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Matching a Distribution by Matching
Quantiles Estimation

Nikolaos SGOUROPOULOS, Qiwei YAO, and Claudia YASTREMIZ

Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles
estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative
procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a
LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part
of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO,
are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are
illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed
MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO.

KEY WORDS: Goodness-of-match; LASSO; Ordinary least-squares estimation; Portfolio tracking; Representative portfolio; Sample
quantile.

1. INTRODUCTION

Basel III is a global regulatory standard on bank capital ad-
equacy, stress testing and market liquidity risk put forward by
the Basel Committee on Banking Supervision in 2010–2011, in
response to the deficiencies in risk management revealed by the
late-2000s financial crisis. One of the mandated requirements
under Basel III is an extension of the backtesting of internal
counterparty credit risk (CCR) models. Backtesting tests the
performance of CCR measurement, to determine the need for
recalibration of the simulation and/or pricing models and read-
justment of capital charges. Since the number of the trades
between two major banks could easily be in the order of tens
of thousands or more, Basel III allows banks to backtest rep-
resentative portfolios for each counterparty, which consist of
subsets of the trades. However, the selected representative port-
folios should represent the various characteristics of the total
counterparty portfolio including risk exposures, sensitivity to
the risk factors, etc. We propose in this article a new method for
constructing such a representative portfolio. The basic idea is to
match the distribution of total counterparty portfolio by that of
a selected portfolio. However, we do not match the two distri-
bution functions directly. Instead we choose the representative
portfolio to minimize the mean squared difference between the
quantiles of the two distributions across all levels. This leads
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to the matching quantiles estimation (MQE) for the purpose
of matching a target distribution. To the best of our knowledge,
MQE has not been used in this particular context, though the idea
of matching quantiles has been explored in other contexts; see,
for example, Karian and Dudewicz (1999), Small and McLeish
(1994), and Dominicy and Veredas (2013). Furthermore, our in-
ference procedure is different from those in the aforementioned
papers due to the different nature of our problem.

Formally, the proposed MQE bears some similarities to the
ordinary least squares estimation (OLS) for regression models.
However, the fundamental difference is that MQE is for match-
ing (unconditional) distribution functions, while OLS is for esti-
mating conditional mean functions. Unlike OLS, MQE seldom
admits an explicit expression. We propose an iterative algorithm
applying least-squares estimation repeatedly to the recursively
sorted data. We show that the algorithm converges as the mean
squared difference of the two-sample quantiles decreases mono-
tonically. Some asymptotic properties of MQE are established
based on the Bahadur-Kiefer bounds for the empirical quantile
processes.

MQE method facilitates some variations naturally. First, it
can be performed by matching the quantiles between levels α1

and α2 only, where 0 ≤ α1 < α2 ≤ 1. The resulting estimator
matches only a part of the target distribution. This could be
attractive if we are only interested in mimicking, for example,
the behavior at the lower end of the target distribution. Second,
MQE can also be performed with a LASSO-penalty, leading
to a sparser representation. Though MQE was motivated by
the problem of estimating representative portfolios, its potential
usefulness is wider. We illustrate how it can be used in a portfolio
tracking problem. Since MQE does not require the data being
paired together, it can also be used for analyzing asynchronous
measurements which arise from various applications including
atmospheric sciences (He et al. 2012), space physics, and other
areas (O’Brien et al. 2001).
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MQE is an estimation method for matching unconditional
distribution functions. It is different from the popular quantile
regression which refers to the estimation for conditional quan-
tile functions. See Koenker (2005), and references therein. It
also differs from the unconditional quantile regression of Firpo
et al. (2009) which deals with the estimation for the impact of
explanatory variables on quantiles of the unconditional distri-
bution of an outcome variable. For nonnormal models, sample
quantiles have been used for different inference purposes. For
example, Kosorok (1999) used quantiles for nonparametric two-
sample tests. Gneiting (2011) argued that quantiles should be
used as the optimal point forecasts under some circumstances.
MQE also differs from the statistical asynchronous regression
(SAR) method introduced by O’Brien et al. (2001), although
it can provide an alternative way to establish a regression-
like relationship based on unpaired data. See Remark 1(v) in
Section 2.

The rest of the article is organized as follows. The MQE
methodology including an iterative algorithm is presented in
Section 2. The convergence of the algorithm is established in
Section 3. Section 4 presents some asymptotic properties of
MQE. To assess the goodness-of-match, a measure and an as-
sociated statistical test are proposed in Section 5. The finite
sample properties of MQE are examined in simulation in Sec-
tion 6. We illustrate in Section 7 how the proposed methodology
can be used to select a representative portfolio for CCR back-
testing with a real dataset. Section 8 deals with the application
of MQE to a different financial problem—tracking portfolios. It
also illustrates the usefulness of combining MQE and LASSO
together.

2. METHODOLOGY

Let Y be a random variable, and X = (X1, . . . , Xp)′ be a
collection of p random variables. The goal is to find a linear
combination

β ′X = β1X1 + · · · + βpXp (2.1)

such that its distribution matches the distribution of Y . We pro-
pose to search for β such that the following integrated squared
difference of the two quantile functions is minimized∫ 1

0
{QY (α) − Qβ ′X(α)}2dα, (2.2)

where Qξ (α) denotes the αth quantile of random variable ξ , that
is,

P {ξ ≤ Qξ (α)} = α, for α ∈ [0, 1].

In fact (2.2) is a squared Mallows’ metric introduced by
Mallows (1972) and Tanaka (1973). It is also known as L2-
Wasserstein distance (del Barrio et al. 1999). See also Section 8
of Bickel and Freedman (1981) for a mathematical account of
the Mallows metrics.

Given the goal is to match the two distributions, one may
adopt the approaches of matching the two distribution func-
tions or density functions directly. However, our approach of
matching quantiles provides the better fitting at the tails of the
distributions, which is important for risk management; see Re-
mark 1(iv) below. Furthermore, it turns out that the method of

matching quantiles is easier than that for matching distribution
functions or density functions directly.

Suppose the availability of random samples {Y1, . . . , Yn} and
{X1, . . . , Xn} drawn respectively from the distributions of Y and
X. Let Y(1) ≤ · · · ≤ Y(n) be the order statistics of Y1, . . . , Yn.
Then Y(j ) is the j/nth sample quantile. To find the sample
counterpart of the minimizer of (2.2), we define the estimator

β̂ = arg min
β

n∑
j=1

{Y(j ) − (β ′X)(j )}2, (2.3)

where (β ′X)(1) ≤ · · · ≤ (β ′X)(n) are the order statistics of
β ′X1, . . . ,β

′Xn. We call β̂ the matching quantiles estimator
(MQE), as it tries to match the quantiles at all possible levels
between 0 and 1. Unfortunately β̂ does not admit an explicit
solution. We define below an iterative algorithm to evaluate its
values. We will show that the algorithm converges. To this end,
we introduce some notation first. Suppose that β (k) is the kth
iterated value, let {X(k)

(j )} be a permutation of {Xj } such that

(β(k))′X(k)
(1) ≤ · · · ≤ (β(k))′X(k)

(n). (2.4)

Step 1. Set an initial value β(0).
Step 2. For k ≥ 1, let β (k) = arg minβ Rk(β), where

Rk(β) = 1

n

n∑
j=1

(
Y(j ) − β ′X(k−1)

(j )

)2
, (2.5)

where {X(k−1)
(j ) } is defined as in (2.4). We stop the iteration

when |Rk(β (k)) − Rk−1(β (k−1))| is smaller than a prescribed
small positive constant. We then define β̂ = βk .

In the above algorithm, we may take the ordinary least squares
estimator (OLS) β̃ as an initial estimator β(0), where

β̃ ≡ arg min
β

n∑
j=1

(Yj − β ′Xj )2 = (X ′X )−1X ′Y . (2.6)

and Y = (Y1, . . . , Yn)′, X is an n × p matrix with X′
j as its

jth row. However we stress that OLS β̃ is an estimator for the
minimizer of the mean squared error

E{(Y − β ′X)2}, (2.7)

which is different from the minimizer of (2.2) in general. Hence,
OLS β̃ and MQE β̂ are two estimators for two different param-
eters, although the MQE is obtained by applying least squares
estimation repeatedly to the recursively sorted data; see Step 2
above.

To gain some intuitive appreciation of MQE and the difference
from OLS, we report below some simulation results with two
toy models.

Example 1. Consider a simple scenario

Y = X + Z, (2.8)

where X and Z are independent and N (0, 1), and Z is unobserv-
able. Now p = 1, the minimizer of (2.7) is β(1) = 1. Note that
L(Y ) = N (0, 2) = L(1.414X). Thus, (2.2) admits a minimizer
β(2) = 1.414. We generate 1000 samples from (2.8) with each
sample of size n = 100. For each sample, we calculate MQE
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Figure 1. Boxplots of OLS β̃ for the true value 1, and MQE β̂ for
the true value 1.414 for model (2.8).

β̂ using the iterative algorithm above with OLS β̃ as the initial
value. Figure 1 presents the boxplots of the 1000 estimates. It is
clear that both OLS β̃ and MQE β̂ provide accurate estimates for
β(1) and β(2), respectively. In fact, the mean squared estimation
errors over the 1000 replications is, respectively, 0.0107 for β̃

and 0.0109 for β̂. The algorithm for computing β̂ only took two
iterations to reach the convergence in all the 1000 replications.

Example 2. Now we repeat the exercise in Example 1 above
for the model

Y = X1 + X2 + 1.414Z, (2.9)

where X1, X2, and Z are independent and N (0, 1), and Z is
unobservable. The boxplots of the estimates are displayed in
Figure 2. Now p = 2, the minimizer of (2.7) is (β(1)

1 , β
(1)
2 ) =

(1, 1). Since L(Y ) = N (0, 4), there are infinite numbers of min-
imizers of (2.2). In fact any (β1, β2) satisfying the condition√

β2
1 + β2

2 = 2 is a minimizer of (2.2), as then

L(β1X1 + β2X2) = N (0, β2
1 + β2

2 ) = N (0, 4).

One such minimizer is (β(2)
1 , β

(2)
2 ) = (1.414, 1.414). It is clear

from Figure 2 that over the 1000 replications, OLS (β̃1, β̃2)

Figure 2. Boxplots of OLS (β̃1, β̃2) for the true value (1, 1), MQE
(β̂1, β̂2), and {β̂2

1 + β̂2
2 } 1

2 for the true value 2 for model (2.9).

are centered at the minimizer (β(1)
1 , β

(1)
2 ) of (2.7). While MQE

(β̂1, β̂2) are centered around one minimizer (β(2)
1 , β

(2)
2 ) of (2.2),

their variations over 1000 replications are significantly larger.
On the other hand, the values of {β̂2

1 + β̂2
2 } 1

2 are centered around
its unique true value 2 with the variation comparable to those of
the OLS β̃1 and β̃2. In fact, the mean squared estimation errors
of β̃1, β̃2, and {β̂2

1 + β̂2
2 }1/2 are, respectively, 0.0191, 0.0196,

and 0.0198. The mean squared differences between β̂1 and β
(2)
1 ,

and between β̂2 and β
(2)
2 are 0.0608 and 0.0661, respectively.

All these clearly indicate that in the 1000 replications, MQE
may estimate different minimizers of (2.2). However, the end-
product, that is, the estimation for the distribution of Y is very
accurate, measured by the mean squared error 0.0198 for esti-
mating {β2

1 + β2
2 }1/2. The iterative algorithm for calculating the

MQE always converges quickly in the 1000 replications. The
average number of iterations is 5.15 with the standard deviation
4.85. Like in Example 1, we used the OLS as the initial values
for calculating the MQE. We repeated the exercise with the two
initial values generated randomly from U [−2, 2]. The boxplots
for β̂1 and β̂2, not presented here to save space, are now cen-
tered at 0 with about [−1.5, 1.5] as their inter-half ranges. But
remarkably the boxplot for {(β̂1)2 + (β̂2)2}1/2 remains about the
same. The mean and the standard deviation for the number of
iterations required in calculating the MQE are 7.83 and 9.12.

We conclude this section with some remarks.

Remark 1.

(i) When there exist more than one minimizer of (2.2),
β̂ may estimate different values in different instances.
However, the goodness of the resulting approximations
for the distribution of Y is about the same, guaranteed
by the least squares property. See also Theorem 2 in
Section 4.

(ii) If we are interested only in matching a part of distribu-
tion of Y , say, that between the α1th quantile and the
α2th quantile, 0 ≤ α1 < α2 ≤ 1, we may replace (2.5)
by

Rk(β; α1, α2) = 1

n2 − n1

n2∑
j=n1+1

× (
Y(j ) − β ′X(k−1)

(j )

)2
, (2.10)

where ni = [nαi], where [x] denotes the integer part of
x.

(iii) To obtain a sparse MQE, we change Rk(β) in Step 2 of
the iteration to

Rk(β) = 1

n

n∑
j=1

(
Y(j ) − β ′X(k−1)

(j )

)2 + λ

p∑
i=1

|βi |, (2.11)

where λ > 0 is a constant controlling the penalty on the
L1 norm of β. This is a LASSO estimation, which can be
equivalently represented as the problem of minimizing
Rk(β) in (2.5) subject to

p∑
i=1

|βi | ≤ C0, (2.12)

where C0 > 0 is a constant. The LARS–LASSO algo-
rithm due to Efron et al. (2004) provides the solution
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path for the OLS–LASSO optimization problem for all
positive values of C0.

(iv) Since our goal is to match the distribution of Y by
that of β ′X, a natural approach is to estimate β which
minimizes, for example,

min
x

{FY (x) − Fβ ′X(x)}2,

where Fξ (·) denotes the distribution function of random
variable ξ . However, such a β is predominantly deter-
mined by the center parts of the distributions as both the
distributions are close to 1 for extremely large values
of x, and are close to 0 for extremely negatively large
values of x. For risk management, those extreme values
are clearly important.

(v) MQE does not require that Yj and Xj are paired together.
It can be used to recover the nearly perfect linear rela-
tionship Y ≈ β ′X based on unpaired observations {Yj }
and {Xj }, as then L(Y ) ≈ L(β ′X), where L(ξ ) denotes
the distribution of random variable ξ . It also applies
when the distribution of Y is known and we have only
the observations on X. In this case, the methodology
described above is still valid with Y(j ) replaced by the
true j/nth quantile of L(Y ) for j = 1, . . . , n.

(vi) When Yj and Xj are paired together, as in many appli-
cations, the pairing is ignored in the MQE estimation
(2.3). Hence, the correlation between Y and β̂

′
X may

be smaller than that between Y and β̃
′
X. Intuitively, the

loss in the correlation should not be substantial unless
the ratio of noise-to-signal is large, which is confirmed
by our numerical experiments with both simulated and
real data. See Table 3 in Section 6 and also Section 7
below.

3. CONVERGENCE OF THE ALGORITHMS

We will show in this section that the iterative algorithm pro-
posed in Section 2 above for computing MQE converges—a
property reminiscent of the convergence of the EM algorithm
(Wu 1983). We introduce a lemma first.

Lemma 1. Let a1, . . . , an and b1, . . . , bn be any two se-
quences of real numbers. Then

n∑
i=1

(a(i) − b(i))
2 ≤

n∑
i=1

(ai − bi)
2, (3.1)

where {a(i)} and {b(i)} are, respectively, the order statistics of
{ai} and {bi}.

Proof. We proceed by the mathematical induction. When n =
2, we only need to show that

(a(1) − b(1))
2 + (a(2) − b(2))

2 ≤ (a(1) − b(2))
2 + (a(2) − b(1))

2,

which is equivalent to

0 ≤ a(1)(b(1) − b(2)) + a(2)(b(2) − b(1)) = (a(2) − a(1))(b(2) − b(1)).

This is true.
Assuming the lemma is true for all n = k, we show below that

it is also true for n = k + 1. Without loss of generality, we may
assume that ak+1 = a(1) and b� = b(1). If � = k + 1, (3.1) holds
for k + 1 now. When � �= k + 1, it follows the proof above for

the case of n = 2,

(a(1) − b(1))
2 + (a� − bk+1)2 ≤ (a� − b�)2 + (ak+1 − bk+1)2.

Consequently,

k+1∑
i=1

(ai − bi)
2 ≥ (a(1) − b(1))

2 + (a� − bk+1)2 +
∑

1≤i≤k,i �=�

(ai − bi)
2

≥ (a(1) − b(1))
2 +

k+1∑
i=2

(a(i) − b(i))
2.

The last inequality follows from the induction assumption for
n = k. This completes the proof. �

Theorem 1. For Rk(·) defined in (2.5) or (2.11), and β (k) =
arg minβ Rk(β), it holds that Rk(β(k)) → c as k → ∞, where
c ≥ 0 is a constant.

Proof. We show that the LASSO estimation with Rk defined
in (2.11) converges. When λ = 0, (2.11) reduces to (2.5).

We only need to show that Rk+1(β(k+1)) ≤ Rk(β(k)) for k =
1, 2, . . . . This is true because

Rk+1(β (k+1)) = 1

n

n∑
j=1

(
Y(j ) − β (k+1) ′X(k)

(j )

)2
+ λ

p∑
i=1

|β(k+1)
i |

≤ 1

n

n∑
j=1

(
Y(j ) − β(k) ′X(k)

(j )

)2
+ λ

p∑
i=1

|β(k)
i | (3.2)

≤ 1

n

n∑
j=1

(
Y(j ) − β (k) ′X(k−1)

(j )

)2
+ λ

p∑
i=1

|β(k)
i | = Rk(β(k)). (3.3)

In the above expression, the first inequality follows from the
definition of β (k+1) and the second inequality is guaranteed by
Lemma 1. �

Remark 2.

(i) Theorem 1 shows that the iterations in Step 2 of the
algorithm in Section 2 above converge. But it does not
guarantee that they will converge to the global minimum.
In practice, one may start with multiple initial values
selected, for example, randomly, and take the minimum
among the converged values from the different initial
values. If necessary, one may also treat the algorithm as
a function of the initial value and apply, for example,
simulated annealing to search for the global minimizer.

(ii) In practice, we may search for β ′X to match a part of dis-
tribution of Y only, that is, we use Rk( · ; α1, α2) defined
in (2.10) instead of Rk( · ) in (2.5). Note that {X(k)

(j ), n1 <

j ≤ n2} may be a different subset of {Xj , j = 1, . . . , n}
for different k, see (2.4). Hence Theorem 1 no longer
holds. Our numerical experiments indicate that the al-
gorithm still converges as long as p is small in relation
to n (e.g., p ≤ 4n). See Figure 6 and Table 4 in Section
6.

(iii) Lemma 1 above can be deduced from Lemmas 8.1 and
8.2 of Bickel and Freedman (1981) in an implicit man-
ner, while the proof presented here is simpler and more
direct.

4. ASYMPTOTIC PROPERTIES OF THE ESTIMATION

We present the asymptotic properties for a more general set-
ting in which MQE is combined with LASSO, and the estima-
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tion is defined to match a part of the distribution between the
α1th quantile and the α2th quantile, where 0 ≤ α1 < α2 ≤ 1 are
fixed. Obviously matching the whole distribution is a special
case with α1 = 0 and α2 = 1. Furthermore when λ = 0 in (4.1)
and (4.3), it reduces to the MQE without LASSO.

For λ ≥ 0, let

β0 = arg min
β

S(β), S(β) ≡ S(β; α1, α2)

=
∫ α2

α1

{QY (α) − Qβ ′X(α)}2dα + λ

p∑
j=1

|βj |. (4.1)

Intuitively β0 could be regarded as the true value to be estimated.
However, it is likely that β0 so defined is not unique. Such a
scenario may occur when, for example, two components of X
are identically distributed. Furthermore it is conceivable that
those different β0 may lead to different distributions L(β ′

0X)
which provide an equally good approximation to L(Y ) in the
sense that S(β0) takes the same value for those different β0.

Similar to (2.3), the MQE for matching a part of the distribu-
tion is defined as

β̂ = arg min
β

Sn(β), (4.2)

where

Sn(β) ≡ Sn(β; α1, α2) = 1

n

n2∑
j=n1+1

{
Y(j ) − (β ′X)(j )}2 + λ

p∑
j=1

|βj |

= 1

n

n2∑
j=n1+1

{
Qn,Y (j/n) − Qn,β ′X

(j/n)
}2 × λ

p∑
j=1

|βj |, (4.3)

ni = [nαi], (β ′X)(1) ≤ · · · ≤ (β ′X)(n) are the order statistics of
β ′X1, . . . ,β

′Xn, Qn,Y (·) is the quantile function corresponding
to the empirical distribution of {Yj }, that is,

Qn,Y (α) = inf{y : Fn,Y (y) ≥ α}, α ∈ (0, 1).

In the above expression, Fn,Y (y) = n−1 ∑
1≤j≤n I (Yj ≤ y).

Fn,β ′X and Qn,β ′X are defined in the same manner.
Similar to its theoretical counterpart β0 in (4.1), the estimator

β̂ defined in (4.2) may not be unique either, see Example 2 and
Remark 1(i) above. Hence, we show below that Sn(β̂) converges
to S(β0). This implies that the distribution of β̂

′
X provides an

optimal approximation to the distribution of Y in the sense that
the mean square residuals Sn(β̂) converge to the minimum of
S(β), although L(β̂

′
X) may not converge to a fixed distribution.

Furthermore, we also show that β̂ is consistent in the sense
that d(β̂,B0) ≡ minβ∈B0 ‖β̂ − β‖ converges to 0, where ‖ · ‖
denotes the Euclidean norm for vectors, and B0 is the set con-
sisting of all the minimizers of S(·) defined in (4.1), that is,

B0 = {β : S(β) = S(β0)}, (4.4)

We introduce some regularity conditions first. We denote by,
respectively, Fξ (·) and fξ (·) the distribution function and the
probability density function of a random variable ξ .

Condition B.

(i) Let {Yj } be a random sample from the distribution of Y
and {Xj } be a random sample from the distribution of
X. Both fY (·) and fX(·) exist.

(ii) (The Kiefer condition.) It holds for any fixed β that

sup
α1≤α≤α2

|f ′
β ′X(Qβ ′X(α))| < ∞,

inf
α1≤α≤α2

fβ ′X(Qβ ′X(α)) > 0. (4.5)

Furthermore

sup
α1≤α≤α2

|f ′
Y (QY (α))| < ∞, inf

α1≤α≤α2

fY (QY (α)) > 0. (4.6)

(iii) X has bounded support.

Remark 3.

(i) Condition B (ii) is the Kiefer condition. It ensures the
uniform Bahadur–Kiefer bounds for empirical quantile
processes for iid samples. More precisely, (4.5) implies
that

sup
α1≤α≤α2

∣∣∣√nfβ ′X(Qβ ′X(α)){Qn,β ′X(α) − Qβ ′X(α)}

+√
n{Fn,β ′X(Qβ ′X(α)) − α}

∣∣∣
= OP

(
n−1/4(log n)1/2(log log n)1/4), (4.7)

and (4.6) implies that

sup
α1≤α≤α2

∣∣∣√nfY (QY (α)){Qn,Y (α) − QY (α)}

+√
n{Fn,Y (QY (α)) − α}

∣∣∣
= OP

(
n−1/4(log n)1/2(log log n)1/4

)
. (4.8)

See Kiefer (1970), and also Kulik (2007).
(ii) The assumption of independent samples in Condition

B(i) is imposed for simplicity of the technical proofs. In
fact, Theorem 2 still holds for some weakly dependent
processes, as the Bahadur-Kiefer bounds (4.7) and (4.8)
may be established based on the results in Kulik (2007).

(iii) The requirement for X having a bounded support is for
technical convenience. When α1 = 0 and α2 = 1, it is
implied by Condition B(ii), as (4.5) entails that β ′X has
a bounded support for any β.

Theorem 2. Let Condition B hold and λ in (4.1) and (4.3)
be a nonnegative constant. Then as n → ∞, Sn(β̂) → S(β0) in
probability, and d(β̂,B0) → 0 in probability.

We present the proof of Theorem 2 in Appendix I.

5. GOODNESS OF MATCH

The goal of MQE is to match the distribution of Y by that
of a selected linear combination β ′X. We introduce below a
measure for the goodness of match, and also a statistical test for
the hypothesis

H0 : L(Y ) = L(β ′X). (5.1)
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5.1 A Measure for the Matching Goodness

Let F (·) be the distribution function of Y . Let g(·) be the
probability density function of the random variable F (β ′X).
When Y and β ′X have the same distribution, F (β ′X) is a random
variable uniformly distributed on the interval [0, 1], and g(x) ≡
1 for x ∈ [0, 1]. We define a measure for the goodness of match
as follows:

ρ = 1 − 1

2

∫ 1

0

∣∣g(x) − 1
∣∣ dx. (5.2)

It is easy to see that ρ ∈ [0, 1], and ρ = 1 if and only if the
matching is perfect in the sense that L(Y ) = L(β ′X). When
the difference between g(·) and 1 (i.e., the density function of
U [0, 1]) increases, ρ decreases. Hence the larger the difference
between the distributions of Y and β ′X, the smaller the value of
ρ. For example, ρ = 0.5 if Y ∼ U [0, 1] and β ′X ∼ U [0, 0.5],
and ρ = 1/m if Y ∼ U [0, 1] and β ′X ∼ U [0, 1/m] for any
m ≥ 1.

With the given observations {(Yi, Xi)}, let

Ui = Fn(β ′Xi), where Fn(x) = 1

n

n∑
j=1

I (Yj ≤ x).

A natural estimator for ρ defined in (5.2) is

ρ̂ = 1 − 1

2

[n/k]∑
j=1

∣∣Cj − k/n
∣∣, where

Cj = 1

n

n∑
i=1

I

(
(j − 1)k

n
< Ui ≤ jk

n

)
. (5.3)

In the above expression, k ≥ 1 is an integer, [x] denotes the
integer part of x. It also holds that ρ̂ ∈ [0, 1]. Furthermore,
ρ̂ = 1 if and only if n/k is an integer and each of the n/k

intervals ( (j−1)k
n

,
jk

n
) (j = 1, . . . , n/k) contains exactly k points

from U1, . . . , Un. This also indicates that we should choose
k large enough such that there are enough sample points on
each of those [n/k] intervals and, hence, the relative frequency
on each interval is a reasonable estimate for its corresponding
probability.

Remark 4. Formula (5.2) only applies when the distribution
of F (β ′X) is continuous. If this is not the case, the random
variable F (β ′X) has nonzero probability masses at 0 or/and 1,
and (5.2) should be written in a more general form ρ = 1 −
0.5

∫ 1
0 |dG − dx|, where G(·) denotes the probability measure

of F (β ′X). It is clear now that ρ = 0 if and only if the supports
of L(Y ) and L(β ′X) do not overlap. Note that the estimator ρ̂

defined in (5.3) still applies.

5.2 A Goodness-of-Match Test

There exist several goodness-of-fit tests for the hypothesis
H0 defined in (5.1); see, for example, Section 2.1 of Serfling
(1980). We propose a test statistic Tn below, which is closely
associated with the goodness-of-match measure ρ̂ in (5.3) and is
reminiscent of the Cramér-von Mises goodness-of-fit statistic.
Under the hypothesis H0, U1, . . . , Un behave like a sample from
U [0, 1] for large n. Hence based on the relative counts {Cj }
defined in (5.3), we may define the following goodness-of-match

test statistic for testing hypothesis H0.

Tn = √
n

[n/k]∑
j=1

∣∣Cj − k/n
∣∣. (5.4)

By Proposition 1, the distribution of Tn under H0 is distribution-
free. The critical values listed below was evaluated from a sim-
ulation with 50,000 replications, n = 1000, and both {ξi} and
{ηi} drawn independently from U [0, 1].

Significance level 0.10 0.05 0.025 0.01 0.005

k/n = 0.1 4.49 4.85 5.16 5.52 5.79
k/n = 0.05 5.98 6.36 6.67 6.99 7.24
k/n = 0.025 8.13 8.44 8.76 9.08 9.33

The changes in the critical values led by different sample sizes
n, as long as n ≥ 300, are smaller than 0.05 when k/n ≥ 0.05,
and are smaller than 0.1 when k/n = 0.025.

Proposition 1. Let {ξ1, . . . , ξn} and {η1, . . . , ηn} be two in-
dependent random samples from two distributions F and G, and
F be a continuous distribution. Let Fn(x) = 1

n

∑
i I (ξi ≤ x) and

Ui = Fn(ηi). Let Cj be defined as in (5.3) and Tn as in (5.4).
Then, the distribution Tn is independent of F and G provided
F (·) ≡ G(·).

This proposition follows immediately from the fact that
Ui = 1

n

∑n
j=1 I {F (ξj ) ≤ F (ηi)} almost surely, and {F (ξi)} and

{F (ηi)} are two independent samples from U [0, 1] when F (·) ≡
G(·).

6. SIMULATION

To illustrate the finite-sample properties, we conduct simula-
tions under the setting

Yj = β ′Xj + Zj = β1Xj1 + · · · + βpXjp + Zj ,

j = 1, . . . , n, (6.5)

to check the performance of MQE for β = (β1, . . . , βp)′, where
Xj = (Xj1, . . . , Xjp)′ represent p observed variables, and Zj

represents collectively the unobserved factors. We let Xj be
defined by a factor model

Xj = AUj + εj ,

where A is a p × 3 constant factor loading matrix, the compo-
nents of Uj are three independently linear AR(1) processes de-
fined with positive or negative centered log-N (0, 1) innovations,
the components of εj are all independent and t-distributed with
4 degrees of freedom. Hence, the components of Xj are corre-
lated with each other with skewed and heavy tailed distributions.
We let Zj in (6.1) be independent N (0, σ 2). For each sample,
the coefficients βj are drawn independently from U [−0.5, 0.5],
the elements of the factor loading matrix A are drawn indepen-
dently from U [−1, 1], and the three autoregressive coefficients
in the three AR(1) factor processes are drawn independently
from U [−0.95, 0.95]. For this example, no linear combinations
of Xj can provide a perfect match for the distribution of Yj .

For comparison purposes, we also compute OLS β̃ defined in
(2.6). For computing MQE β̂, we use β̃ as the initial value, and
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748 Journal of the American Statistical Association, June 2015

Table 1. The means and standard deviations (STD) of the number of
iterations required for computing MQE β̂ in a simulation with 1000

replications

p 50 100 200

n r 0.5 1 2 0.5 1 2 0.5 1 2

300 Mean 22.2 27.1 31.3 18.1 20.7 22.2 10.6 11.4 12.1
STD 6.0 7.1 8.0 4.3 4.8 5.0 2.0 2.3 2.3

800 Mean 30.4 41.3 53.0 31.5 38.0 44.6 25.6 28.9 31.7
STD 8.5 10.5 13.9 6.9 8.0 9.9 4.8 5.4 5.5

let β̂ = βk and

rMSE(β̂) = {Rk(β(k))}1/2 (6.2)

when ∣∣{Rk(β (k))}1/2 − {Rk−1(β(k−1))}1/2
∣∣ < 0.001, (6.3)

where Rk(·) is defined in (2.5). The reason to use square-root
of Rk instead of Rk in the above is that Rk itself can be very
small. We set the sample size n = 300 or 800, the dimension
p = 50, 100, or 200, the ratio

r ≡ STD(Zj )

STD(β1Xj1 + · · · + βpXjp)
= 0.5, 1, or 2.

For the simplicity, we call r the noise-to-signal ratio, which
represents the ratio of the unobserved signal to the observed
signal. For each setting, we draw 1000 samples and calculate
both β̂ and β̃ for each sample.

Figure 3 displays the boxplots of the rMSE(β̂) defined in
(6.2). It indicates that the approximation with n = 800 is more
accurate than that with n = 300. When the noise-to-signal ratio
r increases from 0.5, 1, to 2, the values and also the variation
of rMSE(β̂) increase. Figure 3 shows that rMSE(β̂) is right-
skewed, indicating that the algorithm may be stuck at a local
minimum. This problem can be significantly alleviated by using
multiple initial values generated randomly, which was confirmed
in an experiment not reported here.

Table 1 list the means and standard deviations of the number
of iterations required in calculating MQE β̂, controlled by (6.3),
over the 1000 replications. Over all tested settings, the algorithm
converges fast. The number of iterations tends to decrease when
the dimension p increases. This may be because there are more

“true values” of β when p is larger, or simply when p becomes
really large.

With each drawn sample, we also generate a post-sample of
size 300 denoted by {(yj , xj ), i = 1, . . . , 300}. We measure the
matching power for the distribution Y by rMME(β̂) for MQE,
and by rMME(β̃) for OLS, where the root mean matching error
rMME is defined as

rMME(β) =
(

1

300

300∑
j=1

{
y(j ) − (β ′x)(j )

}2

)1/2

, (6.4)

where y(1) ≤ · · · ≤ y(300) are the order statistics of {yj }, and
(β ′x)(1) ≤ · · · ≤ (β ′x)(300) are the order statistics of {β ′xj }.
Figure 4 presents the scatterplots of rMME(β̂) against rMME(β̃)
with sample size n = 800. The dashed diagonal lines mark the
positions y = x. Since most the dots are below the diagonals,
the matching error for the distribution Y based on MQE β̂ is
smaller than the corresponding matching error based on OLS β̃

in most cases. When the noise-to-signal ratio r is as small as
0.5, the difference between the two methods is relatively small,
as then the minimizers of (2.2) do not differ that much from the
minimizer of (2.7). However when the ratio increases to 1 and 2,
the matching based on the MQE is overwhelmingly better. This
confirms that MQE should be used when the goal is to match
the distribution of Y .

The same plots with sample size n = 300 are presented in
Figure 5. When the dimension p is small such as p = 50 or
100, MQE still provides a better matching performance overall,
although the matching errors are greater than those when n =
800. When dimension p = 200 and sample size n = 300, we
step into overfitting territory. While the in-sample fitting is fine
(see the top panel in Figure 3 and the bottom-left part of Table 3
below), the post-sample matching power of both OLS and MQE
is poor and MQE performs even worse than the “wrong” method
OLS.

To assess the goodness-of-match, we also calculate the mea-
sure ρ̂ defined in (5.3) with k = 20. The mean and standard
deviation of ρ̂ over 1000 replications are reported for in Table 2.
We line up side by side the results calculated using both the
sample used for estimating β and the post-sample. Except
the overfitting cases (i.e., n = 300 and p = 200), the values
of ρ̂ with MQE are greater (or much greater when r = 2 or
1) than those with OLS, noting the small standard deviations
across all the settings. With MQE, ρ̂ ≥ 0.92 for the in-sample

Table 2. The means and standard deviations (in parentheses) of estimated goodness-of-match measure ρ̂ defined in (5.3) in a simulation with
1000 replications, calculated for both the sample used for estimating β and the post-sample

OLS, n = 300 MQE, n = 300 OLS, n = 800 MQE, n = 800

p r in-sample post-sample in-sample post-sample in-sample post-sample in-sample post-sample

50 0.5 0.89 (0.02) 0.89 (0.02) 0.95 (0.01) 0.89 (0.02) 0.88 (0.01) 0.89 (0.02) 0.92 (0.01) 0.89 (0.02)
1 0.85 (0.03) 0.85 (0.03) 0.95 (0.01) 0.89 (0.02) 0.83 (0.02) 0.84 (0.03) 0.92 (0.01) 0.89 (0.02)
2 0.76 (0.04) 0.77 (0.05) 0.95 (0.01) 0.88 (0.02) 0.71 (0.03) 0.72 (0.04) 0.93 (0.01) 0.88 (0.02)

100 0.5 0.89 (0.02) 0.87 (0.02) 0.96 (0.01) 0.89 (0.02) 0.86 (0.01) 0.87 (0.02) 0.96 (0.01) 0.89 (0.02)
1 0.84 (0.02) 0.85 (0.03) 0.96 (0.01) 0.88 (0.02) 0.83 (0.02) 0.84 (0.03) 0.96 (0.01) 0.88 (0.02)
2 0.79 (0.03) 0.81 (0.03) 0.96 (0.01) 0.87 (0.03) 0.74 (0.03) 0.75 (0.04) 0.94 (0.01) 0.88 (0.02)

200 0.5 0.89 (0.02) 0.86 (0.02) 0.97 (0.01) 0.88 (0.02) 0.86 (0.01) 0.87 (0.02) 0.96 (0.01) 0.89 (0.02)
1 0.87 (0.02) 0.86 (0.03) 0.97 (0.01) 0.84 (0.04) 0.83 (0.01) 0.84 (0.02) 0.96 (0.01) 0.88 (0.02)
2 0.85 (0.02) 0.82 (0.04) 0.97 (0.01) 0.78 (0.04) 0.78 (0.02) 0.79 (0.04) 0.96 (0.01) 0.88 (0.02)
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Figure 3. Boxplots of rMSE(β̂) defined in (6.2) with sample size n = 300 or 800, dimension p = 50, 100, or 200, and the noise-to-signal
ratio r = 0.5, 1, or 2.

matching, and ρ̂ ≥ 0.87 for the post-sample matching (except
when n = 300 and p = 200). With OLS, the minimum value
of ρ̂ is 0.71 for the in-sample matching, and is 0.72 for the
post-sample matching.

One side-effect of MQE β̂ is the disregard of the pair-
ing of (Yj , Xj ); see (2.3). Hence we expect that the sample
correlation between Y and β̂

′
X will be smaller than that be-

tween Y and β̃
′
X. Table 3 lists the means and standard devia-

tions of the sample correlation coefficients between Y and β̂
′
X,

and of those between Y and β̃
′
X in our simulation. Over all

different settings, the mean sample correlation coefficient for
both in-samples and post-samples between Y and β̃

′
X is always

greater than that between Y and β̂
′
X. However the difference

is small. In fact if we take the difference of the two means,
denoted as D, as the estimator for the “true” difference and
treat the two means independently of each other, the (absolute)
value of D is always smaller than its standard error over all the
settings.
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Figure 4. Scatterplots of rMME(β̂) against rMME(β̃) with sample size n = 800 in a simulation with 1000 replications. The dashed lines
mark the diagonal y = x.

Finally we investigate the performance of MQE in matching
only a part of distribution. To this end, we repeat the above
exercise but using Rk(β) = Rk(β, 0, 0.3) defined in (2.10) in-
stead, that is, the MQE is sought to match the lower 30% of the
distribution of Y . Figure 6 presents the boxplots of rMSE(β̂).
Comparing it with Figure 3, there are no entries for n = 300
and p = 100 or 200, for which the algorithm did not converge
after 500 iterations. See Remark 2(ii). For the cases presented
in Figure 6, rMSE(β̂) are smaller than the corresponding entries
in Figure 3. This is because the matching now is easier, as the
MQE is sought such that the lower 30% of L(β̂

′
X) matches

the counterpart of L(Y ). But there are no any constraints on

the upper 70% of L(β̂
′
X). Table 4 list the means and standard

deviations of the number of iterations required in calculating
MQE over the 1000 replications. Comparing it with Table 1, the
algorithm converges faster for matching a part of L(Y ) than for
matching the whole L(Y ).

7. A REAL-DATA EXAMPLE

In the context of selecting a representative portfolio for back-
testing counterparty credit risks, Y is the total portfolio of a
counterparty, and X = (X1, . . . , Xp) are the p mark-to-market
values of the trades. The goal is to find a linear combination
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Figure 5. Scatterplots of rMME(β̂) against rMME(β̃) with sample size n = 300 in a simulation with 1000 replications. The dashed lines
mark the diagonal y = x.

β ′X which provides an adequate approximation for the total
portfolio Y . Since Basel III requires that a representative port-
folio matches various characteristics of the total portfolio, we
use the proposed methodology to select β ′X to match the whole
distribution of Y . We illustrate below how this can be done using
the records for a real portfolio.

The data contains 1000 recorded total portfolios at one month
tenor (i.e., one month stopping period) and the correspond-
ing mark-to-market values of 146 trades (i.e., p = 146). Those
146 trades were selected from over 2000 trades across different
tenors (i.e., from 3 days to 25 years) by the stepwise regres-
sion method of An et al. (2008). The data has been rescaled.

As some trades are heavily skewed to the left while the total
portfolio data are very symmetric for this particular dataset, we
truncate those trades at μ̂ − 6σ̂ , where μ̂ and σ̂ denote, respec-
tively, the sample mean and the sample standard deviation of the
trade concerned. The absence of the heavy left tail in the total
portfolio data is because there exist highly correlated trades in
opposite directions (i.e., sales in contrast to buys) which were
eliminated at the initial stage by the method of An et al. (2008).
We estimate both OLS β̃ and MQE β̂ using the first 700 (i.e.,
n = 700) of the 1000 available observations. The algorithm for
computing MQE took 7 iterations to converge. We compare Y
with β̃

′
X and β̂

′
X using the last 300 observations. The in-sample
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Table 3. The means and standard deviations (in parentheses) of the sample correlation coefficients between Y and β̃
′
X, and between Y and β̂

′
X

in a simulation with 1000 replications, calculated for both the sample used for estimating β and the post-sample

OLS, n = 300 MQE, n = 300 OLS, n = 800 MQE, n = 800

p r in-sample post-sample in-sample post-sample in-sample post-sample in-sample post-sample

50 0.5 0.95 (0.02) 0.93 (0.02) 0.95 (0.02) 0.92 (0.03) 0.95 (0.02) 0.94 (0.02) 0.94 (0.02) 0.93 (0.02)
1 0.86 (0.04) 0.79 (0.06) 0.84 (0.04) 0.76 (0.06) 0.84 (0.04) 0.81 (0.06) 0.81 (0.04) 0.78 (0.06)
2 0.68 (0.06) 0.51 (0.10) 0.65 (0.06) 0.47 (0.10) 0.63 (0.06) 0.56 (0.09) 0.58 (0.05) 0.50 (0.08)

100 0.5 0.96 (0.01) 0.92 (0.03) 0.96 (0.01) 0.91 (0.03) 0.95 (0.02) 0.94 (0.02) 0.95 (0.02) 0.93 (0.02)
1 0.89 (0.03) 0.74 (0.07) 0.88 (0.03) 0.72 (0.08) 0.85 (0.04) 0.80 (0.06) 0.83 (0.04) 0.77 (0.06)
2 0.75 (0.05) 0.43 (0.10) 0.74 (0.05) 0.40 (0.10) 0.66 (0.06) 0.53 (0.09) 0.63 (0.05) 0.48 (0.09)

200 0.5 0.98 (0.01) 0.85 (0.05) 0.98 (0.01) 0.84 (0.05) 0.96 (0.01) 0.92 (0.03) 0.95 (0.01) 0.92 (0.03)
1 0.95 (0.02) 0.60 (0.10) 0.94 (0.02) 0.59 (0.10) 0.87 (0.03) 0.76 (0.07) 0.86 (0.03) 0.74 (0.07)
2 0.89 (0.02) 0.28 (0.10) 0.88 (0.02) 0.28 (0.10) 0.72 (0.04) 0.46 (0.10) 0.71 (0.04) 0.44 (0.10)

and post-sample correlations between Y and β̃
′
X are 0.566 and

0.248. The in-sample and post-sample correlations between Y
and β̂

′
X are 0.558 and 0.230. Once again the loss of correlation

with MQE is minor.
Setting k/n = 0.05 in (5.3), the in-sample and post-sample

goodness of fit measures ρ̂ are 0.905 and 0.855 with MQE,
and are 0.741 and 0.785 with OLS. This indicates that MQE
provides a much better matching than OLS. The goodness-of-
match test presented in Section 5.2 reinforces this assertion.
The test statistic Tn defined in (5.4), when applied to the 300
post-sample points, is equal to 5.023 for the MQE matching,
and is 7.448 for the OLS matching. Comparing to the critical
values listed in Section 5.2, we reject the OLS matching at the
0.5% significance level, but we cannot reject the MQE matching
even at the 10% level. Note that we do not apply the test to the
in-sample data as the same data points were used in estimating
β (though the conclusions would be the same).

To further showcase the improvement of MQE matching over
OLS, Figure 7 plots the sample quantiles of the representative
portfolios β̃

′
X and β̂

′
X against the sample quantiles of the total

counterparty portfolio Y , based on the 300 post-sample points. It
shows clearly that the distribution of the representative portfolio
based on MQE β̂ provides much more accurate approximation
for the distribution of the total counterparty portfolio than that
based on the OLS β̃. For the latter, the discrepancy is alarmingly
large at the two tails of the distribution, where matter most for
risk management.

8. PORTFOLIO TRACKING

Portfolio tracking refers to a portfolio assembled with secu-
rities which mirrors a benchmark index, such as S&P500 or

Table 4. The means and standard deviations (STD) of the number of
iterations required for computing MQE β̂ for matching the lower 30%

of the distribution of Y

(n, p) (300, 50) (800, 50) (800, 100) (800, 200)

r 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Mean 10.2 11.5 12.8 18.1 19.6 23.7 14.9 16.3 18.1 9.4 11.8 14.9
STD 3.8 4.2 6.1 4.3 5.3 6.5 3.5 3.8 4.3 4.6 7.3 9.7

FTSE100 (Jansen and van Dijk 2002, and Dose and Cincotti
2005). Tracking portfolios can be used as the strategies for in-
vestment, hedging and risk management for investment, or as
macroeconomic forecasting (Lamont 2001).

Let Y be the return of an index to be tracked, X1, . . . , Xp be
the returns of the p securities to be used for tracking Y . One
way to choose a tracking portfolio is to select weights {wi} to
minimize

E
(
Y −

p∑
i=1

wiXi

)2
(8.1)

subject to

p∑
i=1

wi = 1 and
p∑

i=1

|wi | ≤ c, (8.2)

where c ≥ 1 is a constant. See, for example, Section 3.2 of Fan
et al. (2012). In the above expression, wi is the proportion of
the capital invested on the ith security Xi , and wi < 0 indicates
a short sale on Xi . It follows from (8.2) that∑

wi>0

wi ≤ 1 + c

2
,

∑
wi<0

|wi | ≤ c − 1

2
. (8.3)

Hence, the constant c controls the exposure to short sales. When
c = 1, short sales are not permitted.

Instead of using the constrained OLS as in above, one alterna-
tive in selecting the tracking portfolio is to match the whole (or a
part) of distribution of Y . This leads to a constrained MQE, sub-
ject to the constraints in (8.2). Given a set of historical returns
{(Yj ,Xj1, . . . , Xjp), j = 1, . . . , n}, we use the iterative algo-
rithm in Section 2 to calculate MQE β̂ subject to the constraint

p∑
j=1

|βj | ≤ δ

p∑
i=1

|β̂(0)
i |, (8.4)

and β̂
(0) = (β̂(0)

1 , . . . , β̂(0)
p )′ is the unconstrained MQE for β,

and δ ∈ (0, 1) is a constant which controls, indirectly, the to-
tal exposure to short-sales. This is the standard MQE-LASSO;

see (2.12) in Remark 1(iii) in Section 2. For δ ≥ 1, β̂ = β̂
(0)

.
We transform the constrained MQE β̂ = (β̂1, . . . , β̂p)′ to the
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Figure 6. Boxplots of rMSE(β̂) for matching the lower 30% of the distribution of Y , where n is sample size, p is the dimension of X, and r is
the noise-to-signal ratio.

estimates for the proportion weights as follows:

ŵi = β̂i

/ ∑
1≤j≤n

β̂j , i = 1, . . . , p.

Then {ŵi} fulfill the constraints in (8.2) with any c satisfying
the following condition:

c ≥ δ
∑

i

|β̂(0)
i |/∣∣∑

j

β̂j

∣∣. (8.5)

Such a c is always greater than 1 as

δ
∑

i

|β̂(0)
i |/∣∣∑

j

β̂j

∣∣ ≥ δ
∑

i

|β̂(0)
i |/∑

j

|β̂j | ≥ 1,

see (8.4). Note that the LARS-LASSO algorithm gives the whole
solution path for all positive values of δ. Hence for a given value
c in (8.2), we can always find the largest possible value δ from
the solution path for which (8.5) holds.

Remark 5. One would be tempted to absorb the constraint
condition

∑
j wj = 1 in the estimation directly by letting, for
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Figure 7. The plots of the sample quantiles of the representative portfolios based on OLS (the left panel) and MQE (the right panel) against
the sample quantiles of the total counterparty portfolio. The straight lines mark the diagonal y = x on which the two quantiles are equal. All the
quantiles are calculated based on the 300 post-sample points.
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Table 5. The mean, maximum and minimum daily log returns (in percentages) of FTSE100 and the estimated track portfolios in 2007. The
estimation was based on the data in 2004–2006. Also included in the table are the number of stocks present in each portfolio, the standard

deviations (STD) and the negative mean (NM) of the daily returns, and the percentages (of the capital) for short sales

Portfolio No. of Return Short
stocks Mean Max Min STD NM sales

FTSE100 100 0.014 3.444 −4.185 1.100 −0.889 0
OLS 30 0.014 3.532 −3.716 1.094 −0.851 0
MQE 30 0.013 3.552 −3.739 1.098 −0.869 0
OLS-lasso (δ = 0.7) 23 0.021 3.943 −4.300 1.250 −0.965 0
MQE-lasso (δ = 0.7) 21 0.049 4.062 −5.247 1.488 −1.150 0
OLS-lasso (δ = 0.5) 14 0.045 4.011 −4.963 1.415 −1.119 0
MQE-lasso (δ = 0.5) 10 0.119 5.05 −6.196 1.825 −1.336 0
MQE-lasso (δ = 0.7, α1 = 0, α2 = 0.5) 13 0.316 18.51 −8.015 2.805 −1.804 38.4
MQE-lasso (δ = 0.7, α1 = 0.25, α2 = 0.75) 11 −0.040 3.864 −4.715 1.567 −1.233 3.9
MQE-lasso (δ = 0.7, α1 = 0.5, α2 = 1) 15 1.608 52.77 −48.63 15.56 −11.93 885
MQE-lasso (δ = 0.5, α1 = 0, α2 = 0.5) 12 0.223 14.55 −6.936 2.330 −1.563 1.4
MQE-lasso (δ = 0.5, α1 = 0.25, α2 = 0.75) 15 0.077 7.858 −8.866 2.295 −1.743 0
MQE-lasso (δ = 0.5, α1 = 0.5, α2 = 1) 5 −0.036 4.375 −5.776 1.791 −1.119 22.0
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Figure 8. The plots of the daily log returns of FTSE100 index (thick black cycles), the MQE-LASSO portfolio with δ = 0.7 (thin red cycle
in the top panel), and the MQE-LASSO portfolio with δ = 0.5 and (α1, α2) = (0, 0.5) (thin blue cycles in the bottom panel).
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Figure 9. The plots of the annual means and standard deviations (STD) of daily log returns of FTSE100 index, the OLS portfolio, the MQE
portfolio, the OLS-LASSO portfolio and the MQE-LASSO portfolio in the period of 2007–2013.

example,

Y ′ = Y − Xp, X′
i = Xi − Xp for 1 ≤ i < p.

Then, one could estimate w1, . . . , wp−1 directly by regressing
Y ′ on X′

1, . . . , X
′
p−1. However, this puts the pth security Xp on a

nonequal footing as the other p − 1 securities, which may lead
to an adverse effect.

We illustrate our proposal by tracking FTSE100 using 30 ac-
tively traded stocks included in FTSE100. The company names
and the symbols of those 30 stocks are listed in Appendix II.

We use the log returns (in percentages) calculated using the
adjusted daily close prices in 2004–2006 (n = 758) to estimate
the tracking portfolios by MQE with or without the LASSO,

and compare their performance with the returns of FTSE100 in
2007 (in total 253 trading days). We also include in the com-
parison the portfolios estimated by OLS. The market is overall
bullish in the period 2004–2007. The data were downloaded
from Yahoo!Finance.

Table 5 list some summary statistics of the daily log-returns
in 2007 of FTSE100 and the various tracking portfolios. Both
the OLS and the MQE track well the FTSE100 index with
almost identical daily mean 0.014%. In addition to the standard
deviations (STD), we also include in the table the negative mean
(NM) as a risk measure, which is defined as the mean value of
all the negative returns. According to both STD and NM, both
the OLS and the MQE are slightly less risky than FTSE100 in
2007.
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Figure 10. The plots of the annual means and standard deviations (STD) of daily log returns of FTSE100 index, and the portfolios based on
the MQE-LASSO matching the lower half, the middle half, and the upper half of distribution in the period of 2007–2013.

We also form the portfolios based on OLS-LASSO and MQE-
LASSO with the truncated parameter δ = 0.7 and 0.5; see (8.4).
Now all the four portfolios yield noticeably greater average
daily returns than that of FTSE100 with noticeably greater risks.
Furthermore, the performances of OLS and MQE part from
each other with MQE producing substantially larger returns
with larger risks. For example, the MQE-LASSO portfolio with
δ = 0.5 yields average daily return of 0.119% and NM −1.336%
while the OLS-LASSO yields average daily return of 0.045%
and NM −1.119%. The number of stocks selected in portfolio
is 10 by MQE, and 14 by OLS.

We continue the experiment by using the MQE matching the
lower half, the middle half and the upper half of the distribution

only; see Remark 1(ii). With δ = 0.7, the portfolios resulted
from matching either the lower or the upper half of the distri-
bution incur excessive short sales of, respectively, 38.4% and
885% of the initial capital, and are therefore too risky. By using
δ = 0.5, short sales are reduced to 1.4% and 22% respectively.
Especially matching the lower half distribution with δ = 0.5
leads to a portfolio with average daily return 0.223%, the STD
2.33%, the NA −1.56% and short sales 1.4%.

Figure 8 plots the daily returns of FTSE100 together with
the two portfolios estimated by the MQE-LASSO with δ = 0.7,
and δ = 0.5, (α0, α1) = (0, 0.5), respectively. Both the portfo-
lios track well the index with increased volatility. Especially
the portfolio plotted in blue is obtained by matching the lower
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half distribution only. Comparing with FTSE100, the increase
of the STD is 1.23% while the increase of the NM is merely
0.654%. The increase of the return for this portfolio is resulted
from mimicking the loss of FTSE100 and “freeing” the top half
distribution.

Now we apply the above approach with a rolling window to
the data in 2007–2013. More precisely, for each calendar year
within the period, we use the data in its previous three years for
estimation to form the different portfolios. We then calculate
the means and standard deviations for the daily returns in that
year based on each of the portfolios. (The data for 2013 were
only up to 10 September when this exercise was conducted.)
The results for the portfolios based on OLS, MQE with and
without LASSO are plotted in Figure 9. We set δ = 0.5 in all
the LASSO estimations. Figure 9 shows that the MQE-LASSO
portfolio generated greater average returns in the 5 out of 7 years
than the other four portfolios. But it also led to greater losses
than FTSE100 index in both 2008 and 2011. Judging by the
standard deviations it is the most risky strategy among the five
portfolios reported in Figure 9. Note that both the OLS and MQE
portfolios incur small increases in standard deviation while the
gains in average returns in 2011 and 2013 are noticeable. This
shows that it is possible to match the overall performance of the
index by trading on much fewer stocks.

Figure 10 compares the three portfolios based on the MQE-
LASSO matching, respectively, the lower half, the middle half
and the upper half of the distributions for the returns of FTSE100
index. The first panel in the figure suggests that matching the
upper-half distributions leads to very volatile average returns
which are worse than the returns of FTSE100 index overall.
In contrast, matching the lower half or the middle half of the
distributions provide better return than the index in the 6 out of 7
years during the period. The risks of those portfolios, measured
by the standard deviations, are higher that those of the index;
see the second panel in the figure.

Overall the MQE-LASSO portfolios tend to overshoot at both
the peaks and the troughs. Therefore they tend to outperform
FTSE100 index when the market is bullish, and they may also
do worse than the index when the market is bearish (such as
2008 and 2011).

APPENDIX I: PROOF OF THEOREM 2

We split the proof of Theorem 2 into several lemmas.

Lemma A.1. Under Conditions B(i) and (ii), nτ {Sn(β) − S(β)} → 0
in probability for any fixed β and τ < 1/2.

Proof. Put W = β ′X. By (4.7) and (4.8),

1

n

n2∑
j=n1+1

{Qn,Y (j/n) − Qn,W (j/n)}2

− 1

n

n2∑
j=n1+1

{QY (j/n) − QW (j/n)}2

= 1

n

n2∑
j=n1+1

{
Fn,Y (QY (α)) − α

fY (QY (α))

}2

+ 1

n

n2∑
j=n1+1

{
Fn,W (QW (α)) − α

fW (QW (α))

}2

+ 2Rn

n3/2

n2∑
j=n1+1

{
QY (j/n) − QW (j/n) + Fn,Y (QY (α))

− α

fY (QY (α))
− Fn,W (QW (α)) − α

fW (QW (α))

}
+ OP (R2

n/n),

(A.1)

where Rn = OP (n−1/4(log n)1/2(log log n)1/4) = oP (1). By the
Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990), it holds for
any constant C > 0 and any integer n ≥ 1 that

P
{

sup
0≤α≤1

|Fn,Y (QY (α)) − α| > C
}

≤ 2e−2nC2
,

P
{

sup
0≤α≤1

|Fn,W (QW (α)) − α| > C
}

≤ 2e−2nC2
. (A.2)

Let C = n−τ1 for some τ1 ∈ (τ/2, 1/4), and

An =
{

sup
0≤α≤1

|Fn,Y (QY (α)) − α| ≤ C
}⋂

{
sup

0≤α≤1
|Fn,W (QW (α)) − α| ≤ C

}
.

Then by (A.2), P (An) ≥ 1 − 4e−2nC2 → 1, and on the set An,

nτ

{
1

n

n2∑
j=n1+1

{Qn,Y (j/n) − Qn,W (j/n)}2

− 1

n

n2∑
j=n1+1

{QY (j/n) − QW (j/n)}2

}
= oP (1), (A.3)

which is guaranteed by Condition B(ii) and the fact that

1

n

n2∑
j=n1+1

{
QY (j/n) − QW (j/n)

}
→
∫ α2

α1

{
QY (α) − QW (α)}dα.

Note that∣∣∣∣ ∫ α2

α1

{
QY (α) − QW (α)}dα

∣∣∣∣ ≤
∫ α2

α1

{
|QY (α)| + |QW (α)|

}
dα

= E[|Y |I {GY (α1) < Y ≤ GY (α2)}] + E|W | < ∞,

as |Y |I {GY (α1) < Y ≤ GY (α2)} is bounded under Condition B(ii). See
also condition B(iii) and Remark 3(iii).

Under Condition B(ii), |QY (α) − QY (j/n)| = fY (j/n)−1/n{1 +
o(1)} for any |α − j/n| ≤ 1/n. Hence

1

n

n2∑
j=n1+1

{QY (j/n) − QW (j/n)}2

=
∫ α2

α1

{QY (α) − QW (α)}2dα + o(1/n).

Combining this with (A.3), we obtain the required result. �
Lemma A.2. Let a1 ≤ · · · ≤ an be n real numbers. Let bi = ai + δi

for i = 1, . . . , n, and δi are real numbers. Then

max
1≤i≤n

∣∣∣ai − b(i)

∣∣∣ ≤ max
1≤j≤n

|δj |, (A.4)

where b(1) ≤ · · · ≤ b(n) is a permutation of {b1, . . . , bn}.
Proof. We use the mathematical induction to prove the lemma. Let

ε = maxj |δj |. It is easy to see that (A.4) is true for n = 2. Let it be
also true for n = k. We now prove it for n = k + 1.

Let ci = bi for i = 1, . . . , k. Then by the induction assumption,

max
1≤i≤k

|ai − c(i)| ≤ ε. (A.5)

If bk+1 = ak+1 + δk+1 ≥ c(k), the required result holds. However, if for
some 1 ≤ i < k,

c(i) ≤ bk+1 < c(i+1),

D
ow

nl
oa

de
d 

by
 [

2.
12

2.
15

.8
7]

 a
t 0

8:
08

 2
8 

O
ct

ob
er

 2
01

5 



758 Journal of the American Statistical Association, June 2015

then

b(j ) =
⎧⎨⎩

c(j ) 1 ≤ j ≤ i,

bk+1 j = i + 1,

c(j−1) i + 2 ≤ j ≤ k + 1.

Note that |bk+1 − ai+1| ≤ ε since

bk+1 = ak+1 + δk+1 ≥ ai+1 − ε and bk+1 < c(i+1) ≤ ai+1 + ε.

The second expression above is implied by (A.5).
On the other hand, for j = i + 2, . . . , k + 1, we need to show that

|c(j−1) − aj | ≤ ε. This is true, as c(j−1) ≤ aj−1 + ε ≤ aj + ε, and fur-
thermore

c(j−1) > bk+1 = ak+1 + δk+1 ≥ aj − ε.

Hence |b(j ) − aj | ≤ ε for all 1 ≤ j ≤ k + 1. This completes the proof.�

Lemma A.3. Let Condition B hold. Let B be any compact subset of

Rp . It holds that supβ∈B
∣∣∣Sn(β) − S(β)| converges to 0 in probability.

Proof. We denote by ||β|| the Euclidean norm of vector β, and
|β| = ∑

j |βj |. Note that S(β) is a continuous function in β. For any
ε > 0, there exist β1, . . . , βm ∈ B, where m is finite, such that for any
β ∈ B, there exists 1 ≤ i ≤ m for which

||β − β i || < ε/ max(M,
√

p) and |S(β) − S(β i)| < ε, (A.6)

where M > 0 is a constant such that ||x|| < M for any fX(x) > 0; see
Condition B(iii). Thus

|β ′x − β ′
ix| ≤ ||x|| · ||β − β i || ≤ ε,

∣∣∣|β| − |β i |
∣∣∣ ≤ |β − β i |

≤ √
p||β − β i || ≤ ε.

Now it follows from Lemma A.2 that

|Sn(β) − Sn(β i)| ≤ 1

n

n2∑
j=n1+1

{
(β ′

iX)(j ) − (β ′X)(j )

}2

+ 2

n

n2∑
j=n1+1

∣∣∣(β ′
iX)(j ) − (β ′X)(j )

∣∣∣∣∣∣Y(j ) − (β ′
iX)(j )

∣∣∣
+
∣∣∣|β| − |β i |

∣∣∣ ≤ ε2 + ε
2

n

n2∑
j=n1+1

∣∣∣Y(j ) − (β ′
iX)(j )

∣∣∣
+ε → ε2 + 2ε

∫ α2

α1

|GY (α) − Gβ ′
iX

(α)|dα + ε

in probability. This limit can be verified in the similar manner as in the
proof of Lemma A.1. Consequently, there exists a set A with P (A) ≥
1 − ε such that on the set A it holds that

|Sn(β) − Sn(β i)| ≤ ε C,

where C > 0 is a constant. Now on the set A,

|Sn(β) − S(β)| ≤ |Sn(β) − Sn(β i)|
+|Sn(β i) − S(β i)| + |S(β i) − S(β)|

≤ ε C + |Sn(β i) − S(β i)| + ε.

See (A.6). Hence it holds on the set A that

sup
β∈B

∣∣∣Sn(β) − S(β
)
| ≤ ε(C + 1) +

m∑
i=1

∣∣∣Sn(β i) − S(β i)
∣∣∣.

Now the required convergence follows from Lemma A.1. �

Proof of Theorem 2. Under Condition B(ii), YI {QY (α1) ≤ Y ≤
QY (α2)} is bounded. As X is also bounded, the MQE β̂ defined in
(4.2) is also bounded. Let B be a compact set which contains β̂ with
probability 1.

By (4.1) and (4.2),

Sn(β0) − S(β0) ≥ Sn(β̂) − S(β0) ≥ Sn(β̂) − S(β̂).

Now it follows from Lemma A.3 that both Sn(β0) − S(β0) and Sn(β̂) −
S(β̂) converge to 0 in probability. Hence, Sn(β̂) − S(β0) also converges
to 0 in probability.

For the second assertion, we need to prove that P {d(β̂n,B0) ≥ ε} →
0 for any constant ε > 0. We now write β̂n = β̂ to indicate explicitly
that the estimator is defined with the sample of size n. We proceed by
contradiction. Suppose there exists an ε > 0 for which

lim sup
n→∞

P {d(β̂,B0) ≥ ε} > 0.

Hence, there exists an integer subsequence nk such that limk P (Ak) =
δ > 0, where Ak is defined as

Ak = {d(β̂nk
,B0) ≥ ε}.

Let B1 = {β ∈ B : d(β,B0) ≥ ε}. Then B1 is a compact set which is
ε-distance away from B0. By the definition of B0 in (4.4),

inf
β∈B1

S(β) = δ + S(β0).

where δ > 0 is a constant. By Lemma A.3, P (Bk) → 1 for

Bk = {|Snk
(β̂nk

) − S(β̂nk
)| < δ/2}.

Now it holds on the set Ak ∩ Bk that

Snk
(β̂nk

) ≥ S(β̂nk
) − δ/2 ≥ inf

β∈B1
S(β) − δ/2 > S(β0) + δ/2 > S(β0).

This contradicts to the fact that Sn(β̂) converges to S(β0) in probability,
which was established earlier. This completes the proof. �
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APPENDIX II: THE NAMES OF SYMBOLS OF THE 30
STOCKS USED IN TRACKING FTSE100

ANTO Antofagasta CRDA Croda
International

OML Old Mutual

ARM ARM Holdings DGE Diageo PRU Prudential
BARC Barclays GSK GlaxoSmith

Kline
RBS Royal Bank

of Scotland
BATS British American

Tobacco
HSBA HSBC

Holdings
RDSB Royal Dutch

Shell
BG BG Group ITV ITV RIO Rio Tinto
BLT BHP Billiton LGEN Legal &

General
Group

RR Rolls-Royce
Group

BP BP LLOY Lloyds
Banking
Group

RSA RSA
Insurance

Group
BSY British Sky

Broadcasting
MKS Marks &

Spencer
Group

TSCO Tesco

BT-A BT Group MRW Morrison Su-
permarkets

ULVR Unilever

CNA Centrica NG National Grid VOD Vodafone
Group
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