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Abstract

Following a brief survey on the factor models for multiple time series in econometrics, we

introduce a statistical approach from the viewpoint of dimension reduction. Our method can

handle nonstationary factors. However under stationary settings, the inference is simple in

the sense that both the number of factors and the factor loadings are estimated in terms of an

eigenanalysis for a non-negative definite matrix, and is therefore applicable when the dimension

of time series is in the order of a few thousands. Asymptotic properties of the proposed method

are investigated under two settings: (i) the sample size goes to infinity while the dimension

of time series is fixed; and (ii) both the sample size and the dimension of time series go to

infinity together. In particular, our estimators for zero-eigenvalues enjoy faster convergence

(or slower divergence) rates, hence making the estimation for the number of factors easier.

In particular when the sample size and the dimension of time series go to infinity together,

the estimators for the eigenvalues are no longer consistent. However our estimator for the

number of the factor, which is based on the ratios of the estimated eigenvalues, still works

fine. Furthermore, the estimation for both the number of factors and the factor loadings shows

the so-called “blessing of dimensionality” property. A two-step procedure is investigated when

the factors are of different degrees of strength. Numerical illustration with both simulated and

real data is also reported.
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1 Introduction

The analysis of multivariate time series data is of increased interest and importance in the modern

information age. Although the methods and the associate theory for univariate time series anal-

ysis are well developed and understood, the picture for the multivariate cases is less complete.

Although the conventional univariate time series models (such as ARMA) and the associated

time-domain and frequency-domain methods have been formally extended to multivariate cases,

their usefulness is often limited. One may face serious issues such as the lack of model identi-

fication or flat likelihood functions. In fact vector ARMA models are seldom used directly in

practice. Model regularization via, for example, reduced-rank structure, structural indices, scalar

component models and canonical correlation analysis is most pertinent in modelling multivariate

time series data. See Hannan (1970), Priestley (1981), Lütkepohl (1993), and Reinsel (1997).

In this paper we survey the recent developments in factor modelling for multivariate time

series from a dimension-reduction viewpoint. By doing so, we have also developed some new

results. Different from the factor analysis for independent observations, we search for the factors

which drive the serial dependence of the original time series. Early attempts in this direction

include Anderson (1963), Priestley et al.(1974), Brillinger (1981), Switzer and Green (1984),

Peña and Box (1987), and Shapiro and Switzer (1989). More recent efforts focus on the inference

when the dimension of time series is as large as or even greater than the sample size; see, for

example, Chamberlain and Rothschild (1983), Bai (2003), Forni et al.(2000, 2004 and 2005). High-

dimensional time series data are often encountered nowadays in many fields including finance,

economics, environmental and medical studies. For example, understanding the dynamics of

the returns of large number of assets is the key for asset pricing, portfolio allocation, and risk

management. Panel time series are commonplace in studying economic and business phenomena.

Environmental time series are often of a high dimension due to a large number of indices monitored

across many different locations.

Factor models for high-dimensional time series have been featured noticeably in literature

in econometrics and finance. In analyzing economic and financial phenomena, most economet-

ric factor models seek to identify the common factors that affect the dynamics of most original

component series. It is often meaningful in practice to separate these common factors from the

so-called idiosyncratic noise components: each idiosyncratic noise component may at most affect

the dynamics of a few original time series. An idiosyncratic noise series may well exhibit serial

correlations, and may be a time series itself. This poses the difficulties in both model identifica-

tion and inference. In fact the rigorous definition of the common factors and the idiosyncratic

noise can only be established asymptotically when the dimension of time series tends to infin-

ity; see Chamberlain and Rothschild (1983). Hence those econometric factor models are only

asymptotically identifiable. See also section 2 below.

Our approach is more statistical and is from a dimension-reduction point of view. Our model
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is similar to that of Peña and Box (1987). Different from the aforementioned econometric factor

models, we decompose a high-dimensional time series into two parts: a dynamic part driven

by, hopefully, a lower-dimensional factor time series, and a static part which is a vector white

noise. Since the white noise exhibits no serial correlations, the decomposition is unique in the

sense that both the number of factors (i.e. the dimension of the factor process) and the factor

loading space in our model are identifiable. Such a conceptually simple decomposition also makes

the statistical inference easier. Our setting allows the factor process to be non-stationary; see

Pan and Yao (2008) and also section 4.1 below. However, under the stationary condition, the

inference is simple in the sense that the estimation for both the number of factors and the loadings

is carried out in an eigenanalysis for a non-negative definite matrix, and is therefore applicable

when the dimension of time series is in the order of a few thousands. Asymptotic properties of the

proposed method are investigated under two settings: (i) the sample size goes to infinity while

the dimension of time series is fixed; and (ii) both the sample size and the dimension of time

series go to infinity together. In particular, our estimators for zero-eigenvalues enjoy the faster

convergence (or slower divergence) rates, from which the proposed ratio-based estimator for the

number of factors benefits immensely. In fact, the estimation for the number of factors shows the

so-called “blessing of dimensionality” property at its clearest.

The rest of the paper is organized as follows. Section 2 gives a brief survey on the econometric

factor models, including the generalized dynamic factor models. Section 3 presents our statistical

factor models. Although the two approaches are based on different viewpoints, they do reconcile

with each other in practical data analysis (see section 3.2). The estimation methods for the

statistical models are introduced in section 4, including a brief account for the cases with non-

stationary factors. Their asymptotic theory (for the stationary cases only) are presented in section

5. Section 6 deals with the cases when different factors are of different strength, for which a two-

step estimation procedure is preferred. Simulation results are inserted whenever appropriate to

illustrate the various properties of the proposed methods. The analysis of two large real data sets

is reported in section 7. Most mathematical proofs are relegated to the Appendix. Throughout

the paper, new theoretical results are presented as theorems and corollaries. Some relevant results

from other papers are presented as propositions.

2 Econometrics models: a brief introduction

2.1 Common factors and idiosyncratic components

Time series factor models have been constantly featured in econometrics literature. They are

used to model different economic and financial phenomena, including, among others, asset pricing

(Ross 1976) and allocation (Pesaran and Zaffaroni 2008), yield curves (Chib and Ergashev 2009),

macroeconomic behaviour such as sector-effect or regional effect from disaggregated data (Quah
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and Sargent 1993, Forni and Reichlin 1998), macroeconomic forecasting (Stock and Watson 1998,

2002), capital accumulation and growth (Chudik and Pesaran 2009) and consumer theory (Bai

2003).

Among different factor models in econometric literature, one predominate feature is to repre-

sent a p× 1 time series yt as the sum of two unobservable parts:

yt = ft + ξt, (2.1)

where ft is a factor term driven by r common factors with r smaller or much smaller than p,

and ξt is an idiosyncratic term which consists of p idiosyncratic components. For example,

in the context of modelling comovements of economic activities, the comovements such as the

oscillation between upturn phases and depression phases are presented by the common factor

term ft, while the idiosyncratic dynamic behaviour for each component series is contained in

ξt. Obviously it is extremely appealing and also important to isolate the common factors from

many idiosyncratic components in practice. Since ξt is not necessarily a white noise, both the

identification and the inference for decomposition (2.1) is inevitably challenging. In fact ft and ξt

are only asymptotically identifiable when p, i.e. the number of components yt, tends to ∞; see

Chamberlain and Rothschild (1983) and also section 2.2 below.

2.2 Generalized dynamic factor models

The dynamic-factor model was proposed by Sargent & Sims (1977) and Geweke (1977). It assumes

that in the decomposition (2.1) each component of ft is a sum of r uncorrelated moving average

processes driven, respectively, by r common factors (see (2.2) below). Furthermore it requires

that ft and ξt are uncorrelated with each other, and all the idiosyncratic components (i.e. the

components of ξt) are also uncorrelated. Chamberlain and Rothschild (1983) and Chamberlain

(1983) proposed an approximate static factor model in which the factor term is of the form

ft = Axt, where xt is an r × 1 factor process. Since no lagged values of xt is involved explicitly,

xt is coined as a static factor. The model is approximate in the sense that the idiosyncratic

components of ξt may be correlated with each other now, which makes the model more practical.

Chamberlain and Rothschild (1983) proved that the Ross’ asset pricing theorem still holds under

this approximate factor model, i.e. if there exists no arbitrage opportunities, the risk premium of

an asset is determined by its factor loadings in a particularly simple manner (i.e. an asymptotic

linear function).

Let yjt and ξjt be the j-th component of yt and ξt respectively. Combining the above two ap-

proaches, Forni et al. (2000) proposed a generalized dynamic factor model which may be expressed

as follows:

yjt = bj1(L)u1t + · · ·+ bjr(L)urt + ξjt, t = 0,±1,±2, · · · , j = 1, · · · , p, (2.2)
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where u1t, · · · , urt are r uncorrelated white noise and are called common (dynamic) factors,

bj1(·), · · · , bjr(·) are polynomial functions, L denotes the backshift operator, and the idiosyn-

cratic components ξjt are stationary in t and are uncorrelated with the common factors. Note

that for each 1 ≤ i ≤ r, bji(L)uit is a moving average process driven by white noise uit.

In (2.2) only yjt is observable. To make the terms on the right hand side of (2.2) identifiable,

Forni et al. (2000) introduced the following asymptotic condition when p, the number of compo-

nents of yt, tends to infinity. We write ytp ≡ yt and ξtp ≡ ξt to highlight the length p of both

vectors yt and ξt.

Assumption. As p → ∞, it holds almost surely on [−π, π] that all the eigenvalues of the

spectral density matrix of ξtp are uniformly bounded, and only the r largest eigenvalues of

the spectral density matrix of (ytp − ξtp) converge to ∞.

The intuition behind the above assumption is clear: As p → ∞, the number of components of

ytp whose dynamics depends on all the r common factors also tends to infinity, while each of

the idiosyncratic components only affects at most a finite number of components of ytp. The

idea to use this asymptotic argument to identify the model was initiated by Chamberlain and

Rothschild (1983), although they dealt with the covariance matrices of ytp and ξtp instead of their

spectral density matrices. The latter reflects the strength of the autocorrelations across all time

lags. Under the above assumption, Forni et al. (2000) showed that model (2.2) is asymptotically

identifiable; see Proposition 1 below.

Proposition 1 As p→ ∞, it holds almost surely on [−π, π] that all the r largest eigenvalues of

the spectral density matrix of ytp converge to ∞, and the (r+1)-th largest eigenvalue is uniformly

bounded.

The statistical inference for model (2.2) is not a trivial matter. By assuming r as given,

the estimation for the common factors (as well as the idiosyncratic components) is resolved by

applying the dynamic principal component analysis (Brillinger 1981). Namely eigenanalysis is

performed on an estimated spectral density matrix Σn(θ) of ytp, which is defined for θ ∈ [−π, π].
Note that Σn(θ) is typically obtained by applying smoothing to the periodogram matrices of the

observations y1p, · · · ,ynp, and the subscript n here indicates that it is an estimator based on n

observations. A ‘projection’ of ytp onto a dynamic space spanned by the r eigenvectors of Σn(θ)

corresponding to the r largest eigenvalues is taken as an estimator for ytp − ξtp. Note both of

those eigenvectors and eigenvalues are functions of the frequency θ ∈ [−π, π], and the projection

was defined as a mean square limit of an appropriate Fourier expansion. Then each component

of the projection is a sum of r uncorrelated moving average processes. For further details of

this estimation procedure, we refer to Forni et al. (2000). See also Forni et al. (2004, 2005) and

Deistler et al. (2009).
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A more challenging task is to determine the number of the common factors r. Proposition 1

indicates clearly that r is only asymptotically identifiable when p → ∞. In practice p is always

a fixed finite number. Note that r is the number of eigenvalues which diverge in contrast to the

other p − r eigenvalues which remain bounded as p → ∞. ‘There is no way a slowly diverging

sequence (divergence, under the model, can be arbitrarily slow) can be told from an eventually

bounded sequence (for which the bound can be arbitrarily large)’, as pointed out in Forni et al

(2000, pp.547). Therefore the estimation for r often relies on some empirical approaches. Hallin

and Liska (2007) proposed an information criterion to determine r. See also Bai and Ng (2002,

2007), adopting a similar approach in dealing with a factor model of different specifications.

3 Statistical models

3.1 Models

If we are interested in the linear dynamic structure of yt only, conceptually we may think that yt

consists of two parts: a dynamic component driven by, hopefully, a low-dimensional process and

a static part (i.e. a white noise). This leads to the decomposition:

yt = Axt + εt, (3.1)

where xt is an r× 1 latent process with (unknown) r ≤ p, A is a p× r unknown constant matrix,

and εt ∼ WN(µε, Σε) is a vector white noise process. When r is much smaller than p, we achieve

an effective dimension-reduction, as then the serial dependence of yt is driven by that of a much

lower-dimensional process xt. We call xt a factor process. The setting (3.1) may be traced back

at least to Peña and Box (1987); see also its further development in dealing with cointegrated

factors in Peña and Poncela (2006).

Since none of the elements on the RHS of (3.1) are observable, we have to characterize them

further to make them identifiable. First we assume that no linear combinations of xt are white

noise, as any such component can be absorbed into εt. We also assume that the rank of A

is r. Otherwise (3.1) may be expressed equivalently in terms of a lower-dimensional factor.

Furthermore, since (3.1) is unchanged if we replace (A,xt) by (AH,H−1xt) for any invertible

r × r matrix H, we may assume that the columns of A = (a1, · · · ,ar) are orthonormal, i.e.,

A′A = Ir, where Ir denotes the r× r identity matrix. Note that even with this constraint, A and

xt are not uniquely determined in (3.1), as the aforementioned replacement is still applicable for

any orthogonal H. However the factor loading space, i.e. the r-dimensional linear space spanned

by the columns of A, denoted by M(A), is uniquely defined.

We summarize into condition C1 all the assumptions introduced so far.

C1. In model (3.1), εt ∼ WN(µε,Σε), c
′xt is not white noise for any constant c ∈ R

p.

Furthermore A′A = Ir.

5



The key in the statistical inference for model (3.1) is to estimate A, or more precisely M(A).

Once we have obtained an estimator, say, Â, a natural estimator for the factor process is

x̂t = Â′yt, (3.2)

and the resulting residuals are

ε̂t = (Id − ÂÂ′)yt. (3.3)

The dynamic modelling for yt is achieved via ŷt = Âx̂t, and such a modelling for x̂t. A parsimo-

nious fitting for x̂t may be obtained by rotating x̂t appropriately (Tiao and Tsay 1989). Such a

rotation is equivalent to replacing Â by ÂH for an appropriate r× r orthogonal matrix H. Note

that M(Â) = M(ÂH), and the residuals (3.3) are unchanged with such a replacement.

3.2 Reconciling to econometric models

One of the attractive features of the econometric factor models is the separation of the idiosyncratic

components from the ‘common factors’; see (2.1). In principle the factor term Axt in statistical

decomposition (3.1) contains both the common factor term ft and those components of ξt which

exhibit serial dependence in (2.1). Although the ‘common factors’ driving ft can only be identified

asymptotically when p → ∞, in practice we may identify those components of xt such that each

of them drives the serial dependence of the majority components of yt, or alternatively, those

components of xt such that each of them only affects a few components of yt. In fact this is all

we may achieve in practice with a fixed p.

Put A = (a1, · · · ,ar) and xt = (x1t, · · · , xrt)′. Then model (3.1) can be written as

yt = a1x1t + · · ·+ arxrt + εt. (3.4)

Hence the number of non-zero coefficients of aj is the number of components of yt which are

affected by the factor xjt. Obviously such a characterization is only meaningful if xt is uniquely

defined. To this end, we replace xt by its principal components. This effectively replace (A,xt) in

(3.4) by (AΓ,Γ′xt), where Γ is an r×r orthogonal matrix, and its r columns are the eigenvectors

of Var(xt). Note that after such an replacement, Cov(xit, xjt) = 0 for any i 6= j. If the eigenvalues

of Var(xt) are all different, Lemma 1 below indicates that such an xt is unique subject to the

permutations and the reflections (i.e. replace xjt by −xjt) of its components.

Lemma 1 Let A1z1 = A2z2, where, for i = 1, 2, Ai is p × r matrix, A′
iAi = Ir, and zi =

(zi1, · · · , zir)′ is r×1 random vector with uncorrelated components, and Var(zi1) > · · · > Var(Zir).

Furthermore M(A1) = M(A2). Then z1j = ±z2j for j = 1, · · · , r.

Proof. Let Σi = Var(zi). Then A1Σ1A
′
1 = A2Σ2A

′
2. Hence

Σ1 = ΓΣ2Γ
′, (3.5)
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where Γ = A′
1A2 is an orthogonal matrix. This is due to fact that M(A1) = M(A2), which

implies that A2 = A1Γ. Since Σ2 is diagonal, (3.5) implies that the diagonal elements of Σ2 are

the eigenvalues of matrix Σ1. As Σ1 itself is also diagonal, and the diagonal elements in both

Σ1 and Σ2 are arranged in descending order, it must hold that Σ1 = Σ2. Thus Γ = A′
1A2 is

also a diagonal matrix with the elements on the main diagonal being 1 or -1. Then the required

conclusion follows from the equality z1 = A′
1A2z2 = Γz2. �

4 Estimation for A and r

Below we outline two methods for estimating A (and also r). The method via expanding the white

noise space is more general. It can handle nonstationary factors. Unfortunately it involves solving

some nonlinear optimization problems with up to (p − 1) variables, therefore is only applicable

with a moderately large p. If we are prepared to entertain the stationarity condition (see C2 in

section 4.2 below), the problem boils down to finding eigenvalues and eigenvectors for a p × p

non-negative definite matrix. Furthermore r is the number of non-zero eigenvalues of this matrix.

Hence the method can be applied to the cases with p in the order of a few thousands.

4.1 Estimation with nonstationary factors

Our goal is to estimate M(A), or, equivalently, its orthogonal complement M(B), where B =

(b1, · · · ,bp−r) is a p × (p − r) matrix for which (A,B) forms a p × p orthogonal matrix, i.e.

B′A = 0 and B′B = Ip−r (see also C1). We call M(B) the white noise space.

It follows from (3.1) that

B′yt = B′εt, (4.1)

implying that for any 1 ≤ j ≤ p − r, {b′
jyt, t = 0,±1, · · · } is a white noise process. Hence, we

may search for mutually orthogonal directions b1,b2, · · · one by one such that the projection of

yt on each of those directions is a white noise. We stop the search when such a direction is no

longer available, and take p− k as the estimated value of r, where k is the number of directions

obtained in the search. Below we outline a schematic algorithm to search for those bj and r. For

further details on the implementation of this scheme, we refer to Pan and Yao (2008). Note that

once we have obtained an estimator B̂, the columns of Â may be taken as any r orthonormal

eigenvectors of matrix (Ip − B̂B̂′) corresponding to the eigenvalue 1.

White noise expansion algorithm:

Step 1. Find unit vector b̂1 ∈ R
p such that {b̂′

1yt} is most likely to be white noise among all

unit vectors in R
p. Test the null hypothesis that {b̂′

1yt} is a white noise. If it cannot be

rejected, proceed to Step 2. Otherwise set r̂ = 0 and terminate the algorithm.
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Step 2. For k = 1, · · · , p, search for unit vector b̂k+1 ∈ R
p such that {b̂′

k+1yt} is most likely

to be white noise among all directions in R
p perpendicular to b̂1, · · · , b̂k. Test the null

hypothesis that {b̂′
k+1yt} is a white noise. If the null hypothesis is rejected, terminate the

algorithm with r̂ = p− k and B̂ = (b̂1, · · · , b̂k).

In principle, this method works under condition C1 which is rather weak. For example, we

do not require condition C2 in section 4.2 below, as we only make use of the property that any

projection of yt in M(B) = M(A)⊥ is white noise. The theoretical exploration of the method in

Pan and Yao (2008) requires more regularity conditions. Intuitively some of those conditions are

not essential.

4.2 Estimation under stationarity

Amuch simpler method is available with the stationarity condition on the factor process as follows.

C2. xt is weakly stationary, and Cov(xt, εt+k) = 0 for any k ≥ 0.

In most factor modelling literature, xt and εs are assumed to be uncorrelated for any t and s.

Condition C2 requires only that the future white noise components are uncorrelated with the

factors up to the present. This enlarges the model capacity substantially. Put

Σy(k) = Cov(yt+k,yt), Σx(k) = Cov(xt+k,xt), Σxε(k) = Cov(xt+k, εt).

It follows from (3.1) and C2 that

Σy(k) = AΣx(k)A
′ +AΣxε(k), k ≥ 1. (4.2)

For a prescribed integer k0 ≥ 1, define

M =

k0∑

k=1

Σy(k)Σy(k)
′. (4.3)

Then M is a p× p non-negative matrix. It follows from (4.2) that MB = 0, i.e. the columns of B

are the eigenvectors of M corresponding to zero-eigenvalues. Hence conditions C1 and C2 imply:

The factor loading space M(A) are spanned by the eigenvectors of M corresponding

to its non-zero eigenvalues, and the number of the non-zero eigenvalues is r.

We take the sum in the definition of M to accumulate the information from different time-lags.

This is useful especially when the sample size n is small. We use the non-negative definite matrix

Σy(k)Σy(k)
′ (instead of Σy(k)) to avoid the cancellation of the information from different lags.

This is guaranteed by the fact that for any matrix C, MC = 0 if and only if Σy(k)
′C = 0 for

all 1 ≤ k ≤ k0. We tend to use small k0, as the autocorrelation is often at its strongest at the

small time lags. On the other hand, adding more terms will not alter the value of r, although the
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estimation for Σy(k) with large k is less accurate. The simulation results reported in Lam, Yao

and Bathia (2011) also confirms that the estimation for A and r, defined below, is not sensitive

to the choice of k0.

To estimate M(A), we only need to perform the eigenanalysis on

M̂ =

k0∑

k=1

Σ̂y(k)Σ̂y(k)
′, (4.4)

where Σ̂y(k) denotes the sample covariance matrix of yt at lag k. Then the estimator r̂ for the

number of factors is taken as the number of non-zero eigenvalues M̂, and the columns of the

estimated factor loading matrix Â are the r̂ orthonormal eigenvectors of M̂ corresponding to its

r̂ largest eigenvalues.

Due to the random fluctuation in a finite sample, the estimates for the zero-eigenvalues of

M may not be 0 exactly. A common practice is to plot all the estimated eigenvalues in an

descending order, and look for a cut-off value r̂ such that the (r̂ + 1)-th largest eigenvalue is

substantially smaller than the r̂ largest eigenvalues. This is effectively an eyeball-test. The ratio-

based estimator defined below may be viewed as an enhanced eyeball-test, based on the same

idea as Wang (2010). In fact this ratio-based estimator benefits from the faster convergence

rates of the estimators for the zero-eigenvalues; see Proposition 2 in section 5.1 below, and also

Theorems 1 and 2 in section 5.2 below. The other available methods for determining r includes

the information criteria approaches of Bai and Ng (2002, 2007), and Hallin and Liska (2007), the

bootstrap approach of Bathia, Yao Ziegelmann (2010).

A ratio-based estimator for r. We define an estimator for the number of factors r as follows:

r̂ = arg min
1≤i≤R

λ̂i+1/λ̂i, (4.5)

where r < R < p is a constant.

In practice we may use, for example, R = p/2. We cannot extend the search up to p, as the

minimum eigenvalue of M̂ is likely to be practically 0, especially when n is small and p is large.

It is worthy noting that when p and n are in the same order, the estimators for eigenvalues are

no longer consistent. However the ratio-based estimator (4.5) still works well. See Theorem 2(iii)

below.

The above estimation methods for A and r can be extended to those nonstationary time series

for which a generalized lag-k autocovariance matrix is well defined (see, e.g. Peña and Poncela

(2006)). In fact, the methods are still applicable when the weak limit of the generalized lag-k

autocovariance matrix

Ŝy(k) = n−α
n−1∑

t=1

(yt+k − ȳ)(yt − ȳ)′

exists for 1 ≤ k ≤ k0, where α > 1 is a constant. Further developments on those lines will be

reported elsewhere. For the factor modelling for high-dimensional volatility processes based on a
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similar idea, we refer to Pan et al.(2011) and Tao et al.(2011).

5 Theoretical results

Conventional asymptotic properties are established under the setting that the sample size n tends

to∞ and everything else remains fixed. Modern time series analysis encounters the situation when

the number of time series p is as large as, or ever larger than, the sample size n, e.g. panel data

in economics and ecology, and asset prices in financial market. Then the asymptotic properties

established under the setting when both n and p tend to ∞ are more relevant. We analyze these

two different settings in sections 5.1 and 5.2 respectively.

5.1 Asymptotics when n → ∞ and p fixed

We first consider the asymptotic properties under the assumption that n → ∞ and p is fixed.

These properties reflect the behaviour of our estimation method in the cases when n is large and

p is small. We introduce some regularity conditions first. Let λ1, · · · , λp be the eigenvalues of

matrix M.

C3. yt is strictly stationary and ψ-mixing with the mixing coefficients ψ(·) satisfying
the condition that

∑
t≥1 tψ(t)

1/2 <∞. Furthermore E{|yt|4} <∞ elementwisely.

C4. λ1 > · · · > λr > 0 = λr+1 = · · · = λp.

Section 2.6 of Fan and Yao (2003) gives a compact survey on the mixing properties of time

series. The use of the ψ-mixing condition in C3 is for technical convenience. Note that M is a

non-negative definite matrix. All its eigenvalues are non-negative. C4 assumes that its r non-zero

eigenvalues are distinct from each other. This condition is not essential. However it substantially

simplifies the presentation on the convergence of the estimated eigenvalues and eigenvectors in

Proposition 2 below. For example, under C4 the unit eigenvector of M corresponding to the

eigenvalue λj , for j = 1, · · · , r, is uniquely determined (up to a factor −1). Let γj be such

an eigenvector. We denote (λ̂1, γ̂1), · · · , (λ̂p, γ̂p) the p pairs of eigenvalue and eigenvector of

matrix M̂: the eigenvalues λ̂j are arranged in the descending order, and the eigenvectors γ̂j are

orthonormal. Furthermore it may go without explicit statement that λ̂j may be replaced by −λ̂j
in order to match the direction of λj for 1 ≤ j ≤ r.

Proposition 2 Let conditions C1-C4 hold. Then as n→ ∞ (but p fixed), it holds that

(i) |λ̂j − λj | = OP (n
−1/2) and ‖γ̂j − γj‖ = OP (n

−1/2) for j = 1, · · · , r, and

(ii) λ̂j = OP (n
−1) for j = r + 1, · · · , p.

The proof of the above proposition is in principle similar to that of Theorem 1 in Bathia, Yao

and Ziegelmann (2010), is therefore omitted. If we let A = (γ1, · · · ,γr) and Â = (γ̂1, · · · , γ̂r),

assuming r is known, it follows from Proposition 2(i) that Â−A = OP (n
−1/2) elementwisely.
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Figure 1: Boxplots for the errors in estimating the first and the second eigenvalues of M with

p = 4, r = 1.

The fast convergence rate of the estimators for the zero-eigenvalues is non-standard (Propo-

sition 2(ii)). To further circumstance this property, we conduct a simulation: we set in model

(3.1) p = 4, r = 1, A′ = (1, 0, 0, 0), εt are independent N(0, I4), and xt = xt is an AR(1) process

defined by

xt+1 = 0.7xt + et, (5.1)

where et are independent N(0, 1). Let M be defined as in (4.3) with k0 = 1. Then M is a 4× 4

matrix with one non-zero eigenvalue λ1 = 1.884 and three zero eigenvalues. We let sample size

vary from n = 20 to n = 2000. We draw 10,000 samples from such a model with each fixed sample

size. For each sample, we compute the eigenvalues of M̂ , denote them as λ̂1 ≥ λ̂2 ≥ λ̂3 ≥ λ̂4. Fig. 1

displays the boxplots of the errors λ̂1 − λ1 and λ̂2 over 10,000 samples with different n. Though

λ̂2 is in fact the maximum of the three estimated values (for the three zero-eigenvalues), they are

much smaller than the errors λ̂1 − λ1. Fig. 2 plots the normalized histograms of
√
n(λ̂1 − λ1)

together with their kernel density estimators. As n increases, the distribution of
√
n(λ̂1 − λ1)

stabilizes. In fact, the distributions with n ≥ 500 look alike with each other. However, the

normalized factor
√
n is too small to stabilize the distribution of λ̂2 − λ2 = λ̂2. Fig. 3 shows that

11
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Figure 2: Standardized histograms and kernel density estimators for
√
n(λ̂1−λ1), λ̂1 is the largest

eigenvalue of M̂, and p = 4, r = 1.

the distribution of nλ̂2 stabilizes as soon as n ≥ 50. This indicates that the estimators for zero-

eigenvalues not only exhibit the fast convergence rate at n, they may attain the limit distribution

much earlier than the estimators for the non-zero eigenvalues when n increases.

Below we give an intuitive explanation on the results in Proposition 2. Note that we may

count the number of the zero-eigenvalues of Σy(k) in order to determine the number of factors r,

as BΣy(k) = 0. But we look into M instead in order to accumulate the information over different

time lags, and further we define M as a quadratic function of Σy(k) to avoid the cancellation of

the information at different lags. For example when k0 = 1, an eigenvalue of M is the square of an

eigenvalue of Σy(1). In this sense, we estimate an eigenvalue θ of Σy(k) in the form of g(θ) = θ2
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Figure 3: Standardized histograms and kernel density estimators for nλ̂2, λ̂2 is the second largest

eigenvalue of M̂, and p = 4, r = 1.

via M. Suppose we have θ̂ − θ = OP (n
−1/2), and

g(θ̂)− g(θ) = ġ(θ)(θ̂ − θ) +
1

2
g̈(θ)(θ̂ − θ)2{1 + oP (1)},

Hence g(θ̂) − g(θ) = OP (n
−1/2) provided ġ(θ) 6= 0. However when θ = 0, ġ(θ) = 0. Hence

θ̂2 = g(θ̂)− g(θ) = OP {(θ̂ − θ)2} = OP (n
−1).

5.2 Asymptotics when n → ∞, p → ∞ and r fixed

5.2.1 An introductory example

To highlight the radically different behaviour when p diverges together with n, we first repeat the

simulation in section 5.1 above but now withA′ = (1, · · · , 1), the sample size n = 50, 100, 200, 400,
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800, 1600 and 3200, and the dimension fixed at the half sample size, i.e. p = n/2. For each setting,

we draw 200 samples. The boxplots of the errors λ̂i−λi, i = 1, · · · , 6 are depicted in Fig. 4. Note

that λi = 0 for i ≥ 2, since r = 1. The figure shows that those estimation errors do not converge

to 0. In fact those errors seem to increase when n (and also p = n/2) increases. Therefore the

classic asymptotic theory (i.e. n → ∞ and p fixed) such as Proposition 1 in section 5.1 above

is irrelevant when p increases together with n. In spite of the lack of consistency in estimating

the eigenvalues, the ratio-based estimator for the number of factors r(= 1) defined in (4.5) works

perfectly fine for this example, as shown in Figure 5. In fact it is always the case that r̂ ≡ 1 in

all our replicated simulation even when the sample size is as small as n = 50; see Fig.5.

5.2.2 Properties of the estimated factor loading matrix

To develop the relevant asymptotic theory, we introduce some notation first. For any matrix G,

let ‖G‖ be the square root of the maximum eigenvalue of GG′, and ‖G‖min be the square root

of the smallest positive eigenvalue of GG′. We write a ≍ b if a = O(b) and b = O(a). Recall

Σx(k) = Cov(xt+k,xt) and Σxǫ(k) = Cov(xt+k, εt). Some regularity conditions are now in order.

C5. For a constant δ ∈ [0, 1], it holds that ‖Σx(k)‖ ≍ p1−δ ≍ ‖Σx(k)‖min.

C6. For k = 0, 1, · · · , k0, ‖Σxǫ(k)‖ = o(p1−δ).

Remark 1. (i) Condition C5 looks unnatural. It is derived from a set of natural conditions

coupled with the standardization A′A = Ir. Since A = (a1, · · · ,ar) is p× r and p → ∞ now, it

is natural to let the norm of each column of A, before standardizing to A′A = Ir, tend to ∞ as

well. To this end, we assume that

‖aj‖2 ≍ p1−δj , j = 1, · · · , r, (5.2)

where δj ∈ [0, 1] are constants. We take δj as a measure of the strength of the factor xtj ; see also

(3.4). We call xtj a strong factor when δj = 0, and a weak factor when δj > 0. Since r is fixed, it

is also reasonable to assume that for k = 0, 1, · · · , k0,

|Σx(k)| 6= 0, (5.3)

Then condition C5 is entailed by the standardization A′A = Ir under conditions (5.3) and (5.2)

with δj = δ for all j; see Lam, Yao and Bathia (2010), and also the discussion on Proposition 3

below.

(ii) The condition assumed on Σxǫ(k) in C6 requires that the correlation between xt+k (k ≥ 0)

and εt is not too strong. In fact under a natural condition that Σxǫ(k) = O(1) elementwisely,

it is implied by (5.2) and the standardization A′A = Ir that ‖Σx,ǫ(k)‖ = O(p1−δ/2). A more

general rate of convergence in the presence of stronger correlation between {xt} and {εt} has been

established in Lam, Yao and Bathia (2010). For the sake of simplicity, we only present the results

under condition C6 in this paper.
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Figure 4: Boxplots for the errors in estimating the first six eigenvalues of M with r = 1 and all

the factor loading coefficients being 1.

Proposition 3 Let conditions C1-C6 hold and hn ≡ pδn−1/2 → 0. Then as n→ ∞ and p→ ∞,

it holds that

‖Â−A‖ = OP (hn)
P−→ 0,
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Figure 5: Boxplots for the ratios λ̂i+1/λ̂i, with r = 1 and all the factor loading coefficients being 1.

When all the factors are strong (i.e. δ = 0), ‖Â−A‖ = OP (n
−1/2), i.e. the convergence rate

is independent of p. Note that A is a p×r matrix. The number of estimated parameters increases

together with the dimension p. This is one of the examples where the ‘curse of dimensionality’

is canceled out by the ‘blessing of the dimensionality’. Since the r factors are fixed, we gain

more information on xt from more component series of yt when p increases. The condition δ = 0

ensures that all the components of xt are indeed common factors in the sense that each of them

affect the majority components of yt. Hence when p increases, the added components of yt indeed

bring in more information on xt.

The proof of Proposition 3 can be found in Lam, Yao and Bathia (2010). It also reports a

simulation study which shows that the accuracy in estimating A (with finite samples) is indeed
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independent of p when all factors are strong. The ‘blessing of dimensionality’ is also observed in

estimating the precision matrix of yt, i.e. the inverse of the covariance matrix of yt. However,

it does not apply to the estimation for the covariance matrix itself. All those asymptotic results

will be reported elsewhere.

5.2.3 Properties of the estimated eigenvalues

Now we deal with the convergence rates of the estimated eigenvalues, and establish the results in

the same spirit as Proposition 2. Of course the convergence (or divergence) rate for each estimator

λ̂i is slower, as the number of estimated parameters goes to infinity now.

Theorem 1 Let conditions C1-C6 hold and hn = pδn−1/2 → 0. Then as n → ∞ and p → ∞, it

holds that

(i) |λ̂i − λi| = OP (p
2−δn−1/2) for i = 1, · · · , r, and

(ii) λ̂j = OP (p
2n−1) for j = r + 1, · · · , p.

The corollary below follows immediately from the above theorem and the fact that λj ≍ p2−2δ

for j = 1, · · · , r (see condition C5 and Remark 1(i)).

Corollary 1 Under the condition of Theorem 1, it holds that

λ̂j+1/λ̂j ≍ 1 for j = 1, · · · , r − 1, and λ̂r+1/λ̂r = OP (h
2
n)

P−→ 0.

The proof of Theorem 1 is relegated to the Appendix. Obviously when p is fixed, Theorem 1

formally reduces to Proposition 2. Some remarks are now in order.

Remark 2. (i) Corollary 1 implies that the plot of ratios λ̂i+1/λ̂i, i = 1, 2, · · · , will drop sharply

at i = r. This provides a useful theoretical underpinning for the estimator r̂ defined in (4.5).

Unfortunately we are unable to derive an explicit asymptotic expression for the ratios λ̂i+1/λ̂i

with i > r, although we make the following conjecture:

λ̂j+1

/
λ̂j

P−→ 1, j = (k0 + 1)r + 1, · · · , (k0 + 1)r +K, (5.4)

where k0 is the number of lags used in defining matrix M in (4.3), and K ≥ 1 is any fixed integer.

(See also Fig.5.) Further simulation results, not reported explicitly, also conform with (5.4). This

conjecture arises from the following observation: for j > (k0 + 1)r, the j-th largest eigenvalue

of M̂ is predominately contributed by the term
∑k0

k=1 Σ̂ε(k)Σ̂ε(k)
′ which has a cluster of largest

eigenvalues in the order of p2/n2, where Σ̂ε(k) is the sample lag-k autocovariance matrix for εt.

See also Theorem 2(iii) in section 5.2.5 below.

(ii) Condition hn = pδn−1/2 → 0 is very mild. It is always true if all the factors are strong (i.e.

δ = 0). In the case of weak factors with δ > 0, it entails an upper bound order p = o(n1/(2δ)).
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Table 1: Relative frequency estimates for P (r̂ = r) in the simulation with 200 replications
n 50 100 200 400 800 1600 3200

δ = 0 p = 0.2n 0.165 0.680 0.940 0.995 1 1 1
p = 0.5n 0.410 0.800 0.980 1 1 1 1
p = 0.8n 0.560 0.815 0.990 1 1 1 1
p = 1.2n 0.590 0.820 0.990 1 1 1 1

δ = 0.5 p = 0.2n 0.075 0.155 0.270 0.570 0.980 1 1
p = 0.5n 0.090 0.285 0.285 0.820 0.960 1 1
p = 0.8n 0.060 0.180 0.490 0.745 0.970 1 1
p = 1.2n 0.090 0.180 0.310 0.760 0.915 1 1

For example, Corollary 1 implies that the estimator r̂ defined in (4.5) may work when p = O(n)

and the factors are not too weak in the sense that δ < 1/2.

(iii) The errors in estimating eigenvalues are in the order of p2−δn−1/2 or p2n−1, and both do

not necessarily converge to 0. However since

λ̂j

|λ̂i − λi|
= OP (p

δn−1/2) = OP (hn) = oP (1), for any 1 ≤ i ≤ r and r < j ≤ p,

the estimation errors for the zero-eigenvalues is asymptotically of an order of magnitude smaller

than those for the non-zero eigenvalues.

5.2.4 Simulation

To illustrate the above asymptotic properties, we report some simulation results. We set in model

(3.1) r = 3, n = 50, 100, 200, 400, 800, 1600 and 3200, and p = 0.2n, 0.5n, 0.8n and 1.2n. All the

p × r elements of A are generated independently from the uniform distribution on the interval

[−1, 1] first, and we then divide each of them by pδ/2 to make all 3 factors of the strength δ;

see (5.2). We generate factor xt from a 3 × 1 vector-AR(1) process with independent N(0, 1)

innovations and the diagonal autoregressive coefficient matrix with 0.6, -0.5 and 0.3 as the main

diagonal elements. We let εt in (3.1) consist of independent N(0, 1) components and they are

also independent across t. We set k0 = 1 in (4.3) and (4.4). For each setting, we replicate the

simulation 200 times.

Table 1 reports the relative frequency estimates for the probability P (r̂ = r) = P (r̂ = 3)

with δ = 0 and 0.5. When the factors are strong (i.e. δ = 0), the estimation for r illustrates

the ‘blessing of dimensionality’ at its clearest. For example, when the sample size n = 100, the

relative frequencies for r̂ = r are, respectively, 0.68, 0.8, 0.815 and 0.82 for p = 20, 50, 80 and 120.

The improvement is due to the increased information on r from the added components of yt when

p increases. When δ = 0.5, the columns of A are p-vectors with the norm p0.25 (see (5.2)). Hence

we may think that many elements of A are now effectively 0. The increase of the information on

the factors is coupled with the increase of ‘noise’ when p increases. Indeed, Table 1 shows that
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when factors are weak as δ = 0.5, the estimation for r is not necessarily improved as p increases.

Our simulation results, not reported here to save the space, also show that the estimated

eigenvalues are not consistent when n and p increase together, although the estimations errors

for the zero-eigenvalues are much smaller than those for the non-zero eigenvalues. Those results

conform with Theorem 1. See also Remark 2(iii).

We also experiment with a setting with two strong factors (with δ = 0) and one weak factor

(with δ = 0.5). Then the ratio-based estimator r̂ tends to take values 2, picking up the two strong

factors only. However Fig.6 indicates that the information on the third weak factor is not lost. In

fact, λ̂i+1/λ̂i tends to take the second smallest value at i = 3. In this case a two-step estimation

procedure should be employed in order to identify the number of factors correctly; see section 6

below.

5.2.5 Improved rates for the estimated eigenvalues

The rates in Proposition 3 and Theorem 1 can be further improved with the use of the random

matrix theory, if we are prepared to entertain some additional conditions on εt in model (3.1).

Such an improvement is relevant as the condition that hn = pδn−1/2 → 0, required in Theorem 1,

is sometimes unnecessary. For example in Table 1, the ratio-based estimator r̂ works perfectly

well when δ = 0.5 and n is sufficiently large (e.g. n ≥ 800), even though hn = (p/n)1/2 6→ 0.

Now we introduce some additional conditions on εt.

C7. Let εjt denote the j-th component of εt. Then εjt are independent for different

t and j, and have mean 0 and common variance σ2 <∞.

C8. The distribution of each εjt is symmetric. Furthermore E(ε2k+1
jt ) = 0, and

E(ε2kjt ) ≤ (τk)k for all 1 ≤ j ≤ p and t, k ≥ 1, where τ > 0 is a constant

independent of j, t, k.

The moment condition E(ε2kjt ) ≤ (τk)k in C8 implies that εjt are sub-Gaussian. When all com-

ponents of {εt} are independent N(0, σ2), C7 and C8 holds. See also conditions (i’) - (iv’) of

Péché (2009).

Theorem 2 Let conditions C1-C8 hold, ℓn ≡ pδ/2n−1/2 → 0 and n = O(p). Then as n → ∞, it

holds that

‖Â−A‖ = OP (ℓn)
P−→ 0. (5.5)

Furthermore, the following assertions also hold.

(i) |λ̂j − λj | = OP (p
2−3δ/2n−1/2) = OP (p

2−2δℓn) for j = 1, · · · , r,
(ii) λ̂j = OP (p

2−δn−1) = OP (p
2−2δℓ2n) for j = r + 1, · · · , (k0 + 1)r,

(iii) λ̂j = OP (p
2n−2) = OP (p

2−2δℓ4n) for j = (k0 + 1)r + 1, · · · , p.
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Figure 6: Boxplots for the ratios λ̂i+1/λ̂i with two strong factors (δ = 0) and one weak factor

(δ = 0.5), and r = 3, p = n/2.

The proof of Theorem 2 is given in the Appendix. The corollary below follows immediately

from the above theorem and the fact that λj ≍ p2−2δ for j = 1, · · · , r (see condition C5 and

Remark 1(i)).

Corollary 2 Under the condition of Theorem 2, it holds that

λ̂j+1/λ̂j ≍ 1 j = 1, · · · , r − 1, and λ̂r+1/λ̂r = OP (p
δn−1).

Remark 3. (i) By comparing with Proposition 3, the convergence rate for Â in (5.5) is faster by

a factor of ℓn/hn = p−δ/2.

(ii) The rates for the errors in estimating λj in Theorem 2 are improved over those in The-

orem 1. More precisely the improvement for non-zero λj is by a factor p−δ/2, and for zero-
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eigenvalues is by a factor p−δ at least. However, those estimation errors themselves may still

diverge, as illustrated in the simulation in section 5.2.4.

(iii) Theorem 2(iii) is an interesting consequence of the random matrix theory. The key

message here is as follows: For eigenvalues corresponding purely to the matrix
∑k0

k=1 Σ̂ε(k)Σ̂ε(k)
′,

which is a part of M̂ in (4.4), where Σ̂ε(k) is the sample lag-k autocovariance matrix for {εt},
their magnitudes adjusted for p2−2δ converge at a super-fast rate. In particular, when all the

factors are strong (i.e. δ = 0), the convergence rate is n−2. Such a super convergence rate never

occurs when p is fixed.

(iv) Condition ℓn → 0 is weaker than condition hn → 0. For example when p ≍ n, this

condition is implied by the condition δ ∈ [0, 1).

6 Two-step estimation

In this section, we outline a two-step estimation procedure. We will show that it is superior than

the one-step procedure presented in section 4.2 for the determination of the number of factors in

the presence of the factors with different degrees of strength. (See Example 2 in section 7 and

also Fig. 6.) Peña and Poncela (2006) described a similar procedure to improve the estimation

for factor loading matrices in the presence of small eigenvalues, although they gave no theoretical

underpinning on why and when such a procedure is advantageous.

Consider model (3.1) with r1 strong factors with strength δ1 = 0 and r2 weak factors with

strength δ2 > 0, where r1 + r2 = r. Now (3.1) may be written as

yt = Axt + εt = A1x1t +A2x2t + εt, (6.1)

where xt = (x′
1t x

′
2t)

′, A = (A1 A2) with A′A = Ir, x1t consists of r1 strong factors, and x2t

consists of r2 weak factors.

To present the two-step estimation procedure clearly, let us assume that we know r1 and r2

first. Using the method in section 4.2, we first obtain the estimator Â ≡ (Â1, Â2) for the factor

loading matrix A = (A1,A2), where the columns of Â1 are the r1 orthonormal eigenvectors of M̂

corresponding to its r1 largest eigenvalues. In practice we may identify r1 using, for example, the

ratio-based estimation method (4.5); see Fig. 6. We adopt the second-step estimation as follows.

Let

y∗
t = yt − Â1Â

′
1yt (6.2)

for all t. We perform the same estimation for data {y∗
t } now, and obtain the p × r2 estimated

factor loading matrix Ã2 for the r2 weak factors. Combining the two estimators together, we

obtain the final estimator for A as

Ã = (Â1, Ã2). (6.3)

Theorem 3 below presents the convergence rates for both the one-step estimator Â = (Â1, Â2)

and the two-step estimator Ã = (Â1, Ã2). It shows that Ã converges to A at a faster rate than
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Â. The results are established with known r1 and r2. In practice we estimate r1 and r2 using

the ratio based estimators. See also Corollary 3 below. We introduce some regularity conditions

first. Let Σ12(k) = Cov(x1,t+k,x2t), Σ21(k) = Cov(x2,t+k,x1t), Σi(k) = Cov(xi,t+k,xit) and

Σiǫ(k) = Cov(xi,t+k, εt) for i = 1, 2.

C5’. For i = 1, 2, 1 ≤ k ≤ k0,

‖Σi(k)‖ ≍ p1−δi ≍ ‖Σi(k)‖min, ‖Σ21(k)‖ ≍ ‖Σ21(k)‖min, ‖Σ12(k)‖ = O(p1−δ2/2).

C6’. Cov(xt, εs) = 0 for any t, s.

The condition on Σi(k) in C5’ is an analogue to condition C5. See Remark 1(i) in section 5.2.2 for

the background of those conditions. The order of ‖Σ21(k)‖min will be specified in the theorems

below. The order of ‖Σ12(k)‖ is not restrictive, since p1−δ2/2 is the largest possible order when

δ1 = 0. See also the discussion in Remark 1(ii). Condition C6’ replaces condition C6. Here

we impose a strong condition Σiǫ(k) = 0 to highlight the benefits of the two-step estimation

procedure. See Remark 4(ii) below. Put

Wi = (Σi(1), · · · ,Σi(k0)), W21 = (Σ21(1), · · · ,Σ21(k0)).

Theorem 3 Let conditions C1-C4, C5’, C6’, C7 and C8 hold. Let n = O(p) and κn ≡ pδ2/2n−1/2 →
0, as n→ ∞. Then it holds that

‖Â1 −A1‖ = OP (n
−1/2), ‖Ã2 −A2‖ = OP (κn) = ‖Ã−A‖.

Furthermore,

‖Â2 −A2‖ = OP (νn) = ‖Â−A‖

if, in addition, νn → 0, where

where νn =





pδ2κn, if ‖W21‖min = o(p1−δ2);

p(2c−1)δ2κn, if ‖W21‖min ≍ p1−cδ2 for 1/2 ≤ c < 1, and

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1.

Note that κn/νn → 0. Theorem 3 indicates that between A1 and A2, the latter is more

difficult to estimate, and the convergence rate of an estimator for A is determined by such a rate

for A2. This is intuitively understandable as the coefficient vectors for weak factors effectively

contain many zero-components; see (3.4) and (5.2). Therefore a non-trivial proportion of the

components of yt may contain little information on each weak factor. When ‖W21‖min ≍ p1−cδ2 ,

‖W2‖ is dominated by ‖W21‖min. The condition ‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1 is

imposed to control the behaviour of the (r1+1)-th to the r-th largest eigenvalues of M under this

situation. If this is not valid, those eigenvalues can become very small and give a bad estimator

for A2, and thus A. Under this condition, the structure of the autocovariance for the strong
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factors, and the structure of the cross-autocovariance between the strong and weak factors, are

not similar.

Recall that λj and λ̂j are the j-th largest eigenvalue of, respectively, M defined in (4.3) and

M̂ defined in (4.4). We define matrices M∗ and M̂∗ in the same manners as M and M̂ but

with {yt} replaced by {y∗
t } (see (6.2)), and denote by λ∗j and λ̂∗j the j-th largest eigenvalue of,

respectively, M∗ and M̂∗. To gain the appreciation on how the ratio-based estimator (4.5) works

in the presence of factors with different degrees of strength, we present some asymptotic properties

for the estimated eigenvalues of M̂ and M̂∗ first.

Theorem 4 Under the same conditions and notations of Theorem 3, the following assertions

hold.

(i) For j = 1, · · · , r1, |λ̂j − λj | = OP (p
2n−1/2) and λj ≍ p2.

(ii) For j = r1 + 1, · · · , r, |λ̂j − λj | = OP (p
2(n−1/2 + ν2n)) and

λj ≍





p2−2δ2 , if ‖W21‖min = o(p1−δ2);

p2−2cδ2 , if ‖W21‖min ≍ p1−cδ2 for 1/2 ≤ c < 1, and

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1,

provided νn → 0.

(iii) For j = r + 1, · · · , p, λ̂j = OP (p
2ν2n), provided νn → 0.

(iv) For j = 1, · · · , r2, |λ̂∗j − λ∗j | = OP (p
2−2δ2κn), λ

∗
j ≍ p2−2δ2 .

(v) For j = r2 + 1, · · · , p, λ̂∗j = OP (p
2−2δ2κ2n).

(vi) For j = (k0 + 1)r + 1, · · · , p, λ̂j , λ̂∗j = OP (p
2n−2) = OP (p

2−2δ2κ4n).

Corollary 3 follows from Theorem 4. It presents the asymptotic properties for the ratios of

the estimated eigenvalues.

Corollary 3 Let all the conditions in Theorem 4 hold. Then the following assertions hold.

(i) λ̂i+1/λ̂i ≍ 1 for 1 ≤ i < r1 and r1 < i < r, and λ̂∗j+1/λ̂
∗
j ≍ 1 for 1 ≤ 1 < r2.

(ii) λ̂r+1/λ̂r
P−→ 0. Furthermore λ̂r1+1/λ̂r1 = oP (λ̂r+1/λ̂r)

P−→ 0.

(ii) λ̂∗r2+1/λ̂
∗
r2 = oP (λ̂r+1/λ̂r)

P−→ 0.

Remark 4. (i) Corollary 3 implies that the one-step estimation is likely to lead to r̂ = r1;

only picking up the r1 strong factors, while the two-step estimation will be able to identify the

additional r2 factors. Unfortunately we are unable to establish the asymptotic properties for

λ̂i+1/λ̂i for i > r, and λ̂∗j+1/λ̂
∗
j for j > r2, though we believe that conjectures similar to (5.4)

continue to hold.

(ii) When δ1 > 0 and/or the cross-autocovariances between different factors and the noise are

stronger, the similar and more complex results can be established via more involved algebra in

the proofs.
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Figure 7: Plots of the eigenvalues and the ratios of eigenvalues of M̂ for Example 1.

7 Real data examples

Example 1. First we analyze the daily returns of 123 stocks in the period 2 January 2002 —

11 July 2008. Those stocks were selected among those included in the S&P500 and were traded

everyday during the period. The returns were calculated in percentages based on the daily close

prices. We have in total n = 1642 observations with p = 123. We apply the eigenanalysis to

the matrix M̂ defined in (4.4) with k0 = 5. The obtained eigenvalues (in descending order) and

their ratios are plotted in Fig.7. It is clear that the ratio-based estimator (4.5) leads to r̂ = 2,

indicating 2 factors. Varying the value of k0 between 1 and 100 in the definition of M̂ leads to

little change in the ratios λ̂i+1/λ̂i, and the estimate r̂ = 2 remains unchanged. This is due to the

fact that the return series exhibit little autocorrelation. An increase of the value k0 effectively

adds zero-matrices in M̂; see (4.4). Fig.7(a) shows that λ̂i is close to 0 for all i ≥ 5. Fig.7(b)

indicates that the ratio λ̂i+1/λ̂i is close to 1 for all large i, which is in line with conjecture (5.4).

The first two panels of Fig.8 display the time series plots of the two component series of

the estimated factors x̂t defined as in (3.2). Their cross autocorrelations are presented in Fig.9.

Although each of the two estimated factors shows little significant autocorrelation, there are some

significant cross-correlations between the two series. Fig.10 presents the cross autocorrelations

of the three residual series. Those three series are γ̂ ′
jyt for j = 3, 4, 5, where γ̂j is the unit
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Figure 8: The time series plots of the two estimated factors and the return series of the S&P500

index in the same time period.

eigenvector of M̂ corresponding to its j-th largest eigenvalue. If there were any serial correlations

left in the data after extracting the two estimated factors, those correlations would most likely

show up in the three selected residual series. Indeed there is little evidence for the existence of

those correlations; see Fig.10.

Fig.7 suggests the existence of a third and weaker factor, though Fig.10 suggests otherwise.

In fact λ̂3 = 6.231 and λ̂4/λ̂3 = 0.357. Note that now λ̂j is not necessarily a consistent estimator

for λj although λ̂r+1/λ̂r
P−→ 0; see Theorem 1(ii) and Corollary 1. To investigate this further, we

apply the two-step estimation procedure presented in section 6. By subtracting the two estimated

factors from the above, we obtain the new data y∗
t (see (6.3)). We then calculate the eigenvalues

and their ratios of the matrix M̂∗. The minimum value of the ratios is λ̂∗2/λ̂
∗
1 = 0.667, which

is closely followed by λ̂∗3/λ̂
∗
2 = 0.679 and λ̂∗4/λ̂

∗
3 = 0.744. There is no evidence to suggest that

λ̂∗2/λ̂
∗
1 → 0; see Corollary 3. This reinforces our choice r̂ = 2.

With p as large as 123, it is difficult to gain insightful interpretation on the estimated factors
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Figure 9: The cross autocorrelations of the two estimated factors for Example 1.

by looking through the coefficients in Â (see (3.2)). To link our fitted factor model with some

classical asset pricing theory in finance, we wonder if the market index (i.e. the S&P500 index) is

a factor in our fitted model, or more precisely, if it can be written as a linear combination of the

two estimated factors. When this is true, Pu = 0, where u is the 1642×1 vector consisting of the

returns of the S&P500 index over the same time period, and P denotes the projection matrix onto

the orthogonal compliment of the linear space spanned by the two component series x̂t, which is a

1640-dimensional subspace in R1642. This S&P500 return series is plotted together with the two

component series x̂t in Fig.8. It turns out that ||Pu||2 is not exactly 0 but ||Pu||2
/
||u||2 = 0.023.

i.e. the 97.7% of the S&P500 returns can be expressed as a linear combination of the two estimated

factors. Thus our analysis suggests the following model for yt — the daily returns of the 123 stocks:

yt = a1ut + a2vt + εt,

where ut denotes the return of the S&P500 on the day t, vt is another factor, and εt is a 123× 1

vector white noise process.

Example 2. We analyze a set of monthly average sea surface air pressure records (in Pascal) in

January 1958 – December 2001 (i.e. 528 months in total) over a 10× 44 grid in a range of 22.5◦

longitude and 110◦ latitude in the North Atlantic Ocean. Let Pt(u, v) denote the air pressure

in the t-th month at the location (u, v), where u = 1, · · · , 10, v = 1, · · · , 44 and t = 1, · · · , 528.
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Figure 10: The cross autocorrelations of three residual series for Example 1.

Fig.11 displays the time series plots of those data at three different locations. We first subtract

each data point by the monthly mean over the 44 years at its location: 1
44

∑44
i=1 P12(i−1)+j(u, v),

where j = 1, · · · , 12, representing the 12 different months over a year. We then line up the new

data over 10 × 44 = 440 grid points as a vector yt, so that yt is a p-variate time series with

p = 440. We have n = 528 observations.

To fit the factor model (3.1) to yt, we calculate the eigenvalues and the eigenvectors of the

matrix M̂ defined in (4.4) with k0 = 5. Let λ̂1 > λ̂2 > · · · denote the eigenvalues of M̂. The

ratios λ̂i+1/λ̂i are plotted against i in the top panel of Fig.12 which indicates the ratio-based

estimate for the number of factor is r̂ = 1; see (4.5). However the second smallest ratio is λ̂4/λ̂3,

This suggests that there may exist two weaker factors in addition; see Corollary 3(ii) and also
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Figure 11: Time series plot the sea surface air pressure data at the three locations (from top to

bottom): (u, v) = (1, 1), (3, 4) and (5, 6).

Fig.6. We adopt the two-step estimation procedure presented in section 6 to identify the factors

of different strength. By removing the factor corresponding to the largest eigenvalue of M̂, the

resulting ‘residuals’ are denoted as y∗
t ; see (6.2). Now we repeat the factor modelling for data y∗

t ,

and plot the ratios of eigenvalues of matrix M̂∗ in the second panel of Fig.12. It shows clearly

the minimum value at 2, indicating further two (weaker) factors. Combining the above two steps

together, we set r̂ = 3 in the fitted model.

We repeated the above calculation with k0 = 1 in (4.4). We still find three factors with the

two-step procedure, and the estimated factors series are very similar to the case when k0 = 5.

This is consistent with the simulation results in Lam, Yao and Bathia (2010), where they showed

empirically that the estimated factor models is not sensitive to the choice of k0.
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Figure 12: Plots of λ̂i+1/λ̂i — the ratio of the eigenvalues of M̂ (the top panel) and M̂∗ (the

bottom panel), against i, for Example 2.
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We present the time series plots for the three estimated factors x̂t = Ã′yt in Fig.13, where Ã is

a 440×3 matrix with the first column being the unit eigenvector of M̂ corresponding to its largest

eigenvalue, and the other two columns being the orthonormal eigenvectors of M̂∗ corresponding

to its two largest eigenvalues; see (6.3) and also (3.2). They collectively account for 85.3% of the

total variation in yt which has 440 component series. In fact each of the three factors accounts

for, respectively, 57.5%, 18.2% and 9.7% of the total variation of yt. Fig.14 depicts the the factor
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Figure 13: Time series plot of the three estimated factors for Example 2.

loading surfaces of the three factors. Some interesting regional patterns are observed from those

plots. For example, the first factor is the main driving force for the dynamics in the north and

especially the northeast. The second factor influences the dynamics in the east and the west in

the opposite directions, and has little impact in the narrow void between them. The third factor

impacts mainly the dynamics of the southeast region. We also notice that none of those factors

can be seen as idiosyncratic components as each of them affects quite a large number of locations.

Fig.15 presents the sample cross-correlations for the three estimated factors. It shows signif-

icant, though small, auto-correlations or cross-correlations at some non-zero lags. Fig.16 is the

sample cross-correlations for three residuals series selected from three locations for which one

is far apart from the other two spatially, showing little autocorrelations at non-zero lags. This
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indicates that our approach is capable to identify the factors based on serial correlations.
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Figure 14: Factor loading surface of the 1st, 2nd and 3rd factors (from left to right) for Example 2.
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Figure 15: Example 2: Sample cross-correlation functions for the three estimated factors.

Finally we note that the BIC method of Bai and Ng (2002) yields the estimate r̂ = n = 528

for this particular date set. We suspect that this may be due to the fact that Bai and Ng (2002)
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Figure 16: Example 2: Sample cross-correlation functions for 3 residual series. 50 represents grid

position (10, 5), 100 for (10, 10) and 400 for (10, 40).

requires all the eigenvalues of Σε be uniformly bounded when p → ∞. This may not be the

case for this particular data set, as the nearby locations are strongly spatially correlated, which

may lead to very large and also very small eigenvalues for Σε. Indeed for this data set, the three

largest eigenvalues of Σ̂ε are in the order of 106, and the three smallest eigenvalues are practically

0. Since the typical magnitude of ε̂t is 10
2 from our analysis, we have done simulations (not shown

here) showing that the typical largest eigenvalues for Σ̂ε, if {εt} is weakly correlated white noise,

should be around 104 to 105, and the smallest around 102 to 103 when p = 440 and n = 528.

Such a huge difference in the magnitude of the eigenvalues suggests strongly that the components

of the white noise vector εt are strongly correlated. Our method does not require the uniform
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boundedness of the eigenvalues of Σε.

8 Appendix

Proof of Theorem 1. We present some notational definitions first. We denote λ̂j , γ̂j the j-th largest

eigenvalue of M̂ and the corresponding orthonormal eigenvector, respectively. The corresponding

population values are denoted by λj and aj for the matrix M. Hence Â = (γ̂1, · · · , γ̂r) and

A = (a1, · · · ,ar). We also have

λj = a′jMaj , λ̂j = γ̂ ′
jM̂γ̂j , j = 1, · · · , p.

We show some intermediate results now. With condition (C3) and the fact that {εt} is white

noise, we can easily see that (see also Lam, Yao and Bathia (2010)),

Σ̂x(k)−Σx(k), Σ̂ǫ(k)−Σǫ(k), Σ̂xǫ(k)−Σxǫ(k), Σ̂ǫx(k) = OP (n
−1/2),

where k = 0, 1, · · · , k0. Then following the proof of Theorem 1 of Lam, Yao and Bathia (2010),

we have the following for k = 1, · · · , k0:

‖M̂−M‖ = OP (‖Σy(k)‖ · ‖Σ̂y(k)−Σy(k)‖), where

‖Σy(k)‖ = O(p1−δ),

‖Σ̂y(k)−Σy(k)‖ = OP (p
1−δn−1/2 + p1−δ/2n−1/2 + ‖Σ̂ǫ(k)‖)

= OP (p
1−δ/2n−1/2 + ‖Σ̂ǫ(k)‖).

(8.1)

Now ‖Σ̂ǫ(k)‖ ≤ ‖Σ̂ǫ(k)‖F = OP (pn
−1/2), where ‖M‖F = trace(MM′) denotes the Frobenius

norm of M. Hence from (8.1),

‖Σ̂y(k)−Σy(k)‖ = OP (pn
−1/2), and

‖M̂−M‖ = OP (p
1−δ · pn−1/2) = OP (p

2−δn−1/2).
(8.2)

For the main proof, consider for j = 1, · · · , r, the decomposition

λ̂j − λj = γ̂ ′
jM̂γ̂j − a′jMaj

= I1 + I2 + I3 + I4 + I5, where

I1 = (γ̂j − aj)
′(M̂−M)γ̂j , I2 = (γ̂j − aj)

′M(γ̂j − aj), I3 = (γ̂j − aj)
′Maj ,

I4 = a′j(M̂−M)γ̂j , I5 = a′jM(γ̂j − aj).

(8.3)

For j = 1, · · · , r, since ‖γ̂j − aj‖ ≤ ‖Â − A‖ = OP (hn) where hn = pδn−1/2, and ‖M‖ ≤
∑k0

k=1 ‖Σy(k)‖2 = OP (p
2−2δ) by (8.1), together with (8.2) we have that

‖I1‖, ‖I2‖ = OP (p
2−2δh2n), ‖I3‖, ‖I4‖, ‖I5‖ = OP (p

2−2δhn),

so that |λ̂j − λj | = OP (p
2−2δhn) = OP (p

2−δn−1/2), which proves Theorem 1(i).
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Now consider j = r + 1, · · · , p. Define

M̃ =

k0∑

k=1

Σ̂y(k)Σy(k)
′, B̂ = (γ̂r+1, · · · , γ̂p), B = (ar+1, · · · ,ap).

Following the same proof of Theorem 1 of Lam, Yao and Bathia (2010), we can actually show

that ‖B̂−B‖ = OP (hn), so that ‖γ̂j − aj‖ ≤ ‖B̂−B‖ = OP (hn).

Noting λj = 0 for j = r + 1, · · · , p, consider the decomposition

λ̂j = γ̂ ′
jM̂γ̂j = K1 +K2 +K3, where

K1 = γ̂ ′
j(M̂− M̃− M̃′ +M)γ̂j , K2 = 2γ̂ ′

j(M̃−M)(γ̂j − aj),

K3 = (γ̂j − aj)
′M(γ̂j − aj).

(8.4)

Using (8.2),

K1 =

k0∑

k=1

‖(Σ̂y(k)−Σy(k))
′γ̂j‖2 ≤

k0∑

k=1

‖Σ̂y(k)−Σy(k)‖2 = OP (p
2n−1).

Similarly, using (8.1) and (8.2), and ‖B̂−B‖ = OP (hn), we can show that

|K2| = OP (‖M̃−M‖ · ‖γ̂j − aj‖) = OP (‖M̂−M‖ · ‖B̂−B‖) = OP (p
2n−1),

|K3| = OP (‖B̂−B‖2 · ‖M‖) = OP (p
2−2δh2n) = OP (p

2n−1).

Hence λ̂j = OP (p
2n−1), and the proof of the theorem completes. �

In the following, we use σj(M) to denote the j-th largest singular value of a matrix M, so

that σ1(M) = ‖M‖. We use λj(M) to denote the j-th largest eigenvalue of M.

Proof of Theorem 2. The first part of the theorem is actually Theorem 2 of Lam, Yao and

Bathia (2010). We prove the other parts of the theorem. Define 1k the column vector of k ones,

and

Er,s = (εr, · · · , εs) for r ≤ s.

We now prove an important intermediate result. Since the asymptotic behaviour of the 3 sample

means

ε̄ = n−1E1,n1n, (n− k)−1E1,n−k1n−k, (n− k)−1Ek+1,n1n−k

are exactly the same as k is finite and {εt} is stationary, in this proof we take the sample lag-k

autocovariance matrix for {εt} to be

Σ̂ǫ(k) = n−1(Ek+1,n − (n− k)−1Ek+1,n1n−k1
′
n−k)(E1,n−k − (n− k−1E1,n−k1n−k1

′
n−k))

′

= n−1Ek+1,nTn−kE
′
1,n−k,
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where Tj = Ij − j−11j1
′
j . Then under conditions C7 and C8,

‖Σ̂ǫ(k)‖ ≤ ‖n−1/2Ek+1,n‖ · ‖Tn−k‖ · ‖n−1/2E1,n−k‖

= λ
1/2
1 (n−1E′

k+1,nEk+1,n) · λ1/21 (n−1E′
1,n−kE1,n−k)

= OP ((1 + (pn−1)1/2) · (1 + (pn−1)1/2))

= OP (pn
−1), (8.5)

where the second last line follows from Theorem 1.3 of Péché (2009) for the covariance matrices

n−1E′
k+1,nEk+1,n and n−1E′

1,n−kE1,n−k, and the last line follows from the assumption n = O(p).

For the main proof of the theorem, note that (8.1) together with (8.5) implies

‖M̂−M‖ = OP (p
1−δ(p1−δ/2n−1/2 + pn−1)) = OP (p

2−2δ(pδ/2n−1/2 + pδn−1)) = OP (p
2−2δℓn),

since ℓn = pδ/2n−1/2 = o(1). Note also that we have ‖B̂ −B‖ = OP (ℓn), similar to the proof of

Theorem 1.

With these, for j = 1, · · · , r, using decomposition (8.3), we have

|λ̂j − λj | = OP (‖M̂−M‖) = OP (p
2−2δℓn) = OP (p

2−3δ/2n−1/2),

which is Theorem 2(i). For j = r + 1, · · · , (k0 + 1)r, using decomposition (8.4), we have

K1 = OP ((p
1−δ/2n−1/2 + pn−1)2) = OP (p

2−δn−1 + p2n−2) = OP (p
2−δn−1),

|K2| = OP (‖M̂−M‖ · ‖B̂−B‖) = OP (p
2−2δℓ2n) = OP (p

2−δn−1),

|K3| = OP (‖B̂−B‖2 · ‖M‖) = OP (p
2−2δℓ2n) = OP (p

2−δn−1).

Hence λ̂j = OP (p
2−2δℓ2n) = OP (p

2−δn−1), which is Theorem 2(ii).

For part (iii), we define

Wy(k0) = (Σy(1), · · · ,Σy(k0)), Ŵy(k0) = (Σ̂y(1), · · · , Σ̂y(k0)),

so that M = Wy(k0)Wy(k0)
′ and M̂ = Ŵy(k0)Ŵy(k0)

′. We define Ŵx(k0),Ŵxǫ(k0), Ŵǫx(k0)

and Ŵǫ(k0) similarly. Then we can write

Ŵy(k0) =M1 +M2 + Ŵǫ(k0),

where M1 = A(Ŵx(k0)(Ik0 ⊗A′) + Ŵxǫ(k0)), M2 = Ŵǫx(k0)(Ik0 ⊗A′). It is easy to see that

rank(M1) ≤ r, rank(M2) ≤ k0r,

so that rank(M1 +M2) ≤ (k0 + 1)r. This implies that

σj(M1 +M2) = 0, for j = (k0 + 1)r + 1, · · · , p.
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Then by Theorem 3.3.16(a) of Horn and Johnson (1991), for j = (k0 + 1)r + 1, · · · , p,

λ̂j = λj(M̂) = σ2j (Ŵy(k0)) ≤ (σj(M1 +M2) + σ1(Ŵǫ(k0)))
2

= σ21(Ŵǫ(k0))

≤
k0∑

k=1

‖Σ̂ǫ(k)‖2

= OP (p
2n−2),

where the last line follows from (8.5). This completes the proof of the theorem. �

To prove Theorem 3, 4 and Corollary 3, we need 4 lemmas. The first two are mathematical

tools that we are using, and the third one presents the rates of λj for j = 1, · · · , r. The following

is Lemma 1 of Lam, Yao and Bathia (2010).

Lemma 2 Suppose A and A+E are n× n symmetric matrices and that

Q = [Q1 Q2] (Q1 is n× r, Q2 is n× (n− r))

is an orthogonal matrix such that span(Q1) is an invariant subspace for A (that is, A· span(Q1) ⊂ span(A)).

Partition the matrices Q′AQ and Q′EQ as follows:

Q′AQ =

(
D1 0

0 D2

)
Q′EQ =

(
E11 E′

21

E21 E22

)
.

If sep(D1,D2) := minλ∈λ(D1), µ∈λ(D2) |λ − µ| > 0, where λ(M) denotes the set of eigenvalues of

the matrix M , and

‖E‖ ≤ sep(D1,D2)

5
,

then there exists a matrix P ∈ R
(n−r)×r with

‖P‖ ≤ 4

sep(D1,D2)
‖E21‖

such that the columns of Q̂1 = (Q1 + Q2P)(I + P′P)−1/2 define an orthonormal basis for a

subspace that is invariant for A+E.

The following is the Wielandt’s inequality.

Lemma 3 Let A ∈ R
r×r be a symmetric matrix such that

A =

(
B C

C′ D

)
, with B ∈ R

r1×r1 , D ∈ R
r2×r2 and λr1(B) > λ1(D).

Then for 1 ≤ j ≤ r2,

0 ≤ λj(D)− λr1+j(A) ≤ λ1(CC′)

λr1(B)− λj(D)
.
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Hereafter we suppress k0 and write Wy = Wy(k0), Wi = Wi(k0), W21 = W21(k0) and

W12 = W12(k0). Similarly Wy∗ = Wy∗(k0).

Lemma 4 For model (6.1) and M defined in (4.3), under conditions C1-C4,C5’,C6’, we have

λj ≍





p2, for j = 1, · · · , r1;
p2−2δ2 , if ‖W21‖min = o(p1−δ2), for j = r1 + 1, · · · , r;
p2−2cδ2 , if ‖W21‖min ≍ p1−cδ2, 1/2 ≤ c ≤ 1, and

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖, 0 ≤ q < 1, for j = r1 + 1, · · · , r.

For model (6.1), and M∗ defined in section 6 by y∗
t in (6.2), we have

λ∗j ≍ p2−2δ2 for j = 1, · · · , r2.

Proof of Lemma 4. With the notations in the proof of Theorem 2 and section 6, we have

M = WyW
′
y, where we can write, by assumption C6’,

Wy = A1L1 +A2L2, with

L1 = W1(Ik0 ⊗A′
1) +W12(Ik0 ⊗A′

2),

L2 = W2(Ik0 ⊗A′
2) +W21(Ik0 ⊗A′

1).

To find the order of λj for j = 1, · · · , r1, using a standard singular value inequality, for j =

1, · · · , r1,

λj = λj(M) = σ2j (Wy) ≥ {σj(A1L1)− σ1(A2L2)}2 = {σj(L1)− σ1(L2)}2,

where assumptions C5’ ensures that L1 has the j-th singular value dominates those of L2, since

δ2 > δ1 = 0. Hence, using the same singular value inequality,

λj ≥ {σj(L1)− σ1(L2)}2 ≍ σ2j (L1) ≥ {σj(W1(Ik0 ⊗A′
1))− σ1(W12(Ik0 ⊗A′

2))}2

≍ σ2j (W1(Ik0 ⊗A′
1)) = σ2j (W1) = λj

(
k0∑

k=1

Σ1(k)Σ1(k)
′

)

≥ λj(Σ1(1)Σ1(1)
′) ≥ ‖Σ1(1)‖min ≍ p2,

where the start of the second line follows from condition C5’ and the fact that ‖W12‖, ‖W21‖ =

O(p1−δ2/2) = o(‖W1‖). This shows that λj ≍ p2 for j = 1, · · · , r1, which is the largest possible

order.

Also, M = WyW
′
y = ALA′, where

A = (A1 A2), L =

(
L1L

′
1 L1L

′
2

L2L
′
1 L2L

′
2

)
, (8.6)
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and M and L shares the same eigenvalues, as A′A = I. Hence λj = λj(M) = λj(L). By Lemma

3 applying on L, we have for j = 1, · · · , r2,

λr1+j(L) ≤ λj(L2L
′
2) = σ2j (L2), (8.7)

λr1+j(L) ≥ σ2j (L2)−
σ21(L1L

′
2)

σ2r1(L1)− σ21(L2)
. (8.8)

From the definition of L1 and L2, we have L1L
′
2 = W1W

′
21 +W2W

′
12. By condition C5’ and

the Cauchy-Schwarz inequality for spectral norm, we have

‖W2W
′
12‖ ≤ ‖W2‖‖W12‖ = O(p1−δ2 · p1−δ2/2) = O(p2−3δ2/2) = o(‖L1‖‖L2‖),

since ‖L1‖ = σ1(L1) ≍ σ1(W1) ≍ p, and ‖L2‖ = σ1(L2) ≍ max(‖W2‖, ‖W21‖) with ‖W2‖ ≍
p1−δ2 . Hence asymptotically we can always find a constant C2 > 0 such that

‖W2W
′
12‖ ≤ C2‖L1‖‖L2‖. (8.9)

Case 1. If ‖W21‖min ≍ p1−cδ2 (≍ ‖W21‖ by condition C5’) for 1/2 ≤ c < 1, then

‖W2‖ ≍ p1−δ2 = o(‖W21‖). Hence ‖L2‖ ≍ ‖W21‖ ≍ p1−cδ2 . The assumption ‖W1W
′
21‖ ≤

q‖W1‖min‖W21‖ for 0 < q < 1 then ensures that

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ = (qσr1(W1)/σ1(W1))‖W1‖‖W21‖

≤ (qσr1(W1)/σ1(W1))(‖L1‖+ ‖W12‖)(‖L2‖+ ‖W2‖)

= (qσr1(W1)/σ1(W1))‖L1‖‖L2‖(1 + o(1))(1 + o(1))

≤ C1‖L1‖‖L2‖, (8.10)

where 0 < C1 < σr1(L1)/σ1(L1), when n, p are sufficiently large. Combining (8.9) and (8.10), we

then have

σ1(L1L
′
2) ≤ ‖W1W

′
21‖+ ‖W2W

′
12‖ ≤ (C1 + C2)σ1(L1)σ1(L2)

= Cσ1(L1)σ1(L2), (8.11)

where C2 in (8.9) is chosen so that 0 < C = C1 + C2 < σr1(L1)/σ1(L1).

Case 2. If ‖W21‖min = o(p1−δ2), then ‖W21‖ = o(‖W2‖). Hence ‖L2‖ ≍ ‖W2‖ ≍ p1−δ2 .

Hence

‖W1W
′
21‖ ≤ ‖W1‖‖W21‖ = o(‖L1‖‖L2‖),

and thus asymptotically we can always find a constant C1 > 0 such that

‖W1W
′
21‖ ≤ C1‖L1‖‖L2‖. (8.12)

Combining (8.9) and (8.12), and choosing C1 and C2 to be small enough, (8.11) will hold.
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With (8.11), (8.8) becomes

λr1+j(L) ≥ σ2j (L2)−
C2σ21(L1)σ

2
1(L2)

σ2r1(L1)− σ21(L2)
= σ2j (L2)

(
1− C2

σ2r1(L1)/σ21(L1)− o(1)

)
≥ C ′σ2j (L2)

for some constant C ′ > 0. Together with (8.7), we have λr1+j(L) ≍ σ2j (L2) for j = 1, · · · , r2.
Hence, if ‖W21‖min = o(p1−δ2), then W2 dominates and from Case 2 above,

λr1+j(L) ≍ σ2j (L2) ≍ σ2j (W2) ≍ p2−2δ2 .

If ‖W21‖min ≍ p1−cδ2 for 1/2 ≤ c < 1, then W21 dominates, and from Case 1 above,

λr1+j(L) ≍ σ2j (L2) ≍ σ2j (W21) ≍ p2−2cδ2 ,

which completes the proof for λj , j = 1, · · · , r.
For λ∗j with j = 1, · · · , r2, note that M∗ = Wy∗W

′
y∗ , where Wy∗ is formed similar to Wy,

but by y0∗
t = yt −A1A

′
1yt (similar to (6.2), but Â1 is replaced by A1). With condition C6’, we

can show by simple algebra that

Wy∗ = A2W2(Ik0 ⊗A′
2). (8.13)

Hence,

λ∗j = σ2j (Wy∗) = σ2j (W2) ≍ p2−2δ2 ,

which completes the proof of the lemma. �

Proof of Theorem 3. We can write M = (A1 A2 B)D(A1 A2 B)′, where B is the orthogonal

complement of A = (A1 A2), and D is diagonal with D = diag(D1, D2, 0), where D1 contains

λj for j = 1, · · · , r1 and D2 contains λj for j = r1 + 1, · · · , r. Hence by Lemma 4, using the

sep(·, ·) notation from Lemma 2,

sep
(
D1,

(
D2 0

0 0

))
≍ p2, (8.14)

sep
(
D2,

(
D1 0

0 0

))
≍





p2−2δ2 , if ‖W21‖min = o(p1−δ2);

p2−2cδ2 , if ‖W21‖min ≍ p1−cδ2 , 1/2 ≤ c < 1, and

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖, 0 ≤ q < 1.

(8.15)

Using Lemma 2, if we can show that for i, j = 1, 2 and i 6= j,

‖E21‖ := ‖A′
i(M̂−M)(Aj B)‖ = oP

(
sep
(
Di,

(
Dj 0

0 0

)))
, (8.16)

then with similar arguments as in the proof of Theorem 1 in Lam, Yao and Bathia (2010), we can

conclude that

‖Âi −Ai‖ = OP

(
‖A′

i(M̂−M)(Aj B)‖/sep
(
Di,

(
Dj 0

0 0

)))
. (8.17)
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Hence it remains to find the rate for ‖A′
i(M̂ − M)(Aj B)‖. Since MB = 0, we have ‖E21‖ :=

‖A′
i(M̂−M)(Aj B)‖ = ‖(A′

i(M̂−M)Aj A′
iM̂B)‖ ≤ ‖A′

i(M̂−M)Aj‖+ ‖A′
iM̂B‖.

Both terms can be decomposed into sum of more terms. When i = 1, j = 2, by some simple

(but tedious) algebra, using condition C5’ and C6’(i), we can show that ‖A′
1M̂B‖ is dominating,

with the dominating term

‖Σ̂1(k)Σ̂ǫ1(k)
′B‖ ≤ ‖Σ̂1(k)‖ · ‖Σ̂ǫ1(k)‖ = OP (p · pn−1/2) = OP (p

2n−1/2) = o(p2),

Hence noting (8.14), criterion (8.16) is satisfied. Therefore using (8.17),

‖Â1 −A1‖ = OP (p
2n−1/2/p2) = OP (n

−1/2).

For i = 2, j = 1, ‖A′
2(M̂−M)A1‖ is dominating, with the dominating term

‖Σ̂21(k)Σ̂1(k)
′ −Σ21(k)Σ1(k)

′‖ ≤ ‖Σ̂21(k)(Σ̂1(k)−Σ1(k))‖+ ‖(Σ̂21(k)−Σ21(k))Σ1(k)‖

= OP ((p
1−δ2/2n−1/2 + p1−cδ2) · pn−1/2 + p1−δ2/2n−1/2 · p)

= OP (p
2−δ2/2n−1/2) = oP (p

2−2cδ2) for 1/2 ≤ c ≤ 1,

by our assumption in the theorem that νn → 0, and c = 1 represents the case ‖W21‖min =

o(p1−δ2). In view of (8.15), criterion (8.16) is satisfied. Therefore using (8.17),

‖Â2 −A2‖ = OP (p
2−δ2/2n−1/2/p2−2cδ2) = OP (p

(2c−1/2)δ2n−1/2),

which is the rate given in the theorem. This completes the proof for the original procedure.

For the two-step procedure, the matrix M∗ = (A2 B
∗)D∗(A2 B

∗)′, where B∗ is the orthogonal

complement of A2, and D∗ is diagonal with D∗ = diag(D∗
2,0). The matrix D∗

2 contains λ∗j for

j = 1, · · · , r2, so that by Lemma 4,

sep(D∗
2,0) ≍ p2−2δ2 .

We can argue similar to the above (details omitted) to conclude that

‖Ã2 −A2‖ = OP (‖A′
2(M̂

∗ −M∗)B∗‖/sep(D∗
2,0)).

The dominating term in ‖A′
2(M̂

∗ −M∗)B∗‖ can be shown to be, defining Ĥ1 := I− Â1Â
′
1,

‖A′
2Ĥ1A2Σ̂2(k)A

′
2Ĥ1A2Σ̂ǫ2(k)

′Ĥ1B
∗‖ ≤ ‖Σ2(k)‖ · ‖Σǫ2(k)‖

= OP (p
1−δ2 · p1−δ2/2n−1/2) = OP (p

2−3δ2/2n−1/2).

Hence we have

‖Ã2 −A2‖ = OP (p
2−3δ2/2n−1/2/p2−2δ2) = OP (p

δ2/2n−1/2),

which completes the proof of the theorem. �
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Proof of Theorem 4. Similar to (8.1), with conditions C3, C5’ and C6’, we can show that

(details omitted) for model (6.1) and k = 1, · · · , k0,

‖Σy‖ = O(‖Σ1(k)‖) = O(p),

‖Σ̂y(k)−Σy(k)‖ = OP (pn
−1/2 + ‖Σ̂ǫ(k)‖) = OP (pn

−1/2),

where the last line follows from ‖Σ̂ǫ(k)‖ = OP (pn
−1) when n = O(p) and conditions C7 and C8

are satisfied (see proof of Theorem 2 for details). Hence by (8.1),

‖M̂−M‖ = OP (‖Σy(k)‖ · ‖Σ̂y(k)−Σy(k)‖) = OP (p
2n−1/2),

‖M‖ = O(‖Σy(k)‖2) = O(p2).
(8.18)

By Theorem 3, using the notations in (8.3), we have

‖γ̂j − aj‖ ≤





‖Â1 −A1‖ = OP (n
−1/2), for j = 1, · · · , r1;

‖Â2 −A2‖ = OP (νn), for j = r1 + 1, · · · , r;
‖B̂−B‖ = OP (νn), for j = r + 1, · · · , p,

(8.19)

where the rate for ‖B−B‖ can be found similar to the proof of Theorem 3, and is thus omitted.

With (8.18) and (8.19), the decomposition (8.3) is dominated by ‖I3‖, ‖I4‖, ‖I5‖ = OP (p
2n−1/2),

so that ‖λ̂j − λj‖ = OP (p
2n−1/2). The rate λj ≍ p2 is given by Lemma 4.

For j = r1 + 1, · · · , r, the same decomposition (8.3) together with (8.18) and (8.19) gives

dominating terms ‖I2‖ = OP (p
2ν2n) and ‖I4‖ = OP (p

2n−1/2), so that ‖λ̂j − λj‖ = OP (p
2(n−1/2 +

ν2n)). The rate for λj is given by Lemma 4.

For j = r+1, · · · , p, the decomposition (8.4) together with (8.18) and (8.19) gives dominating

term ‖K3‖ = OP (‖B̂−B‖ · ‖M‖) = OP (p
2ν2n). Hence λ̂j = OP (p

2ν2n). This completes the proof

for the original procedure.

For the two-step procedure, the decomposition (8.3) and (8.4) are both valid, with M̂ and M

replaced by M̂∗ and M∗ respectively, and γ̂j replaced by γ̂∗
j , the unit eigenvector of M̂∗ for the

j-th largest eigenvalue λ∗j of M∗. Since M∗ = Wy∗W
′
y∗ and Σ̂y∗(k) = Ĥ1Σ̂y(k)Ĥ1, using (8.13),

we can show that (details omitted)

‖M∗‖ = O(p2−2δ2),

‖M̂∗ −M∗‖ = OP (‖Σ̂y∗(k)−Σy∗(k)‖ · ‖Σy∗(k)‖)

= OP (p
2−3δ2/2n−1/2) = OP (p

2−2δ2κn).

(8.20)

Let a∗j be such that A2 = (a∗1, · · · ,a∗r2), B∗ = (a∗r2+1, · · · ,a∗p). Then we can show that

‖γ̂∗
j − a∗j‖ ≤

{
‖Ã2 −A2‖ = OP (κn), if j = 1, · · · , r2;
‖B̃∗ −B∗‖ = OP (κn), if j = r2 + 1, · · · , p.

(8.21)

For j = 1, · · · , r2, with (8.20) and (8.21), the dominating terms for the decomposition (8.3) are

‖I3‖, ‖I4‖, ‖I5‖ = OP (p
2−2δ2κn), so that ‖λ̂∗j − λ∗j‖ = OP (p

2−2δ2κn). The rate for λ∗j is given in

Lemma 4.

40



For j = r2 + 1, · · · , p, with (8.20) and (8.21), all terms of the decomposition (8.4) have the

same rate OP (p
2−2δ2κ2n), so that λ̂∗j = OP (p

2−2δ2κ2n).

The last claim of the theorem is proved exactly the same as part (iii) of Theorem 2, and is

omitted. �

Corollary 3 follows from Lemma 5 immediately.

Lemma 5 Let conditions C1-C4, C5’, C6’, C7 and C8 hold. Then as n, p → ∞ with n = O(p),

with νn and κn → 0 the same as in Theorem 3, it holds that

λ̂j+1/λ̂j





≍ 1, j = 1, · · · , r1 − 1;

= OP (n
−1/2 + ν2n + p−2δ2), j = r1, if ‖W21‖min = o(p1−δ2);

= OP (n
−1/2 + ν2n + p−2cδ2), if ‖W21‖min ≍ p1−cδ2 for 1/2 ≤ c < 1, and

‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1.

Furthermore, if ‖W21‖min = o(p1−δ2) and p5δ2/2n−1/2 → 0, we have

λ̂j+1/λ̂j

{
≍ 1, j = r1 + 1, · · · , r − 1;

= OP (p
2δ2ν2n), j = r.

If ‖W21‖min ≍ p1−cδ2 for 1/2 ≤ c < 1, ‖W1W
′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1, and

p(3c−1/2)δ2n−1/2 → 0, we have

λ̂j+1/λ̂j

{
≍ 1, j = r1 + 1, · · · , r − 1;

= OP (p
2cδ2ν2n), j = r.

For the two-step procedure, let conditions C1-C4, C5’, C6’, C7 and C8 hold and n = O(p). Then

we have

λ̂∗j+1/λ̂
∗
j

{
≍ 1, j = 1, · · · , r2 − 1;

= OP (κ
2
n), j = r2.

Proof of Lemma 5. We only need to find the asymptotic rate for each λ̂j and λ̂∗j . The rate of

each ratio can then be obtained from the results of Theorem 4.

For j = 1, · · · , r1, from Theorem 4, ‖λ̂j − λj‖ = OP (p
2n−1/2) = oP (λj), and hence λ̂j ≍

λj ≍ p2. Consider the case ‖W21‖min ≍ p1−cδ2 . For j = r1 + 1, · · · , r, since |λ̂j − λj | =

OP (p
2(n−1/2 + ν2n)), we have λ̂j ≤ λj +OP (p

2(n−1/2 + ν2n)) = OP (p
2−2cδ2 + p2ν2n + p2n−1/2), and

hence

λ̂r1+1/λ̂r1 = OP ((p
2−2cδ2 + p2ν2n + p2n−1/2)/p2) = OP (n

−1/2 + ν2n + p−2cδ2).

The other case is proved similarly.

For j = r1 + 1, · · · , r, to make sure λ̂j will not be zero or close to zero, we need

|λ̂j − λj | = OP (p
2(n−1/2 + ν2n)) = oP (λj),
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where λj ≍ p2−2cδ2 . Hence we need p2(n−1/2 + ν2n) = o(p2−2cδ2), which is equivalent to the

condition p(3c−1/2)δ2n−1/2 → 0. This implies λ̂j ≍ λj ≍ p2−2cδ2 for j = r1 + 1, · · · , r. Since

λ̂j = OP (p
2ν2n) for j = r + 1, · · · , p, we then have

λ̂r+1/λ̂r = OP (p
2ν2n/p

2−2cδ2) = OP (p
2cδ2ν2n).

All other rates can be proved similarly, and thus are omitted. �
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