(N1 ∧ N2)

2h

8C

}
= N−a.

26



On the other hand, condition (C4’) entails that

(M

εh

)1/2
q2α(p1 ∧ p2; [p1p2], N) ≤ C

(M

εh

)1/2
εMN(εM)β/2 = CM

β+3

2 Nh−1/2ε
β+1

2

= O
{
N−β/4+3/4h−β/4−3/4(log N)3β/4+7/4

}
.

Let L = [(N/h)1/2]. Hence,

P{ max
1≤j≤L

|r̂1(xj) − Er̂1(xj)| > ε} ≤ L{N−a + N−β/4+3/4h−β/4−3/4(log N)3β/4+7/4} → 0, (5.11)

see condition (3.3). On the other hand,

P{|r̂2(x) − Er̂2(x)| > ε} ≤ NP{|Y (s)| > M} ≤ Ne−λME{eλ|Y (s)|} = O(N−λ+1),

where λ > 0 is a constant. Hence

P{ max
1≤j≤L

|r̂2(x) − Er̂2(x)| > ε} ≤ O(LN−λ+1) → 0,

see (3.2). Combining this with (5.11) and (5.10), we have

P
{

sup
x∈A

|r̂(x) − Er̂(x)| > ε
}

= Op

{( log N

Nh

)1/2}
.

Now (5.9) follows from this and the fact that supx∈A |Er̂(x)−r(x)| = O(h2), which may be established

via simple algebraic manipulation.

To prove (5.8), it follows from (5.7) and Theorem 2 of Yao (2003) that for any ε > 0 there exists

a τ > 0 such that

sup
x∈A

|Em̂(x) − E{m̂(x)I(|f̂ (x) − f(x)| < h2τ)}| < ε.

Now it holds uniformly for x ∈ A that

sup
x∈A

∣∣E{m̂(x)I(|f̂ (x) − f(x)| < h2τ)} − m(x)
∣∣

≤ sup
x∈A

∣∣E{r̂(x)/f(x)I(|f̂ (x) − f(x)| < h2τ)} − m(x)
∣∣ + Ch2

≤ sup
x∈A

∣∣E{r̂(x)/f(x)} − m(x)
∣∣ + ε + C1h

2 ≤ ε + C2h
2.

Hence (5.8) follows from (5.7).
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