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Abstract

We propose an autoregressive framework for modelling dynamic networks with dependent
edges. It encompasses the models which accommodate, for example, transitivity, density-
dependent and other stylized features often observed in real network data. By assuming the
edges of network at each time are independent conditionally on their lagged values, the mod-
els, which exhibit a close connection with temporal ERGMs, facilitate both simulation and the
maximum likelihood estimation in the straightforward manner. Due to the possible large num-
ber of parameters in the models, the initial MLEs may suffer from slow convergence rates. An
improved estimator for each component parameter is proposed based on an iteration based on
the projection which mitigates the impact of the other parameters (Chang et al., 2021, 2023).
Based on a martingale difference structure, the asymptotic distribution of the improved estima-

tor is derived without the stationarity assumption. The limiting distribution is not normal in
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general, and it reduces to normal when the underlying process satisfies some mixing conditions.
Illustration with a transitivity model was carried out in both simulation and a real network data

set.
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of network data, transitivity.



1 Introduction

Dynamic network modelling with dependent edges is practically important and relevant but tech-
nicall challenging. Without dependence across different edges, it is impossible to incorporate into
the models some stylized features often observed in real network data such as transitivity, den-
sity dependence. On the other hand, dependent edges make the dynamic structures of network
processes complex and statistical inference challenging. Existing literature on modeling dynamic
networks with dependent edges can be divided into two categories: latent process based models
(Friel et al., 2016; Durante and Dunson, 2016; Matias and Miele, 2017), and temporal exponen-
tial family random-graph models (ERGMs) (Hanneke et al., 2010; Krivitsky and Handcock, 2014;
Leifeld et al., 2018). Inference and simulation for the latent process based models rely on compute-
intensive methods such as MCMC and EM algorithms, as their likelihood functions are not explicitly
available. Furthermore the dependence depicted by latent process based models are implicit, and
it cannot be configured easily to accommodate stylized features of real network data. On the other
hand, it is well documented that ERGMs without a proper control on the level of dependence may
suffer from lack of computational scalability, instable estimation algorithms, and cancentration on
extreme subspaces of graph space. See Schweinberger et al. (2020) and the references within. More
recently Siiveges and Olhede (2023) proposed a block logistic autoregressive network model with
dependent edges, which was fitted using an EM algorithm.

In this paper, we propose a new autoregressive based Markov chain model with dependent
edge. Following Jiang et al. (2023a,b), we specify the transition probabilities of forming a new
edge or dissolving an existing edge between each pair of nodes explicitly depending on its history.
Furthermore we allow those probabilities depending on the histories of other edge processes. This
enlarged form of the transition probabilities make the model flexible enough to accommodate the
stylized features such as transitivity and density dependence. The resulting network processes have
dependent edges, which is radically different from those considered in Jiang et al. (2023a,b). Similar
to Hanneke et al. (2010), Leifeld et al. (2018) and Siiveges and Olhede (2023), we assume that the
edges are conditionally independent given their joint histories. This makes both statistical inference
and theoretical analysis more transparent. This conditional independence avoids the difficulties

caused by the normalized constants in ERGMs; see Hanneke et al. (2010) and Leifeld et al. (2018).



Based on the conditional independence, we can build up a martingale difference structure which
facilitates the asymptotic analysis for the maximum likelihood estimation (see Section 4 below).
This, to our best knowledge, has never been done before in the context of dynamic networks with
dependence edges.

The rest of the paper is organized as follows. Section 2 presents the general AR network
framework with dependent edges. We also discuss the relationship between the proposed AR
models and temporal ERGMs. Section 3 contains three concrete AR models which are designed
to model, respectively, density-dependence, persistence, and transitivity — those are among the
stylized features often observed in real network data. The two versions of the maximum likelihood
estimation (MLE) for the parameters in the AR models and the associated asymptotic theory are
presented in Section 4. We introduce the concepts of local parameters and global parameters,
which need to be identified and estimated separatly. They may also entertain different convergence
rates. The initial MLE suffers from slower convergence rates due to the diverging number of local
parameters. An improved MLE for each component parameter is obtained by projecting the score
function onto the corresponding direction, which mitigates the impact of the other parameters
(Chang et al., 2021, 2023). Based on a martingale difference structure, the asymptotic distribution
of the improved estimator is derived without the stationarity assumption. The limiting distribution
is not normal in general. But it reduces to normal when the underlying process satisfies some
mixing conditions which holds for many stationary processes. Section 5 presents an illustration via
simulation for the proposed transitivity model. Further illustration with a real dynamic network
data set is reported in Section 6. An online supplementary contains further more numerical results
and all the technical proofs.

Notation. For any positive integer r, write [r] = {1,...,7} and R}, = {(z1,...,2,)" : &; >
0 for any 7 € [r]}. For any z,y € R, we write z v y = max(z,y). For two positive sequences {a,}
and {b,}, we write a,, < b, if limsup,,_,,, an/b, = 0, and a,, < b, if limsup,,_,., a,/b, < 00. For
any vector b = (b1,...,b.)" € R", we let b_; denote the sub-vector of b by removing the [-th
component b;. Given an index set M c [r], we let b denote the sub-vector of b that consists of
the components of b indexed by M. For any r; X ry real matrix B, denote by BT its transpose.
When r; = ry, we use A\pin(B) to denote the smallest eigenvalue of the square matrix B. For any

set U, |U| denotes its cardinality.



2 AR(m) network framework

2.1 Model

Consider a dynamic network process defined on p nodes denoted by 1,...,p. Let X; = (Xij)pxp

be the adjacency matrix at time ¢, where vaj = 1 denotes the existence of an edge between nodes
i and j at time ¢, and 0 otherwise. For simplicity, we only consider undirected networks without

self-loops, i.e. sz =0 and Xf,j = X;Z The main idea can be applied to directed networks.

Definition 1 (AR(m) networks) Conditionally on {Xs}s<i—1, the edges { X }1<i<j<p are mu-

tually independent with
al St =P(X]; =1 X5 =0, X 0\X[ 1, Xy, for k> 2)

=P(X}; =1 X5 =0, X \X[5 L, Xoa, 0, Xiom) (2.1)

Z7J ’

Bt =P(Xf; =0 XI5 =1,X \X[; 1, Xy for k > 2)

=P(X}; = 0| X' =1, X, \X S Xy g, X)) (2.2)

where m = 1 is an integer.

An AR(m) network process defined above is a Markov chain with order m. Based on (2.1) and

(2.2), we have

PX[ ;=1 X1, X)) = o)t + X[ (1= ol = 81 =915, (2.3)

which implies that

Xi i1 X1, X ~ Bernoulli(7/ '), 1<i<j<p.

Clearly edges Xf,j’ for different (i, j), are not independent with each other. We may impose various

t—

forms for the conditional probabilities o ]1 and ﬁf;l to reflect different stylized features of network

data. Put

a = fii(Xe\X[ S Xea, -, Xy 60) (2.4

Bf;l = Gij (Xt—l\Xf7;1> Xt—27 cee Xt—m; 00) 5



where f; ;’s and g; ;’s are known functions, and 8y € ® < R? is a g-dimensional unknown true

parameter vector. For any 0 € ©, write

al51(0) = fii(Xi\X[ 5 X9y, Xiomsi 0),

i?j

ﬂf’gl(e) = Gi;j (Xt—l\X?fl X2, s Xi—m3 0) .

17] )

Then o) ' = o/ (6o) and 8" = B} (80).

Modelling dynamic networks by Markov or/and AR models is not new. See, for example,
Snijders (2005), Ludkin et al. (2018), Yang et al. (2011), Yudovina et al. (2015), and Jiang et al.
(2023b). However, most available Markov models are designed for Erdds-Renyi networks with
independent edges. Our setting provides a general framework to accommodate various dependence
structures across different edges. Some practical network models satisfy this general framework are
introduced in Section 3.

For the special AR(1) processes (i.e. m = 1), if both f; ; and g;; in (2.4) are always positive
and smaller than 1 for all 1 < i < j < p, {X;}s=1 is an irreducible homogeneous Markov chain
with 2P(P=1)/2 gtates. Therefore when p is fixed, (i) there exists a unique stationary distribution,
and (i) if X is activated according to this stationary distribution, the process {X;}¢>1 is strictly
stationary and ergodic. See Theorems 3.1, 3.3 and 4.1 in Chapter 3 of Brémaud (1998). Hence
the density-dependent model introduced in Section 3.1 and the transitivity model introduced in
Section 3.3 are strictly stationary for any fixed constant p if all the transition probability functions
af;l and f;l are strictly between 0 and 1. It is worth pointing out that the ergodicity only holds
for any fixed constant p. Hence we cannot take for granted that the sample means of X; and/or

its summary statistics converge when p diverges together with the sample size, even when Xy is

stationary. Note that stationarity is not an asymptotic property while ergodicity is.

2.2 Relationship to temporal ERGMs

Similar to temporal ERGMs explored in Hanneke et al. (2010) and Leifeld et al. (2018), we assume
that the edges are conditionally independent given their lagged values. But instead of specifying
some exponential family distributions as the transition probabilities, we define, separately, the
probability for forming a new edge in (2.1), and that for dissolving an existing edge in (2.2). Those

two probability functions can be in any desirable forms as presented in (2.4). This allows us to



impose some closed-forms of parametric functions for af;l and Zl, and those functions need only
to be between 0 and 1. Hence, the likelihood functions are explicitly available, which allows us to
depict more explicitly in our models some stylized features often observed in real network data.
See Section 3 for details. The numerical analysis with both simulated and real data in Sections 5
and 6 indicates that the proposed AR models are capable to simulate and to reflect some observed
interesting dynamic network phenomena.

The temporal ERGMs with conditional independent edges (Hanneke et al., 2010; Leifeld et al.,
2018) can be expressed in our AR(m) framework as

aﬁ;l(é)) B eXP{¢(9)TUi,j(thl\ijl, X2y Xiom)}

1t exp{ep(0)Tu (X \ XL XKoo, XKy}
6t71(0) _ exp{'l/)(@)TVm- (thl\Xi;la Xt*Qa oo 7Xt7m)}
J 1+ exp{@b(O)Tvi,j (thl\Xi;l, thg, . ,Xt,m)} ’

)

where u; ;(-) and v; j(-) have closed-form expressions based on the sufficient statistics of the original
temporal ERGM. Furthermore, if ¢(€) and 1(0) in the above expressions are replaced by, respec-
tively, ¢(0,) and 1 (63), where 8, and O are two sets of different parameters, X; follows the
separable temporal ERGM with conditional independent edges given the past networks (Krivitsky
and Handcock, 2014). See Section A of the supplementary material for the detailed discussion on

the relationship of the proposed AR models and temporal ERGMs.

3 Some interesting AR network models

To illustrate the usefulness of the AR(m) framework proposed above, we state three AR(m) net-
work models which reflect various stylized features in real network data. In all three models, the
parameters {{;}!_; and {n;}}_, reflect node heterogeneity in, respectively, forming a new edge and
dissolving an existing edge. Specifically, the larger &; is, the more likely node ¢ will form new edges
with other nodes, and the larger 7; is, the more likely the existing edges between node ¢ and the
others will be dissolved. Instances of these three models can be simulated using our development

R package arnetworks, available at https://github.com/peterwmacd/arnetworks.


https://github.com/peterwmacd/arnetworks

3.1 Density-dependent model
Let 0}" = exp{aoD';" j+ a1 (D" + D5} and @' = exp{bo(1— D' ,) +b1(2— D" — D)}
with

1 1
D= —— Y X and D= —— 3 x4
—i,—J . o k.l 1 _ il
P=2)p—=3),, -, p-1,%,

where Df_l and Dj-_l are, respectively, the densities of node 7 and node j at time ¢ — 1, and D:L j

is the network density excluding nodes ¢ and j at time ¢t — 1. We specify the transition probabilities

as follows:
&gt nin;w,
t—1 J 74, t—1 J 7,5
i (©) 1+9 " + o)} fii (0) 1+ 9 + ol (3:1)

This is an AR(1) model with parameter vector @ = (ag,a1,bo,b1,&1,...,&p,m,...,p)" € O C
Rip 4 Then the propensity to form a new edge between nodes ¢ and j at time t is positively
impacted by Dt:i’lf i Df_l and Dg_l, and the propensity to dissolve an existing edge between nodes
i and j at time t is negatively impacted by these three densities.

Hanneke et al. (2010) proposed an ERGM with network density in its index function. In (3.1)
we explicitly specify the impact from the density functions on forming a new edge and dissolving
an existing edge, while the model in Section 2.1 of Hanneke et al. (2010) does not differentiate
the representations for these two types of impact. Within a separable ERGM framework, the edge
counts model of Krivitsky and Handcock (2014) assumes that the collection of all newly formed

edges is conditionally independent of the collection of all newly dissolved edges given their history,

and the two conditional distributions are controlled by different parameters.

3.2 Persistence model
We define the transition probabilities

al;1(0) = &&exp[—1 —af{(1 - X[ ;) + (1 - X[ 72)(1 = X[ )}, 52

15 (0) = mimj exp{~1 - b(X;7* + X;72X;7%)}.
This is an AR(3) model with parameter vector 6 = (a,b,&1,...,&,m,...,mp) € O C Ripw. The

probability to form a new edge between nodes ¢ and j at time ¢ is reduced if Xf;Q = 0, and it is

reduced further if, in addition, Xit;‘? = 0. The probability to dissolve an existing edge is reduced if



X f;Q = 1, and it is reduced further if, in addition, X f;?’ = 1. Hence if the edge status between two
nodes is unchanged for 2 or 3 time periods, the probability for it remaining unchanged next time
is larger than that otherwise.

Model (3.2) defines an AR(3) network process X; = (X ;)pxp with p(p —1)/2 independent edge
processes. Although the conclusion on the AR(1) stationarity in the last paragraph of Section 2.1
does not apply directly, this AR(3) network process is also strictly stationary, which is implied by
the fact that {Xij}tgl is strictly stationary for each 1 < i < j < p. Formally, for given (i, j) such
that 1 <i < j <p,let Y, = (X{J»,Xf’;l,Xf’;Z)T. Then {Y¢}¢>1 is a homogeneous Markov chain
with 23 = 8 states. Let P denote the transition probability matrix of {Y;};>1. Then P is a 8 x 8
matrix with only 2 positive elements in each row and each column, provided that &5, nin; € (0, ).
It is straightforward to check that each row or column of P? has only 4 positive elements, and, more
importantly, all the elements of P?3 is positive. Hence, the Markov chain {Y}};> is irreducible. By
Theorems 3.1 and 3.3 in Chapter 3 of Brémaud (1998), the process {Y;};>1 is strictly stationary,
and so is { X} }i>1.

The persistent connectivity or non-connectivity is widely observed in, for example, brain net-
works, gene connections and social networks. The stability ERGM of Hanneke et al. (2010) does

not differentiate between the propensity for retaining an existing edge and that for retaining a

no-edge status.

3.3 Transitivity model

We propose an AR(1) model to reflect the feature of transitivity which refers to the phenomenon
that nodes are more likely to link if they share links in common (i.e. ‘the friend of my friend is also

my friend’). To this end, we specify the transition probabilities as follows:

&i&j exp(an’]_-l)

t—1

al=le) = ’

0 ) = (@l ) + exp (V) (3.3)
-1(9) = ninj exp(bV;; ") |
L+ exp(all; 1) + exp(bV; 1)



where 0 = (a,b,&1,...,&p, M1, ,1p) | € R%ZHQ, and

1
t—1 t—1 yvt—1
Uy = —5 > X' X

p k:k#i,5 (3 4)

V= 5 % (X - XD + (- XX
ki k+i,j

The pair (Uf,]_-l, Vlt]_l) characterizes the number of nodes with which both nodes ¢ and j are con-
nected, and the number of nodes with which only one of ¢ and j is connected at time ¢ — 1. The
larger Ui;l is (i.e. the more common friends ¢ and j share at time ¢ — 1), the more likely Xf ;=1
The larger V;’fj_l is, the more likely Xf,j = 0. This reflects the transitivity of the networks. High
levels of transitivity are found in various networks including friendship networks, industrial supply-
chains, international trade flows, and alliances across firms and nations. Note that the quantity
Ui;l, used in Graham (2016) to define the edge status of Xfyj, reflects the information based on
which companies such as Facebook and LinkedIn have recommended new links to their customers.
See also the transitivity ERGM of Hanneke et al. (2010).

We may use different parameters a and b in defining af;l(e) and 27;1(0) in (3.3). We do not
pursue this more general form as (i) using different & and 7; reflects already the differences in
the propensity between forming a new edge and dissolving an existing edge, and, perhaps more
importantly, (ii) since most practical networks are sparse, the effective sample size for estimating
the transition probability from the state of an existing edge is small. Therefore estimating the
parameters only occurring in /3;;1(9) will be harder than those in oﬂf;l(B). Using the same a and b

in both a;l(a) and f;l(o) improves the estimation by pulling the information together. See also

the relevant simulation results in Section C.2 in the online supplementary.

4 Estimation

4.1 General approach

The natural units of observation in our model are the X/ ;» indicating presence or absence of an edge
between nodes ¢ and j at time ¢. Intuitively, the extent to which these observations can contribute
useful information to the estimation of a given element 6; of @ € © depends in turn on the extent

to which that element plays a consistent role over time t in the corresponding probabilities

Vg (8) = i3 (0) + X[ 7 {1 — a7 (8) - 571 (6)}

2J ,J



By (2.3), we have 'yf’;l = 7;5’;1(90).

We formalize the above intuition as follows.

Definition 2 (Global/local parameters) Write @ = (01,...,6,)7, where ¢ > 1 is the total

number of parameters. Let
G={lelq]: %?;1(9) involves 6, for all 1 <i < j <p and t € [n]\[m]}.
We call Og and Oge, respectively, the global parameter vector and the local parameter vector.

In all three models presented in Section 3, {&}_; and {n;}}_, are local parameters, while all the
other parameters in the models are global parameters. As we discuss below in Section 4.2, the
global parameter vector 8pg and the local parameter vector 8y gc need to be treated differently,
which we accomplish via partial likelihoods. The resulting estimators may also entertain different
convergence rates.

The asymptotic theory on the convergence rates and the limiting distributions of the proposed
estimators will be developed here under the scenario where the sample size n — oo while the
number of nodes p can be either fixed or diverge together with n. When p diverges with n, both
the ergodicity and the central limit theorem for stationary Markov chains no longer apply even when
X, is stationary (see the last paragraph in Section 2.1). Based on the conditional independence in
our models, regardless of whether p is fixed or diverges with n, we can construct some martingale
difference sequences, appropriate partial sums of which are amendable to the required asymptotic
analysis without the stationarity assumption.

We develop the estimation theory for our models in three stages below. Sufficient conditions for
identification of 6 are established with respect to an expected partial log-likelihood Eﬁf?p(e), defined
in (4.2). An initial estimator 6 results from maximizing the corresponding partial log-likelihoods
éﬁf@,(e) defined in (4.6), for each [ € [g]. Finally, because of the potential high-dimensionality of our
models (number of local parameters increasing with number of nodes), these estimators can suffer
from slow rates of convergence. We offer estimators with improved rate of convergence, derived as

a refinement of the initial estimator via the notion of projected score functions.

10



4.2 Identification of 6,

Let F; be the o-field generated by {Xi,...,X;}. For any [ € [¢], define
S ={(i,j):1<i<j<pand 7;?7;1(0) involves 6§, for any t € [n]\[m]} . (4.1)
If 0; is a global parameter, §; = {(7,J) : 1 < i < j < p}. For estimating 6; for [ € [¢], put

W0 - e 35 En (sl @O @), )
Hi=m+1 (i g)es;

where Ex, ,(-) denotes the conditional expectation given F;_; with the unknown true parameter

vector Bg. For any t € [n]\[m] and 1 <i < j < p, due to logz < x — 1 for any = > 0, we have

B, {log [(4/51(O)1 {1 51 @)} ]}
— By {log [{5 00 (1 = 251 (00)} 041}
0O {1 -4 (O

Fi— t _ Xt |~
Lt o>}Xm{1—vfﬁ<eo>}1 et
t—1
i i (0) t—1 1- ’71 J (0)
= ‘%-(90)+7’ {1—7;;"(60)} —1=0,
Vf,jl(eo) 7 1- 7,] (00) J

which implies £,(8) < £%),(8,) for any 6 € ©. Notice that

Bz, {log [{1},"(0)) " {1 — {71 (0)} 0]}

t _ — Xt
—Ez,_, {log[{7/;(80)} i {1 — 417 (80)} ¥a]} =0
if and only if

TR G e R ()
(217 (00} (1 = 1171 (00))

=1, (4.3)

where (4.3) is equivalent to ~;1(8) = 7¢-'(8o). Hence, for any 8 € ©\{6o}, £1),(8) = £1)(8o) if
and only if 7531(9) = 75’51(00) for any t € [n]\[m] and (i,7) € §;. To guarantee the identification

of 8y, we impose the following regularity conditions.
Condition 1 (i) There exists some universal constant C1 > 0 such that

— At
g T 42 5 (OYL =7 ()} > G

11



(ii) For any 1 < i< j < p andt € [n]\[m], ’yf}}l(ﬁ) is thrice continuously differentiable with respect

to 8 € ©. Furthermore, there exists some universal constant Co > 0 such that

max ~ Iax_  sup
te[n]\[m] ,5: 1<i<j<p ge@®

for any k € [3].

(0) +
Xf};l{l - aﬁ;l(e) — f;l(e)} Due to Xf,;l € {0, 1}, Condition 1(i) holds if there exist two universal

Condition 1 specifies conditions for the parameter space ®. Recall that 7;;1(9) = ozt i

constants ci1, co € (0,1) with ¢; < c2 such that

c < ozt’jl(e) <cp and 1—cy < f;l(e) <1l—¢

for any 8 € ©, t € [n]\[m] and 1 < i < j < p. Also, Condition 1(ii) holds provided that
ooy 1(9)\ 0B (9)

7.] ‘
o0k |,

Y < (Cy and

0e]

< Oy

for any @ € ©, t € [n]\[m] and 1 < i < j < p. Based on the explicit forms of aﬁ;l(e) and 6531(0)
in the specific models, we can identify the associated restrictions for the parameter space ©.

For any 1 <i < j < p, we define
={lelq]: v y (@) involves 6; for any t € [n]\[m]} .
Condition 2 There exists a universal constant s = 1 such that maxi<i<j<p |Zi ;| <

Condition 2 requires that the dynamics of each edge process {Xf,j}@l be driven by a finite
number of parameters. Hence the number of global parameters is finite while the total number
of local parameters may diverge together with p. For the density-dependent model introduced in
Section 3.1, we have 07, ; = (ao, a1, bo, b1, &, &j,mi,m;) " with s = 8. For both the persistence model
and transitivity model introduced in Sections 3.2 and 3.3, we have 0z, ; = (a,b,&,&,m,n;)" with
s =06.

Condition 3 There exists a universal constant C3 > 0 such that
n

onhe a“e
in )\min{ 1 Z Yij (0)7 (0)}203
n—m

1,5 1<i<j<p Mo 80LJ GOIM

with probability approaching one when n — 0.

12



Proposition 1 Let Conditions 1-3 hold, and Cy = 2(2C7 + C3)C35 +3(C7 +Cr3)C3 + C71Cy
with (Cy,Cy) specified in Condition 1. Assume supgeg |0 — 0ol < 2C3/(Cys®). Asn — o, it

holds with probability approaching one that

O)‘Q\

(D(80) — £,

Z - 007Ii,j |%
ES

for any 8 € © and | € [q], where C > 0 is a universal constant.

The proof of Proposition 1 is given in Section B.1 of the supplementary material. Notice that
|S; N Syl = |S;| for any I’ € G U {l}. By Proposition 1, it holds with probability approaching one

that for any @ € ® and [ € [q],

C c <
(D) () — €0 ( 7§7 }: 10y — 0ol = S }: Do — 0o
J)ES VEL; ; '=1(4,§)€S NSy (4 4)
. ~ Sy Spl|6y — 00| '
=C Z |0 — o> + C Z S0 |’|Sl| o]
reGo{l} IreGe\ {1} l

Hence, for any [ € [q], the function E,(f,)p(-) defined as (4.2) is a good candidate for identifying

6o, and the global parameter vector 8y ¢ but is powerless in identifying 6y, with I" € G°\{i} if
|Sl N Sl’| < |Sl‘.

4.3 Initial estimation for 6,

With available observations Xy, ..., X, since {X;};>1 is a Markov chain with order m, the likeli-
hood function for @, conditionally on X4, ..., X,,, admits the form
n
ﬁn,p(Xna cee 7Xm+1 | me cee 7X1; 0) = H Lt,p(Xt ’ Xt—17 cee 7Xt—m; 0) s
t=m-+1
where Ly p(X¢ | Xi—1,...,X¢—m;0) is the transition probability of X; given X;_1,...,X;_,. By
(2.3), the (normalized) log-likelihood admits the form

2
(n —m)p(p — 1)

B Z > log[{hi @1 - O ],

(n o t m+11,7: 1<i<j<p

log Lrp(Xn, -+, Xog1 [ X,y ..., X143 0) (4.5)

which is the sample version of E() »(0) defined as (4.2) with [ € G. As pointed out below (4.4),

we should not estimate the local parameters based on this full log-likelihood. Therefore, for each

13



‘Sl, ST toe [ @1 - A0, (4.6)

t=m+1 (i,j)eS;
which contains only the terms depending on ; on the right-hand side of (4.5) (with a rescaled
normalized constant).

For any [ € [¢], Lemma 1 in the supplementary material shows that éﬁf)p(e) converges in prob-
ability to €$Ll,)p(0) defined as (4.2) uniformly over 6§ € ©®. Together with Proposition 1, we can
estimate the global parameter vector 8y g by maximizing the full log-likelihood E( )(0) with some
' € G, and estimate the local parameter y; with [ € G¢ by maximizing the corresponding (par-
tial) log-likelihood é%?p(e) More specifically, letting (9,(k )1, . 95<)q) = arg maxge@ Zg?p(é’) for each

I € [q], we define the initial estimator = (0g, l9gc)T for 8 as

~ A l/ ~ A l
g = (ei,z))leg and  Oge = (6*,)z>legc (4.7)

for some I € G. Due to S = {(i,7) : 1 < i < j < p} for any £ € G, we know éﬁflp)(a) = @ﬁfi.?(e) for
any l1,ly € G, which implies that the estimator ég given in (4.7) does not depend on the selection
of ' e G.

To investigate the theoretical properties of the estimator 0= (5;, 5;»5)T, we define

2 _ alog(mp) | ¥ log®?(np)
"6 N
q IOg(n‘S’gC,min) q3/2 10g3/2 (nsgc,min>

2
C c =
™G A/ nSQC,min \/ﬁsgcﬂnin ’

where Sge min = mingege |S;|. Theorem 1 shows that the convergence rate of the initial estimator

(4.8)

for the local parameters is slower than that of the global parameters if Sge min « p?. The proof of

Theorem 1 is given in Section B.2 of the supplementary material.

Theorem 1 Let the conditions of Proposition 1 hold. Then |6g — 0ogl2 = Op(cng) and Oge —

00,c|o0 = Op(cnge)-

Remark 1 By Theorem 1, the initial estimator ég for the global parameters is consistent provided

that

\/ﬁp n1/3p4/3}

g € min ,
{log(np) log(np)
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and the initial estimator égc for the local parameters is consistent provided that

\V nSgc,miH 1/S'S’éézsn’un }

log(n.Sge min) 10g(nSge min)

q < min{

For the density-dependent model introduced in Section 3.1, we have ¢ = 2p +4 and Sge min = p — 1.
For both the persistence model and transitivity model introduced in Sections 3.2 and 3.3, we have
q=2p+ 2 and Sgemin = p — 1. Hence, for these three models, Theorem 1 gives the convergence

rates of bg and 590 as follows:
> log'?(np)  log®*(np)
6g — 6ogl2 = Op{ aA Y T |

N 1/4 1501/ 1/41..,3/4
p/*log/“(np)  p/*log”"(np)
|0ge — 60.g¢|o0 = Op{ /A v /4 '

which implies the consistency of 5g provided that logp « n'/2, and the consistency of 5gc provided

that p < n(logn) 3.

4.4 TImproved estimation for 6,

Recall @ = (6;,...,6,)". The initial estimator 6 specified in (4.7) suffers from slow convergence
rates due to the high dimensionality of 6. In this section, we improve the estimation for each
component y; by projecting the score function onto certain direction. See (4.10) below for details.
An improved estimator for 6y ; is then obtained by solving the projected score function while letting
0_; = é,l. The projection mitigates the impact of é,l in the improved estimation for 6p;. This
strategy was initially proposed by Chang et al. (2021) and Chang et al. (2023) for constructing
the valid confidence regions of some low-dimensional subvector of the whole parameters in high-
dimensional models with removing the impact of the high-dimensional nuisance parameter.

For (cy,g, cn,ge) defined as (4.8), put
A, Inax{|g|cng,|gC ngc}. (4.9)

For any t € [n]\[m], | € [¢q] and 0 € ©, we define

1 3 X‘t'—vf}l(e) 2715'(0)
SIl (Ss O =N 0)) o

Then the score function can be written as

g (0) =

00 n—m

t=m-+1

ol (o 1
»(0) Z (l)(g).

= t
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To estimate 6y, @_; can be treated as a nuisance parameter vector. Following Chang et al. (2021)

and Chang et al. (2023), we project g,gl)(ﬂ) to form a new estimating function:

21 ~ l
(0) = ¢e0).
where ¢; is defined as

) . 1 & g0
p; = arg ll;réﬁ@% ’u‘l s.t. ‘{Hl 2 (,}70 u—e€
t=m+1

<7 (4.10)

0

In the above expression, 7 > 0 is a tuning parameter satisfying 7 < A,ln/ % with A,, defined as

4.9), 0 = 01,...,0,)7 is the initial estimator defined as (4.7 , and e; is a g-dimensional vector
q

with the [-th component being 1 and other components being 0. Then we can re-estimate 0y by

~ ~ ~

0= (61,...,6,)", where

6, = arg min
GZEB(QZ,’F)

1 n ) - 2
z ft (0l7 97[)

n—m

t=m+1

for some 7 > 0 satisfying max{c, g, cpgc} <« 7 « 1.
To construct the convergence rate of |6—00|oo, we need the following regularity condition, which
is analogous to Condition 1 of Chang et al. (2021) and Condition 7 of Chang et al. (2023). See the

discussion there for the validity of such condition.

Condition 4 For each | € [q], there is a nonrandom vector ¢; € R? such that |¢;|1 < Cy for

some universal constant Cy > 0, and maxeq |®; — @il1 = Op(wn) for some w, — 0 satisfying

wn (log q)/2 log(qn) = o(1).

Proposition 2 shows that 0 has faster convergence rate than the initial estimator 6 given in

(4.7). The proof of Proposition 2 is given in Section B.3 of the supplementary material.

Proposition 2 Let the conditions of Proposition 1 and Condition 4 holds. Then |é — 0yl =
Op(Ay), where A, is defined as (4.9).

~

Based on the obtained é, we consider the final estimate 6 = (él, ...,0,)7 for By defined as

follows:

2

1 . -
S 0,02

n—m

t=m+1

(4.11)

0; = arg min
0,€B(0;,7)

for some 7 > 0 satisfying ¢A,, « 7 « 1 with A,, defined as (4.9).
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Remark 2 Given the initial estimate 5, there are three tuning parameters (1,7,7) for deriving our
final estimate 0. For the density-dependent model introduced in Section 3.1, we have |G| = 4 and
|G| = 2p. For both the persistence model and transitivity model introduced in Sections 3.2 and
3.3, we have |G| = 2 and |G¢| = 2p. Together with Remark 1, we have A, = n~Y/2p?/210g?(np)
for these three models. The improved estimation procedure thus requires T < n~Y4p5/4 10g3/ 4(np),
n~ V4 /4 0¥ (np) « 7 « 1 and n=Y2p"21log??(np) « 7 « 1, which suggests p < n*7(logn)=>/7.
In practice, for the three models introduced in Section 3, we compute the final estimate 6 with T
proportional to n~/4p®/4 log3/4(np) and adopting reasonably large ¥ and 7. Numerical experiments
in Sections 5 and 6 wvalidate the robustness of our proposed estimation procedure regarding the

selections of 7 and 7 as long as Oq falls within the defined search range.

For any 6 € © and [ € [¢], define

L0502
Cn,l(a) ‘Sl’ Z Z ( ){1 i— 1(0)}{90[ (;9 } ’ (4.12)

t= m+1 'L])ESZ fY'LJ /7'5.7

where ¢, is given in Condition 4. Under Conditions 1 and 4, we have |, ;(8)| < C;'C3C3, which
implies that, for any 6 € ©, (,;(0) is a bounded random variable. To construct the asymptotic

distribution of each él, we require the following condition.

Condition 5 For each l € [q], there exists some random variable k; = 0 such that (, 1(00) — K; in

probability as n — 0.

Remark 3 For each l € [q] and t = m + 1, let

1
t—1
v,

I (L%QSZ 7;;1(90){1

L {w %ifww}
TR () A S ‘

As {(n,1(00) }nz=m+1 is a bounded sequence of random variables for each | € [q], Condition 5 is mild
and k; is a random variable in general. Generally speaking, the asymptotic distribution of 6, is a
mizture of normal distributions. See Theorem 2 below for details. However, if the long-run variance

of {vf_l}?:mﬂ satisfies the condition

Var(l _an vf—1> = o(v/n), (4.13)

Ky 1s reduced to a constant




Then Theorem 2 implies that él 18 asymptotically normal distributed. When the sequence {Uf}tzm 18

a-mizing with the mixing coefficients attaining certain convergence rates, (4.13) holds automatically.

Theorem 2 Let the conditions of Proposition 1 and Conditions 4 and 5 hold. For each l € [q], if
A/ 1| S| max{qA%/Q,qQAi} = o(1) with A,, defined as (4.9), it then holds that

/1|86 — 001) — /Fi- Z

in distribution as n — o0, where Z is a standard normally distributed random variable independent

of Ky specified in Condition 5.
The proof of Theorem 2 is given in Section B.4 of the supplementary material.
Remark 4 (i) Theorem 2 shows that, for the global parameter 0; with | € G,

A 1
10; — 00,] = Op <\/ﬁp> ,

provided that

s <mi { n1/10p1/5 n1/13p8/13
1G13/510g* (np) " G|6/1310g% 3 (np)
n05E0 /gl }
|gc|6/5p2/5 10g3/5(n5gc,mm) ’ |gc|12/13p4/13 10g9/13(n5gc7mm) ’

and for the local parameter 6; with | € G,

A 1
16, — 0o = O () ,
"\/nlS]

provided that

» in{ n1/10p3/5 n1/13p12/13 n1/8p1/2
|G[3/51S,|/5 10g > (np) " |G[6/13]S,|%/1310g% 13 (np) " |G|1/2|S)|1/8 log"/? (np)’
nl/losgéi(l)lin nl/lgsgé%iin }
|gc|6/5|5l|1/5 log3/5(nSgc,min) ’ |gc|12/13‘8l|2/13 10g9/13(n5gc,min)

In particular, for the three models introduced in Section 3, the estimators satisfy \él — o] =
Op(n=2p=1) for 1 € G if p <« n'/?(ogn)=2, and |6, — 00, = Op{(np)™V2} for 1l € G° if
p < nl/ﬂ(log n)*3/7. Compared with the results in Theorem 1, the improved estimator 0 achicves

a faster convergence rate than the initial estimator 6.
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(ii) For each l € [q], write

t—1

2 3 1 ATa%,j (0) 2
$n(8) = |sl| Z > H(o)}{sol o }

t= m+1 l])GS ( {1 ’}/z]

with @, defined as (4.10). Since én,(é) — (n,1(80) — 0 in probability as n — oo, by Corollary 3.2 of
Hall and Heyde (1980), it holds that

n|Si|
Cnl( )

(6, — 6o.0) — N(0,1) (4.14)

in distribution as n — o, provided that P(k; > 0) = 1. We can use (4.14) to construct the

confidence interval for each 0.

5 Simulation with transitivity models

In this section, we use the transitivity model introduced in Section 3.3 as an example to illus-
trate numerical behaviour of both the initial estimation proposed in Section 4.3 and the improved

estimation suggested in Section 4.4.

5.1 Implementation details

Network data {Xi,...,X,} used in the experiments described below are generated according to
(2.1),(2.2) and (3.3). For each sample, we generate a sequence of length n + 200, and discard the
first 200 observations.

Regarding implementation of our estimation procedures, recall that G and G° are, respectively,
the index sets of the global parameters and the local parameters. For the transitivity model (3.3),
we have 0 = (a,b,&1,...,&.m,-..,mp)", where a and b are the global parameters and {&;}?_; and
{n:}!_, are the local parameters. Hence, for this model we have |S;| = p(p—1)/2 and |S§;nSy| = p—1
when [ € G and I’ € G°. By (4.4), for each given [ € G and 6 € O, it holds with probability
approaching one that E,(f?p(é’o) - ng,)p(a) > ClOg — 0o g|3 + 2Cp~t0ge — 0 ge|3 for some universal
constant C' > 0 independent of @, which means that the function eﬁffp(-) defined as (4.2) exhibits
robustness against fluctuations in the values of local parameters when [ € G and p is large.

Motivated by this fact, when we compute the initial estimator 59 for the global parameter

~(app)

vector 6 g, we can just approximate 5g by 85 = argmaxg, éﬂ?p(eg, 0g:), for some given Oge and
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E(l) »(0) defined as (4.6) for some [ € G. This simple idea can significantly improve the computational
efficiency. Specifically, note that computing the original 5g requires solving an optimization problem
with 2p + 2 variables while this alternative approach only requires solving an optimization problem
with two variables. Our above discussion guarantees 5(gapp) can approximate ég well. Similarly,
when we compute the initial estimator 6, for the local parameter 0y ; with [ € G¢, we can approximate

it by 9( app) _ = arg maxy, eﬁl)p(e(g avp)

, 01, égc\{l}) with some given égc\{l}.
In practice, we first estimate the global parameters a and b via the Quasi-Newton method,
given certain initial values for the local parameters {&}?_; and {n;}}_;. To be specific, we con-

sider 9 different sets of the initial values between 0.5 and 0.9 for {¢}F_; and {n;}}_,, and com-

pute @) and b for the v-th initial setting. With @ = a® and b = ), we then compute

é’(l’), e }(,V), ﬁgy), . ,171()”) through maximizing each of the associated éﬁ?p(a) with [ € G°. Sub-
sequently, the improved estimates a ) b 51 ,...,é,(j , ﬁgy), . ,77,(3”) are obtained according to
(4.11) with (7,7,7) = (0. 5AL? ,0.5,0.1) for the local parameters and (7,7,7) = (0. OlAl/2 10,2)

for the global parameters. The simulations in this section utilise our development R package
arnetworks, which provides a user-friendly implementation of the practical estimation algorithm

described above.

5.2 Estimation errors

Here we report results on experiments exploring the behavior of the initial estimator 0 given in (4.7)
and the improved estimator 0 given in (4.11). For simplicity, we again set all the true values for
{&}7_, to be the same, and those for {n;}!_; also to be the same. The same four sets of parameter
values were used as in Section C.1. We set n € {100,200} and p € {50, 100, 150}. For each setting,
we replicate the estimation 400 times.

Table 1 presents the means and the standard errors, over the 400 replications, of the relative

mean absolute errors (rMAE):

where the sum over v corresponds to taking the average over the 9 initial values discussed in Sec-
tion 5.1. As indicated in the table, the improved estimator (4.11) is significantly more accurate

than the initial estimator (4.7). For example, for setting (0.6,0.7,15,10), we observe an approxi-
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Table 1: The means and STDs (in parenthesis) of rMAEs for estimating parameters in transitivity

model (3.3) with 400 replications.

n =100 n = 200

(& miya,b) p Estimation
& i a b & i a b

(0.7,0.8,30,15) 50 Initial 0.161 (0.023) 0.070 (0.028) 0.207 (0.008) 0.166 (0.003)  0.157 (0.020) 0.066 (0.026) 0.206 (0.006) 0.167 (0.002)
Improved  0.093 (0.026) 0.051 (0.029) 0.062 (0.012) 0.060 (0.013)  0.085 (0.022) 0.044 (0.026) 0.058 (0.009) 0.056 (0.006)

100 Initial 0.172 (0.001) 0.062 (0.002) 0.293 (0.004) 0.172 (0.001) 0.171 (0.001) 0.060 (0.001) 0.293 (0.003) 0.172 (0.001)

Improved  0.126 (0.006) 0.057 (0.003) 0.196 (0.022) 0.134 (0.011)  0.123 (0.004) 0.054 (0.003) 0.194 (0.016) 0.132 (0.006)

150 Initial 0.177 (0.001) 0.060 (0.002) 0.371 (0.003) 0.173 (0.001) 0.177 (0.001) 0.058 (0.001) 0.371 (0.002) 0.173 (0.001)

Improved  0.141 (0.015) 0.050 (0.004) 0.166 (0.024) 0.161 (0.017)  0.135 (0.008) 0.046 (0.003) 0.150 (0.015) 0.158 (0.015)

(0.6,0.7,20,20) 50 Initial 0.211 (0.004) 0.093 (0.003) 0.389 (0.033) 0.207 (0.003)  0.205 (0.002) 0.085 (0.002) 0.389 (0.023) 0.207 (0.002)
Improved  0.131 (0.006) 0.063 (0.005) 0.157 (0.026) 0.08 (0.004)  0.118 (0.003) 0.051 (0.003) 0.150 (0.014) 0.087 (0.003)

100 Initial 0.230 (0.001) 0.084 (0.002) 0.530 (0.020) 0.210 (0.001)  0.228 (0.001) 0.080 (0.001) 0.531 (0.021) 0.210 (0.001)

Improved  0.152 (0.004) 0.057 (0.002) 0.301 (0.028) 0.114 (0.004)  0.144 (0.003) 0.051 (0.001) 0.203 (0.020) 0.113 (0.003)

150 Initial 0.238 (0.001) 0.081 (0.001) 0.614 (0.016) 0.212 (0.001) 0.236 (0.001) 0.078 (0.001) 0.614 (0.012) 0.212 (0.001)

Improved 50 (0.002) 0.055 (0.002) 0.282 (0.018) 0.137 (0.006) 0.144 (0.001) 0.052 (0.002) 0.276 (0.015) .135 (0.006)

(0.6, 0.7, 15, 10) 50 Initial 0.217 (0.003)  0.097 (0.002) 0.444 (0.029) 0.247 (0.003) 0.213 (0.001) 0.092 (0.001) 0.446 (0.022) .248 (0.002)
Improved 0.147 (0.004)  0.068 (0.005) 0.243 (0.027) 136 (0.017) 0.138 (0.004) 0.061 (0.004) 0.232 (0.024) .134 (0.017)

100 Initial 0.226 (0.001)  0.093 (0.001) 0.582 (0.009) 0.258 (0.003) 0.224 (0.001) 0.091 (0.001) 0.581 (0.006) 0.258 (0.002)

Improved 0.142 (0.007)  0.059 (0.003) 0.177 (0.018) 0.195 (0.012) 0.137 (0.008)  0.055 (0.003) 0.169 (0.013) .190 (0.014)

150 Initial 0.230 (0.001) 0.093 (0.001) 0.687 (0.002) 0.267 (0.002)  0.220 (0.001) 0.092 (0.001) 0.687 (0.002) 0.267 (0.001)

Improved  0.169 (0.001) 0.057 (0.001) 0.234 (0.008) 0.236 (0.007)  0.166 (0.001) 0.054 (0.001) 0.220 (0.005) 0.233 (0.004)

(06,0.7,10,10) 50 Initial 0.217 (0.003) 0.098 (0.002) 0.608 (0.031) 0.261 (0.003)  0.212 (0.002) 0.092 (0.002) 0.610 (0.022) 0.261 (0.002)
Improved  0.147 (0.004) 0.068 (0.005) 0.316 (0.049) 0.137 (0.019)  0.139 (0.004) 0.059 (0.004) 0.293 (0.039) 0.133 (0.017)

100 Initial 0.226 (0.001) 0.094 (0.001) 0.769 (0.006) 0.266 (0.002)  0.225 (0.001) 0.092 (0.001) 0.770 (0.004) 0.266 (0.002)

Improved  0.143 (0.007) 0.060 (0.002) 0.249 (0.032) 0.201 (0.012)  0.138 (0.006) 0.057 (0.003) 0.239 (0.028) 0.193 (0.011)

150 Initial 0.231 (0.001) 0.093 (0.001) 0.868 (0.005) 0.271 (0.002) 0.230 (0.001) 0.091 (0.001) 0.868 (0.003) 0.271 (0.001)

Improved  0.170 (0.003) 0.058 (0.001) 0.325 (0.015) 0.238 (0.009)  0.168 (0.002) 0.055 (0.001) 0.318 (0.004) 0.235 (0.005)

mate 70% improvement in the estimation accuracy of a when p = 150. Furthermore, the setting
(0.7,0.8,30,15) attains the lowest overall estimation errors. This is well-expected, as this is the

most dynamic setting among the four settings considered.

6 Real data analysis: Email interactions

In this section, we apply the transitivity model (3.3) to a dynamic network dataset of email interac-
tions in a medium-sized Polish manufacturing company, from January to September 2010 (Michalski
et al., 2014). We analyze a subset of the data among p = 106 of the most active participants out of
an original 167 employees. The organizational tree of direct reports in the company is also available
for these employees. Each of the n = 39 network snapshots corresponds to a non-overlapping time
window, with Xit,j = 1 if participants ¢ and j exchanged at least one email in the previous seven
days. This accounts for periodic weekly effects.

We first present some preliminary summaries of the data to inspect the stationarity of the
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Figure 1: Evolution of edge density D; (left panel), percentage of grown D, (blue) and dissolved

Dg; (orange) edges (right panel), manufacturing email networks.

network and the effective sample size. The behavior shown in Figure 1 suggests a change point in
the network behavior, in terms of both edge density D; and two dynamics density measures Dy ;
and Do (see (C.1)). Hence in the following analysis, we fit the model separately to the first 13 and
last 26 snapshots, referred to as “period 17 and “period 2”. In the right panel, about 4% of node
pairs see a grown edge or a dissolved edge between consecutive snapshots. After accounting for the
low edge density, the relative frequency of growing a new edge is about 5%, while relative frequency
of an existing edge to dissolve is only about 45%, clear evidence of temporal edge dependence.
We also identify empirical evidence in the data for transitivity effects. This is demonstrated
in Figure 2. To construct these plots, we partition the edge variables as follows: for each integer

£ = 0, define

U= {4, t):1<i<j<p, ten\1}, X' =0, U =1t/(p-2)},
Ve=A{G4t):1<i<j<p, ten\{1}, X' =1, Vi1 =t/(p-2)},

Z/[Zl - {(Z7j7t> GZ/[@, Xfy] = 1}’ V? = {(Zvjvt) € Vf: Xlt,j = O}a

where Uitd_-1 and ij_l are given in (3.4).

The left panel plots the relative frequency [} | / |Uy| against £ for £ = 0,1, - -, showing that this
frequency of grown edges tends to be higher for node pairs with more common neighbours in the
previous snapshot. The right panel analogously plots the relative frequency ]V? |/ / |Vy| against ¢,
and shows a similar increasing relationship between disjoint neighbours and frequency of dissolved
edges.

This is confirmed by the fit of our model parameters, using the estimation algorithm described
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Figure 2: Left panel: the plot of relative edge frequency |U}|/|U| against £. Right panel: the
plot of relative non-edge frequency |V?| / |V¢| against £. In both panels, point size is proportional to

log|Uy| and log|Vy| respectively.

in Section 4, and implemented in our development R package arnetworks. For period 1, we
estimate the global parameters a = 13.12 and b = 9.34, suggesting a tendency towards edge
growth given more common neighbours, and edge dissolution given more distinct neighbours, which
agrees with the empirical evidence in Figure 2. We interpret the estimates of the local parameters
{&1196 and {n;}1% in the left panel of Figure 3. The estimates {51}106 have mean 0.61 and skew
towards the right, implying degree heterogeneity in the edge growth. Conversely, the estimates
{1:}1%6 have mean 0.89 and skew towards the left. There is a decreasing relationship between the
paired parameters: employees who tend to grow new edges also tend to maintain existing edges.
Finally, there is an observed relationship between email behavior and company hierarchy: managers

106 1 compared to non-

(non-leaf nodes in the organizational tree) tend to have larger estimates {§Z
managers (means 0.74 and 0.57 respectively), implying that managers are more likely to grow edges.
However, this increasing pattern does not continue at higher levels of the organizational tree.

The model fit to period 2 shows many of the same patterns. We estimate a = 21.69 and

106 106

b = 9.84 and summarize the estimates {fz and {7;};27 in the right panel of Figure 3. Relative

to period 1, the larger estimate of a implies a stronger transitivity effect in this time period. The

196 now have mean 0.49 and the estimates {f);}1% have mean 0.92, to model overall

estimates {&;}1°
lower edge density. The decreasing relationship between the paired parameters is stronger, and
the means of fz for managers and non-managers are, respectively, 0.68 and 0.43. Along with the

stronger transitivity effect, we interpret that the decreased network density in period 2 has led to

a concentration of email activity among a smaller group of employees, many of them managers.
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Figure 3: Scatter plots of estimates {éz 106 and {;}1% for periods 1 and 2. Circles are sized and

coloured according to their level in the company organizational tree. The smallest black circles

have no direct reports, while the largest purple circle is the CEO.

We compare our model to some competing models from the literature in terms of Akaike and
Bayesian information criteria (AIC, BIC). To briefly describe these competitors: the “global AR
model” and “edgewise AR model” fit the model of Jiang et al. (2023b), with either two global

switching parameters or two parameters for each edge. The “edgewise mean model” assumes
iid .
Xf,j ~ Bernoulli(P; ;)

with no temporal dependence, and estimates the edge probability {F; ;}; j.i<; for each node pair

by its relative frequency in the training set; and the “degree parameter mean model” assumes
X{j i Bernoulli(v;v;)

and estimates the degree parameters {1;}1% by fitting 1-dimensional adjacency spectral embedding

(Athreya et al., 2017) to the mean adjacency matrix over the training set. Note that the edgewise
mean model has O(p?) parameters, while the degree parameter model has O(p) parameters like
our AR network model with transitivity. All of these models can be directly compared using the
AR network model likelihood, although only our AR network model with transitivity incorporates
edge dependence, and the final two models do not incorporate any temporal dependence. Results

for both regimes are reported in Table 2.
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Period 1 Period 2
Model AIC BIC AIC BIC
Transitivity AR model 33226 | 35175 | 52547 | 54654
Global AR model 36309 | 36327 | 58267 | 58287
Edgewise AR model 42717 | 144102 | 55840 | 165394
Edgewise mean model 33248 | 83941 | 47133 | 101910
Degree parameter mean model | 41730 | 42695 | 68969 | 70013

Table 2: AIC and BIC performance for email interaction data, periods 1 and 2.
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Figure 4: ROC curves for link prediction performance, email interaction data.

In period 1, our AR network model with transitivity achieves the lowest AIC and BIC, while
in period 2 it is outperformed slightly by the edgewise mean model in terms of AIC, but achieves
a lower BIC as it uses fewer parameters. This reduction of the parameter space is important for
modeling sparse dynamic network data: although there is clear temporal edge dependence in this
data, the edgewise mean model outperforms the edgewise AR model, as there is low effective sample
size to estimate the edge dissolution parameters.

Finally, we compare the performances of those models in an edge forecasting task on the final
26 network snapshots (period 2). For ngpain = 10,...,23, we train these models on the first n¢ain
snapshots of period 2, then forecast the state of each edge ngiep steps forward, for ngep = 1,2, 3.
The combined results are presented in Figure 4 as receiver operating characteristic (ROC) curves.
We also include a single point summarizing the naive forecasting performance using the most recent
observation of that edge in the training set.

Our AR network model with transitivity dominates or is competitive with all the models besides

these highly parameterized edgewise models for all choices of ngtep. The good performance of the
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edgewise models suggests the presence of higher order structure in this network that cannot be
modeled with only two parameters per node. Note that the edgewise mean and edgewise AR models
give very similar, but not identical edge predictions; as mentioned above, due to network sparsity
the edgewise AR model has a low effective sample size to estimate the dissolution parameters,

leading to slightly worse link prediction performance.
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Supplementary material to “Autoregressive Networks with Dependent Edges”

Jinyuan Chang, Qin Fang, Eric D. Kolaczyk, Peter W. MacDonald, and Qiwei Yao

This supplementary material contains a detailed analysis on the relationship between the pro-
posed AR models and temporal ERGMs (Section A), all the technical proofs (Section B), additional
numerical simulation results (Section C), and the analysis of an additional dynamic network dataset

(Section D).

A Relationship to temporal ERGMs
A dynamic network sequence follows a temporal ERGM of order m if it satisfies
]P)(Xt | thb SR thm; G)OCeXp{C(O)TQ(Xt, thla s 7Xt*m)} ’ (Al)

where ¢ : R? — RP maps the parameter vector 8 to the vector of natural parameters, and @ maps
the data, including the past network snapshots, to the corresponding sufficient statistics.

As in Equation (2) of Hanneke et al. (2010), suppose g factors over the edges of the present

snapshot,
Q(Xta thla L 7Xt7m) = Z Q@J(Xf"j’ Xt*la D 7Xt7m) .
i,j:i<]
Then
P(Xt | Xt—l; ceey Xt—m; 0)
o [] exp{s(®) 0 ;(X{;; X! X \X T Kygy o Ximm) } (A.2)

6 1<]
which implies X; will have mutually independent edges conditional on the past snapshots. We
refer to this as the edge conditional independence assumption, which is a property of AR network
models defined in Definition 1 of the main document. We will show that any edge conditionally
independent temporal ERGM can be rewritten as an AR network model.

Denote the logit function by o(x) = log{z/(1 — z)}, and specify an AR network model defined
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in Definition 1 by setting

alml = o~ [ ) {0 ;(1;0,X;— \XT

v X2 X

i
—0,;(0:0, X \X! 5 Xy, XKy ]
=0 [s(0)7 ()0 — @/ 5.00)] (A.3)
Bt =07 s(0) {e;(0;1, X\ X!, Xya, ., Xym)
—0;;(1;1, X 1\X” X2,y Xiem) }

= Uﬁl[g(a)T(QZi)l - Qi;ll)] . (A4)

With renormalizing, we have

ot exp{s(8)" g 1o .
) exp{s(0)7 leg}JreXp{C( )@ ;00
1-afj! = Sl 7 I
’ exp{s(0)T leg}JreXP{C( )" @i .00
Bff _ e>ilz{1§( )Té’f,glol}
’ exp{g(B)Tgi7j701}+eXp{§( )" Q” 11}
Ny exp(s(0)' gty

exp{s(8)T e 01} + exp{s(0) i1}

For the AR network model with (! o ,ij 1) specified in (A.3) and (A.4), it holds that

P(Xi | Xio1s o Xemm;0) = [ [ P(XE X1, Xyom3 0)

i,jii<j
_ -1 t—1
= I1 (1 —az;) I1 i
i.jii<j, X!, =0,X!71=0 irjii<j, XE,=1,X{71=0
[ 5?31 - [ (- Bis")
i,j: 'L<],X .—0 Xt - 9,5 z<],X —1 Xt 1=
o H exp{s(0) 0! by} - 11 exp{s(6) 0!,
i,j:i<j, Xt ;=0,X!71=0 i,jii<j, X!, =1,X{71=0
1 1
H exp{g( )TQ§]01} ' H eXP{C( )ng,],ll
2,J: z<],X —0 Xt 1 1,: z<g,X —1 Xt =
= H eXp{C( Qz](ijaijlaxt— \X’Lj 7Xt 27---7Xt—m)}a

i,j:i<j
which shares the same form as (A.2). Thus for any edge conditionally independent temporal ERGM,

we can specify an AR network model with the same distribution.
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Conversely, suppose we have specified an AR network model such that

U(af,gl) = ¢(0) uZ,] (Xt 1\X1] ’Xt 27 A 7thm) )
o(B5Y) = 9(0) iy (X1 \ X5, Xy, Ximm) |

for some functions of the parameter vector 8, and the past network behavior. We claim that this
AR network model can be written as an edge conditionally independent temporal ERGM (A.1)
with ¢(6) = (¢(0)",9(0)")" and o(Xy, X¢—1,..., Xi—m) = (04, 05)", where @, = X, ;i Qai
and gg = Zi,j:i<j 03, j With

Ouii (XL X X\ X

6,50 “i,5 0 i.j )Xt 27-”7Xt—m)

= (X \X] S X0, X)) I(XE = 1, X5 = 0),
Q,Bl](Xf];XZ] 7Xt— \XZ] aXt 27'-‘7Xt—m)
sz(Xt 1\X,L] , X 27---7Xt—m)I(XZ{j :O,ngl =1).

Krivitsky and Handcock (2014) define the concept of separability of a dynamic model for binary

networks. Define two subnetworks X;" and X, , where

Xpf=1-I1(X}; =0,X/;' = 0),
Xpo=I(X{; =1,X/51 = 1),

i,

for all i,j. A dynamic network model is said to be separable if X; and X, are independent
conditional on the past, and do not share any parameters. In particular, a separable temporal

ERGM (STERGM) can be specified by a product of a formation model and a dissolution model:

P(Xt | thl, e ,Xt,m; 0)
oL exp {§+(9+)TQ+ (X X1,y X)) + 6 (07) 0 (X, X1, ,Xt_m)} , (A.5)

where ¢t and ¢~ map parameter vectors 87 and @~ to the vectors of natural parameters, and
o and o~ map the data, including the past network snapshots, to the corresponding sufficient
statistics.

Under the edge conditional independence assumption, we can write

o (X X1, X)) = ) o (X0 X X \XE L K,

2% (2
1<j

or equivalently

o (X X, Xemm) = D 0 (X s XL X \X L X))

zj ) 1]7
1<j
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since for all i < j, X,L-t "+ can be recovered from Xiﬁj and Xf};l. Define g; ; analogously for the

dissolution model.
In this way X; is an edge conditionally independent TERGM with parameter vector (8%,07),

natural parameter

(cT(07),s7(87)),

and sufficient statistic (

2,000 5’5;‘) :

1<J 1<jJ

Following the above construction to rewrite this as an AR network model, we can write

al st = o e (0){o](1;0, X\ X! Xy g, XKy )
— 8,000, X, \X[S L Xy, X))

)10, X \X{ T Xy g, X )

)

—Ql](o 0, X¢— 1\XZ] y Xte2y oo Xt }]

and note that
0, (1;0, X \X[Z 1 Xy g, X)) = 05(0;0, X \XT S Xy 9,0, Xy )

_sz<0 O Xt 1\Xz‘7 7Xt 27---;Xt—m)

= 0 whenever X ¢;1 — 0. Thus o!7! is free of . Similarly, we can

for all ¢ < j and t, since Xf:; y
write
Bt = o et (07) {0} (0,1, X\ X5 Y Kooy, Xeim)
_sz( 7Xt—1\Xth17Xt—27"-7Xt m)}
) {00, 1, X \X{ 51 Xy g, X )
_@m(l,l,Xt 1\ i ,Xt 2y e Xt m)}]
and

QZJ(0517Xt 1\X’Lj )Xt 2y Xt m)—sz(l 1 Xt 1\X’L] 7Xt 2>~-'7Xt—m)

_Q@j(lalaxt 1\ i,j 7Xt 2y aXt—m)
for all 7 < j and ¢, since Xf’; = 1 whenever Xf;l = 1. Then Bf;l is free of 7. Hence any

edge conditionally independent STERGM can be written as an AR network model with separable

parameters.
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Conversely, suppose we have specified an AR network model such that

U(Oé'i;l) = ¢(0a) ", (X 1\X” y X255 Xiom)

(/Btﬂl) ¢(0ﬁ) V’L](Xt 1\ 1,7 )Xt 27"'7Xt—m)

with separable parameters 6, and 63.
We follow the same construction as above to rewrite this model as an edge conditionally

independent TERGM, with parameter vector ¢(0) = (¢(0,)",%(05)7)" and sufficient statistics

o(Xt, Xy—1,. .., Xiom) = (04 Qg)Tv where o, = Zi,j:i<j Qaij and Qs = Zi,j:i<j 03.i,j with

0ui (X} ;s X12 UX, o \X!

[N R W i,j 7Xt 2a-"7Xt—m)

=i (X \ X[ Xy g, X)) [(XF = 1, X051 = 0),

= (X \X S Xy, XK (X = 1L,X05 = 0), (A.6)
05, (X1 XL X\ X Xy g, X )

= v (X \ X[ X 2,...,Xt_m)I(X?- =0, X5 =1).

= Vi (X \X5 L Xy X)X = 0,X051 = 1) (A7)

Note that in (A.6) and (A.7), the sufficient statistics depend on X ; only through X and X f]_
respectively. It follows that when written as a conditionally 1ndependent TERGM, the dlstribution
factors into a product of a formation model and dissolution model, as in (A.5). Thus this AR

network model is an edge conditionally independent STERGM.

B Technical proofs

B.1 Proof of Proposition 1

Recall

® 1
0h(6) = \51\ Z Z ht

t=m+1 (i,5)eS;

with

t—1
hi51(6) = log{l —~!51(0)} + 717" (80) log {7],5_(16)} -
. ’ ’ 1- Vi (6)
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Then

on;N6) 5 (B0) =15 (0) vl (8) B.1)
o0, AN O -~} 0, '
O*hi;'(6) _ [ 1 N {7;1(80) =} (0)}{1 — 2vf,j1(0)}]
064, 06, % O){1 —~51(0)} {151 (0)12{1 =~ (0))?
a'Yi,j (6 )a%‘,j (6)
20, o6, (B.2)

%51 (80) —1(8) %)M (6)
75 (0){1—~;;1(8)} 00,00,
*hi;'(0) [ 1—29,;7(0) iy (80) - ’Y” '(0)
06;,00,,00,, (VN 01 =510 {45 1(0)12{1—~51(9))
{71(80) — 771 (O)}H1 — 297 (9)}2]5’7 () 07} (6) 07,51 (8)
(V011 - () 06, 09z2 a0,
1 {7 ;1(80) — 71 (0) {1 — 29/ (0)}
‘[% OO L O 0 -
0%y, ;'(0) 07, 1(8)  3*4;7(0) 071 (0) P (8) i ()
{ 0,00, 00, | 0,00, o0, 20,00, o6y }
115100 —15'0) 2150
Y O){1 =~ (6)} 001,001,001,

t—1
%

I

By the triangle inequality and Condition 1,

37,t—1 t—1 3. t—1
J hz,j (0) < 2(20_2 + C_3) a’}/z,] (0) 3 + C /Y’Lj (0)‘
5911 59125913 1 1 00 o 1 003 o
751 0)] [0vi;'(0)
-1 - i,j i,j
+3(C7 + 07— u 9 L (B.4)

202072 + CT3)C3 + 3(CTH + C12)C% + O 10y =: Cs .
Write 6 = (61,...,04)" and 8y = (6o,1,...,004)". By Taylor’s theorem, (B.1) and (B.2),

_ _ on; ' (60) 1 0%h!="(60) _
hi;H(0) — b (6o) = gT(@ —60) +5(6 — HO)T(?;T(G —60) + R.S'(0)
1 ov: -1 (60) 2 _
o (60— 0)| +Ri;'(0),

N 29151 (80){1 — Vf,jl(eo)}l 00"

where
. a 1 o°ht=1(8,)
t—1 — 3 2 v
B30 = 5 2300 =00 || 00
l1=1 '
; 2 1 L, 0% (6,)
£ 30 00 000200 o) [ (102

l1#l2

S6



! o PhiH(0y)
+3 Z (0l1 - HU,ll)(alz - 90,52)(913 - 90,l3) f (1 - U) S v
l . 20, 06,,00,,
1#l2#l3

with 6, = 69 + v(0 — 6p). Recall Z,; = {l < [¢] : 7;;1(0) involves 6; for any t € [n]\[m]}.
We have 87;-531( )/0011 = 0 if ll ¢ I’], 82’)/1] (0)/60116012 = 0 if ll ¢ IiJ or lg ¢ Ii,ja and
83’723 ( )/6’9510%6013 =0 if ll ¢ Ii,j or l2 ¢ Ii,j or l3 ¢ Ii,j- By (BS), it holds that

0*hi ;' (6)

—2 = 01ifl; ¢Z;; lo ¢ ;i 3¢ T ;.
a@llaelzaelg ith ¢ d OF 2 ¢ d OF 3 ¢ J

By Condition 2, it holds that \Rf;1(0)| < Cys°01, , — 00 1, ,|5,, which implies

(0,(80) — £1,(6) = Z 1 {ni5H(80) — hiH0)}
7 7 |8l| t= m+1 7,] GSZ ’
1 ‘%t 1(90) 2
- (680 —0) (B.5)
= % ; SO0t )| o

Cs®
- |:;7| Z |0L',j - 90711',3"20
U ges

!3z| Z 2

t= m+1 l])ESl

ot 0
Z’] ) 6oz, — 0z,,)
Ily]

2 3
Cys

- |:;| Z ’011',3' - OO»Ii,j|§O
U pes,

for any 8 € ®. By Condition 3, it holds with probability approaching one that

> ¥

t TI’L+1( ’.7 GS[

t—1
Z:](

2

2
= Cs Z |00,I¢,j - OL',J' ’2
(i,j)ESl

0)
OO,L‘,j - oL‘,j)

zyj

for any [ € [q], which implies

(l) (l) 203 2 C*SS 3
gn,p(oﬂ) - [n,p(a) = E ‘OO,IM - 0Ii,j|2 - E |0L',j - 00Ji,j|oo
S| S| .4
(l,j)ESl (7”])681

for any @ € © and [ € [¢] with probability approaching one. Since d := supgeg |0 — Oolw <
2C3/(Cys%), there exists a universal constant C' > 0 such that d < C' < 2C3/(Cys®). Hence, it
holds with probability approaching one that

203 — CC 83
({80 £,0) > 2= N 6o, — 01,3

Sil (i.1)ES)
CC,s® Cys3
+ ﬁ Z |00,L',j - eL‘,j ‘g |*l| 2 ‘OL'J' - 9071'1',3‘ ’go
(ivj)e‘sl (17] ESl
2C3 — CCys®
= Tfk Z |007Ii,j - 0Ii,j|%
: (i.d)ES;

ST



éC 53 C S3d
+ |S*| Z |007Ii,j - OIi,j |% - |* | Z |01i,j — 0071'1,’]. ‘200
"Gaes N (ig)es
2C3 — CC,s°
> Tfk Z |00,I¢,j - OIZ‘J@
e
for any 6 € © and [ € [q]. We then have Proposition 1 by selecting C' = 2C3 — C'Cls>. 0

B.2 Proof of Theorem 1
Recall S min = miney |S;| for any H < [q], and

2 qlog(n|Sy|) N %% log®?(n|Sy|)
mO L/l VISl
q 10g(n5g°,min) q3/2 10g3/2 (nSgc,min)

2
C c
n7g A /’I’LSgc,min \/ﬁSganin ’

where I’ € G. To show Theorem 1, we first present the following lemma whose proof is given in

Section B.5.1.

Lemma 1 Assume Conditions 1 and 2 hold. Then

) 10g (1S3, min) g2 10> (nSp,min)
7D ey — D ()] = 4198 TOH, min) :
I{é%—[x Slel@p | n,p( ) n,p( )| Op \/m + OP \/ﬁs’}-{,min

for any H < [q].

Notice that éf,f) = (é(l) ce éSf}q)T = arg maxge@ Eﬁ)p(e) for any [ € [¢]. Then

*,10
¢)(80) — sup |64 (0) — ¢)(8)] < £)(8o)
6c®
< 110" <1 @) + sup [10)(0) — (1)),
®

which implies

Recall g = 55}; Selecting H = {I'} in Lemma 1, we have supgcg |f£f2(0) - f,g?,(@ﬂ = Op(ci,g)7

which implies

/ ’ /\(l/)
61 (89) — €808, ") = Op(c2 g) - (B.6)

n?p

For any diverging €, , > 0, if \ég —606l2 = €npcn g, Proposition 1 yields that



with probability approaching one, which contradicts with (B.6) and then implies |6g — Oogl2 =
Op(€npcn,g). Notice that we can select arbitrary slowly diverging €, ,. Following a standard result
from probability theory, we have |6g — 006l2 = Op(cng).
For any [ € G°, we also have
~(0)
0 < £1),(80) — £0),(8,) < < 2sup 105),(0) — £7,(6)] -

Recall e = (é(l))legc. Selecting H = G in Lemma 1, we have maxjege supgeg yz?,(f)p(o) — eﬁf?p(e)y =

*,0

Op(cigc), which implies
Ilrelax{f(l) (60) — ¢ } Op(c2 ge) - (B.7)

For any diverging €, , > 0, if \ch 00.gc|ow = €npCn.ge, Proposition 1 yields that

max {é (6p) — E(l) (9*0)} > Cé?

leGe “n.pn gc

with probability approaching one, which contradicts with (B.7) and then implies [ge — 00l =
Op(€n,pCn,ge). Notice that we can select arbitrary slowly diverging €, ,. Following a standard result
from probability theory, we have \égc —00,6c|oo = Op(cnge). We complete the proof of Theorem 1.
[

B.3 Proof of Proposition 2

Given ¢; specified in Condition 4, define

16) = o2 (6)

for any t € [n]\[m] and 8 € ®. To show Proposition 2, we need the following lemmas whose proofs

are given in Sections B.5.2-B.5.4.

Lemma 2 Assume Condition 1 holds. Then

LS (00,5 = 7060} <718~ 6ul + Culih B - 00l

t m+1

for any L € [q], where Cy is a universal constant specified in (B.4).

Lemma 3 Assume Conditions 1 and 4 hold. Then

—— 3 i, ‘

t=m+1
_o {\/Iog (1 + |H]|)log(n|H|) } {q/log (1 + |H|)log(n|H|) }
P «/nS’H7min p \/757{ min

max
leH

for any H < [q].
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Lemma 4 Assume Condition 1 holds. Then

(0
AL N PR}
m !

sup
QlEB(él,f) n-—

for any L € [q], where Cy is a universal constant specified in (B.4).

Recall lég —6ogl2 = Op(cng) and \égc — 00,6c|oc = Op(cpge) with

2 qlog(n|Sy|) N %% 1og®?(n|Sy|)

M IS NI

62 _ qlog(nsgc,min) + q3/2 10g3/2(nsgc,min)

™G A\ nSgC,min \/ﬁ‘s’gc,min ’
where I € G. Then |6 — 8ol = [0 — Bogli + |0g= — Bo.gel1 = Op(IGV2¢ng) + Op(IG|enge) =
OP(A1/2) Based on Lemmas 2 and 3, due to 7 < AY? and |G| + |G°| = ¢, we have

| SR () P
max | —— DT £ (00,,6-)
t=m+1

+/log(1 + \G!)log(nlg)} L0 {\/bg(l + IQ\)log(n!GI)}
NG P VS|

= Op(An) + Op{
= Op(An)

for some I’ € G, and

) 9
G [n—m t ;ﬂft o8
log(1 + |G¢|) log(n|G€|) } {«/log (14 |G¢|) log(n|G°|) }
= 0p(A,) + O {\/
(4] 7 A/ 15Ge min Or V/1Sge min
= Op(Ay).
Due to §; = arg ming g, 7 [(n—m)~ 30 ft («91, _))|? and 6y, € B(f;,7) with probability

approaching one, then

Z ft 9017

t m+1

Z V6,8 ’

t m+1

with probability approaching one, which implies

max
le[q]

NRGUCKE ) 1601, = Oyl B5)

t m+1

Notice that

Z {F00,0-0) = £(00,,0-1)} {nlm 2 aﬂf@l;)}(éz—%,l)

t m+1

S10



for some 6; on the joint line between 6, and 6. By Lemma 4 and Condition 4, due to 7 = o(1)

R T A
%ﬂé}{n_ P T

m
t=m+1

and 7 = o(1), we know

with probability approaching one. Hence, by (B.8), we have |é — 6ol = Op(Ay,). We complete the
proof of Proposition 2. O

B.4 Proof of Theorem 2

Recall ft(l) (0) = gbnggl)(G). By the definition of ¢; given in (4.10), we have

1 i of(8)
n_mt:m-‘rl 60_5

max

lelq]

<T.

‘OO
It follows from the Taylor expansion that

L of"® ofP®ON| _
n—m 00_,; 00_,; Oc\

t=m+1

1 noo52 At(l)(é)

It 16— 6)y,
n—m, & 00_,00" OO’ |

where 6 is on the joint line between 6 and 6. Notice that 6 € B(9~1,'F) X oo X B(éq,f). Following
the same arguments for deriving (B.28) in Section B.5.2 for the proof of Lemma 2, we know

R ()
n—m, 00_,00" |

sup max
0B (6, ,7)x - x B(G,,7) '€ld]

< Cymax @]
le[q]
for some universal constant C, specified in (B.4), which implies

- <CJ0-9 _
n—m t=;+1 { 00_, o6, ||, C4l6 = Bl max| i)y

max

le[q]

By Condition 4, we have maxe[q] [¢;/1 = Op(1), which implies

n D) p oM it
S {aft 8) _ of, <9>}‘ <18 -8]1-0p(1).
n—m, < 00 0-1 )l

max

lefq]

Hence, it holds that

1 mof Y@
2 t

— G0, | STHIB-8L-01). (B.9)

max

lefq]

t=m+1 ‘OO

Repeating the arguments for deriving Lemma 2 in Section B.5.2, we can also show

Z (79(00,,0 :s(l)(Oo)}‘

t m+1
<{r+10—0]1-0,(1)}|8 — 0|1 + |8 — 60|} - O, (1) (B.10)
< {7410 —0ol1 - 0(1)}|0 — G|y + 10 — 63 - Op(1).

max
le[q

S11



Together with Lemma 3, it holds that

n

1 0N
p—— DT £ (00,,6-)

t=m+1

max

< A,).
lelq] Op(4n)

Since 6; = arg ming,c (g, 7 [(n — m) Ly ft(l)(ﬁl,é_l)P and 6y, € B(f;,7) with probability

approaching one, then

Z £ (002.0-1)

Z ftl) 91) ‘

t m+1 t m+1
with probability approaching one, which implies
A l N~
max Z (79 6,6_1) — £ (Bou, e_l)}‘ = 0p(qAy) . (B.11)

t m+1

Following the same arguments for deriving Lemma 4 in Section B.5.4 and noting (B.9), we can also

have

1 Zn: F0,,6_)

sup 20,

QZEB(él,f) n

—1' <7+ o0p(1) + Cuf|pi)1 (B.12)

for any [ € [g]. Due to 7 = o(1), 7 = o(1) and maxe[q) [#;[1 = Op(1), we have

max sup

n /\(l) ~
! ) fo 61,60-1) 1‘ = op(1). (B.13)
le[q] 0,€B(0;,7) n—m

00,

Due to

Z {£7(6,,0 ff”(%,z,é_z)}={1 > W}(él—eo,,) (B.14)

LS L]
for some 6 on the joint line between §; and 6., by (B.11) and (B.12), we have |§—00\OO = Op(qAy),
which implies |8 — ]o, < |0 — Ooo + |8 — 0| = Op(gA,). Hence, | — 8|y, « i with probability
approaching one. Therefore,

B 1 L )5 7 1 L 3ft(l)(él,é_l)
0_{n—m > (91701)}{n_m > 0,

t=m+1 t=m+1

with probability approaching one. Together with (B.13), we have

t=m+

with probability approaching one.

S12



By (B.14) and (B.10), due to |8 — 8oy = Op(qAn), |0 — 8oy = Op(AY?) and r < AL, then

o (it § 10 S

t=m+1 t m+1
1 o ofY6,8- )} { }
- £ (80)
{n -m t=;+1 00, my ;+1 '

+ Op(aA)?) + Op(¢°A7)

with probability approaching one. As shown in (B.30) in Section B.5.3 for the proof of Lemma 3,

Z (79(80) = £ (0 }’

t m—+1

where the last step is based on Condition 4. Hence,

; B 1 & af6,0.)) 7!
R P s L P

t=m+1

Z (60 }

t m—+1

1
+ 0p(aAY?) + 0p(PA2) + ( ) (B.15)

A/ 1|8

with probability approaching one.

Write t t—1 t—1
Q 1 Z Xii— Yij (60) {Lp 57 (60) }
Lt = — .
[S2 S, i3 (B0) {1 =715 (60)} U &
Then
00) = ——c1s Q. (B.16)
my §+1 t (n— |‘Sl|1/2t ;ﬂ a

In the sequel, we will use the martingale central limit theorem to establish the asymptotic distri-
bution of (n —m)~1/2 Dttt Ci)l’t. Denote by Pr, ,(-) and Ef, ,(-), respectively, the conditional
probability measure and the conditional expectation given F;_; with the unknown true parameter
vector 6y. By Conditions 1 and 4, it holds that
t—1 t—1
Xf,j — Yij (6o) Ta%’,j (6o)
max |7 =1 1708
(©.9)€S1 |7 5 (60){1 — Vi (60)}

It follows from the Bernstein inequality that

H < OO0y =: Cs .

3|Sl|1/2:v2 >

P dtl =) <2 -
Fia (el = ) exp( 6Si[/2C2, + 20Cs

S13



for any x > 0, which implies, for any 6 > 0,

2 4(%)2%% +1))

_ 2 Er,_ {Q11(1Qul = 0vn—m)} -0

t m+1

in probability as n — o0. Meanwhile, by Condition 5, we also have

Z Er,_, Qlt)

t=m+1

1 " 1 ;5 (Bo)
= 4(71 — m)|51| Z Z 7-5_41(00){1 - 7;5’;1(00)} {(pl 00 } — Kj

t=m+1 (ij)eS; i

n—m

in probability as n — o0. By Conditions 1 and 4, we know k; is a almost surely bounded random

variable. Corollary 3.1 of Hall and Heyde (1980) implies

— A
vin—m t;JrlQlt v

in distribution as n — oo, where Z is a standard normally distributed random variable independent

of k. By (B.15) and (B.16), due to

n—m, =, 601

in probability which is obtained in (B.13), it holds that

nlS (0 — 004) — Ei - Z
in distribution as n — 0o, provided that /n|S;| max{in/ 2, ¢?A2%} = o(1). We complete the proof
of Theorem 2. ]
B.5 Proofs of auxiliary lemmas
B.5.1 Proof of Lemma 1

Without loss of generality, we assume @ = [—C,(C]? for some constant C' > 0. For given € > 0
which will be specified later, we partition [—C,C] into K = [2C'/e] sub-intervals By, ..., Bg with
equal length, where the length of each By does not exceed e. Based on such defined Bi,..., Bk,

we can partition @ as follows:

K K
e = U UB'I‘?IX'”XBk?q’



which includes K9 hyper-rectangles By, . .., Bxq. For each given u € [K?], there exists (k1,y, ..., kqu) €
[K]? such that B, = By, , x -+ x By, . Let 8, be the center of B,,.
For each 6 € B,, since 7;?7;1(0) only depends on ¢, with | € Z; ;, it follows from the Taylor

expansion that

(1 (1
UORC)ENION(:N

_ Xij =g 00) 95 0)]
‘[ _ > % < S ]“’ 6u)

t=m+1 (i.j) esﬂm ){1_%] @

’Yz (OU) aryfi‘l(éu)
= |Sl| Z Z J 1,h - T (9L‘,j - 9“7Ii,j) s

t= m+1 13 ESl ’Y'L] ( U){]‘ - ’YZJ (au)} agIm

where 0, € B, is on the joint line between 8 and 6,. Write 8 = (01,...,04)7 and 0, =
(Ouis-..,0uq)". By Conditions 1 and 2, it holds that

103,(8) — £41),(84)]

n?p
’Y'L (0U 7
CET IR - H oo
! t=m+1 (i,5)eS; I€L; ; 7@] U){ 71] }
C 026 n t —1
|Sl|t2 Z Z X5 — 'y” 6.)| < sC; 1 Cqe
m+1 (i,§)eS; I€Z;
for any 0 € B, and [ € [q]. Analogously, we also have
sup |((8) — ¢ (8.,)] < sC ™ Cae.
0B,
Therefore, by the triangle inequality, it holds that
) ()] = o) — D (o
max sup [£,5,(6) = £np(0)] = max max sup |f, |65(0) — 1(0)]
_ 0 (l) _ 0
< max max 00, (8) — £0),(8)] + max max sup [hp(8) — L3 (0)]
0
+ I}é%xur&?gg] g.eug) |£ 0 (0) — £3,7,(6.)] (B.17)
! ~1
< max max 16D (0,) — 19 (8,)] + 25C7 Cae .
For each [ € [¢], u € [KY] and t € [n]\[m], define
t—1
1 Vi (Ou)
SRR (R L R ))
Then
. 1 < l
00 (8,) —60,(0,) = —————— QY. (B.18)
»D P (n _ m)|Sl|1/2 t—;+1 it



Notice that

Due to
t—1 W”Lt,;l(eu) t—1
log [v/;1(0.){1 =715 (0.)}] < log{1_¢.1} < —log [7/51(8.){1 — 7/ (8u)}],
by Condition 1, we have

Xt —At-1(g
B e Xig =717 (@)

1 ’Vf,;l(ou)
l1-Te
Vi (6)

< max max max|log [y 1-— ” <logCit. B.19
o) o max [1og [1157 (01 =55 (Bu)}]| < log O (B.19)

Denote by Pr, ,(-) the conditional probability measure given F;_; with the unknown true parameter

vector @y. It follows from the Bernstein inequality that

max max P Qu
% i P Qi) > o}
1/2,.2
< QGXp{ - Sisil = _1} (B.20)
6|S1)1/2(log C; )2 + 22 log O
for any « > 0. Furthermore, due to P{]QS)A >} = E[Pft71{|Q,(u‘l’)t > x}], we also have
1/2,.2
max max P{\Qg)t] >z} < 2exp{ — 3‘871’1 v 1} (B.21)
ue[K 1] te[n]\[m] ’ 6/S;|'/2(log C )% + 2z 1og C;

for any = > 0. Let
~ (1 [ [ l l
QY = QU r{1QY) < M} —Ex_, [QU1{1QY)) < M}]

for some diverging M > 0 specified later. Notice that {Qﬁ)t}te[n]\[m] is a martingale difference
sequence with maxep, |Qu t\ < 2M. By the Azuma’s inequality (Azuma, 1967; see also Theorem

3.1 of Lesigne and Volny (2001)), we have

n

1 -
PR
n—m

t=m+1

x} < 26Xp{ - W} (B.22)

max max IP’{
le[q] ue[K1]

for any x > 0. By (B.21),

>O] < max P{ max ]Q M}
ue[K9]  { te[n]\[m]

me B[ S (i = )

uel[K1] t=m+1

3120 }

< 2ne —
e { 61S,[1/2(log O 1)2 + 2M log Cy !

516



Together with (B.22), by the Bonferroni inequality, we have

P max max
leH ue[K1]

> 100+ QUIQl) > m }]) > x)

—m
n t=m-+1

o 2
< 2H| K¢ exp{ - (”8]\2?9”}

3|5t/ M
+2\H|anrlnz71_[xexp{ — 15l }
€

6/S|Y/2(log C71)2 + 2M log Oy !

for any > 0. Recall Sy min = mingey |S;| and |H| < ¢. Selecting

qlog K logn
= A/ K, , V]ogn, ——— B.2
M € max < 4 log \V S’H min " \ S’H,min) ( 3)

for some sufficiently large constant C' > 0, it holds that

1 & A0 a0 D) _ qlog K
Ilré%‘[x’ug%?gg] n_mt—;"rl [QU7t +Qu7t[{|Qu’t’ = M}] o Op M n
qlog K (qlog k) }
_o. (oK) |, [(glog K)™" B.24
p( NG ) p{\/m .
log K)(1 log K)1/2(1
+0p{ q(log )(ogn)}+0p{(qog ) (ogn)}.

On the other hand, by (B.20), it holds that

Q0
Ex  [1QUII{1QY) > M}] = MP£_ {1QV)] > M} + fM Pr, (|Quy| > z)de

3‘81’1/2M2
<2Mexp{— 73 T3 =
6/S;|'/2(log C; )2 + 2M log C}

o0 2 o0 1/2
+ZJ exp{—qjl}da:—FQf exp(—W)dz
M 4(log C7)? M 4log C

3152007
<2Mexp{— 7 T3 —
6|S;11/2(log Cy *)? 4+ 2M log Cy

M? 8log C;* 31812 M
4(log C1)2 M { }+ 1 < )
(log €17) TPU doge D2 T sis2 TPT dlog oy

which implies

> Bl = )]

max
ue[K9] | t 1
318 11/2 M r2
< 2Mexp{ — 7 | _l’1 5 _1} (B.25)
6|S;|Y/2(log C; )2 + 2M log C;

M? } 810gC’1_1e < 3;5111/21\4)
X —_— .
)

—1\2
4(102;01 ) exp{— ( 3|Sl‘1/2 410g01—1

4(log C'l_l

S17



Due to Sy min = mingey |S;| — 0 and M — oo satisfying (B.23), by (B.25), we have

Z Er, [Qui{lQu4 > M}]

t m—+1

max max

leH ue[K] | —

< exp(—CM) + exp(~CoMS}) = o).

where C; > 0 and Cy > 0 are two universal constants. Due to Qut = Qq(f)t + QS}JHQS}A >

M} —Ex, 6, [QUI{1QY)] > M}], together with (B.24), it holds that

1 " ) glog K (qlogK):‘)’/2
= - B.2
ey 2 Q0= 0T ) rou A 520
L0 { q(logK)(logn)}+O {(qlogK)l/Q(logn)}
P \/ﬁ P \ nSH,min .

By (B.18), we have

log K log K)3/2
max max \E )(04) — zg?p(au)| =0, (qu> + Op{(q()g)}

leH ue[K4] A/ TS min V1S3 min
Lo { q(logK)(logn)}+O {(qlogK)l/Q(logn)}
P A /nSH,min P \/ﬁsﬂ,min .

Recall K = e !. Together with (B.17), it holds that

log K log K)3/2
max sup [£(1),(8) — £1),(8)] < 25C1 ' Cae + O, (qg) + O{@g)}

leH gc® " A/ nS’H,min \/HS'H,min
N Op{ q(logK)(logn)} N Op{ (qlog K)'/*(log n) } _
\ nS’H7min \/ﬁS’H:min
Due to s < g, with selecting € = n_1/2SH1r{12m, we have

410g(n S min) } ‘o, { ¢** 10g” (1S min) } _

v nSH,min \/ﬁS?—[Jnin

We complete the proof of Lemma 1. ]

_ o) —
s 10,(0) — 1,(0)] = 0,

B.5.2 Proof of Lemma 2

By the Taylor expansion, we have

Z {F(00.,61) — £V (80)}
t m—+1
_ 1 Z £ (604,0-1)

=
n m t=m+1 60*

61— 6y 1)
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1 mof D (001,0-0)
_n_mt=§+1 001, (91 0,1

Ry,

1 i {5ft(l)(90,l,9l) 5ft (901,

) ~
n—m 007 aeT (e—l - 00,—l) )
t=m+1 -l -
Ry

~

+

where 6_; is on the joint line between 0p,—; and 5—l-

For Ry, by the Taylor expansion, it holds that

Ry, = (ZLI —60,—1)

1 i o/ (9)
nemey S 06"

1 s 20,00
+ (0o — 91){n_m 2 aelagr_l}(@z — 00,1,

t=m+1

where 6; is on the joint line between 6y and ;. Recall ft(l) (0) = cfonggl) (6). By the definition of ¢;
given in (4.10), we have

n (D) D
I /C)

n—m, = 00_;

ST,

’ oe]

which implies

L& e Lo R <0>‘
6_,—0y_))| < 6_,—6
n—m, 09" (0 0.-1) n—thH 00_,; 16— 0.-th
<7101 — 6011 (B.27)
For any k € [q], due to
PI00) -2 (0,0.)
06,00}, L0000,

we then have

P00 P800
00,00, | TN 0000, |,
T s [ Xl =iy (6) avf,;lw)”
ISzI (52, 10000k Ly H0) (1 — (5N 0)) 28 ],
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Notice that

2 { Xt =151 075,}1(0)]
001,00, | 71 (0){1 =~} (0)} 0,
_ 2{ 1-24/1(0) ) Xf-—vf;lw)
(O =10 {01 -~ (0))
(X} =75 (01 - 272}1(9)}2] 0715'(8) 0v;;(6) o ()
(510131 =1 510) o0, o0y, o0y,
B [ 1 N (X} = (01 - 275,}1(9)}]
%51 (0){1 =~/ (6)} {51011 —~{1(0))?
*5H0) v (8) 0P ;N(0) vl (0) i l(0) vl ()
+ +
060,00, 06y, 06,00, 06y, 00,00, 06,
+ Xf,j _7531(0> 6377,] (9) .
75,31(9){1 - ’Yf,;l(a)} 06;,00,,00,,

By the triangle inequality and Condition 1, we know

o2 (l)(el,e )
00,00y,

max
kelq]

< Culgils (B.28)

for some universal constant Cy specified in (B.4), which implies

1 & 290,60 5
‘(90,1 - 91){n — t=;+1 om0, }(91 —60,1)
S 1 n2f06,0-)|
< |0g; — 0 t—’ 0_,—0y_
00,0 — 01 n_mt—%:-&-l 26,007, OO! 1— 0011

< Cul@il11600 — 611101 — 8011 -

Together with (B.27), it holds that |Ry | < 7|0_; — 80,11 + Cx|@;]1]000 — 01|01 — 80,11

For Ry, by the Taylor expansion, we have

1 i 32D (0y,,6_;)

—(0_,-0_))
RQJ ( 1 l) {n_m 80_13011

}(54 —6o,1)

t=m+1

for some 9_1 on the joint line between 6_; and 5_5, which implies

1 Zn] ant (Ao.,0-1)

<16_ _Ni ~7 — _
[Ro| < |01 —6_4[1]0 1 — 6o 1|1 00,007,

t=m+1 [0}

Since 6_; is on the joint line between 0, and 5_1, then |0_; — 5—l|1 < |5—l — 60,—1]1. Parallel to
(B.28), we can also show

1 Zn: 82ft (601, ~1)

n—m, =, 00,00,

< |1

520



Hence, |Ry| < Cil¢1]0-1 — 69,43 Then

1 " N ~ .
S A{F P (000,6-0) = £ (80)}| < [Rugl + |Rul

< 7|0 — 6011 + Cil@y|11000 — 01101 — 8011 + Cul @161 — B_4|?
= 710_; — Bo,_1|1 + Cul@ 10 — 80]116_; — 0o 1|1
< 710 — o)1 + Cul@[110 — 6ol3 .

We complete the proof of Lemma 2. O

B.5.3 Proof of Lemma 3

mwmﬂWm:@é%mmmﬁW> /g1’ (9), then

Z {7 (80) — (00)}‘<§0l—¢z|1‘n_1m > g” (60)

t m+1 t=m+1

e}
Write (G, ..., = (n—m) 37, g% (). Due to

g0 = = 3 Xi; =y (o) 0715 (60)
VS - — )
t Sl 552, vig (B0){1 = i7" (B0)} 00

we then have

W _ — 7' (80) ;" (60)
= !Sz! Z 2 ){1 =1(9,)} 00y

t=m+1 (i,5)eS, ’Yz’] Vi

n

. 1 5(1)
"m—M@WQZ‘%t

t=m+1

for any k € [¢]. Using the same arguments for deriving (B.26), we can also show

maxmaX|G =0 { (logq)log(qn)} N Op{(logQ)”Qlog(qn)}’ (B.29)

leH kelq \/m \/ESH,min

where Sy min = mingey |S;|. Together with Condition 4, it holds that

1 i { t(l)(eo) (l)(ao)}’

max
leH |'m—m t—mal
wnA/ (log q) log(gn) } { wn(log ¢)Y/2?1log(qn) }
=0 + O . B.30
P{ \V nSH,min P \/ﬁSH,min ( )

Notice that

BRSSP0 — 15" (60) 07151 (80)
n—m Z ft (00)_ ‘Sl| Z Z ( ){1 ’Vi,jl(OO)}{(Pl 00 }

t=m+1 t=m+1 (i,5)eS; ’Ylj
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By Conditions 1 and 4, we know

L9715 (60)
00

max max max

le[q] te[n]\[m] (i.7)eS

< (0yCy.

Using the same arguments for deriving (B.29), we can also show

— > 1000

t=m+1
_0 {\/Iog (14 |H])log(n|H]) } {«/log (14 |H])log(n|H]) }
P \ nS?—L,min p \/>SH min

Together with (B.30), due to wy,(log ¢q)'/?log(qn) = o(1), we have Lemma 3.

max
leH

B.5.4 Proof of Lemma 4
For any 6, € B (51, 7), by the Taylor expansion, we have

L& (o0 @ _f 1 & 2000,
n—m Z { t 00, B tael }_{n_m Z taelz}(ez—ﬁ)

t=m+1 t=m+1

for some ) on the joint line between 6; and él, which implies

1 & (ofPee)  ofPe)]
n—m Z{ 00, ; tael }‘_

t=m+1

Ly P00, g,
m l -

n — 6912

t=m+1

Due to 0; € B(;,7), by (B.28), it holds that

1 & (ofP06,0-) iY@ L
S T R
HZEB(Ql,f) n—m t=m+1 ! L
Since o) O %
1 Zn: af () _ @l Zn: og; ()
Lt 00, My o0,
by (4.10), we know
()
- —1 <7,
n—m th 00, 4
=m+1
which implies
1 n afY0,, 0. -
sup | —— Z W—1‘<T+C*T|¢l|1.
0eB@,,7) 1™ T M o !

We complete the proof of Lemma 4.

C Additional simulation results
Further to Section 5, we report more simulation results on the transitivity model.
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C.1 Stationarity and ergodicity

As stated in the last paragraph of Section 2.1, for each fixed constant p, {X;};>1 defined by the
transitivity model (3.3) is stationary and ergodic as long as af;l and Bf;l are strictly between 0
and 1. Nevertheless it is a Markov chain with 2P(?°—1)/2 states. When p is a fixed constant, the
ergodicity of Xy (i.e. the average in time converges to the average over the state space) may take a
long time to be observed; see Theorem 4.1 in Chapter 3 of Brémaud (1998). However the ergodicity
of some scalar summary statistics of X; can be observed in much short time spans, as indicated in
the simulation reported below.
We consider the following three network density measures at each time ¢:

Zi,j:i<j Xf,j Dy — Zi,j:i<j(1 - Xf,jl)Xf,j Dt — Zi,j:i<j Xf,;l(l - Xit,j) (C.1)
pp—1/2 " pp-n2 pp-D2

where D; is the network density at time ¢, and Dq; and Dg; are, respectively, the densities of

Dy =

newly formed edges and newly dissolved edges at time ¢. If {X;};>1 is stationary, all three density

sequences {D;}i=1, {D1}i>2 and {Dg¢};>2 are also stationary. We also plot

_ 1 _ 1< _ 1<
Dt = ; Z DU7 Dl,t = % Z Dl,Ua DO,t = % Z DO,ua

u=1 u=1 u=1
against t for ¢ > 2, to see how quickly the ergodicity can be observed. These are sample means of
one-dimensional network summaries. We expect that their convergences are much faster than that
for the sample mean of p x p network X, itself.

Setting & = -+ = &, and gy = -+ = 1, we let (&, n;,a,b) take four different sets of values:
(0.7,0.8, 30, 15), (0.6,0.7,20,20), (0.6,0.7,15,10) and (0.6,0.7,10,10). Figure S1 displays the time
series plots of simulated {D;}2%, {D1}2%%, {Do+}7%%, {D:}2%, {D1.}?%% and {Dg}?%) when p =
50. As expected, all simulated series {D};>2, {D1,¢}t>2 and {Dg+}i>2 exhibit patterns in line with
stationarity. The convergence of their sample means is observed with the sample sizes greater
than 50. In particular, (&;,7;,a,b) = (0.7,0.8,30,15) displays the most dynamic edge changing
behaviour, while (&, 7;,a,b) = (0.6,0.7,20, 20) is the least dynamic among the four settings.

C.2 A more general model

As stated towards the end of Section 3.3, a more general transitivity model admits the form:

t—1
b2V ;

t—1 §i§jea1Uit’;1 t—1 nin;€
(0) = (0) =

~ t-1(9) = C.2)
Y =1 =17 L) =1 (C.
1+ Vs 4+ ehVis 1+ %Y

a
t—1
+ Vi

with @ = (a1,b1,a2,b2,&1,...,&p, M., Mp) " € Rip+4 > 0. Different from the transitivity model

(3.3) introduced in Section 3.3, we allow a1 # az and by # b in (C.2). We adopt the same sim-
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Figure S1: Time series plots of {D;}7%%, {D1+}7%%, {Do+}2%, {D:}7%%, {D14+}7%% and {Dg+}7% for
the four simulated settings with p = 50. The black, red, green and blue curves correspond to
the settings (&;,7;,a,b) = (0.7,0.8,30,15), (0.6,0.7,20,20), (0.6,0.7,15,10) and (0.6,0.7,10,10),

respectively.
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Table S1: The means and STDs (in parenthesis) of rMAEs for estimating parameters in transitivity
model (C.2) with 400 replications.

(&, a1,b1,m;, a2, b2) n Estimation iJl(e) 51151(9)
&i ay by i as by

(0.7, 30, 15, 0.8, 30, 15) 100 Initial 0.178 (0.026) 0.250 (0.023) 0.171 (0.005)  0.121 (0.019)  5.275 (3.602)  24.141 (24.917)
Improved  0.103 (0.030) 0.117 (0.013) 0.066 (0.004)  0.112 (0.025)  5.687 (8.593)  26.259 (24.462)
200 Initial 0.172 (0.022)  0.247 (0.021) 0.170 (0.004) 0.119 (0.023) 2.904 (6.050) 19.186 (22.146)
Improved 0.093 (0.027) 0.113 (0.023) 0.064 (0.007) 0.111 (0.025) 3.356 (6.067) 21.646 (21.935)
400 Initial 0.168 (0.016) 0.245 (0.019) 0.170 (0.004)  0.117 (0.021)  1.777 (3.273)  15.318 (18.832)
Improved 0.088 (0.019) 0.109 (0.010) 0.063 (0.003) 0.109 (0.027) 2.180 (3.401) 17.636 (18.904)
(0.6, 20, 20, 0.7, 20, 20) 100 Initial 0.224 (0.004) 0.403 (0.023) 0.218 (0.005)  0.147 (0.007)  3.397 (8.745)  12.343 (19.473)
Improved  0.138 (0.006) 0.135 (0.034) 0.081 (0.009)  0.130 (0.009)  3.585 (8.585)  13.754 (19.465)

200 Initial 0.219 (0.002) 0.404 (0.017) 0.219 (0.003)  0.140 (0.008)  1.266 (3.404)  7.684 (11.048)

Improved 0.123 (0.004) 0.124 (0.021) 0.079 (0.007) 0.122 (0.009) 1.479 (3.488) 9.146 (11.735)

400 Initial 0.217 (0.002) 0.405 (0.012) 0.219 (0.002)  0.135 (0.008)  0.687 (0.316)  5.567 (8.182)

Improved  0.114 (0.002) 0.117 (0.015) 0.075 (0.005)  0.117 (0.009)  0.787 (0.606)  6.830 (9.161)

(0.6, 15, 10, 0.7, 15, 10) 100 Initial 0.243 (0.003) 0.378 (0.015) 0.266 (0.005) 0.160 (0.019) 4.163 (10.012)  16.690 (24.226)
Improved  0.136 (0.004) 0.178 (0.047) 0.098 (0.014)  0.146 (0.023) 4.322 (10.035) 18.638 (24.586)

200 Initial 0.241 (0.002) 0.378 (0.011) 0.266 (0.004) 0.151 (0.019) 1.708 (4.439) 10.105 (17.250)

Improved 0.124 (0.003) 0.162 (0.026) 0.090 (0.008) 0.138 (0.022) 1.785 (4.572) 11.984 (18.233)

400 Initial 0.240 (0.001) 0.379 (0.008) 0.266 (0.003)  0.146 (0.018)  1.312 (3.015)  7.461 (14.351)

Improved  0.117 (0.002) 0.159 (0.018) 0.088 (0.005)  0.133 (0.022)  1.202 (3.158)  9.039 (15.240)

(0.6, 10, 10, 0.7, 10, 10) 100 Initial 0.242 (0.003) 0.534 (0.026) 0.279 (0.005) 0.165 (0.020) 10.003 (20.550) 25.992 (28.225)
Improved  0.136 (0.005) 0.254 (0.073) 0.101 (0.013)  0.152 (0.025) 10.210 (20.584) 28.117 (28.413)

200 Initial 0.240 (0.002) 0.536 (0.019) 0.279 (0.004) 0.162 (0.022)  5.987 (15.780) 21.763 (26.073)

Improved 0.125 (0.003) 0.238 (0.045) 0.095 (0.007) 0.149 (0.027)  6.113 (15.673)  24.344 (26.729)

400 Initial 0.239 (0.001) 0.535 (0.013) 0.279 (0.003)  0.157 (0.023)  2.956 (6.909)  16.885 (21.903)

Improved  0.117 (0.002) 0.231 (0.028) 0.094 (0.005)  0.144 (0.028)  2.817 (7.196)  19.332 (23.305)

ulation settings as above, i.e. (&,a1,b1,n;,a2,b2) € {(0.7,30,15,0.8, 30, 15), (0.6, 20, 20, 0.7, 20, 20),
(0.6,15,10,0.7,15,10), (0.6,10,10,0.7,10,10)}.
The two estimation methods are implemented in the same manner as in Section 5.2. Table S1

reports the resulting rMAEs over 400 replications with p = 50 and n € {100,200,400}. The

t—1
1,J

Table 1, where (&, a1,b1,m;,a2,b2) = (0.7,30, 15, 0.8, 30, 15) achieves the best estimation accuracy.

estimation for the parameters in a; " (@), namely &, a; and by, exhibits the similar patterns as in
In contrast, the estimation for parameters in 6531(0) deteriorates significantly, and especially for ao
and by. Note that only some components of X;_; with X f;l =1, t € [n]\[m] and j # i, were used
in estimating parameters as and by. For sparse networks, the total number of those data points is
small. This is the intrinsic difficulty in estimating the parameters in 5531(9). See also the relevant

discussion at the end of Section 3.3.
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Figure S2: Evolution of edge density (left panel), percentage of grown (blue) and dissolved (orange)
edges (right panel), SFHH participant networks.

D Conference interactions

We apply our model to an additional dynamic network dataset, in this case of face-to-face in-
teractions among attendees of an academic conference. The conference in question was the 2009
congress of the Société Frangaise d’Hygiene Hospitaliere (SFHH) (Cattuto et al., 2010; Génois and
Barrat, 2018). The original data was collected automatically by RFID badges worn by the con-
ference participants. We analyze a subset of the data corresponding to an active portion of the
first day of the congress (June 4, 2009) from about 11:00AM to 6:00PM among the p = 200 most
active participants out of the total 403. Each of the n = 22 network snapshots corresponds to a
non-overlapping time window, with Xf’j = 1 if participants were in close proximity at any time
during the prior 20 minutes.

Similar to Section 6, we summarize some key features of this dataset. Figure S2 (left panel)
shows that while there are some spikes in edge density, there is no clear increasing or decreasing
pattern, so we choose to model this dataset with a single AR network model. Figures S2 and S3 show
empirical evidence of temporal edge dependence, as well as transitivity effects: after accounting for
edge density, edges persist at a higher rate than they grow, they more often grow for node pairs
which had more common neighbours, and they more often dissolve for node pairs which had more
disjoint neighbours.

Fitting our AR network model with transitivity, we estimate a = 26.75 and b= 15.14, confirming
these empirical dynamic effects of common and disjoint neighbours. We summarize the estimates

of the local parameters {£}2% and {n;}?% in Figure S4.

The estimates {é}?gq have mean 0.18 and a longer right tail, while the estimates {f;}?%) have

mean 1.16 and a longer left tail. Moreover, their scatter plot shows that there is a negative relation-
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Figure S3: Left panel: relative edge frequencies, {U.}.>o. Right panel: relative non-edge frequen-

cies, {V:}c=0. In both panels, point size is proportional to log of sample size.
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Figure S4: Histograms and scatter plot of estimates {£;}2%) and {7};}2%9.

ship between these estimates for a given node. All of these observations are consistent with overall

degree heterogeneity of the network. The estimates {&}122({ have a wide range from 0.05 to 0.64,

while the estimates {7); 222({ are all between 0.97 and 1.24. This implies that conference attendees
are more heterogeneous in their propensity to form new connections, than in their propensity to
extend the length of existing ones.

Finally, we compare our model to the same competing models described in Section 6 in terms
of AIC and BIC. These results are reported in Table S2. Our AR network model with transitivity
achieves the smallest AIC, followed closely by the global AR model, which only has 2 parameters.
The global AR model achieves the smallest BIC, thus in both cases the best model incorporates
temporal edge dependence. Under either criterion, the two edgewise models require O(p?) param-
eters and thus perform poorly, as there are relatively many nodes (p = 200) compared to network

samples (n = 22). Although the transitivity model has O(p) parameters, it achieves the smallest
AIC and the 2nd smallest BIC, suggesting that degree heterogeneity parameters and the imposed
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Model AIC BIC

Transitivity AR model 48013 | 52412

Global AR model 48037 | 48059
Edgewise AR model 109284 | 544815
Edgewise mean model 71205 | 288970

Degree parameter mean model | 54061 | 56250

Table S2: AIC and BIC performance for conference interaction data

transitivity form are an effective parameterization to summarize the structure in this dataset.
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