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Abstract

In recent years statistical inference for nonlinear cointegration has attracted at-
tention from both academics and practitioners. This paper proposes a new type
of cointegration in the sense that two univariate time series yt and xt are cointe-
grated via two (unknown) smooth nonlinear transformations, further generalizing
the notion of cointegration initiated revealed by Box and Tiao (1977), and more
systematically studied by Engle and Granger (1987). More precisely, it holds that
G(yt, β) = g(xt) + ut, where G(·, β) is strictly increasing and known upto an un-
known parameter β, g(·) is unknown and smooth, xt is I(1), and ut is the sta-
tionary disturbance. This setting nests the nonlinear cointegration model of Wang
and Phillips (2009b) as a special case with G(y, β) = y. It extends the model of
Linton et al. (2008) to the cases with a unit-root nonstationary regressor. Sieve
approximations to the smooth nonparametric function g are applied, leading to an
extremum estimator for β and a plugging-in estimator for g(·). Asymptotic proper-
ties of the estimators are established, revealing that both the convergence rates and
the limiting distributions depend intimately on the properties of the two nonlin-
ear transformation functions. Simulation studies demonstrate that the estimators
perform well even with small samples. A real data example on the environmental
Kuznets curve portraying the nonlinear impact of per-capita GDP on air-pollution
illustrates the practical relevance of the proposed double-nonlinear cointegration.
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1 Introduction

The phenomenon that there exist stable linear relationships among nonstationary time

series was illustrated first by Box and Tiao (1977), and was later coined as “cointegration”

after the seminal work of Granger (1981) and Engle and Granger (1987). This concept

has proved to be important in both econometric theory and economic application, and has

been one of the most active research areas in the past 30 years. For earlier development

of cointegration, see Johansen (1995) for an excellent survey. Recently, Liao and Phillips

(2015) considered automated estimation of vector error correction models using adaptive

shrinkage. Tu and Yi (2017) considered model averaging estimation in cointegrated vector

autoregressive systems. Zhang et al. (2019) dealt with the cointegration of the processes

with different integration orders in a high dimensional setting. Tu et al. (2019) studied

the error correction factor models in high dimensional cointegration models. For fur-

ther information on linear cointegration models, see the above papers and the references

therein.

Nonlinear cointegration started to attract the research attention since Granger (1991).

Building on the framework of Park and Phillips (1999) that developed an asymptotic

theory for stochastic processes generated from nonlinear transformations of integrated

time series, Park and Phillips (2000) studied the binary choice models with integrated

regressors, and Park and Phillips (2001) considered parametric nonlinear regression with

integrated processes. Furthermore, Chang and Park (2003) studied index models with

integrated processes, which include as special cases the simple neural network models and

the smooth transition regressions.

Besides the above effort in building parametric nonlinear cointegration, the recent

literature has witnessed a surge of interest in developing nonparametric and semipara-

metric cointegration models. Karlsen et al. (2007), Wang and Phillips (2009b,a, 2016)

and Linton and Wang (2016) considered kernel estimation of nonparametric cointegra-

tion models. Cai et al. (2009), Xiao (2009), Gao and Phillips (2013b), Hirukawa and

Sakudo (2018) and Tu and Wang (2019) considered functional coefficient cointegration

models. Gao and Phillips (2013a) studied the semiparametric estimation in triangular

system equations with nonstationarity. Dong et al. (2016b) considered a semiparametric

single index model with integrated regressors. Phillips et al. (2017) studied estimation of

smooth structural change in cointegration models. Dong and Linton (2018) studied non-
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parametric regression with time variable, nonstationary and stationary variables. Gao

et al. (2009), Wang and Phillips (2012), Wang et al. (2018) and Dong and Gao (2018)

considered specification test in nonlinear cointegration models. Kasparis and Phillips

(2012) considered dynamic misspecification test in nonparametric cointegration models.

Kasparis et al. (2015) studied inferences in nonparametric predictive regressions. Phillips

(2009) studied spurious regression in nonparametric regression with integrated processes,

Tu and Wang (2018) considered spurious regression in functional coefficient regressions

with integrated processes and provide a robust solution for spurious detection.

This paper aims to complement the growing literature on cointegration by considering

a double-nonlinear cointegration model, in which the dependent variable and the inte-

grated regressor are cointegrated after possible double nonlinear transformations. Our

setting is quite general and it nests the models considered in Park and Phillips (2001) and

Wang and Phillips (2009b) as special cases with transformation function G(y, β) = y. It

also extends Linton et al. (2008) in which semiparametric transformations are analyzed

for random samples, to the case that incorporates a nonstationary integrated regressor.

The motivation for such a development is to extend further the notion of cointegration

that there exist stable relationships among nonstationary variables (Box and Tiao, 1977;

Engle and Granger, 1987). In the current setup, this relationship is described through

the nonlinear transformations of both the dependent variable and the regressor, unlike

the nonlinear cointegration of earlier studies where transformation is only applied to the

regressor.

Related to this paper is a large literature on transformation models. Bickel and Dok-

sum (1981) provided asymptotic properties of the maximum likelihood estimators in the

linear regression model where the dependent variable is subject to a Box-Cox transforma-

tion (Box and Cox, 1964). Han (1987) provided an improved nonparametric estimator of

this model based on the rank correlation. Carroll and Ruppert (1984) proposed paramet-

ric transformations of both sides of the regression, which is later generalized by Ramsay

(1988) and Wang and Ruppert (1995, 1996) to the case where the transformation of the

dependent variable is nonparametric, and is further relaxed to nonparametric transfor-

mations of both sides of the regression by Breiman and Friedman (1985) and Tibshirani

(1988). Chen (2002), Horowitz (1996) and Ye and Duan (1997) proposed
√
n-consistent

semiparametric estimators for a linear regression model where the dependent variable is

transformed by an unknown monotonic function. Abrevaya (1999) considered a rank esti-
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mator of the transformation model with observed truncation. Fan and Fine (2013) consid-

ered linear transformation models with parametric covariate transformation. Chiappori

et al. (2015) studied identification and estimation of nonparametric transformations and

Lewbel et al. (2015) provided a specification test for such a nonparametric transformation

model. More recently, Florens and Sokullu (2017), Vanhems and Van Keilegom (2018),

and Lin and Tu (2019) studied semiparametric transformation models in the presence of

endogeneity. For more references on this literature, see Lin and Tu (2019) and references

therein.

This paper contributes to the literature in several aspects. First, we propose an

estimation strategy for the double-nonlinear cointegration model. To begin with, we

propose to approximate the unknown transformation on the integrated process using

Hermite polynomials. For a given parameter value in the transformation of the dependent

variable, we can estimate the unknown coefficients in the Hermite expansion using the

least squares method. Then, we estimate the parameter in the transformation of the

dependent variable using a semiparametric least squares criterion, which is similar to

the least squares objective function used by Breiman and Friedman (1985). The loss

measures the relative variation of the regression residual compared to the variation in the

transformed dependent variable. In this sense, the parametric estimator is to maximize

the goodness-of-fit in the relationship described by the transformations.

Secondly, we establish the consistency and asymptotic distribution for the parametric

estimator and the sieve estimator for the unknown transformation function. The paramet-

ric estimator is super consistent, with the rate of convergence depending on the property

of the unknown transformations. The derivations build on Park and Phillips (2001) and

Chan and Wang (2015), which laid down the foundation for nonlinear regressions with

integrated series. The sieve estimator is shown to be asymptotically standard normal,

after self-normalization. This result complements those derived in Dong et al. (2016b) for

semiparametric regressions with integrated processes.

Finally, numerical studies illustrate the merit of our proposed estimators. We carry

out simulation experiments to examine the finite sample performance of the proposed

estimators. Results show that the biases of the proposed estimators are small, and their

variances decay to zero fast as the sample size increases. These findings confirm that our

estimators are super consistent. A real data example on environmental Kutznets curve is

also included to demonstrate the practical value of our proposed model.
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The rest of this article is organized as follows. Section 2 presents our model and the

estimation procedure. Section 3 establishes the large sample properties of the proposed

estimators. Section 4 illustrates the finite sample performance of the estimators using

Monte Carlo experiments, and provides also a real data example. Section 5 concludes the

paper with remarks on future studies. The proofs for the main results are relegated to

the Appendix, with the technical details contained in an online supplementary document.

Notations. R denotes the real line and R+ its positive part. Convergence in probability

and convergence in distribution are signified, respectively, as
p→ and ⇒.

2 Model and Estimation

We consider a semiparametric transformation model

G(yt, β0) = g(xt) + ut, (2.1)

where the dependent variable yt, after a strictly increasing transformation specified by

the parametric family {G(y, β) : β ∈ Θ}, is related to the univariate unit root regressor

xt via an unknown link function g : R → R, the true parameter β0 is assumed to be an

interior point of a compact set Θ ⊂ R, and the innovation ut is a stationary sequence.

The model in (2.1), which is referred to as the double-nonlinear cointegration model,

is quite general. It nests many popularly studied models in the literature as special cases.

For example, when G(y, β) = y, this model reduces to the nonparametric cointegration

models of Wang and Phillips (2009a,b), and it also includes the nonlinear nonstationary

regression models of Park and Phillips (2001), Chan and Wang (2015) and Uematsu (2017)

when the g function is parametrically specified. In addition, when g is a linear parametric

function, this model reduces to the linear cointegration model of Engle and Granger

(1987). Furthermore, this model extends the semiparametric transformation model of

Linton et al. (2008) to the case where xt is unit root nonstationary. In the case where

β0 is known, the model may be analyzed either using the kernel method as in Wang and

Phillips (2009b, 2016), or the sieve approach as in Dong et al. (2016b), Dong and Linton

(2018). Here we take the latter approach, because the analysis in the sieve framework is

much simpler when β0 is unknown.

We assume that the link function g(·) belongs to a Hilbert space, L2(R, e−x2/2) =

{g(x) :
∫
R g

2(x)e−x
2/2dx <∞}, with inner product given by 〈f1, f2〉 =

∫
f1(x)f2(x)e−x

2/2dx
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and the induced norm ‖f‖2 = 〈f, f〉. Note that the Hilbert space L2(R, e−x2/2) covers all

polynomials, all power functions and all bounded functions on R, to name a few. Note

that Hermite orthogonal polynomial sequence {Hj(x)} is a complete orthogonal basis in

L2(R, e−x2/2). Recall that the Hermite polynomials {Hj(x)} are defined by

Hj(x) = (−1)j exp
(x2

2

) dj
dxj

exp
(
− x2

2

)
, j = 0, 1, 2, · · · ,

and 〈Hi(x), Hj(x)〉 =
√

2πj!δij, where δij is the Kronecker delta. Let

hj(x) = (j!)−1/2Hj(x), j ≥ 0.

Then for any continuous function g(x) ∈ L2(R, e−x2/2), it holds that

g(x) =
∞∑
j=0

cjhj(x), cj =
1√
2π
〈g, hj〉. (2.2)

For any integer k ≥ 1, let gk(x) =
∑k−1

j=0 cjhj(x) be the truncated expansion, and γk(x) =

g(x)− gk(x) be the residue after truncation.

By virtue of (2.2), model (2.1) can be written as

G(yt, β0) = Zk(xt)
T c+ γk(xt) + ut, (2.3)

where Zk(·) = (h0(·), · · · , hk−1(·))T , c = (c0, · · · , ck−1)T and k is the truncation parameter.

With observations {xt, yt}nt=1, let G(β) = (G(y1, β), · · · , G(yn, β))T , Z = (Zk(x1), · · · , Zk(xn))T .

Hence, the ordinary least squares (OLS) estimator for c is,

c̃ = c̃(β0) = (ZTZ)−1ZTG(β0), (2.4)

which depends on β0. As a result, the sieve estimator for the link function g is g̃(x) =

ZT
k (x)c̃.

However, the above OLS estimator is infeasible as the transformation parameter β0 is

unknown. Put

Ln(β) =

∑n
t=1[G(yt, β)− ZT

k (xt)c̃(β)]2∑n
t=1 G(yt, β)2

, (2.5)

where c̃(·) is defined as in (2.4). An estimator for β0 is then defined as

β̂n = arg min
β∈Θ

Ln(β).
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Consequently a plug-in estimator for g is defined as ĝ(x) = ZT
k (x)ĉ, where ĉ = c̃(β̂n).

The loss function in (2.5) has a normalizing denominator, and is different from that

used for the standard nonlinear regressions (e.g. Park and Phillips (2001), and Chan and

Wang (2015)). Since g(·) is completely unspecified, the direct least squares estimation

(i.e. without the normalizing denominator) for model (2.1) tends to choose β such that

G(·, β) is flat with little variation. Furthermore, the normalization excludes the trivial

specification G(y, β) = βy or y/β, under which the loss function in (2.5) is invariant to β.

Nevertheless, such a model may be simply analyzed without the transformation on y, as

originally considered by Wang and Phillips (2009b). Finally, the minimization of (2.5) is

effectively to chooseG(·, β) and g(·) such that the squared regression correlation coefficient

is maximized. See Breiman and Friedman (1985) for a similar objective function used in

estimating nonparametric transformation models.

3 Asymptotic Theory

3.1 Functional classes

Let F0
LB be the class of locally bounded functions that are exponentially bounded, i.e., f

fulfills condition f(x) = O(ec|x|) as |x| → ∞ for some c ∈ R+. Let F0
B denote the class of

functions that are bounded and vanish at infinity in the sense that f(x)→ 0 as |x| → ∞.

Definition 3.1 A function g(x) is called H-regular if it satisfies the following conditions.

(a) g(λx) = κ(λ)h(x) +R(x, λ) with h(x) being a continuous function,

and either

(b.i) |R(x, λ)| ≤ a(λ)P (x) with lim supλ→∞ |κ(λ)−1a(λ)| = 0, or

(b.ii) |R(x, λ)| ≤ b(λ)P (x)Q(λx) with lim supλ→∞ |κ(λ)−1b(λ)| <∞,

where

(c) P (x) ∈ F0
LB and Q(x) ∈ F0

B.

The continuity requirement on h in Definition 3.1 (a) is somewhat stronger than that

imposed in the H-regular class defined in Definition 4.2 of Park and Phillips (1999).
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However, this condition is satisfied by most functions used in practical nonlinear time

series analyses, including polynomial functions, logarithmic functions, etc.

Definition 3.2 A function h is called regular on Θ if it satisfies the following conditions.

(a) For all β ∈ Θ, h(·, β) is continuous and twice differentiable;

(b) For all x ∈ R, h(x, ·) and h′(x, ·) are equicontinuous in a neighborhood of x, where

h′(x, ·) = ∂h(x, ·)/∂x.

Definition 3.3 A function g is called H-regular on Θ if it satisfies the following condi-

tions.

(a) g(λx, β) = κ(λ, β)h(x, β) + R(x, λ, β) with h being regular on Θ, and R(x, λ, β)

is differentiable with respect to x. R(x, λ, β) and its first-order partial derivative

R1(x, λ, β) ≡ ∂R(x, λ, β)/∂x satisfy either

(b.i) |R(x, λ, β)| ≤ a(λ, β)P (x, β) with lim supλ→∞ supβ∈Θ |κ−1(λ, β)a(λ, β)| = 0, |R1(x, λ, β)| ≤
a1(λ, β)P1(x, β) with lim supλ→∞ supβ∈Θ |κ−1(λ, β)a1(λ, β)| = 0, or

(b.ii) |R(x, λ, β)| ≤ b(λ, β)P (x, β)Q(λx, β) with lim supλ→∞ supβ∈Θ |κ−1(λ, β)b(λ, β)| <
∞, |R1(x, λ, β)| ≤ b1(λ, β)P1(x, β)Q1(λx, β) with lim supλ→∞ supβ∈Θ |κ−1(λ, β)b1(λ, β)| <
∞, where

(c) supβ∈Θ P (·, β), supβ∈Θ P1(·, β) ∈ F0
LB and supβ∈ΘQ(·, β), supβ∈ΘQ1(·, β) ∈ F0

B.

We call κ the asymptotic order, h the limit homogeneous function and R the remain-

der function of g. Roughly speaking, the class of H-regular functions consists of functions

that are asymptotically equivalent to their (uniquely defined) limit homogeneous function-

s. Condition (b) and (c) allow us to establish this asymptotic equivalence. The regularity

requirement for the limit homogeneous function h in the condition (a) is necessary to

ensure that h has well defined asymptotics. The regularity conditions in Definition 3.2

and Definition 3.3 are stronger than the corresponding conditions introduced in Park and

Phillips (2001, Definition 3.2, Definition 3.5) and Uematsu (2017, Definition 7.1, Defini-

tion 7.2). In particular, smooth conditions on the regular function h and the remainder

function R are imposed for technical convenience.
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3.2 Assumptions

The following assumptions are needed for the theoretical development.

Assumption 1

(a) There exists a filtration {Fnt} such that {ut,Fnt} is a martingale difference sequence

with E(u2
t |Fn,t−1) = σ2

u, E(u4
t |Fn,t−1) = µ4 almost surely for t = 1, 2, · · · , n, and

sup1≤t≤nE(|ut|q|Fn,t−1) <∞ for some q > 4.

(b) xt = xt−1 + vt for t ≥ 1 and x0 = Op(1).

(c) xt is adapted to Fn,t−1, t = 1, 2, · · · .

(d) Let Un(r) = 1√
n

∑[nr]
t=1 ut and Vn(r) = 1√

n

∑[nr]
t=1 vt. Suppose that (Un(r), Vn(r)) →

(U(r), V (r)) as n→∞. Here, (U(r), V (r)) is a vector of Brownian motion.

Assumption 2 Θ is a convex and compact set and in R and β0 is an interior point of

Θ.

Remark 3.1 Conditions in Assumption 1 are commonly used in the literature on non-

stationary processes. Assumption 1 (a) assumes that the error is a martingale difference

sequence. Like linear cointegrating regression theory, serial correlation in the errors is

allowed in our model. For instance, for an MA(1) process ut = εt + ρ1εt−1, where {εt}
is a sequence of independent white noises, the MDS assumption can be made satisfied

with the choice of Fnt = (εt−2, εt−3, · · · ). Note that the correlations do not affect the

consistency of the estimator, but generally affect the limiting distribution theory. As-

sumption 1 (b) stipulates that the regressor xt is an integrated process. See Park and

Phillips (2001), Uematsu (2017), Tu and Wang (2019) for similar settings. Under As-

sumption 1 (c), xt becomes predetermined. This condition can be simply satisfied with

Fnt = {x0, u1, · · · , ut, v1, · · · , vt+1}. Assumption 2 is commonly used for the parametric

space.

Remark 3.2 In Assumption 1, the requirement that the partial sum of vt converges to

a continuous Brownian Motion is quite weak and permits a variety of innovations that

may have serial correlation. For example, for a linear process, vt =
∑∞

i=0 φiεt−i, where

{εi,−∞ < i < ∞} is a sequence of i.i.d. random variables with Eε0 = 0, Eε20 = 1,
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∑∞
i=0 i|φi| < ∞ and φ ≡

∑∞
i=0 φi 6= 0, we have Vn(r) ⇒ φV0(r) ≡ V (r), where V0(r) is a

standard Brownian Motion. Thus, Assumption 1 (d) is easily satisfied.

Furthermore, the unit root assumption on xt can be further relaxed to a general non-

stationary process as stated in Assumption 3.3 of Chan and Wang (2015). The subsequent

limiting theory will continue to hold with some modifications in the proof. However, the

case when xt has a drift or time trend would lead to different asymptotics, the results of

which will be reported separately elsewhere.

Remark 3.3 The stochastic vector process (Un(r), Vn(r)) takes values in D[0, 1]2, where

D[0, 1] denotes the space of cadlag functions defined on the interval [0, 1]. It follows

from Skorohod representation theorem (e.g., Pollard (1984), pp.71-72) that there exist-

s (U0
n(r), V 0

n (r)) in a richer probability space such that (Un(r), Vn(r))
d
= (U0

n(r), V 0
n (r)),

where
d
= signifies equivalence in distribution and for which (U0

n(r), V 0
n (r))

a.s.→ (Un(r), Vn(r))

uniformly on [0, 1]2. For our purpose, it causes no loss of generality to assume (Un(r), Vn(r)) =

(U0
n(r), V 0

n (r)) instead of (Un(r), Vn(r))
d
= (U0

n(r), V 0
n (r)). This convention will be made

throughout the paper. It helps us to avoid repetitious embedding of (Un(r), Vn(r)) in the

probability space where (U0
n(r), V 0

n (r)) is defined. For more details, see the discussions in

Park and Phillips (1999), Park and Phillips (2001) and Dong et al. (2016b).

Assumption 3

(a) The link function g(x) ∈ L2(R, e−x2/2) is differentiable up to m-th order on R and

g(m)(x) ∈ L2(R, e−x2/2).

(b) g(x) is an H-regular function with asymptotic order κg(·) and limiting homogeneous

function hg(x).

(c) There exists m0 > 0 such that max1≤t≤nE[γ2
k(xt)] = O(k−m0).

(d) The sieve order k diverges with n such that k/n → 0, n/km0 → 0, n/km+1 → 0, as

n→∞, where m and m0 are defined as in Assumption 3 (a) and (c), respectively.

Remark 3.4 The smoothness condition of g(·) in Assumption 3 (a) is standard in the

literature and ensures the negligibility of the truncation residuals. See Dong et al. (2015,

2016a) for similar treatment. Assumption 3 (b) requires that g(x) is an H-regular function

defined in Definition 3.1. Assumption 3 (c) and Assumption 3 (d) ensure not only that
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the residual term in the sieve approximation for g is sufficiently small, but also that it

can be smoothed out when we establish the asymptotic normality. This is the so-called

“under-smoothing” condition in the literature. See Dong et al. (2015, 2016a) for similar

conditions.

For the ease of presentation, we define ξ(x, β) ≡ Ġ(G−1(x, β0), β), ξ̇(x, β) ≡ G̈(G−1(x, β0), β)

ξ̈(x, β) ≡
...
G(G−1(x, β0), β), where G−1(x, β) is the inverse of G(x, β) with respect to x,

Ġ(x, β) = ∂G(x, β)/∂β, G̈(x, β) = ∂2G(x, β)/∂β2, and
...
G(x, β) = ∂3G(x, β)/∂β3.

Assumption 4

(a) {G(·, β) : β ∈ Θ} is a parametric family of strictly increasing functions and G(y, β)

is supposed to be three times continuously differentiable with respect to β.

(b) ξ is an H-regular function with asymptotic order κξ(x, β) and limiting homogeneous

function hξ(x, β), Moreover, for f = hξ, h
′
ξ, Pξ, we have supβ∈Θ |f(hg(x), β)| ∈ F0

LB,

where hg is defined in Assumption 3 (b) and hξ, h
′
ξ, Pξ are defined in Definition 3.3.

(c) Let $n = min{
√
n, κng}, define a neighborhood of β0 by N(ε, λ) = {β : |κξ(λ, β0)(β −

β0)| ≤ $−1+ε
n } for given ε > 0. For any given s̄ > 0, there exists ε > 0 such that as

λ→∞,

κξ(λ, β0)−2 sup
|s|≤s̄
|ξ̇(λs, β0)| → 0, (3.1)

$−1+ε
n κξ(λ, β0)−1 sup

|s|≤s̄
sup

β∈N(ε,λ)

|ξ(λs, β)| → 0, (3.2)

$−1+ε
n κξ(λ, β0)−2 sup

|s|≤s̄
sup

β∈N(ε,λ)

|ξ̇(λs, β)| → 0, (3.3)

$−1+ε
n κξ(λ, β0)−3 sup

|s|≤s̄
sup

β∈N(ε,λ)

|ξ̈(λs, β)| → 0, (3.4)

where κng = κg(
√
n), and κg(·) is defined in Assumption 3 (b).

(d) n/(kκ2
ngκ

2
nξ,β0

)→ 0.

Remark 3.5 The strictly increasing property of G(y, β) in Assumption 4 (a) is commonly

imposed for identification. Assumption 4 (b) further stipulates that the composite function

ξ is H-regular (see Definition 3.3). Note that κξ, hξ, in Assumption 4 (b) may depend on

β0. Assumption 4 (c) is similar to Assumption (b) of Theorem 5.3 in Park and Phillips
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(2001), and is required to prove a uniform convergence result. It holds for many H-

regular functions used in nonlinear analysis. Assumption 4 (d) is imposed to remove the

estimation effect of β̂n on ĝ, and is easily satisfied for g being H-regular functions and G

being the Box-Cox transformation (with appropriate choice of k).

Example 3.1 Consider the power transformation G(y, β0) = yβ (y > 0, β > 0). It is

obvious that Assumption 4 (a) holds. In this case ξ(y, β) = 1
β0
yβ/β0 ln(y). To see that

Assumption 4 (b) is satisfied, write

ξ(λy, β) = λβ/β0 ln(λ) · 1

β0

yβ/β0 +
1

β0

(λy)β/β0 ln(y).

Define κξ(λ, β) = λβ/β0 ln(λ) (depending on β0), hξ(y, β) = yβ/β0/β0 and R(y, λ, β) =

(λy)β/β0 ln(y)/β0. Obviously, hξ is regular on Θ and

|R(y, λ, β)| =
∣∣∣ 1

β0

(λy)β/β0 ln(y)
∣∣∣ ≤ λβ/β0 · 1

β0

∣∣∣yβ/β0 ln(y)
∣∣∣,

|R1(y, λ, β)| =
∣∣∣ 1

β0

λβ/β0yβ/β0−1
[ β
β0

ln(y) + 1
]∣∣∣ ≤ λβ/β0

∣∣∣ 1

β0

yβ/β0−1
[ β
β0

ln(y) + 1
]∣∣∣.

Let a(λ, β) = a1(λ, β) = λβ/β0, then

lim sup
λ→∞

sup
β∈Θ
|κ−1
ξ (λ, β)a(λ, β)| = lim sup

λ→∞
sup
β∈Θ

∣∣∣ 1

ln(λ)

∣∣∣ = 0,

showing that R and R1 satisfy Definition 3.3 (b.i). Let P (x, β) = yβ/β0| ln(y)|/β0 and

P1(x, β) = yβ/β0
∣∣∣ ββ0 ln(y) + 1

∣∣∣/β0. It is apparent that supβ∈Θ P (x, β), supβ∈Θ P1(x, β) ∈
F0
LB. Thus, ξ(y, β) is H-regular with asymptotic order κξ(λ, β) = λβ/β0 ln(λ) and limit

homogeneous function hξ(y, β) = yβ/β0/β0. Hence, Assumption 4 (b) is satisfied.

Moreover, by simple calculation, we have ξ̇(y, β) = yβ/β0 ln2(y)/β2
0 , and ξ̈(y, β) =

yβ/β0 ln3(y)/β3
0 . It is easy to show

κξ(λ, β0)−2 sup
|s|≤s̄
|ξ̇(λs, β0)| = 1

β2
0λ

2 ln2(λ)
sup
|s|≤s̄
|λs ln2(λs)| → 0,

as λ→∞. This establishes (3.1). Similarly, one can verify that (3.2)-(3.4) of Assumption

4(c) hold.
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Example 3.2 Consider the Box-Cox transformation G(y, β) = (yβ−1)/β (y > 0, β > 0).

It follows from simple calculations that

ξ(y, β) = (ββ0)−1(β0y + 1)β/β0 ln(β0y + 1)− β−2(β0y + 1)β/β0 + β−2,

ξ̇(y, β) = (β0y + 1)β/β0
[ 1

ββ2
0

ln2(β0y + 1)− 2

β2β0

ln(β0y + 1) +
2

β3

]
− 2

β3
,

ξ̈(y, β) = (β0y + 1)β/β0
[ 1

ββ3
0

ln3(β0y + 1)− 3

β2β2
0

ln2(β0y + 1) +
6

β3β0

ln(β0y + 1)− 6

β4

]
+

6

β4
.

We can show that ξ is H-regular with asymptotic order κξ(λ, β) = λβ/β0 ln(λ) and homo-

geneous function hξ(y, β) = β−1β−1
0 (β0y)β/β0. In addition, Assumption 4(c) can be easily

verified as well. More details are provided in the online supplementary document.

3.3 Distribution theory

The following theorem presents the asymptotic distribution of β̂n, which depends on the

asymptotic order (κg) of the regression function g and that (κξ) of the transformation

function G.

Theorem 3.1 Let Assumptions 1-4 hold. Assume that for all δ > 0,∫
|s|<δ

h2
ξ(hg(s), β0)ds > 0 and

∫
|s|<δ

h2
g(s, β0)ds > 0. (3.5)

Then the following assertions hold as n→∞.

(a) If
√
n/κng → 0,

√
nκnξ,β0(β̂n − β0)⇒ −

(∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr

)−1 ∫ 1

0

hξ

[
hg

(
V (r)

)
, β0

]
dU(r).

(b) If
√
n/κng → α ∈ R+,

√
nκnξ,β0(β̂n − β0)

⇒ −

(∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr

)−1{∫ 1

0

hξ
[
hg
(
V (r)

)
, β0

]
dU(r)

+ ασ2
u

∫ 1

0

h′ξ
[
hg
(
V (r)

)
, β0

]
dr

}

+ ασ2
u

{∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr

∫ 1

0

h2
g

(
V (r)

)
dr
}−1

∫ 1

0

hg

(
V (r)

)
hξ

[
hg

(
V (r)

)
, β0

]
dr.

12



(c) If κng/
√
n→ 0 and κng →∞, as n→∞,

κngκnξ,β0(β̂n − β0)⇒

− σ2
u

(∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr
)−1

∫ 1

0

h′ξ
[
hg
(
V (r)

)
, β0

]
dr

+ σ2
u

{∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr

∫ 1

0

h2
g

(
V (r)

)
dr
}−1

∫ 1

0

hg

(
V (r)

)
hξ

[
hg

(
V (r)

)
, β0

]
dr.

In the above expressions, h′ξ(x, β) = ∂hξ(x, β)/∂x, and U(r), V (r) are the Brownian mo-

tions defined in Assumption 1 (d).

The identifiability condition in (3.5) is similar to that of Park and Phillips (2001,

Theorem 5.2) and that of Uematsu (2017, Theorem 3.1). Note that the result in (b)

degenerates to that in (a) when α = 0. The limiting distributions in all three cases are

nonstandard. When U and V are independent, the limiting distribution in (a) is mixed

normal. In general, all the limiting results are not mixed normal and β̂n is likely to have

an asymptotic bias. However, how to construct the bias-corrected estimator in this setup

remains a challenging issue, and is beyond the scope of this study. See Park and Phillips

(2001) and Chan and Wang (2015) for similar issues.

We now illustrate the above asymptotic results with an example.

Example 3.3 For the functions discussed in previous examples, the asymptotic results

presented in Theorem 3.1 can be easily simplified. Consider the Box-Cox transformation

function G given in Example 3.2 and the link function given by g(x) = axb + d (b > 0).

It is straightforward to see that g is H-regular with asymptotic order κg(λ) = λb and

homogeneous function hg(x) = axb. By Example 3.2, we have κξ(λ, β0) = λ ln(λ) and

hξ(y, β0) = β−1
0 y.

(a). In the case that b = 2, κng = n and
√
n/κng = 1/

√
n → 0. Meanwhile, κnξ,β0 =

n ln(n) and hξ(hg(x), β0) = β−1
0 ax2. Then Theorem 3.1 (a) reduces to

n3/2 log(n)(β̂n/β0 − 1)⇒ −

(∫ 1

0

V 4(r)dr

)−1 ∫ 1

0

V 2(r)dU(r).

13



(b). When b = 1, we have κng =
√
n, satisfying the condition in Theorem 3.1 (b) with

α = 1. And κnξ,β0 =
√
n ln(
√
n), hξ(hg(x), β0) = ax/β0 and h′ξ(hg(x), β0) = 1/β0. Thus,

by the limiting result given in Theorem 3.1 (b),

n log(
√
n)(β̂n/β0 − 1)⇒ −

(
a

∫ 1

0

V 2(r)dr

)−1 ∫ 1

0

V (r)dU(r).

(c). When b = 1/2, κng = 4
√
n diverges slower than

√
n. Also, κnξ,β0 = 4

√
n ln( 4
√
n),

hξ(hg(x), β0) = a
√
x/β0 and h′ξ(hg(x), β0) = 1/β0. By the limiting result in Theorem 3.1

(c),

√
n log( 4

√
n)(β̂n/β0 − 1)

p→ 0.

The theorem bellow presents the asymptotic property of the plug-in estimator ĝ(x) =

ZT
k (x)ĉ defined in Section 2.

Theorem 3.2 Let the conditions in Theorem 3.1 hold. As n→∞,

σ−1
u ∆z(x)−1/2[ĝ(x)− g(x)]⇒ N(0, 1),

where ∆z(x) = ZT
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(x), Ck = diag(n, n2, · · · , nk) and

Dk =
( ∫ 1

0
1√

(i−1)!(j−1)!
V i+j−2(r)dr

)
1≤i,j≤k

.

Remark 3.6 (i) The order involved in the normality is Op(
√
n/k), due to the fact that

∆z(x) ≤ λ−1
min(Dk)λmax(C−1

k ) · ZT
k (x)Zk(x)

= Op(1) ·Op(n
−1) ·Op(k) = O(k/n),

in view of ‖Zk(x)‖2 = Op(k). (ii) It can be shown that a consistent estimator for the

error variance σ2
u is σ̂2

u = 1
n

∑n
t=1[G(yt, β̂n) − ZT

k c̃(β̂n)]2, and that D̂k − Dk
p→ 0, where

D̂k = C
−1/2
k ZTZC

−1/2
k (Lemma A.1). As a result, the point-wise confidence interval of g

can be easily constructed based on the above limiting distribution.

4 Numerical Results

4.1 Simulations

We conduct simulation studies to investigate the finite sample performance of the proposed

estimator for the transformation index β0 and that for the link function g. Let xt be

14



generated according to

xt = xt−1 + vt,

for t = 1, · · · , n, x0 = 0, and vt ∼ N(0, 0.82). The regression error ut is independent of vt

and follows

ut = εt + ρ1εt−1,

in which ρ1 = 0, 0.2, 0.5, 0.8, and εt ∼ N(0, 0.52). We consider the Box-Cox transformation

G(y, β0) = (yβ0 − 1)/β0 for β0 = 0.5, 1, 1.5, and G(y, β0) = ln y for β0 = 0. Three types of

link functions in line with Example 3.3 are entertained:

(1) g1(x) = x2 + 2;

(2) g2(x) = a2x+ 2, with a2 = 1, 10;

(3) g3(x) = a3

√
x+ 2, with a3 = 1, 10.

To save space, some selected results for sample size n = 100, 200, 400, 800, 1200 are re-

ported with M = 1000 replications. Other results are similar and are available upon

request.

The estimators presented in Section 2 depend on the sieve order k that is used to ap-

proximate the unknown link function. In practice, we choose the value k which minimizes

the penalized in-sample mean squared forecast error:

k̂ = arg mink∈Kn

(
MSE(k) +

2k

n

)
, (4.1)

where MSE(k) = 1
n

∑n
t=1(ŷt(k) − yt)2, ŷt(k) = 1

n

∑n
i=1 G

−1(ĝk(xt) + êi(k), β̂n(k)) is the

smearing estimate (Duan, 1983) that is to remove the prediction bias, with êt(k) =

G(yt, β̂n(k)) − ĝk(xt), ĝk(xt) = ZT
k (xt)ĉk, and Kn = {2, 3, 4, 5}. Note that the estima-

tors β̂n(k) and ĉk are as defined in Section 2 with the sieve order being k. The optimal

k̂ selected are 3, 2 and 5 for the above specifications of g, respectively. Consequently,

we shall report the results for these corresponding k̂’s only, to save space. We shall also

suppress the dependence of the notations on k̂ for brevity.

To evaluate estimation accuracy of the estimator β̂n, we calculate the bias, standard

deviation (SD) and root mean squared error (RMSE):

Bias = βn − β0, SD =
( 1

M

∑M

l=1
(β̂n,l − βn)2

)1/2

, RMSE =
√
Bias2 + SD2,
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where βn = 1
M

∑M
l=1 β̂n,l, with β̂n,l standing for the estimate of β0 in the l-th replication.

The above measures for β̂n (multiplied by 103) are reported in Table 1.

It is observed from Table 1 that β̂n performs well for all the specifications of g and

choices of β0 and ρ1. Even for a sample of size n = 100, β̂n has small bias and RMSE. In

addition, all three measures for β̂n decrease fast as sample size n increases. Noticeably, the

rate that the variance and/or RMSE of β̂n converges depends on the specification of the

link function g, but is not affected by the dependence parameter ρ1 in ut. In particular,

we see that the RMSE of β̂n diminishes much faster for g1 than that for g2, and that of

the latter much faster than that for g3. This is consistent with the asymptotic theory

derived in Example 3.3.

We next evaluate the finite sample distribution of β̂n under the three choices of g.

As the limiting distributions given in Theorem 3.1 or Example 3.3 are nonstandard, we

shall compare the estimated density of normalized β̂n with the corresponding limiting

distribution. First, consider the case with g1(x) = x2 + 2. Example 3.3 shows that

β1 ≡ n3/2 ln(n)(β̂n/β0 − 1) is asymptotically mixed normal, which leads to the t-ratio

β̃1 ≡ β1/sd(β1) being standard normal. Second, for the linear function g2(x) = 10x + 2,

we obtain from Example 3.3 that β2 ≡ n ln(
√
n)(β̂n/β0 − 1) is also asymptotically mixed

normal, indicating that the t-ratio β̃2 = β2/sd(β2) is standard normal. Therefore, an

intuitive way is to compare the kernel density of β̃1 and that of β̃2 with the standard normal

density. The kernel density estimates of β̃1, and those of β̃2 are plotted in Figure 4.1 and

Figure 4.2, respectively, with the second-order Gaussian kernel and bandwidth h = 2n−1/5,

along with the standard normal density. Comparing the curves in Figures 4.1-4.2 reveals

that the asymptotic distributions provide good approximations in finite samples. This

finding is robust with respect to different choices of β0, ρ1, specifications of g and sample

sizes n. As for g3(x) = 10
√
x+2, Example 3.3 shows that β3 ≡

√
n ln(n1/4)(β̂n/β0−1)

p→ 0.

The mean squared errors of β3 are reported is Table 2. This shows that β3 is converging

to zero in probability, although the rate of convergence seems slow in finite samples.

We then turn to evaluate the performance of the link function estimator, with the

results reported in Figures 4.3-4.5 for sample size n = 200. Figure 4.3 shows the average

of the estimates of g1(x) = x2 + 2 for β0 = 0, 1, 1.5 and ρ1 = 0, 0.5, 0.8, together with the

95% point-wise simulated confidence band and the 95% point-wise asymptotic confidence

band. Figure 4.4 and 4.5 report those for g2(x) = x+ 2 and g3(x) =
√
x+ 2, respectively.

Figures 4.3-4.5 indicate that the estimator performs very well, with very small bias and
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Table 1: Bias, SD and RMSE (×103) for β̂n.

β0 0 1 1.5

ρ1 0 0.5 0.8 0 0.5 0.8 0 0.5 0.8

n g(x) = x2 + 2

100

Bias 0.21 0.25 0.27 -0.33 0.24 -0.34 -0.29 -7.49 -12.0

SD 0.45 0.53 0.51 7.08 7.38 7.62 7.48 51.8 59.1

RMSE 0.49 0.58 0.58 7.09 7.39 7.63 7.49 52.3 60.3

200

Bias 0.09 0.11 0.12 0.16 0.09 0.03 0.03 -1.33 -0.77

SD 0.07 0.13 0.14 2.20 2.31 2.33 2.32 17.3 20.2

RMSE 0.11 0.17 0.19 2.20 2.31 2.33 2.32 17.4 20.2

400

Bias 0.06 0.07 0.08 0.00 0.01 0.06 0.04 -0.09 0.29

SD 0.02 0.04 0.04 0.69 0.71 0.72 0.71 6.28 6.99

RMSE 0.06 0.08 0.09 0.69 0.71 0.72 0.71 6.28 7.00

g(x) = 10x+ 2

100

Bias 0.08 0.10 0.11 -1.79 -3.02 -3.74 -1.93 -5.45 -6.56

SD 0.07 0.10 0.13 5.25 10.4 12.3 6.06 15.3 17.4

RMSE 0.11 0.14 0.17 5.55 10.8 12.8 6.36 16.2 18.6

200

Bias 0.06 0.07 0.07 -0.80 -1.88 -1.95 -0.99 -2.44 -3.64

SD 0.02 0.03 0.05 2.31 5.53 6.35 2.71 8.26 9.87

RMSE 0.07 0.08 0.09 2.45 5.84 6.64 2.88 8.61 10.5

400

Bias 0.07 0.06 0.06 -0.37 -0.91 -1.23 -0.41 -1.35 -1.96

SD 0.01 0.02 0.02 1.08 2.58 3.44 1.24 3.95 4.90

RMSE 0.07 0.06 0.06 1.14 2.74 3.66 1.30 4.17 5.28

g(x) = 10
√
x+ 2

100

Bias 1.08 0.64 0.22 -4.02 -5.44 -6.78 -3.91 -5.68 -6.54

SD 3.06 2.25 1.24 7.58 6.64 5.32 7.65 6.49 5.61

RMSE 3.24 2.34 1.26 8.58 8.58 8.62 8.59 8.63 8.61

200

Bias 0.65 0.35 0.15 -2.13 -3.62 -4.30 -2.68 -3.65 -4.60

SD 1.99 1.39 0.87 4.82 3.84 3.07 4.54 3.83 2.58

RMSE 2.09 1.44 0.88 5.27 5.28 5.28 5.27 5.29 5.28

400

Bias 0.31 0.16 0.10 -1.93 -2.41 -2.91 -1.86 -2.60 -2.91

SD 1.03 0.72 0.44 2.66 2.22 1.53 2.71 2.01 1.53

RMSE 1.07 0.74 0.45 3.28 3.28 3.29 3.28 3.29 3.29
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Figure 4.1: Plot of standard normal density (black solid line) and kernel density of β̃1

(the normalized β̂n) for n = 100 (blue dotted), n = 200 (purple dot-dashed), n = 400

(red dashed) with g1(x) = x2 + 2.
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Figure 4.2: Plot of standard normal density (black solid line) and kernel density of β̃2

(the normalized β̂n) for n = 100 (blue dotted), n = 200 (purple dot-dashed), n = 400

(red dashed) with g2(x) = 10x+ 2.
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Table 2: Mean squared errors (MSEs) (×103) for β3 (the normalized β̂n)

β0 ρ1 n = 100 200 400 800 1200

0.5

0 18.70 17.90 16.58 14.40 10.56

0.5 18.69 17.92 16.60 14.40 10.56

0.8 18.71 17.92 16.60 14.40 10.56

1

0 9.348 8.957 8.300 7.201 5.279

0.5 9.342 8.959 8.294 7.203 5.279

0.8 9.350 8.949 8.301 7.203 5.279

1.5

0 6.232 5.971 5.534 4.802 3.519

0.5 6.236 5.973 5.534 4.802 3.519

0.8 6.232 5.973 5.534 4.802 3.519

variance for the most part of the domain of x, despite the fact that the estimator is based

on merely n = 200 observations. We also plot these curves for n = 100, 200, 400 with

β0 = 1 and ρ1 = 0 in Figure 4.6, which reveals that the confidence bands are shrinking as

n increases. The simulated and asymptotic confidence bands almost overlap, indicating

that the asymptotic distribution given in Theorem 3.2 provides a good approximation in

finite samples.

4.2 An empirical study

We now provide a real data example to illustrate the practical merit of our proposed model.

In particular, we consider the environmental Kuznets curve for PM2.5 observations in one

city and two provinces in northen China, i.e., Beijing (BJ), Hebei (HB) and Shandong

(SD).

The environmental Kuznets curve. The concept of environmental Kuznets curve

(EKC) emerged in the 1990’s, when Grossman and Krueger (1991) revealed that the

air pollution measures increased with income at first but decreased once per-capita GDP

passes a certain threshold, hence hypothesized an inverted-U shaped relationship be-

tween indicators of environmental degradation and income per capita. It was named

after Kuznets (1955), who first hypothesized a similar relationship between income in-

equality and economic development. Together with a period of extraordinary economic
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(h) β0 = 1.5, ρ1 = 0.5
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Figure 4.3: Plots of g1(x) = x2 + 2 (black solid line), the averaged estimate of g1(x)

(red dashed), the simulated 95% confidence bands (blue dotted) and the asymptotic 95%

confidence bands (purple dot-dashed) for n = 200.

21



0.0 0.5 1.0 1.5 2.0

1.
5

2.
5

3.
5

4.
5

x

g(
x)

(a) β0 = 0, ρ1 = 0

0.0 0.5 1.0 1.5 2.0

1.
5

2.
5

3.
5

4.
5

x

g(
x)

(b) β0 = 0, ρ1 = 0.5
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(c) β0 = 0, ρ1 = 0.8
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(d) β0 = 1, ρ1 = 0
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(e) β0 = 1, ρ1 = 0.5
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(f) β0 = 1, ρ1 = 0.8
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Figure 4.4: Plots of g2(x) = x + 2 (black solid line), the averaged estimate of g2(x)

(red dashed), the simulated 95% confidence bands (blue dotted) and the asymptotic 95%

confidence bands (purple dot-dashed) for n = 200.
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(f) β0 = 1, ρ1 = 0.8
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Figure 4.5: Plots of g3(x) =
√
x + 2 (black solid line), the averaged estimate of g3(x)

(red dashed), the simulated 95% confidence bands (blue dotted) and the asymptotic 95%

confidence bands (purple dot-dashed) for n = 200.
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(b) g1, n = 200
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(c) g1, n = 400
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Figure 4.6: Plots of g = g1, g2, g3 (black solid line), the averaged estimate of g(x) (red

dashed), the simulated 95% confidence bands (blue dotted) and the asymptotic 95%

confidence bands (purple dot-dashed) for β0 = 1 and ρ1 = 0, with g1(x) = x2 + 2, g2(x) =

x+ 2, g3(x) =
√
x+ 2.
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growth during the past 40 years, the increase of pollution emission in China has led to

serious environmental problems, as well as heated debate on how economic growth af-

fects environmental quality and whether China’s high growth is sustainable once more

environment-friendly policies are implemented. Central to this debate, is the study of the

EKC, which is to be analyzed using our proposed model. Here we focus on the EKC for

particulate matter that has a diameter of less than 2.5 micrometers, i.e. PM2.5, which is

of serious concern in China nowadays.

The data. The PM2.5 emission data are obtained from the research group at De-

partment of Environmental Science and Laboratory for Earth Surface Processes, Peking

University, or from the website http://inventory.pku.edu.cn/. The original PM2.5 emis-

sion data are available at monthly frequency, with 0.1 by 0.1 degree spatial resolution

measured by g/km2. To obtain the quarterly emissions, we first add up the emissions of

the three months in each quarter, and then multiply it by the area of the city/province

(the sum of area of the grid squares falling into the city/province). The quarterly emis-

sions are then divided by the population to obtain the per capita PM2.5 emissions (yt),

which are measured by 102kg per capita. Following the literature, we use the natural

logarithm of real GDP per capita (xt) to measure economic development. The nominal

GDP and population data are downloaded from the Wind database, originally published

by the National Bureau of Statistics (NBS) of China. Real GDP is then calculated with

the GDP deflator obtained from NBS. Divided by the population, we then obtain the real

per capita GDP, measured by one thousand CNY of the year 2000. The quarterly data

ranges from 2000Q1 to 2014Q4 with a total of n = 60 observations for each city, with the

starting point determined by the availability of GDP and the ending point determined

by the availability of the PM2.5 emissions. All the series are seasonally adjusted using

X-13-ARIMA developed by the United States Census Bureau.

The natural logarithm of real GDP per capita xt and the per capita PM2.5 emissions

yt are plotted in Figure 4.7 (a) and (c). It is observed that in the three cases xt has

stochastic trend and is likely to be a unit root process, while yt looks more stable over

time. To be precise, we apply the augmented Dickey-Fuller (ADF) unit root test to the

two series, with the results reported in Table 3. The test fails to reject the null that xt is

unit root in all three cases. It rejects the same null for yt in Beijing with a p-value 0.054,

while fails to reject the null for yt in Hebei and Shandong with p-values 0.589 and 0.917,

respectively. The differenced series ∆xt, plotted in Figure 4.7 (b), looks stationary, which
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Figure 4.7: The log of real GDP per capita and its difference, and PM2.5 per capita for

Beijing, Hebei and Shandong. Data range: 2000Q1-2014Q4.

is also supported by the ADF test.

Table 3: p-values for the Augmented Dickey-Fuller (ADF) Test

BJ HB SD

lnGDP 0.985 0.990 0.990

PM2.5 0.054 0.589 0.917

∆ lnGDP 0.010 0.010 0.010

The model and results. We first consider our proposed model, i.e.,

M1 : G(yt, β) = g(xt) + ut,

where we use the Box-Cox transformation G(y, β) = (yβ − 1)/β, for β > 0, and G(y, 0) =

ln y, an H-regular function g(·) left unspecified, and ut is the error term.

The truncation parameter k in the sieve approximation is selected according to (4.1),

for Kn = {3, 4, 5}. It is found that k = 3 is selected for all three cases under this criterion.

We shall report results for this optimal choice of k. For Beijing, we obtain β̂n = 0 and

ĉ = (−8.22, 7.07,−2.43)T ; for Hebei, we obtain β̂n = 0 and ĉ = (0.86, 0.15,−0.07)T ; for

Shandong, we obtain β̂n = 0 and ĉ = (−0.23, 0.89,−0.30)T . The Box-Cox transformation

parameters are estimated to be zero in all three cases, suggesting that a natural log

transformation would be suitable for the data. That is, we shall consider G(y, β̂n) = ln(y).

Figure 4.8 plots the estimated curve for the link function ĝ(x), with the 95% point-wise
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Figure 4.8: The estimated link function ĝ(·) and its asymptotic 95% confidence interval.

confidence interval based on the asymptotic distribution in Theorem 3.1 (a). Therefore,

the estimated relationship between PM2.5 and GDP per capita is inverted-U shaped,

supporting the central hypothesis of EKC.

Model diagnostics. The residuals can be estimated as ût = ln(yt) − ĝ(xt). The aug-

mented Dickey-Fuller test suggests that the estimated residuals in Beijing, Hebei and

Shandong are stationary, with p-values 0.011, 0.010 and 0.010, respectively.

To shed further light on the serial dependence of the fitted residuals, we perform

the portmanteau test of Ljung and Box (1978) for no serial correlation. For Beijing,

the Ljung-Box test shows that ût is not white noise with p-value smaller than 0.001.

Therefore, we consider an autoregressive moving average process for the residuals, with

the order selected using the extended autocorrelation function (EACF) proposed by Tsay

and Tiao (1984). This results an MA(6) model, which is

ût = et + 0.71et−1 + 0.36et−2 + 0.34et−3 + 0.44et−4 + 0.4et−5 + 0.007et−6,

where et is white noise (p-value of Ljung-box test is 0.75) with E(e2
t ) = 0.06. For Hebei,

the Ljung-Box test suggests that ût is white noise with p-value 0.068. For Shandong, the

Ljung-Box test suggests that ût is not white noise with p-value 0.002. The EACF suggests

that an MA(2) model is suitable, and we obtain,

ût = et + 0.62et−1 + 0.22et−2,

where et is white noise (p-value of the Ljung-Box test is 0.28) with E(e2
t ) = 0.0007.

The above results indicate that the estimated residuals in the three cases all can be
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Figure 4.9: The real data (black solid line) and fitted curves for M1 (red dashed), M2

with sieve estimator (blue dotted) and M2 with kernel estimator (purple dot-dashed).

well approximated by finite order MA processes. This finding is consistent with our

Assumption 1 on the residuals.

Forecasting comparison. To evaluate the performance of the proposed model, we

compare it with the nonparametric cointegration model considered by Wang and Phillips

(2009b),

M2 : yt = f(xt) + u2t, (4.2)

where f(·) is an unknown link function, u2t is the error term. Here, we use both kernel

and sieve methods to estimate the unknown function f(·). For the kernel estimator, the

second order Epanechnikov kernel is used with bandwidth h = n−1/3, following Wang and

Phillips (2009b). For the sieve estimator, we expand f by hermite polynomials like (2.2)

and use least squares method to estimate the unknown coefficient c with the truncation

parameter k selected by (4.1). It is found that k = 3 is selected in all three cases. The

fitted curves for PM2.5 versus lnGDP from both M1 and M2 are plotted in Figure 4.9.

We next evaluate the performance of the above models using two criteria, i.e., the

in-sample and out-of-sample mean square forecast errors.

(i) In-sample mean squared forecast error (MSEis). First, all unknown quantities in

the two models are estimated based on the whole sample (xt, yt), t = 1, 2, · · · , n. Then,

we calculate the predictions ŷ`t with ` = 1, 2,

ŷ1
t =

1

n

∑n

i=1
exp(ĝ(xt) + êi),

ŷ2
t = f̂(xt),
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Figure 4.10: The in-sample prediction errors from M1, M2 with sieve estimator and M2

with kernel estimator.

where ĝ(x) = ZT
k (x)ĉ, êi = ln(yi) − ĝ(xi). Note that ŷ1

t is the smearing estimate of

Duan (1983). The in-sample prediction errors produced from the two models are plotted

in Figure 4.10. Finally, the in-sample mean squared forecast errors are calculated, for

` = 1, 2, by

MSEis(`) =
1

n

∑n

t=1
(yt − ŷ`t)2. (4.3)

Meanwhile, to check the robustness of the results to the choice of sieve order k and

bandwidth h, the MSEis for k = 4, 5 or h = 0.8n−1/3, 1.2n−1/3 are calculated as well.

(ii) Out-of-sample mean squared forecast error (MSEoos). We use the earlier part of

the observations to fit the models, based on which we make predictions for the rest of the

observations using a rolling window scheme. More precisely, for j = 1, · · · , 5, we use the

observations {(yt, xt)} : j ≤ t ≤ 54 + j to obtain the estimates of unknown parameters

and functions, with selected k = 3 for M1 and M2 with sieve estimator, and h = n−1/3

for M2 with kernel estimator. Then forecasts are produced for y55+j, respectively,

ŷ1
55+j =

1

55

∑55+j

i=j
G−1(ĝj(x55+j) + êj,i, β̂j,n),

ŷ2
55+j = f̂(x55+j),

where êj,i = G(yi, β̂j,n)− ĝj(xi). The MSEoos is calculated, for ` = 1, 2, by

MSEoos(`) =
1

5

∑5

j=1
(y55+j − ŷ`55+j)

2. (4.4)

In addition, to assess the choice of k and h, the MSEoos for k = 4, 5 and that for h =
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0.8n−1/3, 1.2n−1/3 are computed as well. All the MSEis and MSEoos are reported in Table

4.

Table 4: The MSEs (×103) for M1 and M2.

M1 M2

Sieve Kernel

k/h 3 4 5 3 4 5 0.8n−1/3 n−1/3 1.2n−1/3

BJ
MSEis 41.07 18.16 15.49 34.56 22.83 15.38 26.18 37.78 50.52

MSEoos 4.892 18.75 4.952 6.396 82.47 13.05 55.57 78.46 117.0

HB
MSEis 4.858 4.702 4.063 4.869 4.700 4.071 3.362 3.651 3.775

MSEoos 1.629 3.145 4.869 1.644 3.145 4.771 1.765 1.731 1.653

SD
MSEis 4.644 3.355 2.501 5.317 3.228 2.460 2.500 2.671 2.841

MSEoos 4.011 4.774 4.758 4.987 4.416 4.247 5.363 5.149 5.313

It is seen from Table 4 that M1 performs the best when k = 5 in terms of in-sample

fit as one might expect. However, its performance achieves the best when k = 3 in

terms of out-sample fit. This suggests that the criterion (4.1) to select k works well

for out-of-sample prediction. Furthermore, our model M1 with the selected k = 3 has

the smallest out-of-sample MSE in all three cases, compared to M2 with either sieve or

kernel estimator. To be specific, for example, the out-of-sample MSE of M1 for Beijing

is 4.892 × 10−3, and is smaller than those of M2 with k = 3 (6.396 × 10−3) and M2

with h = n−1/3 (78.46×10−3). Finally, the M2 with kernel estimator seems to provide

better in-sample fits for Hebei and Shandong, but tends to perform worse than the sieve

estimator (with the selected k̂ = 3) in out-of-sample predictions. To sum up, the results

suggest that, to analyze the EKC using Chinese data, the dependent variable PM2.5 should

be transformed by a logarithmic function, and our double nonlinear cointegration model

opens spaces to improve the out-of-sample predictions.

5 Concluding Remarks

This paper studies a double nonlinear cointegration model, where the dependent variable,

after a transformation by a strictly increasing parametric function, is related to a unit

root nonstationary regressor with an unknown smooth link function. Estimation of the
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unknown quantities is investigated. The asymptotic properties of the proposed estimators

are established. Numerical studies reveal the nice performance of the estimators.

There are several possibilities to extend this work further. First, the univariate unit

root regressor may be extended to a multiple case via an index structure. Second, the

current setting assumes that the regressor is a unit root process, which may be generalized

to nonstationary processes with long memory. Third, incorporating the information in

the residual dependence might lead to more efficient estimation as in Linton and Wang

(2016). Fourth, how to test the existence of the double-nonlinear cointegration remains

a challenging issue. Some residual-based tests may be worth considering. Finally, the

current model assumes a parametric transformation on yt, which may be relaxed to be

a nonparametric function as in Chiappori et al. (2015). Such extensions are technically

demanding and the results will be reported elsewhere.
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Appendix

This appendix contains two parts. Part A presents some useful lemmas to facilitate the

proofs for the main theorems of the paper in Part B.

Notations. For a matrix (vector) A = (aij)n×m, ‖A‖ = (
∑n

i=1

∑m
j=1 a

2
ij)

1/2. Through-

out this appendix, we denote a generic constant by C, which may be different at each

appearance. And we simply denote G(yt, β) as Gt(β).
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A Useful Lemmas

Lemma A.1 If {xt}nt=1 satisfy Assumption 1, define Ck = diag(n, n2, · · · , nk), we have

C
−1/2
k ZTZC

−1/2
k −Dk = op(1),

where Dk =
( ∫ 1

0
1√

(i−1)!(j−1)!
V i+j−2(r)dr

)
1≤i,j≤k

is a k × k matrix.

Lemma A.2 Denote that

An1(β) =
n∑
t=1

G2
t (β), An5(β) =

n∑
t=1

Ġ2
t (β),

An2(β) =
n∑
t=1

[Gt(β)− g(xt)]
2, An6(β) =

n∑
t=1

[Gt(β)− g(xt)]G̈t(β),

An3(β) =
n∑
t=1

Gt(β)Ġt(β), An7(β) =
n∑
t=1

Gt(β)G̈t(β).

An4(β) =
n∑
t=1

[Gt(β)− g(xt)]Ġt(β),

Let Assumptions 1-4 hold. As n→∞, it holds that

(a) 1
nκ2ng

An1(β0)⇒
∫ 1

0
h2
g

(
V (r)

)
dr;

(b) 1
n
An2(β0)

p→ σ2
u;

(c) 1
nκngκnξ,β0

An3(β0)⇒
∫ 1

0
hg
(
V (r)

)
hξ
[
hg
(
V (r)

)
, β0

]
dr;

(d) (1) if
√
n/κng → 0, 1√

nκnξ,β0
An4(β0)⇒

∫ 1

0
hξ
[
hg
(
V (r)

)
, β0

]
dU(r),

(2) if
√
n/κng → α, 1√

nκnξ,β0
An4(β0)⇒

∫ 1

0
hξ
[
hg
(
V (r)

)
, β0

]
dU(r)+ασ2

u

∫ 1

0
h′ξ
[
hg
(
V (r)

)
, β0

]
dr,

(3) if κng/
√
n→ 0 and κng →∞, κng

nκnξ,β0
An4(β0)⇒ σ2

u

∫ 1

0
h′ξ
[
hg
(
V (r)

)
, β0

]
dr;

(e) 1
nκ2nξ,β0

An5(β0)⇒
∫ 1

0
h2
ξ

[
hg

(
V (r)

)
, β0

]
dr;

(f) An6(β0) = op(nκ
2
nξ,β0

);

(g) An7(β0) = op(nκngκ
2
nξ,β0

),

where α is a constant, κng = κg(
√
n), κnξ,β = κξ(κng, β) and h′ξ(x, β) =

∂hξ(x,β)

∂x
.
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Lemma A.3 Define Cn = n1/2−ρκnξ,β0, where 0 < ρ < ε/6 with ε defined in Assumption

4 (c) and Nn = {β : |Cn(β − β0)| ≤ 1}. Let Assumptions 1-4 hold. If
√
n/κng → α ≥ 0,

as n→∞, we have

(a) supβ∈Nn |An1(β)− An1(β0)| = op(n
1−2ρκ2

ng);

(b) supβ∈Nn |An2(β)− An2(β0)| = op(n
1−2ρ),

(c) supβ∈Nn |An3(β)− An3(β0)| = op(n
1−2ρκngκnξ,β0);

(d) supβ∈Nn |An4(β)− An4(β0)| = op(n
1−2ρκnξ,β0);

(e) supβ∈Nn |An5(β)− An5(β0)| = op(n
1−2ρκ2

nξ,β0
);

(f) supβ∈Nn |An6(β)− An6(β0)| = op(n
1−2ρκ2

nξ,β0
);

(g) supβ∈Nn |An7(β)− An7(β0)| = op(n
1−2ρκngκ

2
nξ,β0

).

Moreover,

(i) supβ∈Nn |An1(β)| = Op(nκ
2
ng);

(ii) supβ∈Nn |An2(β)| = Op(n),

(iii) supβ∈Nn |An3(β)| = Op(nκngκnξ,β0);

(iv) supβ∈Nn |An5(β)| = Op(nκ
2
nξ,β0

);

(v) supβ∈Nn |An7(β)| = Op(nκngκ
2
nξ,β0

).

Lemma A.4 Let Assumptions 1-4 hold. For each β satisfying |Dn(β−β0)| ≤ C, we have

Ln(β) =

∑n
t=1[Gt(β)− g(xt)]

2∑n
t=1G

2
t (β)

(1 + op(1)), (A.1)

where

Dn =

{ √
nκnξ,β0 , if

√
n/κng → α ≥ 0;

κngκnξ,β0 , if κng/
√
n→ 0, κng →∞.
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B Proof of Main Theorems

Proof of Theorem 3.1. We consider three cases, i.e., Case I, if
√
n/κng → 0; Case II, if

√
n/κng → α, where α ∈ R+; and Case III, if κng/

√
n→ 0, κng →∞ as n→∞. Because

the arguments used to prove the three cases are similar, we present the proofs for Case I

and II below, and leave the detailed proofs for Case III to the online supplement.

Our proof contains four parts. Part (a) gives the score and hessian, and part (b) and

(c) establish their asymptotics. Part (d) includes a detailed proof for the limit of β̂n−β0.

(a) The loss function. Since by Lemma A.4, we have

Ln(β) =

∑n
t=1[Gt(β)− g(xt)]

2∑n
t=1G

2
t (β)

(1 + op(1)),

and nκ2
ng does not rely on β, then minimizing Ln(β) with respect to β is equivalent to

minimizing L̃n(β) ≡ nκ2ng
2

∑n
t=1[Gt(β)−g(xt)]2∑n

t=1G
2
t (β)

. Therefore, the score function is

Sn(β) = nκ2
ng

An1(β)An4(β)− An2(β)An3(β)

A2
n1(β)

,

and the hessian is

Jn(β) = nκ2
ngA

−3
n1 (β)

[
A2
n1(β)

(
An5(β) + An6(β)

)
− An1(β)An2(β)

(
An5(β) + An7(β)

)
− 4An1(β)An3(β)An4(β) + 4An2(β)A2

n3(β)
]
≡ nκ2

ng

Jn2(β)

Jn1(β)
.

(b) The score. In view of Lemma A.2, we have

Case I: if
√
n/κng → 0,

(
√
nκnξ,β0)

−1Sn(β0) =
(
√
nκnξ,β0)

−1An4(β0)

(nκ2
ng)
−1An1(β0)

+ o(1).

⇒
(∫ 1

0

h2
g

(
V (r)

)
dr
)−1

∫ 1

0

hξ

[
hg

(
V (r)

)
, β0

]
dU(r).

Case II: if
√
n/κng → α, where α ∈ R+,

(
√
nκnξ,β0)

−1Sn(β0) =
(
√
nκnξ,β0)

−1An4(β0)

(nκ2
ng)
−1An1(β0)

− αn
−1An2(β0) · (nκngκnξ,β0)−1An3(β0)

(nκ2
ng)
−2A2

n1(β0)
.

⇒
(∫ 1

0

h2
g

(
V (r)

)
dr
)−1(∫ 1

0

hξ
[
hg
(
V (r)

)
, β0

]
dU(r) + ασ2

u

∫ 1

0

h′ξ
[
hg
(
V (r)

)
, β0

]
dr
)

− ασ2
u

(∫ 1

0

h2
g

(
V (r)

)
dr
)−2

∫ 1

0

hg

(
V (r)

)
hξ

[
hg

(
V (r)

)
, β0

]
dr.
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(c) The hessian. Similarly, by Lemma A.2,

(
√
nκnξ,β0)

−2Jn(β0) =
(
√
nκnξ,β0)

−2An5(β0)

(nκ2
ng)
−1An1(β0)

+ op(1)

⇒
(∫ 1

0

h2
g

(
V (r)

)
dr
)−1

∫ 1

0

h2
ξ

[
hg

(
V (r)

)
, β0

]
dr.

(d) Detailed proof for the limit of β̂n − β0. Notice that

0 = Sn(β̂n) = Sn(β0) + Jn(βn)(β̂n − β0), (B.1)

where βn is between β̂n and β0. Define Dn =
√
nκnξ,β0 . To obtain the limiting theorem,

it is sufficient to show that

Dn(β̂n − β0) = −[D−1
n Jn(β0)D−1

n ]−1 ·D−1
n Sn(β0) + op(1). (B.2)

We shall use Theorem 10.1 of Wooldridge (1994) to complete our proof, four conditions

of which will be verified subsequently. Note that the first two conditions are trivially

satisfied due to Assumptions 2-4. To verify the third condition, rewrite (B.1) as

Sn(β0) + Jn(β0)(β̂n − β0) + [Jn(βn)− Jn(β0)](β̂n − β0) = 0,

where βn is between β̂n and β0, Sn(β0) and Jn(β0) are the score and hessian at β0,

respectively, and Jn(βn) is the hessian at βn. Let Cn = n−ρDn for some 0 < ρ < ε/6 such

that CnD
−1
n = op(1), where ε is defined in Assumption 4 (c). It follows that

0 = D−1
n Sn(β0) +D−1

n Jn(β0)D−1
n Dn(β̂n − β0) +D−1

n [Jn(βn)− Jn(β0)]D−1
n Dn(β̂n − β0)

= D−1
n Sn(β0) +D−1

n Jn(β0)D−1
n Dn(β̂n − β0) + n−2ρC−1

n [Jn(βn)− Jn(β0)]C−1
n Dn(β̂n − β0).

As a result, the condition (iii) of Theorem 10.1 in Wooldridge (1994) will be satisfied if

we can show

sup
β∈Nn

|C−1
n [Jn(βn)− Jn(β0)]C−1

n | = op(1), (B.3)
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where Nn = {β : |Cn(β − β0)| ≤ 1}. Towards this end, write

Jn(β)− Jn(β0) = nκ2
ng

{
1

Jn1(β0)
(Jn2(β)− Jn2(β0))− Jn2(β0)

J2
n1(β0)

(Jn1(β)− Jn1(β0))

+
Jn1(β)− Jn1(β0)

Jn1(β)Jn1(β0)

[
Jn2(β)− Jn2(β0)− Jn2(β0)(Jn1(β)− Jn1(β0))

Jn1(β0)

]}

= nκ2
ng

{
1

Jn1(β0)
(Jn2(β)− Jn2(β0))− Jn2(β0)

J2
n1(β0)

(Jn1(β)− Jn1(β0))

}
Jn1(β0)

Jn1(β)
.

(B.4)

By Part (c) and Lemma A.2, we have

Jn1(β0) = A3
n1(β0) = Op((nκ

2
ng)

3),

and

Jn2(β0) = A2
n1(β0)An5(β0)(1 + op(1)) = Op(n

3κ4
ngκ

2
nξ,β0

).

Thus, to show (B.3), it is suffices to show

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

(Jn2(β)− Jn2(β0))| = op(1), (B.5)

sup
β∈Nn

|n2ρ−3κ−6
ng (Jn1(β)− Jn1(β0))| = op(1), (B.6)

sup
β∈Nn

∣∣∣Jn1(β0)

Jn1(β)

∣∣∣ = Op(1). (B.7)

First consider (B.5). Write

Jn2(β)− Jn2(β0) =
[
A2
n1(β)

(
An5(β) + An6(β)

)
− A2

n1(β0)
(
An5(β0) + An6(β0)

)]
−
[
An1(β)An2(β)

(
An5(β) + An7(β)

)
− An1(β0)An2(β0)

(
An5(β0) + An7(β0)

)]
− 4
[
An1(β)An3(β)An4(β)− An1(β0)An3(β0)An4(β0)

]
+ 4
[
An2(β)A2

n3(β)− An2(β0)A2
n3(β0)

]
≡ Υn2,1 −Υn2,2 − 2Υn2,3 + 4Υn2,4, (B.8)
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where the definitions of Υn2,1-Υn2,4 should be obvious. For Υn2,1, we have

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,1(β)|

≤ n2ρ−3κ−4
ng κ

−2
nξ,β0

sup
β∈Nn

|A2
n1(β)[An5(β)− An5(β0)]|

+ n2ρ−3κ−4
ng κ

−2
nξ,β0

sup
β∈Nn

|A2
n1(β)[An6(β)− An6(β0)]|

+ n2ρ−3κ−4
ng κ

−2
nξ,β0

sup
β∈Nn

|A2
n1(β)− A2

n1(β0)|[An5(β0) + An6(β0)]

≤ n−2κ−4
ng sup

β∈Nn
|An1(β)|2 · n2ρ−1κ−2

nξ,β0
sup
β∈Nn

|An5(β)− An5(β0)|

+ n−2κ−4
ng sup

β∈Nn
|An1(β)|2 · n2ρ−1κ−2

nξ,β0
sup
β∈Nn

|An6(β)− An6(β0)|

+ n2ρ−1κ−2
ng sup

β∈Nn
|An1(β)− An1(β0)| · n−1κ−2

ng sup
β∈Nn

|An1(β) + An1(β0)| · n−1κ−2
nξ,β0

[An5(β0) + An6(β0)]

= op(1),

by Lemma A.3. Similarly, we can show

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,2(β)| = op(1),

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,3(β)| = op(1),

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,4(β)| = op(1).

Thus,

sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

(Jn2(β)− Jn2(β0))|

≤ sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,1(β)|+ sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,2(β)|

+ 2 sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,3(β)|+ 4 sup
β∈Nn

|n2ρ−3κ−4
ng κ

−2
nξ,β0

Υn2,4(β)|

= op(1),

proving (B.5). Next, we show (B.6). Write that

sup
β∈Nn

|n2ρ−3κ−6
ng (Jn1(β)− Jn1(β0))|

≤ n2ρ−1κ−2
ng sup

β∈Nn
|An1(β)− An1(β0)| · n−2κ−4

ng sup
β∈Nn

|A2
n1(β) + An1(β)An1(β0) + A2

n1(β0)|

= op(1),
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by Lemma A.3. Regarding of (B.7), using arguments similar to those of Theorem 2.2 in

Chan and Wang (2014), we have

sup
β∈Nn

∣∣∣Jn1(β0)

Jn1(β)

∣∣∣ = Op((nκ
2
ng)

3) ·Op((nκ
2
ng)
−3) = Op(1).

This completes the proof of (B.3). Finally, the convergence of Sn(β0) and Jn(β0) in Part

(b) and (c) indicates that the condition (iv) in Wooldridge’s theorem holds. Consequently,

there exists a sequence of estimator β̂n of β0 such that Dn(β̂n − β0) = Op(1) and hence

the limiting distribution follows.

Proof of Theorem 3.2. Note that

ĉ = c̃(β̂n) = (ZTZ)−1ZTG(β̂n)

= (ZTZ)−1ZTG(β0) + (ZTZ)−1ZT (G(β̂n)−G(β0))

= c+ (ZTZ)−1ZT (γ + u) + (ZTZ)−1ZT (G(β̂n)−G(β0)).

Then, write

ĝ(x)− g(x) = ZT
k (x)ĉ− g(x) = ZT

k (x)(ĉ− c)− γk(x)

= ZT
k (x)(ZTZ)−1ZT (γ + u) + ZT

k (x)(ZTZ)−1ZT (G(β̂n)−G(β0))− γk(x).

Let ∆z(x) = ZT
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(x). To fulfill the normality, we aim to show

(i). σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZTu⇒ N(0, 1);

(ii). σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZTγ = op(1);

(iii). σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZT (G(β̂n)−G(β0)) = op(1);

(iv). σ−1
u ∆−1/2

z (x)γk(x) = op(1).

We first show (i). It follows from Lemma A.1 that

σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZTu

= σ−1
u ∆−1/2

z (x)ZT
k (x)C

−1/2
k D−1

k C
−1/2
k ZTu(1 + op(1))

= σ−1
u ∆−1/2

z (x)ZT
k (x)C

−1/2
k D−1

k C
−1/2
k

n∑
t=1

Zk(xt)ut(1 + op(1)),
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which is a martingale array in view of Assumption 1. We shall use the martingale central

limit theorem (Pollard (1984), Theorem VIII.1) to show the normality in (i). Define

ζnt = σ−1
u ∆

−1/2
z (x)ZT

k (x)C
−1/2
k D−1

k C
−1/2
k Zk(xt)ut. The conditional variance process is

n∑
t=1

EFn,t−1(ζ
2
nt) = σ−2

u ∆−1
z (x)

n∑
t=1

[ZT
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)]

2EFn,t−1(u
2
t )

= ∆−1
z (x) · ZT

k (x)C
−1/2
k D−1

k C
−1/2
k

n∑
t=1

[Zk(xt)Z
T
k (xt)]C

−1/2
k D−1

k C
−1/2
k Zk(x)

= ∆z(x) · ZT
k (x)C

−1/2
k D−1

k C
−1/2
k ZTZC

−1/2
k D−1

k C
−1/2
k Zk(x)

= ∆−1
z (x) ·∆z(x)(1 + op(1))

= 1 + op(1).

Next, we show that the Lindeberg’s condition is satisfied, i.e.,

∀ η > 0,
n∑
t=1

EFn,t−1(ζ
2
nt1{|ζnt| > η}) = op(1). (B.9)

Write

n∑
t=1

EFn,t−1(ζ
2
nt1{|ζnt| > η})

= σ−2
u ∆−1

z (x)
n∑
t=1

[ZT
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)]

2EFn,t−1(u
2
t1{|ζnt| > η})

≤ max
1≤t≤n

EFn,t−1(u
2
t1{|ζnt| > η}) · σ−2

u ∆−1
z (x)

n∑
t=1

[ZT
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)]

2

= max
1≤t≤n

EFn,t−1(u
2
t1{|ζnt| > η}) · σ−2

u (1 + op(1)).

Therefore, (B.9) will follow from

max
1≤t≤n

EFn,t−1(u
2
t1{|ζnt| > η}) = op(1). (B.10)

Applying the Hölder and Chebyshev inequalities, for some 0 < δ ≤ 2, we have

EFn,t−1(u
2
t1{|ζnt| > η}) ≤ E

2
2+δ

Fn,t−1
(u2+δ

t ) · P
δ

2+δ

Fn,t−1
(|ζnt| > η)

≤ E
2

2+δ

Fn,t−1
(u2+δ

t ) ·

(
EFn,t−1 [Z

T
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)ut]

2

η2σ2
u∆z(x)

) δ
2+δ

.
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Since EFn,t−1(u
2+δ
t ) <∞ by Assumption 1, the condition

max
1≤t≤n

EFn,t−1 [Z
T
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)ut]

2

σ2
u∆z(x)

= op(1), (B.11)

is sufficient for (B.10). Note that

EFn,t−1 [Z
T
k (x)C

−1/2
k D−1

k C
−1/2
k Zk(xt)ut]

2

σ2
u∆z(x)

=
[ZT

k (x)C
−1/2
k D−1

k C
−1/2
k Zk(xt)]

2

∆z(x)
≤ λ−2

min(Dk)‖C−1/2
k Zk(xt)‖2

λ−1
max(Dk)

.

Since for 1 ≤ t ≤ n, we have ‖C−1/2
kz Zk(xt)‖2 =

∑k−1
j=0

1
nj+1h

2
j(xt) = Op(k/n) = op(1). This

proves (B.11). Therefore, the asymptotic normality follows from the martingale central

limit theorem of Pollard (1984).

Assertion (ii) holds since

σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZTγ

= σ−1
u ∆−1/2

z (x)ZT
k (x)C

−1/2
k D−1

k C
−1/2
k ZTγ(1 + op(1))

≤ σ−1
u ∆−1/2

z (x)‖ZT
k (x)C

−1/2
k D−1

k C
−1/2
k ZT‖‖γ‖(1 + op(1))

= Op(‖γ‖) = op(1),

by Assumption 3 (c) and (d).

To prove (iii), using the mean value theorem, we have

σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZT (G(β̂n)−G(β0))

= σ−1
u ∆−1/2

z (x)ZT
k (x)(ZTZ)−1ZT Ġ(βn)(β̂n − β0)

= σ−1
u ∆−1/2

z (x)E(Ġt(βn)|xt)(β̂n − β0)(1 + op(1))

= Op(
√
n/k) ·Op(β̂n − β0) = op(1),

by Theorem 3.1 and Assumption 4 (d).

It is readily seen that assertion (iv) holds, since by Lemma A.1 in Dong et al. (2016a)

and Assumption 3 (d), σ−1
u ∆

−1/2
z (x)γk(x) = Op(

√
n/k) ·Op(k

−m/2) = op(1).
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