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Abstract

This paper deals with the dimension reduction of high-dimensional time series based on a lower-

dimensional factor process. In particular we allow the dimension of time series N to be as large

as, or even larger than, the length of observed time series (also refereed as the sample size) T . The

estimation of the factor loading matrix and the factor process itself is carried out via an eigenanalysis

of a N × N non-negative definite matrix. We show that when all the factors are strong in the sense

that the norm of each column in the factor loading matrix is of the order N1/2, the estimator of the

factor loading matrix is weakly consistent in L2-norm with the convergence rate independent of N .

This result exhibits clearly that the curse is canceled out by the blessing of dimensionality. We also

establish the asymptotic properties of the estimation when factors are not strong. The proposed method

together with their asymptotic properties are further illustrated in a simulation study. An application to

an implied volatility data set, together with a trading strategy derived from the fitted factor model, is

also reported.
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1 Introduction

Analysis of large data sets is an integral part of modern scientific research. In particular, high-dimensional

time series analysis is commonplace in many fields including, among others, finance, economics, environ-

mental and medical studies. For example, understanding the dynamics of the returns of large number of as-

sets is the key for asset pricing, portfolio allocation, and risk management. Panel time series are frequently

encountered in studying economic and business phenomena. Environmental time series are often of a high

dimension because of the large number of indices monitored across many different locations. However

the standard multiple time series models such as vector Autoregressive or vector Autoregressive-Moving-

Average models are not practically viable when the dimension of time series N is high, as the number

of parameters involved is in the order of N2. Furthermore, one may face a serious model-identification

problem in a vector Autoregressive-Moving-Average model. In fact such model has hardly been used in

practice without further regularization on its matrix coefficients. Therefore dimension-reduction is a per-

tinent step in order to achieve an efficient and effective analysis of high-dimensional time series data. In

relation to the dimension-reduction for independent observations, the added challenge here is to retain the

dynamical structure of time series.

Modeling using factors is one of the most frequently used methods to achieve dimension-reduction in

analyzing multiple time series. Early attempts in this direction include Anderson (1963), Priestley et al.

(1974), Brillinger (1981) and Peña and Box (1987). To deal with the situations when the number of time

series N is as large as, or even larger than, the length of the time series T , more recent efforts focus on

the inference when N goes to infinity together with T . See, e.g. Chamberlain and Rothschild (1983),

Chamberlain (1983), Bai (2003) Forni et al. (2000, 2004, 2005). Furthermore, in analyzing economic and

financial phenomena, most econometric factor models seek to identify the common factors that affect the

dynamics of most of the N component time series. These common factors are separated from the so-called

idiosyncratic noise components; each idiosyncratic noise component may at most affect the dynamics of

a few original time series. An idiosyncratic noise series is not necessarily white noise. The rigorous

definition of the common factors and the idiosyncratic noise can only be established asymptotically when

N (i.e. the number of the component series) goes to infinity; see Chamberlain and Rothschild (1983) and

Chamberlain (1983). Hence those econometric factor models are only asymptotically identifiable when

N →∞. See also Forni et al. (2000).

We adopt a different approach in this paper from a dimension-reduction point of view. Our model

is similar to those in Peña and Box (1987), Peña and Poncela (2006), and Pan and Yao (2008), and we

consider the inference when N is as large as, or even larger than, T . Different from the aforementioned

econometric factor models, we decompose the N -dimensional time series into two parts: the dynamic

part driven by r factors (r ≤ N ) and the static part which is a vector white noise. Hence the r factors

in our model consist of the common factors as well as each serial-correlated idiosyncratic component

in econometric factor models. Since the white noise exhibits no serial correlations, the decomposition

is unique in the sense that both the number of factors r and the factor loading space in our model are
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identifiable for any finite N . Furthermore, we allow the future factors to depend on past (white) noise. This

substantially enlarges the capacity of the model. Such a conceptually simple decomposition also makes

the statistical inference easier; the estimation for the factor loading space and the factor process itself is

equivalent to an eigenanalysis of a N ×N non-negative definite matrix. Therefore it is applicable when N

is in the order of a few thousands. Our approach is rooted in the same idea on which the methods of Peña

and Poncela (2006) and Pan and Yao (2008) were based. However, our method is radically different and

is substantially simpler. For example, Peña and Poncela (2006) requires the computation of the inverse

of the sample covariance matrix for the data, which is computationally costly when N is large, and is

invalid when N > T . See also Peña and Box (1987). Moreover, in contrast to performing eigenanalysis

for one autocovariance matrix each time, our method only requires to perform one single eigenanalysis

on a matrix function of several autocovariance matrices, and it augments the information on the dynamics

along different lags. The method of Pan and Yao (2008) involves solving several nonlinear optimization

problems, which is designed to handle non-stationary factors and is only feasible for moderately large N .

Our approach identifies factors based on the autocorrelation structure of the data, which conceptually is

more relevant in retaining the dynamics of time series than the least squares approach advocated by Bai

and Ng (2002) and Bai (2003).

The major theoretical contribution of this paper is to reveal an interesting and somehow intriguing

feature in factor modeling: the estimator for the factor loading matrix of the original N -dimensional time

series converges at a rate independent of N , provided that all the factors are strong in the sense that the

norm of each column in the factor loading matrix is of order N1/2. Our simulation indicates that the

estimation errors are indeed independent of N . This result exhibits clearly that the ‘curse’ is canceled out

by the ‘blessing’ in dimensionality. In the presence of weak factors, the convergence rate of the estimated

factor loading matrix depends on N . In spite of this, we have shown that the optimal convergence rate is

obtained under some additional conditions on the white noise, which include Gaussian white noise as a

special case.

Although we focus on stationary processes only in this paper, our approach is still relevant for the

nonstationary processes for which a generalized autocovariance matrix is well-defined; see remark 1(ii) in

section 3.

2 Models and estimation methodology

2.1 Factor models and identifiability

Let y1, · · · , yn be T N × 1 successive observations from a vector time series process. The factor model

decomposes yt into two parts:

yt = Axt + εt, (1)

where {xt} is a r × 1 unobserved factor time series which is assumed to be weakly stationary with finite

first two moments, A is a N ×r unknown constant factor loading matrix, r(≤ N) is the number of factors,
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and {εt} is a white noise with mean 0 and covariance matrix Σε. Note that the decomposition (2.1) always

holds. However it is only useful when r << N , as then the dimension-reduction is achieved in the sense

that the serial correlation of yt is driven by a much lower dimensional process xt.

Model (1) is unchanged if we replace the pair (A, xt) on the right hand side by (AH, H−1xt) for any

invertible H . However the linear space spanned by the columns of A, denoted by M(A) and called the

factor loading space, is uniquely defined by (1). NoteM(A) = M(AH) for any invertible H . Once such

an A is specified, the factor process xt is uniquely defined accordingly. We see the lack of uniqueness

of A as an advantage, as we may choose a particular A which facilitates our estimation in a simple and

convenient manner. On the other hand, we can always rotate an estimated factor loading matrix whenever

appropriate.

To highlight the key idea of our approach, we give a heuristic account on the estimation method now

before introducing it more formally in section 2.4 below. Based on the above discussion, we may choose

A to be a half orthogonal matrix in the sense that A′A = Ir, where Ir is the r × r identity matrix. Let B

be a N × (N − r) matrix for which (A,B) forms a N ×N orthogonal matrix. Hence A′B = 0, i.e. the

columns of A are perpendicular to the columns of B. For simplicity we assume, for the time being, factor

xt and white noise εt are uncorrelated of each other across all lags. (This condition will be relaxed; see

conditions (C) and (D) below.) It follows from (1) that

Σy(k) = AΣx(k)A′, k = 1, 2, · · · ,

where Σy(k) = cov(yt+k, yt) and Σx(k) = cov(xt+k, xt). Hence Σy(k)B = 0, i.e. the columns of B are

the orthonormal eigenvectors of Σy(k) corresponding to the zero eigenvalues. Hence as long as Σy(k) is

full-ranked (see condition (B) below),M(A) is the orthogonal compliment of the linear space spanned by

the eigenvectors of Σy(k) corresponding to the zero eigenvalues. Based on this observation, we introduce

a non-negative definite matrix

L? =
k0∑

k=1

Σy(k)Σy(k)′,

where k0 ≥ 1 is a prescribed integer. Since L?B = 0 and the eigenvectors of L? corresponding to

different eigenvalues are orthogonal of each other, we conclude that the number of factors r is the number

of non-zero eigenvalues of L?, and the columns of A may be taken as the r orthonormal eigenvectors of

L? corresponding to its non-zero eigenvalues. Hence the estimators for both r and A may be obtained

by performing an eigenanalysis for the sample version of L?, which can be easily obtained by replacing

Σy(k) by their sample counterparts.

Taking the sum in the definition of L? enables us to accumulate the information over different lags

together, which is particularly helpful when the sample size is small. However the choice of k0 is not

sensitive for the estimation, as the equation L?B = 0 holds for any k0 ≥ 1. When k0 increases, the added

terms are all non-negative definite matrices. Hence the information from different lags will not cancel off

from each other, which is further confirmed in our simulation study in Example 2 in section 4 below. Note
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that the term with k = 0 should be excluded from the sum in L?, as Σy(0) = AΣx(0)A′ + var(εt) and,

therefore, Σy(0)B 6= 0.

2.2 Regularity conditions

We introduce some notation first. For k ≥ 0, let Σx,ε(k) = cov(xt+k, εt), and

Σ̃x(k) =
1

T − k

T−k∑

t=1

(xt+k − x̄)(xt − x̄)′, Σ̃x,ε(k) =
1

T − k

T−k∑

t=1

(xt+k − x̄)(εt − ε̄)′,

where x̄ = T−1
∑T

t=1 xt, ε̄ = T−1
∑T

t=1 εt. The autocovariance matrices Σε, Σε,x(k), and their sample

versions are defined in a similar manner. Some regularity conditions are now in order. In the following

and thereafter we denote ‖M‖2 the L2 norm of the matrix or vector M . (If M is a matrix, it means the

positive square root of the maximum eigenvalue of MM ′.)

(A) No linear combination of the components of xt is white noise.

(B) For k = 0, 1, · · · , k0, where k0 ≥ 1 is a positive integer, Σx(k) is full-ranked.

(C) For k ≥ 0, each element of Σx,ε(k) or Σε remains bounded as T,N increase to infinity.

(D) The covariance matrix cov(εt, xs) = 0 for all s ≤ t.

(E) The data series {yt} is strictly stationary and ψ-mixing with the mixing coefficients ψ(·) satisfying

the condition that
∑

t≥1 tψ(t)1/2 < ∞. Furthermore E(|yt|4) < ∞ elementwisely.

Assumption (A) is natural, as all the white noise linear combinations of xt should be absorbed into εt. This

ensures that there exists at least one k ≥ 1 for which Σx(k) is full ranked. Assumption (B) strengthens

this statement for all 1 ≤ k ≤ k0, which entails that the non-negative definite matrix L, defined in (4)

below, has r positive eigenvalues. Assumption (D) relaxes independence assumption between {xt} and

{εt} imposed in most factor model literature. It allows future factors to be correlated with past white

noise. Finally, assumption (E) is not the weakest possible. The ψ-mixing condition may be replaced by

the α-mixing condition at the expenses of more lengthy technical argument.

2.3 Factor strength

Since only yt is observable in model (1), how well we can recover the factor xt from yt depends on the

factor ‘strength’ reflected by the coefficients in the factor loading matrix A. For example in case A = 0,

yt carries no information on xt. We now introduce an index δ to measure the strength of the factors. We

always use the notation a ³ b to denote a = OP (b) and b = OP (a).

(F) A = (a1 · · · ar) such that ‖ai‖2
2 ³ N1−δ, i = 1, · · · , r, 0 ≤ δ ≤ 1.

(G) For each i = 1, · · · , r and δ given in (F), minθj ,j 6=i ‖ai −
∑

j 6=i θjaj‖2
2 ³ N1−δ.
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When δ = 0 in assumption (F), the corresponding factors are called strong factors since it includes the

case where each element of ai is O(1), implying that the factors are shared (strongly) by the majority of

the N time series. When δ > 0, the factors are called weak factors. In fact the smaller the δ is, the stronger

the factors are. This definition is different from Chudik et al. (2009) which defined the strength of factors

by the finiteness of the mean absolute values of the component of ai. One advantage of using index δ

is to link the convergence rates of the estimated factors explicitly to the strength of factors. In fact the

convergence is slower in the presence of weak factors. Assumptions (F) and (G) together ensure that all r

factors in the model are of the equal strength δ.

2.4 Estimation

To facilitate our estimation, we use the QR decomposition A = QR to normalize the factor loading matrix,

so that (1) becomes

yt = QRxt + εt = Qft + εt, (2)

where ft = Rxt, and Q′Q = Ir. The pair (Q, ft) in the above model can be replaced by (QU,U ′ft) for

any r × r orthogonal matrix U .

For k ≥ 1, it follows from (2) that

Σy(k) = cov(yt+k, yt) = QΣf (k)Q′ + QΣf,ε(k), (3)

where Σf (k) = cov(ft+k, ft) and Σf,ε(k) = cov(ft+k, εt). For k0 ≥ 1 given in condition (B), define

L =
k0∑

k=1

Σy(k)Σy(k)′ = Q

{ k0∑

k=1

(Σf (k)Q′ + Σf,ε(k))(Σf (k)Q′ + Σf,ε(k))′
}

Q′. (4)

Obviously L is a N × N non-negative definite matrix. Now we are ready to specify the factor loading

matrix Q to be used in our estimation. Apply the spectral decomposition to the positive-definite matrix

sandwiched by Q and Q′ on the right hand side of (4), i.e.

k0∑

k=1

(Σf (k)Q′ + Σf,ε(k))(Σf (k)Q′ + Σf,ε(k))′ = UDU ′,

where U is an r× r orthogonal matrix, and D is a diagonal matrix with the elements on the main diagonal

in descending order. This leads to L = QUDU ′Q′. As U ′Q′QU = Ir, the columns of QU are the

eigenvectors of L corresponding to its r non-zero eigenvalues. We take QU as the Q to be used in our

inference, i.e.

the columns of the factor loading matrix Q are the r orthonormal eigenvectors of the matrix

L corresponding to its r non-zero eigenvalues, and the columns are arranged such that the

corresponding eigenvalues are in the descending order.
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A natural estimator for the Q specified above is defined as Q̂ = (q̂1, · · · , q̂r), where q̂i is the eigenvec-

tor of L̃ corresponding to its i-th largest eigenvalue, q̂1, · · · , q̂r are orthonormal, and

L̃ =
k0∑

k=1

Σ̃y(k)Σ̃y(k)′, Σ̃y(k) =
1

T − k

T−k∑

t=1

(yt+k − ȳ)(yt − ȳ)′, (5)

where ȳ = T−1
∑T

t=1 yt. Consequently, we estimate the factors and the residuals respectively by

f̂t = Q̂′yt, et = yt − Q̂f̂t = (IN − Q̂Q̂′)yt. (6)

With Q̂ and the estimated factor series {f̂t}, we can make an h-step ahead forecast for the yt-series

using the formula ŷ
(h)
T+h = Q̂f̂

(h)
T+h, where f̂

(h)
T+h is an h-step ahead forecast for {ft} based on the esti-

mated past values f̂1, · · · , f̂T . It can be obtained, for example, by fitting a vector-autoregressive model to

{f̂1, · · · , f̂T }.

Due to the random fluctuation in a finite sample, all the eigenvalues of L̃ may not be exactly 0. We

use the ratio-based estimator proposed in Lam and Yao (2011) to determine r. Let λ̂1 ≥ · · · ≥ λ̂N be the

eigenvalues of L̃. The ratio-based estimator for r is defined as

r̂ = arg min1≤j≤Rλ̂j+1/λ̂j , (7)

where r ≤ R < N is an integer. In practice we may take R = N/3 or N/2 for example. Both the

theoretical and empirical properties of this method can be found in Lam and Yao (2011). There is a large

body of literature on the determination of r under various settings. See, for example, Bai and Ng (2002,

2007), Hallin and Liska (2007), Pan and Yao (2008) and Bathia et al. (2010).

3 Asymptotic theory

In this section we present the rates of convergence for the estimators Q̂ for model (2), and also for the

estimated factor Q̂f̂t, when both T and N tend to infinity while r is fixed and known. Note that the factor

decomposition (1) is practically useful only when r ¿ N . It goes without saying explicitly that we may

replace some q̂j by −q̂j in order to match the direction of qj . Denote by ‖M‖min the positive square root

of the minimum eigenvalue of MM ′ or M ′M , whichever is a smaller matrix. For model (2), define

κmin = min
1≤k≤k0

‖Σf,ε(k)‖min, κmax = max
1≤k≤k0

‖Σf,ε(k)‖2.

Both κmax and κmin may be viewed as the measures of the strength of the cross-correlation between the

factor process and the white noise.

Theorem 1 Let assumptions (A) - (G) hold, and the r positive eigenvalues of matrix L, defined in (4), be

distinct. Then,

(i) ‖Q̂−Q‖2 = OP (N δT−1/2) provided κmax = o(N1−δ), N δT−1/2 = o(1), and

(ii) ‖Q̂−Q‖2 = OP (κ−2
minκmaxNT−1/2) provided N1−δ = o(κmin), κ−2

minκmaxNT−1/2 = o(1).
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When all the factors are strong (i.e. δ = 0), Theorem 1(i) reduces to ‖Q̂−Q‖2 = OP (T−1/2) provided

κmax/N → 0. The standard root-T rate might look too good to be true, as the dimension N goes to infinity

together with the sample size T . But this is the case when ‘blessing of dimensionality’ is at its clearest.

The strong factors pool together the information from most, if not all, of the original N component series.

When N increases, the curse of dimensionality is offset by the increase of the information from more

component series. The condition κmax/N → 0 is mild. It implies that the linear dependence between

the factors and the white noise is not too strong to distort the information on the serial dependence of the

factors.

When δ > 0, the rate of convergence in Theorem 1(i) depends on N . It is also clear that the stronger

the factors are, the faster the convergence rate is. The condition κmax = o(N1−δ) ensures that the first

term in matrix Σf (k)Q′ + Σf,ε(k) is the dominating part; see (4).

When N1−δ = o(κmin), representing the cases that there are strong cross-correlations between the

factors and the white noise, the second term in Σf (k)Q′ + Σf,ε(k) dominates, and the conclusion of

Theorem 1(ii) applies. The convergence rate, however, is not necessarily slower in estimating Q. For

instance, when κmax ³ N1−δ/2 ³ κmin (see Lemma 1 in section 6 below), ‖Q̂−Q‖2 = OP (N δ/2T−1/2).

This convergence rate is even faster than the rate N δT−1/2. This is not surprising, as we assume that r

is known and we estimate Q by extracting the information on the autocorrelation of the data, including

the cross-autocorrelation between {ft} and {εt}. See the definition of L in (4). However, this may create

difficulties for estimating r; see the relevant asymptotic results in Lam and Yao (2011).

Remark 1. (i) The assumption that all the non-zero eigenvalues of L are different is not essential, and

is merely introduced to simplify the presentation in the sense that Theorem 1 now can deal with the

convergence of the estimator for Q directly. Otherwise a discrepancy measure for two linear spaces has to

be introduced in order to make statements on the convergence rate of the estimator for the factor loading

space M(A); see Pan and Yao (2008).

(ii) Theorem 1 can be extended to the cases when the factor xt in model (1) is non-stationary, provided

that a generalized sample (auto)covariance matrix

T−α
T−k∑

t=1

(xt+k − x̄)(xt − x̄)′

converges weakly, where α > 1 is a constant. This weak convergence has been established when, for

example, {xt} is an integrated process of order 2 by Peña and Poncela (2006). It can also be proved for

other processes with linear trends, random walk or long memories. In this paper we do not pursue further

in this direction.

Some conditions in Theorem 1 may be too restrictive. For instance when N ³ T , Theorem 1(i)

requires δ < 1/2. This rules out the cases in the presence of weaker factors with δ ≥ 1/2. The convergence

rates in Theorem 1 are also not optimal. They can be further improved under additional assumptions

on εt as follows. In particular, both assumptions (H) and (I) are fulfilled when εt are independent and

N(0, σ2IN ). See also Péché (2009).
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(H) Let εjt denote the j-th component of εt. Then εjt are independent for different t and j, and have

mean 0 and common variance σ2 < ∞.

(I) The distribution of each εjt is symmetric. Furthermore E(ε2k+1
jt ) = 0, and E(ε2k

jt ) ≤ (τk)k for all

1 ≤ j ≤ N and t, k ≥ 1, where τ > 0 is a constant independent of j, t, k.

Theorem 2 In addition to the assumptions of Theorem 1, we assume (H) and (I). If T = O(N), then

(i) ‖Q̂−Q‖2 = OP (N δ/2T−1/2) provided N δ/2T−1/2 = o(1), κmax = o(N1−δ), and

(ii) ‖Q̂ − Q‖2 = OP (κ−2
minκmaxN

1−δ/2T−1/2) provided κ−2
minκmaxN

1−δ/2T−1/2 = o(1), N1−δ =

o(κmin).

By comparing with Theorem 1, the rates provided in Theorem 2 are improved by a factor N−δ/2. This

also relaxes the condition on the strength of the factors. For instance, when N ³ T , Theorem 2(i) only

requires δ < 1 while Theorem 2(i) requires δ < 1/2.

Theorem 3 If all the eigenvalues of Σε are uniformly bounded from infinity (as N →∞), it holds that

N−1/2‖Q̂f̂t −Axt‖2 = N−1/2‖Q̂f̂t −Qft‖2 = OP (N−δ/2‖Q̂−Q‖2 + N−1/2). (8)

Theorem 3 specifies the convergence rate for the estimated factors. When all factors are strong (i.e. δ = 0),

both Theorems 1 and 2 imply ‖Q̂−Q‖2 = OP (T−1/2). Now it follows Theorem 3 that

N−1/2‖Q̂f̂t −Axt‖2 = OP (T−1/2 + N−1/2). (9)

This is the optimal convergence rate specified in Theorem 3 of Bai (2003). This optimal rate is still

attained when the factors are weaker (i.e. δ > 0) but the white noise fulfils assumptions (H) and (I), as

then Theorem 2(i) implies ‖Q̂−Q‖2 = OP (N δ/2T−1/2). Plugging this into the right hand side of (8), we

obtain (9).

4 Simulation

Example 1. We start with a simple one factor model yt = Axt + εt, where εtj are independent N(0, 4)

random variables, A is a N × 1 vector with 2 cos(2πi/N) as its i-th element, the factor is defined as

xt = 0.9xt−1 + ηt, and ηt are independent N(0, 4) random variables. Hence we have a strong factor

for this model with δ = 0. We set T = 200, 500 and N = 20, 180, 400, 1000. We set k0 = 5 in (5).

(The results with k0 = 1, 2, 3, 4 are similar, and are not presented to save the space.) For each (T, N)

combination, we generate from the model 50 samples and calculate the estimation errors. The results are

listed in table 1 below. It indicates clearly that the estimation error in L2 norm for Q̂ is independent of N ,

as shown in Theorem 1(i) with δ = 0.

Example 2. We consider a model of the form (1), with moving average factors xt = (x1,t, x2,t, x3,t)′

defined by

x1,t = wt, x2,t = wt−1, x3,t = wt−2,
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‖Q̂−Q‖2 T = 200 T = 500

N = 20 22(5) 14(3)

N = 180 23(4) 14(2)

N = 400 22(4) 14(2)

N = 1000 23(4) 14(2)

Table 1: Means and standard errors (in brackets) of ‖Q̂ − Q‖2 for Example 1. The values presented are

the true values multiplied by 1000.

where wt = 0.2zt−1 + zt, and zt are independent N(0, 1) random variables. Hence the true number of

dynamic factors is q = 1 in the GDFM context, and the number of factors is r = 3 for our model. Each

column of the factor loading matrix A has the first N/2 elements generated randomly from the U(−2, 2)

distribution; the rest are set to zero. This increases the difficulty in detecting the signals from the factors.

We consider two scenarios for noise εt. In Scenario I, εt ∼ N(0, I). In Scenario II, εt are independent

N(0,Σε) random vectors, where the (i, j)-th element of Σε is defined as

σij =
1
2
{(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H}, (10)

and H = 0.9 is the Hurst parameter.

Setting T = 100, 200 and N = 100, 200, 400, we compare the performance of our estimators with

the principal components method of Bai and Ng (2002), and both the one and two-sided GDFM (see Forni

et al. (2000) and Forni et al. (2005)). We report the results with k0 = 1 and k0 = 5 in the definition of L̃

in (5). The number of dynamic factors for both of the GDFM is determined by the method of Hallin and

Liska (2007). For the principal components method, the number of factors is determined by the BIC-type

criterion of Bai and Ng (2002), defined by

r̂ = arg min
k

{
log

(
N−1T−1

N∑

j=1

‖ε̂j‖2
2

)
+ k

(
N + T

NT

)
log

(
NT

N + T

)}
. (11)

For our model, the number of factors is estimated by the ratio-based method of (7).

For each combination of (T, N), we replicate the simulation 100 times, and calculate the mean and the

standard deviation of the root-mean-square error (RMSE):

RMSE =
(∑T

t=1 ‖Q̂f̂t −Qft‖2
2

NT

)1/2

.

For our method and the principal components method of Bai and Ng (2002), we also use ŷ
(1)
T = Q̂f̂

(1)
T

to forecast the factor Qft, where f̂
(1)
T is the one-step predictor for fT derived from a fitted AR(4) model

based on f̂1, · · · , f̂T−1. They are then compared with the one-step ahead forecast for the one-sided GDFM.

For all three methods, we calculate the mean and standard deviation of the forecast error (FE):

FE = N−1/2‖ŷ(1)
T − yT ‖2.
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(I): εt ∼ N(0, I) GDFM Principal Our method

2 sided 1 sided components k0 = 1 k0 = 5

RMSE RMSE FE RMSE FE RMSE FE RMSE

(T, N) = (100, 100) 371(12) 269(8) 123(26) 267(7) 124(27) 268(7) 124(27) 268(7)

(T, N) = (200, 100) 309(7) 226(6) 122(25) 224(6) 122(24) 225(6) 122(24) 225(6)

(T, N) = (200, 400) 284(5) 167(3) 121(22) 166(3) 121(22) 167(3) 121(22) 167(3)

(II): εt ∼ N(0, Σε)

(T, N) = (100, 100) 762(98) 735(172) 137(36) 508(182) 134(40) 509(178) 134(40) 506(183)

(T, N) = (200, 100) 740(80) 685(214) 140(39) 441(165) 132(35) 444(170) 132(35) 444(169)

(T, N) = (200, 400) 531(60) 297(109) 128(34) 222(51) 126(35) 222(51) 126(34) 223(52)

Table 2: Means and standard deviations (in brackets) of estimation and forecast errors for the moving

average model of example 2. True number of factors q = 1, r = 3 are used throughout. Upper table:

εt ∼ N(0, I). Lower table: εt ∼ N(0, Σε). The RMSE and their respective standard deviations reported

are actual values multiplied by 1000, while the FE and their respective standard deviations reported are

actual values multiplied by 100.

From table 2, it is clear that the two-sided GDFM performs worse than the one-sided one in general, and

has the worst performance in RMSE among all methods. Under scenario (I) (the upper table), our method,

the principal components one and the one-sided GDFM all perform very similarly in terms of RMSE and FE.

Moreover, we have estimated the number of factors under scenario (I) using the three different methods

described earlier. We obtain consistently that q̂ = 1 for the number of dynamic factors for the GDFM, and

r̂ = 3 for the other two methods. Hence the results are identical to that in table 2 under scenario (I) when

the number of factors is estimated.

Under scenario (II), however, the one-sided GDFM performs worse than our method in terms of RMSE.

It is expected since the GDFM requires weak cross-correlations in the noise in their theories, while our

method do not. The principal components method has similar performance to our method in both scenarios,

showing that when the number of factors is given, it is less sensitive to strong cross-correlations in the noise

than both the one and two-sided gdfm do.

It is also clear from the table that the results are almost identical for k0 = 1 and k0 = 5 for our method

in terms of RMSE, and not shown here they are also almost identical to the results when k0 = 2, 3, 4. Same

goes for the FE, therefore it is not shown in the table. Hence our method is not sensitive to the choice of

k0 when RMSE and FE are concerned.

Table 3 reports the results under Scenario II when the number of factors is estimated. It is clear that it

is overestimated consistently by all methods, although our ratio-based method (7) overestimates the true

value by merely 1. This is not necessarily disadvantageous in terms of forecasting, as the results for all the

methods actually slightly outperform the corresponding simulation results in table 2 in terms of FE (with

the exception of one-sided GDFM when (T,N) = (200, 400)). Our method outperforms all others in terms

of RMSE and FE. The two-sided GDFM now exhibits a better performance than the one-sided counterpart

and the principal components method in terms of RMSE. Note that under the setting (10) the strong cross-
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(II): εt ∼ N(0, Σε) GDFM (q̂ = 2, r = 3) Principal Our method

2 sided 1 sided components k0 = 1

RMSE RMSE FE r̂ RMSE FE r̂ RMSE FE

T = 100, N = 100 690(36) 857(53) 129(30) 7(7) 770(37) 123(29) 4(0) 670(39) 116(29)

N = 200 629(33) 824(60) 137(34) 7(6) 716(34) 132(39) 4(0) 624(36) 127(37)

N = 400 607(36) 740(128) 142(34) 6(6) 667(39) 138(41) 4(0) 584(43) 133(37)

T = 200, N = 100 675(31) 836(46) 130(32) 8(7) 770(32) 121(34) 4(0) 654(35) 117(33)

N = 200 632(30) 820(43) 135(38) 8(6) 730(26) 127(39) 4(0) 613(28) 123(35)

N = 400 582(30) 708(137) 132(36) 8(7) 684(24) 125(33) 4(0) 571(24) 122(32)

Table 3: Means and standard deviations (in brackets) of estimation and forecast errors for the moving

average model of example 2 under scenario (II). Number of dynamic factors for GDFM is estimated to be

q̂ = 2 throughout. For one-sided GDFM we used r = 3 throughout. The standard deviations for the number

of factors are actual values multiplied by 10. The RMSE and their respective standard deviations reported

are actual values multiplied by 1000, while the FE and their respective standard deviations reported are

actual values multiplied by 100.

sectional dependence among the components of εt violates the assumptions of Forni et al. (2000), Forni

et al. (2005), and Bai and Ng (2002). However it is permitted in our model.

5 A Real Data Example: Implied Volatility Surfaces

5.1 The data, and method of estimation

We illustrate our method by modeling the dynamic behavior of IBM, Microsoft and Dell implied volatility

surfaces through the period 03/01/2006 − 29/12/2006 (250 days in total). The data was obtained from

OptionMetrics via the WRDS database. For each day t we observe the implied volatility Wt(ui, vj) com-

puted from call options. Here ui is the time to maturity, taking values 30, 60, 91, 122, 152, 182, 273, 365,

547 and 730 for i = 1, · · · , 10 respectively, and vj is the delta, taking values 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, and 0.8 for j = 1, · · · , 13 respectively. We collect these implied volatilities

as Wt = {Wt(ui, vi)} ∈ R10×13 = R130 for t = 0, 1, · · · , 249. Figure 1 displays the mean volatility

surface of IBM, Microsoft and Dell in this period. It shows clearly that the implied volatilities surfaces

are not flat. Indeed any cross-sections in the maturity or delta axis display the well documented volatility

smile. It is a well documented stylized fact that implied volatilities are unit-root non-stationary (see, e.g.

Fengler et al. (2007)). Therefore, we choose to work with the differences yt = Wt − Wt−1 ∈ R130,

t = 1, · · · , 249.

We perform the factor modeling on each of the 150 rolling windows each of length 100 days, defined

from the i-th day to the (i + 99)-th day for i = 1, · · · , 150. For each window, we applied the three

methods: the method proposed in section 2.4, the principal components method of Bai and Ng (2002),

and the one-sided GDFM of Forni et al. (2005). The BIC (11) is applied to estimate r for the principal
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Figure 1: Mean implied volatility surfaces over all trading days of year 2006.

components method, and the ratio-based estimator r̂ in 7 is used for estimating r for our method.

For the i-th window, we use an autoregressive model to forecast the (i+100)-th value of the estimated

factor series x
(1)
i+100, so as to obtain a one-step ahead forecast y

(1)
i+100 = Âx

(1)
i+100 for yi+100. We also

compare with the one-step ahead forecast using the one-sided GDFM. For comparison, we calculate the

forecast error for the (i + 100)-th day for each method, defined by

FE = N−1/2‖y(1)
i+100 − yi+100‖2.

5.2 Estimation results

In forming the matrix L̃ for each window, we take k0 = 5 in (5) , though similar results (not reported here)

are obtained for smaller k0. This is consistent with our simulation results that estimation is not sensitive

to the choice of k0.
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Figure 2: Left: Averages of ordered eigenvalues of L̃ over the 150 windows, with the left panel showing

the ten largest, and the right panel showing the second to eleventh largest. Right: Plot of the cumulative

RMSE for Dell.
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After performing the factor model estimation for a 100-days window (150 windows in total), we order

the N = 130 eigenvalues obtained. For these 150 sets of ordered eigenvalues, we calculate the average

of the largest eigenvalue across the windows, the average of the second largest and so on. The left panel

of figure 2 displays these averages in descending order. The left hand side shows the the largest to the

tenth largest for Dell, IBM and Microsoft for our method, whereas the right hand side shows the second to

eleventh largest. We obtain similar results for the principal components method of Bai and Ng (2002) and

thus the corresponding figure is not shown.

From this figure it is apparent that there is one eigenvalue that is much larger than the others for all

three companies for each window. In fact, r̂ = 1 is consistently found by both the BIC method in 11 and

the ratio-based estimator in 7 for each window and for each company. Hence both methods choose a one

factor model over the 150 windows.
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Figure 3: Plot of accumulated return over time for the trading exercise in section 5.3. Left: Microsoft.

Right: IBM. For our method k0 = 5 is used.

The right panel of figure 2 displays the cumulative FE over the 150 windows for each method for

Dell. We choose a benchmark procedure, where we just treat today’s value as the one-step ahead forecast.

Our method, the principal components one and the one-sided GDFM with one factor all performed very

similarly, while the benchmark procedure has a worse performance. This is similar for microsoft and IBM

and so the respective figures are omitted. When the number of factors for the one sided GDFM is chosen to

be 2 or 3, the performance is much worse (not shown in the figure), which lends further support that a one

factor model is appropriate for all the 150 windows for each company.
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5.3 A simple trading exercise

We use the one-step ahead forecast above to forecast the next day return of the three stocks. Not shown

here, we have plotted the return against the estimated factor, for all three companies and for all three

methods compared above. Simple linear regression suggests that the slope of the regression lines for the

three methods are all significant. Hence we can plug in the one-step ahead forecast of the factor into the

estimated linear function to estimate the next day return. All other windows for the three companies show

linear pattern with similar plots, and hence we can do this for all the 150 windows.

After forecasting the return of the (t + 1)-th day, if it is higher than that of the t-th day, we buy $1;

otherwise, we sell $1. Ignoring all trading costs, the accumulated return is calculated at the end of the

whole time period. This is done for all three methods compared above. For the benchmark procedure, we

calculated the average of the price of a stock for the past 5 days, and compare that to the price today. If the

average is higher than the price today, we sell $1; otherwise we buy $1.

Our method outperforms the other two by a large margin for IBM, and slightly outperforms the princi-

pal components method for Microsoft, as shown in figure 3. For Dell (not shown) the principal components

method outperforms slightly. However the one-sided GDFM always performs the worst for all three com-

panies.

Appendix: Proofs

We introduce three technical lemmas first.

Lemma 1 Under model (2) with assumptions (A) - (G) in sections 2.1 and 2.3, we have

‖Σf (k)‖2 ³ N1−δ ³ ‖Σf (k)‖min, ‖Σf,ε(k)‖2 = O(N1−δ/2).

Proof. Model (2) is an equivalent representation of model (1), where

yt = Axt + εt = Qft + εt,

with A = QR and ft = Rxt. With assumptions (F) and (G), the diagonal entries of R are all asymptotic

to N
1−δ
2 (which is the order of ‖ai‖2), and the off-diagonal entries are of smaller order. Hence, as r is a

constant, using

‖R‖2 = max
‖u‖2=1

‖Ru‖2, ‖R‖min = min
‖u‖2=1

‖Ru‖2,

we can conclude that

‖R‖2 ³ N
1−δ
2 ³ ‖R‖min.

This, together with Σf (k) = cov(ft+k, ft) = cov(Rxt+k, Rxt) = RΣx(k)R′ for k = 1, · · · , k0, implies

N1−δ ³ ‖R‖2
min × ‖Σx(k)‖min ≤ ‖Σf (k)‖min ≤ ‖Σf (k)‖2 ≤ ‖R‖2

2 × ‖Σx(k)‖2 ³ N1−δ,
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where we used assumption (B) to arrive at ‖Σx(k)‖2 ³ 1 ³ ‖Σx(k)‖min, so that

‖Σf (k)‖2 ³ N1−δ ³ ‖Σf (k)‖min.

We used the inequality ‖AB‖min ≥ ‖A‖min · ‖B‖min for any square matrices A and B, which can be

proved by noting

‖AB‖min = min
u6=0

u′B′A′ABu

‖u‖2
2

≥ min
u6=0

(Bu)′A′A(Bu)
‖Bu‖2

2

× ‖Bu‖2
2

‖u‖2
2

≥ min
w 6=0

w′A′Aw

‖w‖2
2

×min
u6=0

‖Bu‖2
2

‖u‖2
2

= ‖A‖min · ‖B‖min. (12)

Finally, using assumption (C) that Σx,ε(k) = O(1) elementwisely, and that it has rN ³ N elements,

we have

‖Σf,ε(k)‖2 = ‖RΣx,ε(k)‖2 ≤ ‖R‖2 × ‖Σx,ε(k)‖F = O(N
1−δ
2 )×O(N1/2) = O(N1−δ/2),

where ‖M‖F = trace(MM ′) denotes the Frobenius norm of the matrix M . ¤

Lemma 2 Under model (2) and assumption (E) in section 2.1, we have for 0 ≤ k ≤ k0,

‖Σ̃f (k)− Σf (k)‖2 = OP (N1−δT−1/2), ‖Σ̃ε(k)− Σε(k)‖2 = OP (NT−1/2),

‖Σ̃f,ε(k)− Σf,ε(k)‖2 = OP (N1−δ/2T−1/2) = ‖Σ̃ε,f (k)− Σε,f (k)‖2,

Moreover, ‖ft‖2
2 = OP (N1−δ) for all integers t ≥ 0.

Proof. From (1) and (2), we have the relation ft = Rxt, where R is an upper triangular matrix with

‖R‖2 ³ N
1−δ
2 ³ ‖R‖min (see the proof of Lemma 1). Then we immediately have ‖ft‖2

2 ≤ ‖R‖2
2 ×

‖xt‖2
2 = OP (N1−δr) = OP (N1−δ).

Also, the covariance matrix and the sample covariance matrix for {ft} are respectively

Σf (k) = RΣx(k)R′, Σ̃f (k) = RΣ̃x(k)R′.

Hence

‖Σ̃f (k)− Σf (k)‖2 ≤ ‖R‖2
2‖Σ̃x(k)− Σx(k)‖2 = O(N1−δ) ·OP (T−1/2) = OP (N1−δT−1/2),

which is the rate specified in the lemma. We used the fact that the matrix Σ̃x(k)−Σx(k) has r2 elements,

with elementwise rate of convergence being O(T−1/2) which is implied by assumption (E) and that {εt}
is white noise. Other rates can be derived similarly using the Frobenius norm as an upper bound. ¤

The following is Theorem 8.1.10 in Golub and Van Loan (1996), which is stated explicitly since our

main theorems are based on this. See Johnstone and Arthur (2009) also.
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Lemma 3 Suppose A and A + E are n× n symmetric matrices and that

Q = [Q1 Q2] (Q1 is n× r, Q2 is n× (n− r))

is an orthogonal matrix such that span(Q1) is an invariant subspace for A (that is, A· span(Q1) ⊂ span(A)).

Partition the matrices Q′AQ and Q′EQ as follows:

Q′AQ =

(
D1 0

0 D2

)
Q′EQ =

(
E11 E′

21

E21 E22

)
.

If sep(D1, D2) = minλ∈λ(D1), µ∈λ(D2) |λ − µ| > 0, where λ(M) denotes the set of eigenvalues of the

matrix M , and ‖E‖2 ≤ sep(D1, D2)/5, then there exists a matrix P ∈ R(n−r)×r with

‖P‖2 ≤ 4
sep(D1, D2)

‖E21‖2

such that the columns of Q̂1 = (Q1 + Q2P )(I + P ′P )−1/2 define an orthonormal basis for a subspace

that is invariant for A + E.

In the proofs thereafter, we use ⊗ to denote the Kronecker product of matrices, and σj(M) to denote

the j-th singular value of the matrix M . Hence σ1(M) = ‖M‖2. We use λj(M) to denote the j-th largest

eigenvalue of M .

Proof of Theorem 1. Under model (2), we have shown in section 2.4 that we have LQU = QUD.

Since U is an orthogonal matrix, we have

yt = Qft + εt = (QU)(U ′ft) + εt,

so that we can replace QU with Q and U ′ft with ft in the model, thus making LQ = QD, where now D

is diagonal with

D =
k0∑

k=1

{Σf (k)Q′ + Σf,ε(k)}{Σf (k)Q′ + Σf,ε(k)}′.

If B is an orthogonal complement of Q, then LB = 0, and
(

Q′

B′

)
L(Q B) =

(
D 0

0 0

)
, (13)

with sep(D, 0) = λmin(D) (see Lemma 3 for the definition of the function sep). We now find the order of

λmin(D).

To this end, define

Wf (k0) = (Σf (1), · · · , Σf (k0)), Wf,ε(k0) = (Σf,ε(1), · · · , Σf,ε(k0)),

so that we have D = (Wf (k0)(Ik0 ⊗Q′) + Wf,ε(k0))(Wf (k0)(Ik0 ⊗Q′) + Wf,ε(k0))′. Hence, assuming

first that κmax = o(N1−δ), we have

λmin(D) = {σr(Wf (k0)(Ik0 ⊗Q′) + Wf,ε(k0))}2 ≥ {σr(Wf (k0)(Ik0 ⊗Q′))− σ1(Wf,ε(k0))}2

= {σr(Wf (k0))− σ1(Wf,ε(k0))}2 ³ σr(Wf (k0))2 ³ N2−2δ,
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where we use ‖Σf (k)‖min ³ N1−δ from Lemma 1. On the other hand, if N1−δ = o(κmin), then we have

λmin(D) ≥ {σr(Wf,ε(k0))− σ1(Wf (k0)(Ik0 ⊗Q′))}2

= {σr(Wf,ε(k0))− σ1(Wf (k0))}2 ³ σr(Wf,ε(k0))2 ³ κ2
min.

Hence we have

max(κ2
min, N

2−2δ) = O(λmin(D)). (14)

Next, we need to find ‖EL‖2, where we define EL = L̃− L, with L̃ defined in (5). Then it is easy to

see that

‖EL‖2 ≤
k0∑

k=1

{
‖Σ̃y(k)− Σy(k)‖2

2 + 2‖Σy(k)‖2 × ‖Σ̃y(k)− Σy(k)‖2

}
. (15)

Consider for k ≥ 1, using the results from Lemma 1,

‖Σy(k)‖2 = ‖QΣf (k)Q′ + QΣf,ε(k)‖2 ≤ ‖Σf (k)‖2 + ‖Σf,ε(k)‖2 = O(N1−δ + κmax). (16)

Also, for k = 1, · · · , k0, using the results in Lemma 2,

‖Σ̃y(k)− Σy(k)‖2 ≤ ‖Σ̃f (k)− Σf (k)‖2 + 2‖Σ̃f,ε(k)− Σf,ε(k)‖2 + ‖Σ̃ε(k)‖2

=OP (N1−δT−1/2 + N1−δ/2T−1/2 + ‖Σ̃ε(k)‖2) = OP (N1−δ/2T−1/2 + ‖Σ̃ε(k)‖2).
(17)

Without further assumptions on {εt}, we have ‖Σ̃ε(k)‖2 ≤ ‖Σ̃ε(k)‖F = OP (NT−1/2), which implies

from (17) that

‖Σ̃y(k)− Σy(k)‖2 = OP (NT−1/2). (18)

With (16) and (18), we can easily see from (15) that

‖EL‖2 = OP (N2−δT−1/2 + κmaxNT−1/2). (19)

Finally, no matter κmax = o(N1−δ) or N1−δ = o(κmin), we have from (19) and (14) that

‖EL‖2 = OP (N2−δT−1/2 + κmaxNT−1/2) = oP (max(N2−2δ, κ2
min))

= OP (λmin(D)) = OP (sep(D, 0)),

since we assumed hT = N δT−1/2 = o(1) in the former case, or κ−2
minκmaxNT−1/2 = o(1) in the latter.

Hence for sufficient large T , we have ‖EL‖2 ≤ sep(D, 0)/5. This allows us to apply Lemma 3 to conclude

that there exists a matrix P ∈ R(p−r)×r such that

‖P‖2 ≤ 4
sep(D, 0)

‖(EL)21‖2 ≤ 4
sep(D, 0)

‖EL‖2,

and Q̂ = (Q + BP )(I + P ′P )−1/2 is an estimator for Q. Then we have

‖Q̂−Q‖2 = ‖(Q(I − (I + P ′P )1/2) + BP )(I + P ′P )−1/2‖2

≤ ‖I − (I + P ′P )1/2‖2 + ‖P‖2 ≤ 2‖P‖2,
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and using (14) and (19),

‖P‖2 = OP

(
N2−δT−1/2 + κmaxNT−1/2

max(κ2
min, N

2−2δ)

)
=

{
OP (N δT−1/2), if κmax = o(N1−δ);

OP (κ−2
minκmaxNT−1/2), if N1−δ = o(κmin).

This completes the proof of the theorem. ¤
Proof of Theorem 2. Under assumptions (H) and (I), if we can show that

‖Σ̃ε(k)‖2 = OP (NT−1), (20)

then (17) becomes

‖Σ̃y(k)− Σy(k)‖2 = OP (N1−δ/2T−1/2 + NT−1) = OP (N1−δ/2T−1/2),

where we use the assumption N δ/2T−1/2 = o(1). This rate is smaller than that in (18) by a factor of N δ/2,

which carries to other parts of the proof of Theorem 1, so that the final rates are all smaller by a factor of

N δ/2. Hence, it remains to show (20).

To this end, define 1k the column vector of k ones, and

Er,s = (εr, · · · , εs) for r ≤ s.

Since the asymptotic behavior of the three sample means

ε̄ = T−1E1,T 1T , (T − k)−1E1,T−k1T−k, (T − k)−1Ek+1,T 1T−k

are exactly the same as k is finite and {εt} is stationary, in this proof we take the sample lag-k autocovari-

ance matrix for {εt} to be

Σ̃ε(k) = T−1(Ek+1,T − (T − k)−1Ek+1,T 1T−k1′T−k)(E1,T−k − (T − k)−1E1,T−k1T−k1′T−k))
′

= T−1Ek+1,T KT−kE
′
1,T−k,

where Kj = Ij − j−11j1′j . Then under conditions (H) and (I),

‖Σ̃ε(k)‖2 ≤ ‖T−1/2Ek+1,T ‖2 × ‖KT−k‖2 × ‖T−1/2E1,T−k‖2

= λ
1/2
1 (T−1E′

k+1,T Ek+1,T )× λ
1/2
1 (T−1E′

1,T−kE1,T−k)

= OP ((1 + (NT−1)1/2)× (1 + (NT−1)1/2)) = OP (NT−1),

where the second last line follows from Theorem 1.3 of Péché (2009) for the covariance matrices T−1E′
k+1,T Ek+1,T

and T−1E′
1,T−kE1,T−k, and the last line follows from the assumption T = O(N). This completes the

proof of the theorem. ¤
Proof of Theorem 3. Consider

Q̂f̂t −Qft = Q̂Q̂′yt −Qft = Q̂Q̂′Qft −Qft + Q̂Q̂′εt = K1 + K2 + K3,
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where K1 = (Q̂Q̂′ −QQ′)Qft, K2 = Q̂(Q̂−Q)′εt and K3 = Q̂Q′εt. Using Lemma 2, we have

‖K1‖2 = OP (‖Q̂−Q‖2 · ‖ft‖2) = OP (N
1−δ
2 ‖Q̂−Q‖2).

Also, since ‖Q̂−Q‖2 = oP (1) and ‖Q‖2 = 1, we have ‖K2‖2 dominated by ‖K3‖2 in probability. Hence

we only need to consider K3. Now consider for Q = (q1, · · · , qr), the random variable q′jεt, with

E(q′jεt) = 0, var(q′jεt) = q′jΣεqj ≤ λmax(Σε) < c < ∞

for j = 1, · · · , r by assumption, where c is a constant independent of T and r. Hence q′jεt = OP (1). We

then have

‖K3‖2 = ‖Q̂Q′εt‖2 ≤ ‖Q′εt‖2 =
r∑

j=1

(q′jεt)2 = OP (1).

Hence N−1/2‖Q̂f̂t−Qft‖2 = OP (N−δ/2‖Q̂−Q‖2+N−1/2), which completes the proof of the theorem.

¤

References

Anderson, T. (1963). The use of factor analysis in the statistical analysis of multiple time series. Psy-

chometrika 28, 1–25.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135–171.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Economet-

rica 70, 191–221.

Bai, J. and S. Ng (2007). Determining the number of primitive shocks in factor models. Journal of Business

& Economic Statistics 25, 52–60.

Bathia, N., Q. Yao, and F. Zieglemann (2010). Identifying the finite dimensionality of curve time series.

Ann. Statist. 38, 3352–3386.

Brillinger, D. (1981). Time Series Data Analysis and Theory (Extended ed.). San Francisco: Holden-Day.

Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models. Econometrica 51,

1305–1323.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure, and mean-variance analysis on

large asset markets. Econometrica 51, 1281–1304.

Chudik, A., M. H. Pesaran, and E. Tosetti (2009). Weak and strong cross section dependence and estima-

tion of large panels. Manuscript.

19



Fengler, M., W. Hardle, and E. Mammen (2007). A dynamic semiparametric factor model for implied

volatility string dynamics. Journal of Econometrics 5, 189–218.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000). The generalized dynamic-factor model: identifi-

cation and estimation. The Review of Economics and Statist. 82, 540–554.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2004). The generalized dynamic-factor model: consis-

tency and rates. J. of Econometrics 119, 231–255.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2005). The generalized dynamic factor model: One-sided

estimation and forecasting. J. Amer. Statist. Assoc. 100, 830–840.

Golub, G. and C. Van Loan (1996). Matrix Computations (3rd ed.). Johns Hopkins University Press.

Hallin, M. and R. Liska (2007). Determining the number of factors in the general dynamic factor model.

J. Amer. Statist. Assoc. 102, 603–617.

Johnstone, I. and Y. Arthur (2009). On consistency and sparsity for principal components analysis in high

dimensions. J. Amer. Statist. Assoc. 104, 682–693.

Lam, C. and Q. Yao (2011). Factor modelling for high dimensional time series: a dimension-reduction

approach. Manuscript.

Pan, J. and Q. Yao (2008). Modelling multiple time series via common factors. Biometrika 95, 365–379.

Peña, D. and G. Box (1987). Identifying a simplifying structure in time series. J. Amer. Statist. Assoc. 82,

836–843.

Peña, D. and P. Poncela (2006). Nonstationay dynamic factor analysis. Journal of Statistical Planning and

Inference 136, 1237–1257.
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