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Abstract

In this paper a class of nonparametric transfer function models is proposed to model nonlinear

relationships between ‘input’ and ‘output’ time series. In this approach, the functional form of the

transfer function is assumed to be unknown but smooth, and the noise is assumed to be stationary

with a parametric autoregressive-moving average (ARMA) form. A new method is developed to

jointly estimate the transfer function nonparametrically and the ARMA parameters parametri-

cally. By modeling the transfer function nonparametrically, the model is flexible and can be used

to model nonlinear relationship of unknown functional forms; by modeling the noise explicitly as a

parsimonious ARMA model, the correlation in the data is removed so the transfer function can be

estimated more efficiently. Additionally, the estimated ARMA parameters can be used to improve

the forecasting performance. Estimation procedures are introduced and the asymptotic proper-

ties of the estimators are investigated. The finite-sample properties of the estimators are studied

through simulations and one real example.
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1 Introduction

Linear transfer function models (Box and Jenkins, 1976) have been extensively used to model the

relationship between one ‘output’ time series and several ‘input’ time series. With one input series,

it assumes the form Yt = α(B)β(B)−1Xt + et, where Yt is the observed output series of interest, Xt

is an observed input time series, et follows an ARMA process, and α(B) and β(B) are polynomials

of the backshift operator B defined as BiXt ≡ Xt−i. Linear transfer function models have been well

studied and proven successful in many fields (e.g., Newbold, 1973; Tiao and Box, 1981; Tsay, 1985;

Poskitt, 1989; Liu and Hanssens, 1982). However, its linear nature limits its applicability because

many nonlinear features encountered in practice cannot be well approximated by linear models. To

model nonlinear relationships between time series, Chen and Tsay (1996) proposed the nonlinear

transfer function model of the form Yt = f(Xt−d, · · · , Xt−d−p; θ) + εt, where f(·) is a parametric

function assuming the Volterra series representation, εt is stationary and modeled by an ARMA

model.

There are infinitely many candidate nonlinear functions beyond the linear domain. Therefore,

it is usually difficult to justify the explicit parametric functional forms a priori for nonlinear mod-

els. Following the “letting the data speak for themselves” principle, nonparametric smoothing

methods provide a more flexible alternative to model nonlinear time series (e.g., Robinson, 1983;

Auestad and Tjøstheim, 1990; Lewis and Stevens, 1991; Masry, 1996a,b; Fan and Gilbels, 1996;

Smith, Wong, and Kohn, 1998). To overcome the ‘curse of dimensionality’, various specially struc-

tured nonparametric models have been proposed, including the functional-coefficient autoregressive

(FAR) model (Chen and Tsay, 1993a; Cai, Fan and Yao, 2000), the nonlinear additive autoregres-

sive model (Chen and Tsay, 1993b), the adaptive functional-coefficient model (Ichimura, 1993; Xia

and Li, 1999; Fan, Yao and Cai, 2003), the single index model (e.g., Härdle, Hall, and Ichimura,

1993; Carroll, Fan, Gijbels, and Wand, 1997; Newey and Stoker, 1993; Heckman, Ichimura, Smith,

and Todd, 1998; Xia, Tong, Li, and Zhu, 2002) and the partially linear models (Härdle, Liang and

Gao, 2000). There is vast literature about nonlinear and nonparametric time series analysis. Some

reviews can be found in Tjøstheim (1994), Härdle, Lütkepohl and Chen (1997) and Fan and Yao

(2003).

In this paper a class of nonparametric transfer function models is proposed. Consider the model

Yt = f(Xt) + et, (1)

where f(·) is an unknown and smooth function, {Xt} and {et} are strictly stationary processes.

The transfer function f(·) is modeled via nonparametric smoothing and the innovation process {et}
is assumed to follow a stationary and invertible ARMA(p, q) process, i.e., φ(B)et = θ(B)εt, where

φ(B) = 1−∑p
i=1 φiB

i, θ(B) = 1−∑q
j=1 θjB

j , φ = (φ1, φ2, · · · , φp)τ and θ = (θ1, θ2, · · · , θq)τ are

unknown parameters and {εt} is a sequence of independent (0, σ2) random variables. An iterative
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procedure is used to estimate both the transfer function and the ARMA parameters. Because of

its close connections to the Box-Jenkins transfer function model and nonparametric smoothing, the

proposed method is named nonparametric transfer function model. {Xt} and {εt} are assumed to

be independent, which implies the independence between {Yt} and {et}.
By modeling the transfer function f(·) nonparametrically, the model is flexible therefore can

be used to model nonlinear relationship of unknown functional forms. By modeling {et} as an

ARMA(p, q) process, the autocorrelation in the data is removed so f(·) can be estimated more

efficiently. Additionally, the explicit correlation structure can be used to improve the forecasting

performance.

The problem of estimating f(·) in (1) can be viewed as a regression with correlated noise

problem. Under certain mixing conditions, the windowing-and-whitening effect (Hart, 1996) makes

the local smoothing method valid even when the correlation is ignored (Zeger and Diggle, 1994;

Wild and Yee, 1996; Wu, Chiang and Hoover, 1998; Ruchstuhl, Welsh and Caroll, 2000). To take

advantage of the correlation in the data, Severini and Staniswalis (1994) proposed to estimate the

covariance matrix and incorporate the estimated covariance structure in the kernel weights.

Recently Xiao, Linton, Carroll and Mammen (2003) and Su and Ullah (2006) considered a

problem similar to the one considered in this paper. These studies are closely related, but major

difference exists, especially in the handling of the noise {et}. In Xiao et al. (2003) the noise series

{et} is assumed to be a general linear process and is approximated by a truncated AR process; in

Su and Ullah (2006) {et} is modeled as a finite-order nonparametric AR process. In this paper

{et} is modeled explicitly as an ARMA(p, q) process. This parsimonious representation allows us

to improve the efficiency of estimation in finite samples. It has special advantages over Xiao et

al. (2003) when the innovation process cannot be approximated with small-order AR models (e.g.,

seasonal ARMA models or ARMA models with roots close to one in the MA part). Comparing

to the approach of Su and Ullah (2006), an explicit parametric form of the noise process allows

faster convergence in the estimation of the innovation structure, hence the ability of generating

more accurate predictions using the model.

This paper is organized as follows. In section 2, the estimation procedure and the asymptotic

properties of the proposed estimator when et follows an AR(p) process are presented. In section

3 the results for the AR(p) case are extended to the general case when et follows an ARMA(p, q)

process. Although AR(p) case is a special case of ARMA(p, q), different algorithms are used and

different approaches are needed to prove the theorems. The pure AR structure provides a better

algorithm and simpler proof of the asymptotic results. The performance of the proposed estimators

are studied through simulation and compared with those of Xiao et al. (2003) and Su and Ullah

(2006), the results are presented in section 4. The proposed procedures are applied on one real-life

application and the results are presented in section 5. Section 6 contains summary and discussion.
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The technical proofs are given in Appendix A. In the proof one important result of Yoshihara (1976)

is used and an account of this result is given in Appendix B.

2 Estimation procedure in the pure AR case

2.1 The algorithm

When {et} is a stationary AR(p) process, model (1) can be written as

Yt = f(Xt) + et, φ(B)et = εt.

With observations {(Xt, Yt)}n
t=1, first a preliminary estimator for f(·) is obtained by local linear

regression, ignoring the correlation in {et}. Namely, f̃(x) = ã0, where (ã0, ã1) minimizes

n∑

t=1

{Yt − a0 − a1(Xt − x)}2Kb(Xt − x), (2)

where Kb(·) = b−1K(·/b), K(·) is a kernel function in R, and b > 0 is a bandwidth. By simple

algebra,

f̃(x)− f(x) =
1
nb

n∑

t=1

Wn

(Xt − x

b
, x

)
{Yt − f(x)− ḟ(x)(Xt − x)}, (3)

where

Wn(t, x) = (1, 0)Sn(x)−1


 1

t


 K(t). (4)

In the above expression, Sn(x) is a 2× 2 matrix with si+j−2(x) as its (i, j)-th element, and

sk(x) =
1
n

n∑

t=1

(Xt − x

b

)k
Kb(Xt − x). (5)

Under normal assumption, the maximum likelihood estimation for f(·) and φ boils down to the

following optimization problem:

inf
f,φ

n∑

t=1

{Yt − f(Xt)−
p∑

i=1

φi(Yt−i − f(Xt−i))}2, (6)

where the infimum is taken over all smooth function f and φ ∈ Rp satisfies the stationary condition.

Let ẽt = Yt − f̃(Xt) be the initial estimate of the innovation series et. Define

X1 =




ẽp ẽp−1 · · · ẽ1

ẽp+1 ẽp · · · ẽ2

· · · · · · · · ·
ẽn−1 ẽn−2 · · · ẽn−p




, Y1 =




ẽp+1

ẽp+2

· · ·
ẽn




,

and W=diag
{ ∏p

i=0 w(Xt−i)
}
, where w(·) is a weight function controlling the boundary effect in

nonparametric estimation. An iterative estimation procedure is defined as follows:
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1. Specify an initial value φ = φ̃ defined as

φ̃ = (Xτ
1WX1)−1Xτ

1WY1. (7)

2. For given φ, let f̌j ≡ f̌(Xj) = â0, where (â0, â1) minimizes
n∑

t=1

{
Yt − a0 − a1(Xt −Xj)−

p∑

i=1

φi

[
Yt−i − f̃(Xt−i)

]}2
Kh(Xt −Xj)

p∏

i=1

w(Xt−i), (8)

where Kh(·) = h−1K(·/h), and h > 0 is a bandwidth. Obviously â1 is an estimator for

ḟj ≡ f̌(Xj).

3. Obtain φ̌ by minimizing
n∑

j=1

n∑

t=1

{
Yt− f̌j − ˇ̇

f j(Xt−Xj)−
p∑

i=1

φi

[
Yt−i− f̃(Xt−i)

]}2
Kh(Xt−Xj)w(Xj)

p∏

i=1

w(Xt−i). (9)

4. Repeat Steps 2 and 3 above until convergence. The terminal values are defined as estimators

f̂(Xj) = f̌j and φ̂ = φ̌.

Remark 1: Note that in (8) and (9), the values of f̃(Xt−i) are fixed at the initial estimate

throughout the iterations. This setting guarantees that the sum of squares is non-increasing in

every iteration, hence guarantees the convergence. In practice, replacing f̃ with the newly esti-

mated function values may improve the results, though convergence is no longer guaranteed, and

asymptotically it is not necessary.

Remark 2: In practice, only those f̂(Xj) with w(Xj) > 0 will be calculated in order to eliminate

the boundary bias in nonparametric estimation. One may let w(·) be an indicator function on, for

example, the 80% inner sample range of Xt.

Remark 3: There are two bandwidths b and h in the estimation procedure. The asymptotic

results below show that the bandwidth h in the iteration step should be of the standard order of

n−1/5. However, the bandwidth at the preliminary step (2) should be of smaller order b = o(h) but

nb4 →∞ (Condition A4 in Appendix A). This requirement controls the bias in the preliminary step

of the estimation. In practice, standard bandwidth selection in the iteration steps can be utilized.

Experiments show that the final results are usually not very sensitive to the choice of bandwidth

b. A fraction of the usual optimal bandwidth often works well.

Remark 4: In this paper {et} and {Xt} are assumed to be independent. For otherwise, the least

squares-based estimators, such as local polynomial estimators, may not be consistent. Unfortu-

nately this assumption essentially forbids the use of lagged Y s as explanatory variables. When

lagged Y s are needed on the right-hand side of the model, alternative approaches are needed. For

example, one may consider including enough lags of Y on the RHS of the model so that the inno-

vation process becomes nearly uncorrelated and standard smoothing methods can be applied. Xiao

et al. (2003) made a similar observation, here we share their view.
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2.2 Asymptotic results

Let

X2 =




ep ep−1 · · · e1

ep+1 ep · · · e2

· · · · · · · · ·
en−1 en−2 · · · en−p




, Y2 =




ep+1

ep+2

· · ·
en




.

Define the “idealized” estimator

φ̂Ideal = (Xτ
2WX2)−1Xτ

2WY2,

where W is the boundary weight matrix defined in section 2.1. This would be the ‘idealized’ least

square estimator of the AR coefficients if {et} is actually observable. It has been shown (e.g.,

Brockwell and Davis, 1987) that

√
n(φ̂Ideal − φ) D−→ N

(
0,

E(Πp
i=0w(Xt−i))2

[E(Πp
i=0w(Xt−i))]2

σ2V(φ)−1
)
,

where V(φ) is a p × p matrix and its (i, j)-th element is Cov(ei, ej). The following theorem links

our estimator to φ̂Ideal.

Theorem 1 Under the conditions (A1)-(A6) in Appendix A, and that φ satisfies the stationarity

condition, then as n →∞, √
n(φ̃− φ̂Ideal) = op(1),

where φ̃ is the preliminary estimator defined in (7).

As a result of Theorem 1, φ̃ shares the same asymptotic distribution of φ̂Ideal, i.e.,

√
n
(
φ̃− φ

)
D−→ N

(
0,

E
(
Πp

i=0w(Xt−i)
)2

[
E

(
Πp

i=0w(Xt−i)
)]2 σ2V(φ)−1

)
. (10)

As for the nonparametric function f , note that the local linear estimator defined by (8) may be

expressed, for a generic x, as follows:

f̂(x)− f(x) =
1

nh

n∑

t=1

W ∗
n

(Xt − x

h
, x, Xt−1, · · · , Xt−p

){
Ỹt − f(x)− ḟ(x)(Xt − x)

}
, (11)

where Ỹt = Yt −
∑p

i=1 φ̃i{Yt−i − f̃(Xt−i)}, and

W ∗
n(t, x, y1, y2, · · · , yp) = (1, 0)S∗n(x)−1(1, t)τK(t)Πp

i=1w(yi),

and S∗n(x) is defined in the same manner as Sn(x) in (5) with Kb(Xt − x) replaced by Kh(Xt −
x)

∏p
i=1 w(Xt−i) (See also (3)). Theorem 2 below indicates that the above estimator is asymptot-

ically efficient in the sense that the estimator admits the same (the first order) asymptotic distri-

bution as if {Yt} would be defined by a simpler model with i.i.d. noise, namely Yt = f(Xt) + εt.
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Theorem 2 Under the conditions (A1) to (A6) in Appendix A, for any point x in the support of

Xt, as n →∞,
√

nh
{
f̂(x)− f(x)− h2µ2

2
f̈(x)

}
D−→ N

(
0, σ(x)2

)
,

where

σ(x)2 =
σ2

∫
K(u)2du

g1(x)

E
{[

W (Xt−1)W (Xt−2) · · ·W (Xt−p)
]2|Xt = x

}

{
E

[
W (Xt−1)W (Xt−2) · · ·W (Xt−p)|Xt = x

]}2 , (12)

and g1(x) is the marginal density of Xt.

This theorem shows that the nonparametric transfer function estimator f̂(·) is indeed more efficient

than the conventional local polynomial estimator f̃(·). If f̃(·) is used, the resulting asymptotic

variance would have the same form as (12), but the white noise variance σ2 in (12) would be

replaced by the variance of et, which is strictly greater than σ2 for a nontrivial AR(p) model. On

the other hand, the asymptotic bias is not affected by the correlation structure. As a result, f̂ is

more efficient than the conventional estimator f̃ in the sense of mean square error. It can also be

seen that the gain in efficiency of f̂(·) over f̃(·) will be greater if the correlation is stronger.

3 Estimation procedure in the ARMA(p, q) case

Here we consider the general case when {et} follows an ARMA(p, q) process. The estimation shares

the similar “pre-whitening” idea with the AR(p) case and the asymptotic results are also similar.

However the estimation procedures are more complicated in details and different techniques are

required to establish the asymptotic results.

3.1 The algorithm

Modeling {et} as a stationary, invertible ARMA(p, q) process, model (1) becomes

Yt = f(Xt) + et, et = φ−1(B)θ(B)εt.

{et} is assumed to be stationary and invertible, so {et} admits the linear process representations

et = −∑∞
i=1 πiet−i+εt and et =

∑∞
i=0 ψiεt−i, πi and ψi are absolutely summable, i.e.,

∑∞
i=0 |πi| < ∞

and
∑∞

i=0 |ψi| < ∞ (Box and Jenkins, 1976). Denote β = (φ1, φ2, · · · , φp, θ1, θ2, · · · , θq)τ . f(·) and

β are estimated by solving the following nonlinear optimization problem

inf
f,β

n∑

t=1

{
Yt − f(Xt) +

[φ(B)
θ(B)

− 1
][

Yt − f(Xt)
]}2

, (13)

where the infimum is taken over all smooth function f and all β ∈ Rp+q satisfying the stationary

and invertible conditions. To initiate the iteration, an initial estimate f̃(·) is obtained by local
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linear regression, ignoring the serial correlation in {et} (see also (2)). The iterative procedure is

described as follows:

1. Obtain an initial estimate β̃ = (φ̃, θ̃) by minimizing
n∑

t=1

{φ(B)
θ(B)

[
Yt − f̃(Xt)

]}2
(14)

with respect to φ and θ.

2. Given β, let f̌j ≡ f̌(Xj) = â0, where (â0, â1) minimizes
n∑

t=1

{
Yt − a0 − a1(Xt −Xj) +

[φ(B)
θ(B)

− 1
][

Yt − f̃(Xt)
]}2

Kh(Xt −Xj),

where Kh(·) = 1/hK(·/h), h is a bandwidth and h is of larger order than b.

3. Define β̌ to minimize
n∑

j=1

n∑

t=1

{
Yt − f̌j − ˇ̇

f j(Xt −Xj) +
[φ(B)
θ(B)

− 1
][

Yt − f̃(Xt)
]}2

Kh(Xt −Xj). (15)

4. Repeat steps 2 and 3 until {f̌j} and β̌ change only by a small amount in two successive

iterations. The terminal values of f̂(Xj) = f̌j and β̂ = β̌ are the estimators of f(·) and β,

respectively.

Several algorithms can be used to solve the nonlinear optimization problems presented in equations

(13) to (15). In this study, a nonlinear estimation method based on the Gauss-Newton algorithm

is used. In this method, steps 1 and 3 can be iterated to improve the finite sample performance.

The details of this method can be found in Appendix A.

3.2 Asymptotic results

Similar to the AR(p) case, the “idealized” estimator of β is defined as the solution of β̂Ideal =

infβ
{
φ(B)θ(B)−1et

}2
, assuming {et} observable. As a standard estimator of an ARMA model, it

has been shown that (e.g., Brockwell and Davis, 1987)
√

n(β̂Ideal − β) D−→ N
(
0, σ2V(β)−1

)
,

where

V(β) = E

(
U1Uτ

1 U1Vτ
1

V1Uτ
1 V1Vτ

1

)
, (16)

Ut = (Ut, Ut−1, · · · , Ut+1−p)τ , Vt = (Vt, Vt−1, · · · , Vt+1−q)τ . {Ut} is an AR(p) process defined by

φ(B)Ut = at and {Vt} is an AR(q) process defined by θ(B)Vt = bt, at and bt are white noise

processes. Obviously, when the model does not contain the AR component (pure MA(q) model),

V(β) = E (V1Vτ
1) . Using this result, the following asymptotic results for the ARMA(p, q) case can

be established.
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Theorem 3 Under the conditions (A1) to (A5) and (A6∗) in Appendix A, and that φ satisfies the

stationarity condition and θ satisfies the invertibility condition, then as n →∞,

√
n(β̃ − β̂Ideal) = op(1).

As a result of Theorem 3, β̃ shares the same asymptotic distribution of β̂Ideal, i.e.,

√
n
(
β̃ − β

)
D−→ N

(
0, σ2V(β)−1

)
,

where V(β) is defined in (16).

Theorem 4 Under the conditions (A1) to (A5) and (A6∗) in Appendix A and that {et} is a

stationary, invertible ARMA(p, q) process, then for any point x in the support of Xt, as n →∞,

√
nh

{
f̂(x)− f(x)− h2µ2

2
f̈(x)

}
D−→ N

(
0, σ(x)2

)
,

where

σ(x)2 =
σ2

∫
K(u)2du

g1(x)
,

and g1(x) is the marginal density function of Xt.

Theorems 3 and 4 show that similar results as those in the AR(p) case continue to hold in the

ARMA(p, q) case, despite the more complicated correlation structure. Results similar to Theorems

2 and 4 are established by Xiao et al. (2003, Theorem 2) and Su and Ullah (2006, Theorem 3.1)

under different assumptions on et.

4 Numerical properties

To study the finite-sample properties of the proposed estimator, simulation studies are conducted

using model (1), where

f(Xt) = sin(4Xt) + cos(2Xt),

and Xt is generated from an AR(1) model Xt = 0.3Xt−1 + at, at ∼ i.i.d. N(0, 0.32). For {et}, an

ARMA(1,1) model (et = φet−1 + εt − θεt−1) and two simple seasonal models (et = φ4et−4 + εt and

et = εt − θ4εt−4, denoted as AR(1)4 and MA(1)4, respectively) are considered. In these models,

εt ∼ N(0, 0.52).

Three sample sizes (100, 200 and 400) are considered and 200 replications are used in each case.

The standard normal density function is used as the kernel function. Different bandwidths b and h

are experimented. Due to the fact that the results are not very sensitive to the bandwidths, only

the case of h = 1.06sXn−1/5 and b = 1.06sXn−1/4 is reported here.
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For comparison, under the same setting specified above, simulations are run using the proposed

nonparametric transfer function approach, the AR approximation approach of Xiao et al. (2003),

the nonparametric AR approximation approach of Su and Ullah (2006), and the “conventional”

local linear estimator, in which {et} is assumed to be white noise. In the sequel, the approaches

will be abbreviated as NPTF, XLCM, SU and WHITE, respectively.

The mean squared errors (MSE≡ 1
n

∑n
t=1{f̂(Xt)− f(Xt)}2) of all four estimators are averaged

over the replications. As a measure of relative efficiency, the relative MSEs of NPTF, XLCM,

and SU are calculated by dividing their average MSEs by that of WHITE. The relative MSEs are

reported in Tables 1 and 2 under the corresponding procedure names. The means and standard

deviations of φ̂ and θ̂ from NPTF are also reported, as well as the average mean squared error of

WHITE (AMSE), which is the common denominator of the relative MSEs. A histogram of φ̂ and

a plot of a typical simulation are given in Figure 1.
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Figure 1: φ = −0.2, n=200. Left panel: histogram of φ̂, right panel: true (solid line) and estimated (dashed

line) transfer function in a typical simulation.

The following phenomena are also observed in Xiao et al. (2003) and Su and Ullah (2006)

so they are only briefly mentioned here. (1) The NPTF estimator f̂(·) is more efficient than the

conventional local linear regression estimator, the stronger the autocorrelation, the larger the gain

in efficiency of f̂(·). (2) the performance of the estimators improves with the increase of sample

size. (3) The MA estimates may have large bias and larger sample sizes are needed to improve

the performance. In this study we model et explicitly as an ARMA(p, q) process. As illustrated in

Figure 1, the sampling distributions of φ̂ and θ̂ are close to their asymptotic normal distributions.

For a comparison between NPTF, XLCM and SU, the simulation shows that generally they are

all more efficient than the conventional estimator. When {et} follows an ARMA model with small
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Table 1: Simulation results: AR(1) and MA(1) models

φ θ n mean(φ̂), sφ̂ mean(θ̂), sθ̂ AMSE NPTF XLCM SU

100 -.786, .070 .033 .466 .484 .553

-.8 200 -.802, .049 .023 .405 .414 .464

400 -.799, .034 .015 .395 .400 .482

100 -.507, .100 .019 .792 .810 .895

-.5 200 -.508, .065 .011 .801 .809 .900

400 -.501, .047 .006 .756 .767 .836

100 -.216, .105 .018 .992 1.01 1.12

-.2 200 -.210, .082 .010 .966 .970 1.04

400 -.200, .054 .006 .981 .982 1.05

100 .196, .107 .020 1.01 1.07 1.10

.2 200 .198, .078 .012 1.05 1.06 1.12

400 .198, .054 .007 1.01 1.01 1.06

100 .483, .096 .031 .912 .926 .943

.5 200 .493, .066 .019 .904 .910 .944

400 .494, .048 .010 .898 .902 .921

100 .774, .076 .092 .835 .837 .845

.8 200 .792, .049 .053 .758 .761 .776

400 .799, .032 .030 .738 .740 .745

100 -.712, .091 .120 .818 .883 .916

-.8 200 -.742, .057 .069 .753 .816 .859

400 -.765, .035 .038 .746 .797 .847

100 -.492, .099 .092 .884 .921 .961

-.5 200 -.497, .069 .052 .849 .885 .933

400 -.496, .048 .029 .833 .872 .927

100 -.184, .115 .064 .990 1.02 1.05

-.2 200 -.198, .075 .039 .953 .954 1.03

400 -.200, .052 .023 .950 .949 1.03

100 .219, .123 .058 .955 .965 1.06

.2 200 .209, .078 .034 .936 .950 1.03

400 .204, .054 .021 .919 .926 1.02

100 .516, .099 .059 .791 .824 .987

.5 200 .497, .073 .037 .757 .773 .866

400 .501, .048 .023 .742 .759 .858

100 .725, .094 .053 .691 .737 .843

.8 200 .745, .061 .047 .665 .696 .773

400 .757, .040 .029 .643 .682 .740
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Table 2: Simulation results: ARMA(1,1), AR(1)4 and MA(1)4 models

φ θ n mean(φ̂), sφ̂ mean(θ̂), sθ̂ AMSE NPTF XLCM SU

100 .217, .151 -.645, .127 .039 .836 .869 .944

.2 -.8 200 .211, .093 -.685, .076 .026 .802 .873 .985

400 .209, .065 -.739, .055 .013 .737 .815 .909

100 .512, .123 -.537, .147 .076 .737 .780 .839

.5 -.8 200 .518, .083 -.592, .104 .044 .703 .748 .784

400 .522, .056 -.639, .075 .025 .669 .728 .771

100 .819, .079 -.286, .163 .259 .761 .819 .857

.8 -.8 200 .816, .053 -.397, .142 .161 .692 .748 .761

400 .812, .039 -.482, .083 .083 .666 .710 .726

100 .207, .183 -.457, .168 .029 .882 .930 1.04

.2 -.5 200 .210, .127 -.469, .111 .016 .865 .907 1.03

400 .207, .086 -.485, .080 .011 .859 .886 .975

100 .516, .141 -.381, .147 .059 .771 .823 .885

.5 -.5 200 .507, .086 -.422, .088 .034 .759 .781 .841

400 .503, .056 -.447, .069 .019 .758 .783 .802

100 .806, .094 -.235, .148 .210 .784 .813 .830

.8 -.5 200 .811, .051 -.305, .103 .113 .714 .753 .783

400 .812, .038 -.359, .079 .060 .663 .703 .730

φ4 θ4 n mean(φ̂4), sφ̂4
mean(θ̂4), sθ̂4

AMSE NPTF XLCM SU

100 -.764, .072 .039 .471 .927 1.03

-.8 200 -.783, .048 .025 .434 .895 .978

400 -.791, .034 .015 .421 .896 .962

100 -.484, .094 .020 .874 1.01 1.13

-.5 200 -.488, .065 .013 .836 .996 1.10

400 -.495, .048 .008 .815 .989 1.07

100 .495, .113 .018 .959 1.05 1.23

.5 200 .493, .064 .011 .875 1.02 1.19

400 .495, .050 .007 .866 1.02 1.18

100 .698, .098 .023 .872 1.03 1.17

.8 200 .721, .061 .013 .842 1.01 1.20

400 .741, .045 .008 .809 1.00 1.16
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|θ| (including pure AR models), NPTF and XLCM have similar efficiency, however when |θ| is

large, the NPTF estimator is more efficient. For the seasonal models, NPTF has similar gain in

efficiency as in the non-seasonal models, while in many cases XLCM and SU fail to approximate et

appropriately and the estimate is no longer efficient (Table 2). In the simulation higher-order AR

approximations are also used in XLCM, but the performance does not always improve, partially

due to the additional error introduced in estimating more parameters. Since the finding is similar,

the detailed results are omitted. In the simulation, SU is not as efficient as NPTF and XLCM,

mainly because here et is generated from ARMA models of finite order. In a separate study, et is

generated from nonlinear finite order AR processes and SU is found to be more efficient.

5 Example: river flow and rainfall

In this section the proposed nonparametric transfer function approach is used to analyze the effect

of daily rain fall on river flow of Kanna river (Japan) in year 1956. The effect of rainfall on river

flow is usually highly nonlinear, mainly because the soil moisture varies from rainy period to dry

period. This dataset was analyzed by Ozaki (1985) and later used by Chen and Tsay (1996) as an

example of the nonlinear transfer function (NLTF) model. For details of the data, see Chen and

Tsay (1996).

The proposed nonparametric transfer function model is used to analyze this dataset and the

performance is compared with those of the NLTF model and the linear transfer function model

(LTF). The sample autocorrelation function (ACF) of Yt indicates non-stationarity. After taking

first order difference of Yt, the resulting series appears to be stationary. Let Zt = Yt − Yt−1 and

consider the following model

Zt = f(Xt, Xt−1, Xt−2) + et. (17)

Note here a low-dimensional smoothing model is used instead of an univariate smoothing model.

Following the proposed estimation procedures, f(·) is first estimated assuming {et} i.i.d., then the

resulting preliminary estimate f̃(·) is removed from Zt and a model is identified for {et} based on

the sample autocorrelation function of the partial residuals (Figure 2). The resulting model is an

AR model with lagged variables at lags 4, 5, 6 and 14.

The bandwidth is selected via the generalized cross validation (GCV) criteria (Craven and

Wahba, 1979).

h = arg min
h

(Y − f̂)τ (Y − f̂)
n[1− tr(Sh)/n]2

,

where Sh is the smoother matrix associated with h such that f̂ = ShY, and Y is the vector of

observations. In order to compare with the parametric models, the equivalent number of parameters

defined as tr(Sh) is also calculated. The resulting bandwidth is 5 and the equivalent number of

13
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Figure 2: Sample ACF plot of the partial residuals after removing f̃(·)

parameters is 33.46. The estimated AR parameters are φ̂4 = .0912, φ̂5 = .1264, φ̂6 = .1593 and

φ̂14 = .0704. Figure 3 is the ACF plot of the final residuals.
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Figure 3: Sample ACF plot of the final residuals

To study the forecasting performance of the NPTF model, the following rolling forecasting

scheme is employed: for each t = 180, 181, · · · , 365, data available at t are used to build the

model and make one-step ahead prediction. For convenience, actual values of Xt+1 are used in the

prediction. For each t, the forecasting error Yt+1−Ŷt(1) is calculate. Finally, the squared forecasting

errors are averaged over t. The square-root of this average is referred to as “post-sample forecasting

RMSE”.

Table 3 shows a comparison between the NPTF model with a parametric nonlinear transfer

function model (NLTF) and a linear transfer function model (LTF) fitted by Chen and Tsay

(1996). Residual variances and RMSEs from rolling forecasts are obtained using the model settings

detailed in Chen and Tsay (1996).

The above results show that the NPTF has smaller residual variance, but large equivalent

number of parameters. This may indicate overfitting. However, the better forecasting performance

of the NPTF model justifies its use of more parameters.

The one-step ahead forecast errors of the NPTF model and the NLTF model are plotted against

the forecasting origins in Figure 4. The performance of the LTF model is not as good as the NLTF

and NPTF models, so its errors are not plotted in this figure for clearer presentation. From this

14



Table 3: Within- and Post-Sample Comparisons
NPTF NLTF LTF

(Equivalent) Number of Parameters 33.46 12 10

Residual variance 4.58 6.23 20.81

Forecasting RMSE 8.80 12.56 13.93
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Figure 4: The one-step ahead forecast errors of the NPTF model (solid line) and the NLTF model

(dashed line)

figure it is clear that the NPTF model outperforms the NLTF model most of the time. On average,

the NPTF model performs better than the NLTF and LTF models in that it produces not only

smaller within-sample RMSE but also smaller post-sample RMSE. This example shows the potential

of the nonparametric transfer function model in modeling nonlinear time series.

6 Summaries and discussions

In this paper a new method is proposed to model nonlinear relationships between an input and

an output time series. The transfer function f(·) is modeled by nonparametric smoothing and the

innovation process {et} is modeled as a stationary ARMA(p, q) process. The nonparametric feature

of this model allows us to model highly nonlinear relationships of unknown functional forms, while

modeling {et} as an ARMA model improves not only the efficiency in estimating f(·) but also the

forecasting performance. The simulations and empirical study show good potential of this model
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in analyzing nonlinear time series.

There are some issues in the nonparametric transfer function model that deserve further study.

For example, in this study the transfer function is univariate. It is easy, though tedious, to generalize

the results to multi-dimensional cases, under the general model Yt = f(X1t, · · · , Xpt)+et. However,

such a direct generalization is often not practical in practice due to the aforementioned “curse of

dimensionality”. To solve this problem, more restrictive models, such as the additive model, must

be considered. Research addressing this topic is ongoing.
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Appendix A – Technical Proofs

In the proofs that follow, C > 0 denotes a generic constant that may vary from line to line. Let

g1(·) be the density function of Xt and gi(xt1, · · · , xti) be the i-dimensional joint density function of

{Xt1, · · · , Xti}. The following assumptions are needed, of which (A1) to (A5) are needed for both

the pure AR(p) and the ARMA(p, q) cases, (A6) is needed for the pure AR(p) case and (A6*) is

needed for the ARMA(p, q) case.

(A1) {Xt} is β-mixing in the sense that

β(k) = E{ sup
B∈F∞

k

|P (B)− P (B|X0, X−1, · · ·)|} → 0

as k → ∞, where F j
i is the σ-algebra generated by {Xi, · · · , Xj} for i ≤ j. In addition,

∑
k≥1 kβ(k)δ/(2+δ) < ∞ for some δ ∈ (0, 8).

(A2) The kernel function is symmetric, compactly supported and Lipschitz continuous.

(A3) f(·) has continuous second derivative f̈(·) and g1(·) is bounded away from zero.

(A4) As n →∞, h = O(n−1/5), b = o(n−1/5), and nb4 →∞.

(A5) {Xt} and {εt} are two independent processes.

(A6) The weight function w(·) is continuous on its compact support contained in {g1(x) > 0}.

16



(A6*) Xt has bounded support [a, b]. The density functions g1(·), g2(·, ·), g4(·, ·, ·, ·) and

g6(·, ·, ·, ·, ·, ·) are continuous and have continuous first two derivatives.

The following lemma is needed to prove the theorems:

Lemma 1 As n →∞, it holds uniformly for x in any compact subset of {g1(x) > 0} that

f̃(x)− f(x) =
1

nbg1(x)

n∑

t=1

K
(Xt − x

b

)
et +

b2

2
µ2f̈(x) + Op

[
Rn(x)

{
(
log n

nb
)1/4 + b

}]
,

where µ2 =
∫

u2K(u)du, and

Rn(x) =
1

nbg1(x)

{∣∣∣
n∑

t=1

K
(Xt − x

b

)
et

∣∣∣ +
∣∣∣

n∑

t=1

(Xt − x

b

)
K

(Xt − x

b

)
et

∣∣∣
}

+ O(b2).

Proof of Lemma 1

It follows from Theorem 5.3 of Fan and Yao (2003) that

sk(x) = g1(x)µk + Op

{( log n

nb

)1/2
+ b2

}

uniformly for x ∈ A, where sk(x) is defined in (5), µk =
∫

ukK(u)du, and A is any compact set

contained in {g1(x) > 0}. Hence it holds uniformly for x ∈ A that

Sn(x) = S(x) + Op

{( log n

nb

)1/2
+ b2

}
,

where S(x) = g1(x)diag(1, µ2). Write Y ∗
t = Yt−f(x)− ḟ(x)(Xt−x). It is easy to see from (4) that

∣∣∣
n∑

t=1

{
Wn

(Xt − x

b
, x

)
− g1(x)−1K

(Xt − x

b

)}
Y ∗

t

∣∣∣

=
∣∣∣(1, 0){Sn(x)−1 − S(x)−1}

n∑

t=1

(
1,

Xt − x

b

)τ
K

(Xt − x

b

)
Y ∗

t

∣∣∣

≤ [(1, 0){Sn(x)−1 − S(x)−1}2(1, 0)τ ]1/2
{∣∣∣

n∑

t=1

K
(Xt − x

b

)
Y ∗

t

∣∣∣
2
+

∣∣∣
n∑

t=1

Xt − x

b
K

(Xt − x

b

)
Y ∗

t

∣∣∣
2}1/2

≤ [(1, 0){Sn(x)−1 − S(x)−1}2(1, 0)τ ]1/2
{∣∣∣

n∑

t=1

K
(Xt − x

b

)
Y ∗

t

∣∣∣ +
∣∣∣

n∑

t=1

Xt − x

b
K

(Xt − x

b

)
Y ∗

t

∣∣∣
}

≤ Op

[{( log n

nb

)1/2
+ b2

}1/2]{∣∣∣
n∑

t=1

K
(Xt − x

b

)
et

∣∣∣ +
∣∣∣

n∑

t=1

Xt − x

b
K

(Xt − x

b

)
et

∣∣∣ + O(nb3)
}
.

The last inequality follows from the fact that Yt = f(Xt) + et, K(·) has a compact support. Now

the lemma follows from (3) and a simple Taylor expansion. The proof is completed.
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Proof of Theorem 1

Since {et} is a stationary Gaussian AR(p) process, it is also β-mixing with exponentially decaying

mixing coefficients. Put wt = w(Xt), let A = Xτ
1WX1 and B = Xτ

1WY1, where X1, Y1 and W

are defined in section 2.1. From (7) we have φ̃ = A−1B, the (r, s)-th element of A is

Ars =
n∑

t=1

[
Yt−r − f̃(Xt−r)

][
Yt−s − f̃(Xt−s)

] p∏

k=0

wt−k

=
n∑

t=1

[
et−r + f(Xt−r)− f̃(Xt−r)

][
et−s + f(Xt−s)− f̃(Xt−s)

] p∏

k=0

wt−k

=
n∑

t=1

et−ret−s

p∏

k=0

wt−k + Ars1 + Ars2 + Ars3,

where

Ars1 =
n∑

t=1

{f(Xt−r)− f̃(Xt−r)}{f(Xt−s)− f̃(Xt−s)}
p∏

k=0

wt−k,

Ars2 =
n∑

t=1

et−r{f(Xt−s)− f̃(Xt−s)}
p∏

k=0

wt−k, Ars3 =
n∑

t=1

et−s{f(Xt−r)− f̃(Xt−r)}
p∏

k=0

wt−k.

The r-th element of B is

Br =
n∑

t=1

[
Yt − f̃(Xt)

][
Yt−r − f̃(Xt−r)

] p∏

k=0

wt−k

=
n∑

t=1

[
et + f(Xt)− f̃(Xt)

][
et−r + f(Xt−r)− f̃(Xt−r)

] p∏

k=0

wt−k

=
n∑

t=1

etet−r

p∏

k=0

wt−k + Br1 + Br2 + Br3,

where

Br1 =
n∑

t=1

{f(Xt)− f̃(Xt)}{f(Xt−r)− f̃(Xt−r)}
p∏

k=0

wt−k,

Br2 =
n∑

t=1

et{f(Xt−r)− f̃(Xt−r)}
p∏

k=0

wt−k, Br3 =
n∑

t=1

et−r{f(Xt)− f̃(Xt)}
p∏

k=0

wt−k.

The Theorem follows immediately from the two statements below:

(i) Br1 + Br2 + Br3 = op(
√

n), and

(ii) Ars1 + Ars2 + Ars3 = op(
√

n).

for all r, s = 1, 2, · · · , p.

Here only (i) is established. The proof for (ii) is similar and simpler. By Lemma 1, we may

write

Br1 = {Br11 + Br12 + Br13 + Op(nb4)}{1 + op(1)}, (18)
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where

Br11 =
1

n2b2

∑

i,j,k

K
(Xi −Xk

b

)
K

(Xj −Xk−r

b

) eiej

g1(Xk)g1(Xk−r)

p∏

l=0

wk−l ≡ 1
n2b2

∑

i,j,k

ζ(ξi, ξj , ξk),

Br12 =
bµ2

2n

∑

i,k

eif̈(Xk−r)
g1(Xk)

K
(Xi −Xk

b

) p∏

l=0

wk−l, Br13 =
bµ2

2n

∑

i,k

eif̈(Xk)
g1(Xk−r)

K
(Xi −Xk−r

b

) p∏

l=0

wk−l,

where ξi = (Xi, Xi−1, · · · , Xi−p, ei)τ . Br11 is split into two sums Br111 and Br112 consisting of,

respectively, the terms with different i, j, k and the terms with at least two of i, j, k the same. To

perform the Hoeffding decomposition on the U -statistic Br111, put

κ(ξi, ξj , ξk) = ζ(ξi, ξj , ξk) + ζ(ξi, ξk, ξj) + ζ(ξj , ξi, ξk)

+ ζ(ξj , ξk, ξi) + ζ(ξk, ξi, ξj) + ζ(ξk, ξj , ξi).

Define

θ(P ) =
∫ ∫ ∫

κ(ξi, ξj , ξk) dP (ξi) dP (ξj) dP (ξk);

κ̃1(ξi) =
∫ ∫

κ(ξi, ξj , ξk) dP (ξj) dP (ξk);

κ̃2(ξi, ξj) =
∫

κ(ξi, ξj , ξk) dP (ξk);

κ̃3(ξi, ξj , ξk) = κ(ξi, ξj , ξk),

Then κ(ξi, ξj , ξk) satisfies the following:

(
n

3

)−1 ∑

1≤i<j<k≤n

κ(ξi, ξj , ξk) =
3∑

c=0

(
3
c

)
U (c)

n ,

where

U (0)
n = θ(P ),

U (1)
n =

1
n

n∑

i=1

κ̃1(ξi)− θ(P ),

U (2)
n =

2
n(n− 1)

∑

1≤i<j≤n

κ̃2(ξi, ξj)−
2
n

n∑

i=1

κ̃1(ξi) + θ(P ),

U (3)
n =

6
n(n− 1)(n− 2)

∑

1≤i<j<k≤n

κ̃3(ξi, ξj , ξk)−
6

n(n− 1)

∑

1≤i<j≤n

κ̃2(ξi, ξj) +
3
n

n∑

i=1

κ̃1(ξi)− θ(P ).

We can show the following:

κ̃1(ξi) = 0,

κ̃2(ξi, ξj) = b2 eiejwiwjR(Xi, Xj)
g1(Xi)g1(Xj)

{g2(Xi, Xj) + g2(Xj , Xi)}{1 + O(b)},
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where R(xi, xj) =E(w(Xk−1) · · ·w(Xk−i+1)w(Xk−i−1) · · ·w(Xk−p)|Xk = xi, Xk−i = xj). Thus

U (1)
n = −θ(P ),

U (2)
n =

2
n(n− 1)

∑

1≤i<j≤n

κ̃2(ξi, ξj) + θ(P ),

U (3)
n =

6
n(n− 1)(n− 2)

∑

1≤i<j<k≤n

κ(ξi, ξj , ξk)−
6

n(n− 1)

∑

1≤i<j≤n

κ̃2(ξi, ξj)− θ(P )

=
6

n(n− 1)(n− 2)

∑

1≤i<j<k≤n

[κ(ξi, ξj , ξk)− κ̃2(ξi, ξj)− κ̃2(ξi, ξk)− κ̃2(ξj , ξk)]− θ(P )

≡ 6
n(n− 1)(n− 2)

∑

1≤i<j<k≤n

κ3(ξi, ξj , ξk)− θ(P ).

Combining the above results, we have

Br111 =
1

n2b2

∑

1≤i<j<k≤n

κ3(ξi, ξj , ξk) +
n− 2
n2

∑

1≤i<j≤n

κ̃2(ξi, ξj)/b2.

It follows from Lemma 2 of Yoshihara (1976) (Appendix B) that for any ε > 0,

P
{ 1

n2b2

∣∣∣
∑

1≤i<j<k≤n

κ3(ξi, ξj , ξk)
∣∣∣ > ε

√
n
}

≤ nε−2

b4
E

∣∣∣ 1
n3

∑

1≤i<j<k≤n

κ3(ξi, ξj , ξk)
∣∣∣
2

= O(n−1b−4) → 0,

and

P
{ 1

n

∣∣∣
∑

1≤i<j≤n

κ̃2(ξi, ξj)/b2
∣∣∣ > ε

√
n
}
≤ nε−2E

∣∣∣ 1
n2

∑

1≤i<j≤n

κ̃2(ξi, ξj)/b2
∣∣∣
2

= O(n−1).

Thus Br111 = op(
√

n). Similar (but simpler) arguments may show that Br112 = op(
√

n) (therefore

Br11 = op(
√

n)), Br12 = op(
√

n) and Br13 = op(
√

n). Note that Assumption A4 implies
√

nb4 → 0.

Now argument (i) holds due to (18). The proof is completed.

Proof of Theorem 2

Define

Ỹt = Yt −
p∑

i=1

φ̃i

[
Yt−i − f̃(Xt−i)

]

= Yt −
p∑

i=1

φi

[
Yt−i − f̃(Xt−i)

]
+

p∑

i=1

(φi − φ̃i)
[
Yt−i − f̃(Xt−i)

]

= f(Xt) +
p∑

i=1

φiet−i + εt −
p∑

i=1

φi

[
f(Xt−i)− f̃(Xt−i) + et−i

]

+
p∑

i=1

(φi − φ̃i)
[
f(Xt−i)− f̃(Xt−i) + et−i

]
.
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By Theorem 1, φ̃ = φ + Op(n−1/2), the convergence rate is faster than that for the nonparametric

estimator f̂(x). Therefore we may treat φ̃ = φ in the proof, so Ỹt = εt +f(Xt)+
∑p

i=1 φi{f̃(Xt−i)−
f(Xt−i)}. By Theorem 5.3 of Fan and Yao (2003),

s∗k(x) = p1(x)µk + Op

{
(
log n

nh
)1/2 + h)

}
,

where p1(x) = g1(x)E{w(Xt−1)w(Xt−2) · · ·w(Xt−p)|Xt = x}. From Lemma 1 and (11), it holds

that

f̂(x)− f(x) =
1

nhp1(x)

n∑

t=1

K
(Xt − x

h

) p∏

l=1

w(Xt−l)
{
εt + f(Xt)

+
p∑

k=1

φk[f̃(Xt−k)− f(Xt−k)]− f(x)− ḟ(x)(Xt − x)
}

=
1

nhp1(x)

n∑

t=1

K
(Xt − x

h

) p∏

l=1

w(Xt−l)
{
εt + f(Xt)− f(x)− ḟ(x)(Xt − x)

}

+
b2µ2

2nhp1(x)

p∑

k=1

φk

n∑

t=1

K
(Xt − x

h

) p∏

l=1

w(Xt−l)f̈(Xt−k)

+
1

n2hbp1(x)

p∑

k=1

φk

n∑

i,j=1

K
(Xi − x

h

) p∏

l=1

w(Xt−l)K
(Xj −Xi−k

b

) ej

g1(Xi−k)
.(19)

By an ergodic theorem, the second term on the RHS of the above expression is of the order

Op(b2) = op(h2). To show that the third term on the RHS is of the desired order, we prove it for

some particular k, say k = 1, the same argument holds for all k = 1, 2, · · · , p. Put

ζ(ξi, ξj) = K
(Xi − x

h

) p∏

l=1

w(Xi−l)K
(Xj −Xi−1

b

) ej

g1(Xi−1)
,

where ξi = (Xi, Xi−1, · · · , Xi−p, ei). Denote the third term on the RHS of (19) as J .

J =
φ1

n2bhp1(x)

n∑

i,j=1

ζ(ξi, ξj) =
φ1

n2bhp1(x)

∑

1≤i<j≤n

[
ζ(ξi, ξj) + ζ(ξj , ξi)

]

≡ φ1

n2bhp1(x)

∑

1≤i<j≤n

κ(ξi, ξj).

Then it holds that

J =
φ1

n2hbp1(x)

∑

1≤i<j≤n

{κ(ξi, ξj)− κ1(ξi)− κ1(ξj)}+
φ1(n− 1)
n2p1(x)

n∑

i=1

κ1(ξi)/(hb), (20)

where

κ1(ξi) ≡
∫

κ(ξi, ξj)dP (ξj) = hb eiw(Xi)p2(x,Xi)/g1(Xi){1 + O(h)},

where p2(x, Xi) =E{w(Xj−2) · · ·w(Xj−p)|Xj = x,Xj−1 = Xi}g2(x,Xi). Denote the two terms on

the RHS of (20) by J1 and J2, respectively. By a CLT for mixing processes (e.g., Theorem 2.21(i)
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of Fan and Yao 2003), J2 = Op(n−1/2) = op{(nh)−1/2}. By Lemma 2 in Appendix 2 below,

P{
√

nh|J1| > ε} ≤ φ2
1ε
−2nh

h2b2p1(x)2
E

∣∣∣ 1
n2

∑

1≤i<j≤n

{κ(ξi, ξj)− κ1(ξi)− κ1(ξj)}
∣∣∣
2

= O{(nb2h)−1} → 0.

Hence J1 = op{(nh)−1/2}. Note h2 = O{(nh)−1/2} under Assumption A4. Now it follows from (19)

that

f̂(x)− f(x) =
1

nhp1(x)

n∑

t=1

K
(Xt − x

h

) p∏

l=1

w(Xt−l){εt + f(Xt)− f(x)− ḟ(x)(Xt − x)}+ op

{ 1

(nh)
1
2

}

=
1

nhp1(x)

n∑

t=1

K
(Xt − x

h

) p∏

l=1

w(Xt−l)εt +
h2

2
µ2f̈(x) + op

{ 1

(nh)
1
2

}
.

Now the theorem follows from, for example, Theorem 2.21(i) of Fan and Yao (2003). The proof is

completed.

Proof of Theorem 3

Several algorithms are available to solve the nonlinear optimization problem needed for estimating

the ARMA case. Here a nonlinear estimator based on the Gauss-Newton method is adopted.

Specifically, given initial estimate β0 = (φ0
1, · · · , φ0

p, θ
0
1, · · · , θ0

q)
τ , we adopt the following notations

φ0(B)θ0(B)−1 =
∞∑

i=0

π0
i B

i, θ0(B)−1 =
∞∑

i=0

ξ0
i Bi, φ0(B)θ0(B)−2 =

∞∑

i=0

η0
i B

i,

and we use the approximations

φ0(B)θ0(B)−1et =
t−1∑

i=0

π0
i et−i, θ0(B)−1et =

t−1∑

i=0

ξ0
i et−i, φ0(B)θ0(B)−2 =

t−1∑

i=0

η0
i et−i. (21)

By a linear Taylor expansion at β0, we have

εt ≈ φ0(B)
θ0(B)

et −
p∑

i=1

1
θ0(B)

et−i∆φi +
q∑

j=1

φ0(B)
θ2
0(B)

et−j∆θj ,

where ∆φi = φi − φ0
i and ∆θj = θj − θ0

j . By the approximations in (21), we have the following

regression equation

t−1∑

i=0

π0
i et−i =

p∑

j=1

t−j−1∑

i=0

ξ0
i et−j−i∆φi −

q∑

j=1

t−j−1∑

i=0

η0
i et−j−i∆θi + εt.

Let m = max(p, q) + 1, ∆β can be estimated by minimizing

n∑

t=m

{ t−1∑

i=0

π0
i et−i −

p∑

j=1

t−j−1∑

i=0

ξ0
i et−j−i∆φi +

q∑

j=1

t−j−1∑

i=0

η0
i et−j−i∆θi

}2
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with respect to ∆φ and ∆θ, β̂ = β0 + ∆̂β serves as the estimate of β. Therefore we minimize

n∑

j=1

n∑

t=m

{
Yt−a0−a1(Xt−Xj)+

t−1∑

l=1

π0
l ẽt−l−

p∑

i=1

t−i−1∑

l=0

ξ0
l ẽt−i−l∆φi+

q∑

i=1

t−i−1∑

l=0

η0
l ẽt−i−l∆θi

}2
Kh(Xt−Xj)

to estimate f(·) and β. Re-express the above in matrix notation, for initial estimate β0, let

Dτ
t =

(∂εt(β0)
∂φ1

,
∂εt(β0)

∂φ2
, · · · , ∂εt(β0)

∂φp
,
∂εt(β0)

∂θ1
,
∂εt(β0)

∂θ2
, · · · , ∂εt(β0)

∂θq

)
,

where ∂εt(β0)/∂βi, i = 1, · · · , p + q means ∂εt/∂βi evaluated at β0. By a Taylor expansion,

εt ≈ εt(β0) + Dτ
t (β − β0) = εt(β0) + Dτ

t ∆β,

where εt(β0) = θ0(B)−1φ0(B)et. Re-arranging terms, we have εt(β0) = −Dτ
t ∆β + εt. An estimate

of ∆β can be obtained by minimizing the sum of squares
∑n

t=1{εt(β0) + Dτ
t ∆β}2. Define

D = −




∂εm(β0)
∂φ1

∂εm(β0)
∂φ2

· · · ∂εm(β0)
∂φp

∂εm(β0)
∂θ1

∂εm(β0)
∂θ2

· · · ∂εm(β0)
∂θq

∂εm+1(β0)
∂φ1

∂εm+1(β0)
∂φ2

· · · ∂εm+1(β0)
∂φp

∂εm+1(β0)
∂θ1

∂εm+1(β0)
∂θ2

· · · ∂εm+1(β0)
∂θq

· · · · · · · · · · · · · · · · · · · · · · · ·
∂εn(β0)

∂φ1

∂εn(β0)
∂φ2

· · · ∂εn(β0)
∂φp

∂εn(β0)
∂θ1

∂εn(β0)
∂θ2

· · · ∂εn(β0)
∂θq




=




em−1

θ0(B)
em−2

θ0(B) · · · em−p

θ0(B) −φ0(B)em−1

θ2
0(B)

−φ0(B)em−2

θ2
0(B)

· · · −φ0(B)em−q

θ2
0(B)

em
θ0(B)

em−1

θ0(B) · · · em−p+1

θ0(B) −φ0(B)em

θ2
0(B)

−φ0(B)em−1

θ2
0(B)

· · · −φ0(B)em−q+1

θ2
0(B)

· · · · · · · · · · · · · · · · · · · · · · · ·
en−1

θ0(B)
en−2

θ0(B) · · · en−p

θ0(B) −φ0(B)en−1

θ2
0(B)

−φ0(B)en−2

θ2
0(B)

· · · −φ0(B)en−q

θ2
0(B)




.

Let

u =
(φ0(B)

θ0(B)
em,

φ0(B)
θ0(B)

em+1, · · · , φ0(B)
θ0(B)

en

)τ
.

By the same approximations in (21), we have the “regressor” matrix

D =




∑m−2
i=0 ξ0

i em−1−i · · · ∑m−p−1
i=0 ξ0

i em−p−i −∑m−2
i=0 η0

i em−2−i · · · −∑m−q−1
i=0 η0

i em−q−i∑m−1
i=0 ξ0

i em−i · · · ∑m−p
i=0 ξ0

i em−p+1−i −∑m−1
i=0 η0

i em−1−i · · · −∑m−q
i=0 η0

i em−q+1−i

· · · · · · · · · · · · · · · · · ·
∑n−2

i=0 ξ0
i en−1−i · · · ∑n−p−1

i=0 ξ0
i en−p−i −∑n−2

i=0 η0
i en−2−i · · · −∑n−q−1

i=0 η0
i en−q−i




,

and

u =
( m−1∑

i=0

π0
i em−i,

m∑

i=0

π0
i em+1−i, · · · ,

n−1∑

i=0

π0
i en−i

)τ
.

The estimate of β can be obtained by β0 + ∆̂βIdeal, where ∆̂βIdeal is the “idealized” estimator of

∆β obtained from “observations” {et}:

∆̂βIdeal = (DτD)−1Dτu.
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The estimate of β based on the initial estimate of the innovation process ẽt = Yt − f̃(Xt), denoted

by β̃, is obtained similarly as β̃ = β0 + ∆̃β, where ∆̃β = (Dτ
1D1)−1Dτ

1u1, D1 and u1 are defined

similarly as D and u, with et replaced by ẽt.

The proof of the theorem is complete by showing

(i) Dτ
1D1 = DτD + op(

√
n), and

(ii) Dτ
1u1 = Dτu + op(

√
n).

However, to save the space we have to omit the quite lengthy proof here. For detailed proof, please

see a technical report by Liu, Chen and Yao (2005).

Proof of Theorem 4

Define

Ỹt = Yt +
t−1∑

i=1

π̃i[Yt−i − f̃(Xt−i)]

= f(Xt)−
∞∑

i=1

πiet−i + εt +
t−1∑

i=1

πi[Yt−i − f̃(Xt−i)] +
t−1∑

i=1

(π̃i − πi)[Yt−i − f̃(Xt−i)]

= f(Xt) + εt −
∞∑

i=1

πiet−i +
t−1∑

i=1

πi[f(Xt−i)− f̃(Xt−i) + et−i]

+
t−1∑

i=1

(π̃i − πi)[f(Xt−i)− f̃(Xt−i) + et−i]

= f(Xt) + εt −
∞∑

i=t

πiet−i +
t−1∑

i=1

πi[f(Xt−i)− f̃(Xt−i)] +
t−1∑

i=1

(π̃i − πi)[f(Xt−i)− f̃(Xt−i) + et−i]

By Theorem 5.3 of Fan and Yao (2003), we have

f̂(x)− f(x)

=
1

nhg1(x)

n∑

t=1

K(
Xt − x

h
)
{
f(Xt) + εt − f(x)− ḟ(x)(Xt − x) +

t−1∑

i=1

πi[f(Xt−i)− f̃(Xt−i)]

−
∞∑

i=t

πiet−i +
t−1∑

i=1

(π̃i − πi)[f(Xt−i)− f̃(Xt−i) + et−i]
}

=
1

nhg1(x)

n∑

t=1

K(
Xt − x

h
)
{
f(Xt)− f(x)− ḟ(x)(Xt − x) + εt

}

+
1

nhg1(x)

n∑

t=2

K(
Xt − x

h
)

t−1∑

i=1

πi[f(Xt−i)− f̃(Xt−i)]− 1
nhg1(x)

n∑

t=2

∞∑

i=t

K(
Xt − x

h
)πiet−i

+
1

nhg1(x)

n∑

t=2

t−1∑

i=1

(π̃i − πi)K(
Xt − x

h
)[f(Xt−i)− f̃(Xt−i) + et−i]

≡ S1 + S2 + S3 + S4
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By a Taylor expansion and Lemma 1, we can show that the remainder term in S1 related to Rn(·)
is ignorable and we only need to consider the leading term of S1:

1
nhg1(x)

n∑

t=1

K(
Xt − x

h
)εt +

h2

2
µ2f̈(x).

By Theorem 2.21 of Fan and Yao (2003), the proof is complete by showing S2 + S3 + S4 is of order

op{(nh)−1/2}. Again, the proof of this theorem is quite lengthy, hence omitted here. For detailed

proof, please refer to Liu, Chen and Yao (2005).

Appendix B – A note on Lemma 2 of Yoshihara (1976)

Yoshihara (1976) is influential as it establishes asymptotic properties of U -statistics for strictly

stationary and β-mixing processes. Its lemma 2, which estimates the orders for the second moments

of residual terms in the Hoeffding decomposition, appears to have an error in presentation, since γ

in (2.12) of Yoshihara (1976) may be arbitrarily large by choosing δ′ > 0 arbitrarily small. (Note

that we may let δ′ > 0 arbitrarily small for, for example, independent processes.) We state below a

rectified version of the lemma, which can be derived in the same manner as the proof in the original

paper. All the notation and citation below are referred to Yoshihara (1976).

Lemma 2 (Yoshihara 1976) . If there is a positive number δ such that for r = 2 + δ (2.3) and

(2.4) hold, and
∑

n≥1 nβ(n)δ/(2+δ) < ∞, then we have

E(U (c)
n )2 = O(n−2), 2 ≤ c ≤ m.

Note that we impose a stronger condition on the mixing coefficients β(n), and the rate O(n−2) is

optimal.

References
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