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For autoregressive and moving-average (ARMA) models with infinite variance innovations,

quasi-likelihood based estimators (such as Whittle’s estimators ) suffer from complex asymp-

totic distributions depending on unknown tail indices. This makes the statistical inference for

such models difficult. In contrast, the least absolute deviations estimators (LADE) are more

appealing in dealing with heavy tailed processes. In this paper, we propose a weighted least

absolute deviations estimator (WLADE) for ARMA models. We show that the proposed

WLADE is asymptotically normal, unbiased and with the standard root-n convergence rate

even when the variance of innovations is infinity. This paves the way for the statistical infer-

ence based on asymptotic normality for heavy-tailed ARMA processes. For relatively small

samples numerical results illustrate that the WLADE with appropriate weight is more accu-

rate than the Whittle estimator, the quasi-maximum likelihood estimator (QMLE) and the

Gauss-Newton estimator when the innovation variance is infinite, and that the efficiency-loss

due to the use of weights in estimation is not substantial.
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1 INTRODUCTION

Let {yt} be a stationary ARMA time series generated by the equation

yt = φ1yt−1 + · · · + φpyt−p + εt + θ1εt−1 + · · · + θqεt−q, (1.1)

where the innovation process {εt} is a sequence of independent and identically distributed (iid)

random variables, and β = (φ1, · · · , φp, θ1, · · · , θq)
′ is an unknown parameter vector. When

Eε2t <∞, it is well known that various estimators such as MLE, Whittle’s estimators and least

squares estimators (LSE) for β are all asymptotically normal and unbiased (Brockwell and Davis

1991). When Eε2t = ∞, model (1.1) is called the infinite variance ARMA (IVARMA) model

which defines a heavy-tailed process {yt}. The IVARMA models are pertinent in modelling

heavy-tailed time series data often encountered in, for example, economics and finance (Koedijk

et al. 1990, and Jansen and de Vries 1991). For further references on statistical modelling for

heavy-tailed phenomena, we refer to Resnick (1997) and Adler et al. (1997).

Statistical inference for IVARMA models has not been well explored yet. Most available

results concern with infinite variance AR (IVAR) models (i.e. q = 0 in (1.1)). Gross and Steiger

(1979) and An and Chen (1982) obtained the strong consistency and the convergence rates for

LADE for IVAR models. Davis and Resnick (1985, 1986) derived the limiting distributions of

the LSE for IVAR models. A more comprehensive asymptotic theory of M-estimators for AR

models was derived by Davis et al. (1992). For IVARMA models, the asymptotic properties

for several estimators have been derived when the innovation distribution is in the domain of

attraction of a stable law distribution with index between 0 and 2. For example, both the

Whittle estimator proposed by Mikosch et al. (1995) and the Gauss-Newton estimator proposed

by Davis (1996) converge in distribution to some functions of a sequence of stable random

variables. Furthermore, Davis (1996) proved that the M-estimator converges in distribution

to the minimizer of a stochastic process. However, all the limiting distributions above are

complicated and depend intimately on the unknown tail indices of the underlying processes. This

makes it difficult to develop asymptotic approximations for the purpose of statistical inference.

This paper provides a remedy for this problem.

The difficulty of the asymptotic theory for LADE for IVARMA processes may at least par-
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tially attribute to the fact that the residual of a linear prediction for yt based on its lagged values

depends on β nonlinearly, while such a dependence is completely linear for pure AR processes.

Note that this linearity implies that the objective function for LAD estimation is convex, and

therefore the asymptotic normality of LADE may be readily derived from the convex lemma

(Hjort and Pollard 1993). One way to deal with a non-convex objective function is to adopt

a local linearization around the true value of the parameter, which enables one to establish

asymptotic properties of a local estimator defined as a local minimizer around the true value of

the parameter. This is the line taken by Davis and Dunsmiur (1997) which dealt with LADE for

ARMA models with Eε2t < ∞. On the other hand, Ling (2005) proposed a WLADE for IVAR

models. The key idea of the WLADE is to weigh down the observations which are excessively

large, either positively or negatively. Ling (2005) showed that the WLADE is asymptotically

normal. The idea of weighing down the large observations has also been used in estimation for

ARCH models with heavy tailed innovations by Horvath and Liese (2004).

In this paper, we deal with the WLADE for IVARMA models. By adopting the idea of

local linearization mentioned above, we show that a local WLADE is asymptotic normal and

unbiased under the condition that E|εt|δ < +∞ for some δ > 0 and the density function

of εt and its derivative are bounded. This facilitates the statistical inference for IVARMA

models (even when E|εt| = ∞) in a conventional fashion. For example, a Wald test for a linear

hypothesis can be constructed; see Section 2 below. For relatively small samples a simulation

study indicates that the proposed WLADE is more accurate than the Whittle estimator, the

quasi-maximum likelihood estimator (QMLE) and the Gauss-Newton estimator when V ar(εt) =

∞. Furthermore, the efficiency-loss of the WLADE with respect to the (unweighted) LADE is

not significant with appropriately selected weights. Since the WLADE converges at a slower

rate than Whittle estimator and Gauss-Newton estimator, we also studied the large sample

properties of the WLADE numerically.

Although we only deal with IVARMA models in this paper, the basic idea of combining a

weighted objective function with local linearization of the residuals may apply to other infinite

variance time series models, such as the infinite variance ARIMA and the integrated GARCH

(IGARCH) which are popular in financial econometrics. Another open problem is to develop
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appropriate methods for choosing weight functions; see Remark 3 below.

The rest of paper is organized as follows. The WLADE and the associated asymptotic

properties are presented in section 2. In addition to the asymptotic normality of the local

WLADE, we also show that a (global) estimator sharing the same asymptotic property could

be obtained by minimizing a convex objective function if available an initial estimator within

root-n distance from the true value; see Theorem 2 below. Section 3 gives all theoretical proofs

of the results in section 2. Section 4 reports some numerical results from a simulation study.

2 WLADE AND ITS ASYMPTOTIC PROPERTIES

2.1 Weighted least absolute deviations estimators

Denote Θ ⊂ Rp+q the parameter space which contains the true value β0 = (φ0
1, · · · , φ0

p, θ
0
1, · · · , θ0

q)
′

of the parameter β as an inner point. For β = (φ1, · · · , φp, θ1, · · · , θq)
′, put

εt(β) =











yt − φ1yt−1 − · · · − φpyt−p − θ1εt−1(β) − · · · − θqεt−q(β), if t > 0,

0, otherwise,

(2.1)

where yt ≡ 0 for all t ≤ 0. Note that εt 6= εt(β0) due to this truncation.

We define the objective function as

Wn(β) =
n

∑

t=u+1

w̃t|εt(β)|, (2.2)

and the weighted least absolute deviation estimator (WLADE) as

β̂ = arg min
β
Wn(β) (2.3)

where u = u(n) is a positive integer, and the weight function, depending on a constant α > 2,

is defined as

w̃t = (1 +
t−1
∑

k=1

k−α|yt−k|)−2. (2.4)
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2.2 Asymptotic normality of WLADE

To state the asymptotic normality of β̂, we introduce some notation first. Let

v = (v1, · · · , vp+q)
′ =

√
n(β − β0).

It is easy to see that β̂ = β0 + v̂/
√
n, where v̂ is a minimizer of

Tn(v) =

n
∑

t=u+1

w̃t(|εt(β0 + n−1/2v)| − |εt(β0)|).

Denote At(β) = (At,1(β), · · · , At,p+q(β))′, where At,i(β) = −∂εt(β)/∂βi. By (8.11.9) of Brock-

well and Davis (1991), it holds for t ≥ max(p, q) that











θ(B)At,i(β) = yt−i, i = 1, · · · , p

θ(B)At,i+p(β) = εt−i(β), i = 1, · · · , q,
(2.5)

where B is the backshift operator.

For t = 0,±1,±2, · · · , define

Ut −
p

∑

i=1

φ0
iUt−i = εt, Vt +

q
∑

j=1

θ0
jVt−j = εt. (2.6)

Put Qt = (Ut−1, · · · , Ut−p, Vt−1, · · · , Vt−q)
′, wt ≡ (1 +

∑∞
k=1 k

−α|yt−k|)−2, and

Σ = E(wtQtQ
′
t), Ω = E(w2

tQtQ
′
t), (2.7)

We denote by ||v|| the Euclidean norm for a vector v.

Some regularity conditions are now in order.

A1 For β ∈ Θ, the polynomials θ(z) = 1 + θ1z + · · · + θqz
q and φ(z) = 1 − φ1z −

· · · − φpz
p have no common zeroes, and all roots of φ(z) and θ(z) are outside

the unit circle.

A2 Innovation εt has zero median and a differentiable density function f(x) satis-

fying the conditions f(0) > 0, supx∈R |f(x)| < B1 < ∞ and supx∈R |f ′(x)| <
B2 <∞. Furthermore, E|εt|δ < +∞ for some δ > 0, and α > max{2, 2

δ}.

A3 As n→ ∞, u→ ∞ and u/n → 0.
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The following proposition indicates that model (1.1) has a unique strictly stationary and

ergodic solution under condition A1-A2.

Proposition 1. Suppose that condition A1 hold and E|εt|δ < +∞ for some δ > 0. Then model

(1.1) defines a unique strictly stationary and ergodic process {yt}.

Proof. Condition A1 implies that

φ−1(z)θ(z) =

∞
∑

j=0

ψjz
j ,

where |ψj | ≤ Crj for some constants C > 0 and 0 < r < 1. Let δ̃ = min{δ, 1}. Then

∞
∑

j=0

|ψj |δ̃E|εt−j |δ̃ <∞.

The same argument for Proposition 13.3.2 of Brockwell and Davis (1991) yields the result.

Remark 1. Condition A3 eliminates asymptotically the bias in the estimation due to the lack

of observations yt for t ≤ 0.

Remark 2. Condition A2 does not rule out the possibility that E|εt| = ∞. The purpose of

introducing weights w̃t is to weigh down excessively large observations which reflect the heavy-

tailed innovation distribution. Therefore the asymptotic covariance matrix of the normalized

WLADE, depending on Σ and Ω given in (2.7), is a well-defined (finite) matrix. Note that

w̃t ∈ (0, 1]. Conditions A1 and A2 imply that for δ̃ = min{δ, 1},

E
(

∞
∑

k=1

k−α|yt−k|
)δ̃ ≤

∞
∑

k=1

k−αδ̃E|yt−k|δ̃ < +∞.

Hence
∑∞

k=1 k
−α|yt−k| < ∞ with probability one, which ensures that wt is well defined. Note

that wt is stationary and ergodic under Condition A1, and it is asymptotically equivalent to w̃t

for t > u (see A3).

We are now ready to state our main results.

Theorem 1. Let conditions A1 – A3 hold. For any given positive random variable M with

P (0 < M < ∞) = 1, there exists a local minimizer β̂ of Wn(β) which lies in the random region

{β : ‖β − β0 − ξ/
√
n‖ ≤M/

√
n} for which

√
n(β̂ − β0) −→L N

(

0,
1

4f2(0)
Σ−1ΩΣ−1

)

,

6



where ξ is a normal random vector with mean 0 and covariance matrix 1
4f2(0)Σ

−1ΩΣ−1.

Notice that the lack of convexity for the objective function Wn(β) complicates the search for

its minimizer. As in Davis and Dunsmuir (1997), Wn(β) may be linearized in a neighborhood

of a good initial estimate β̂0 as follows

W̃n(β) =

n
∑

t=u+1

w̃t|εt(β̂0) −A′
t(β̂

0)(β − β̂0)|.

The resulting estimator β̃ = arg minβ W̃n(β) shares the same asymptotic property as the local

WLADE. See the theorem below.

Theorem 2. Let conditions A1 – A3 hold. Then

√
n(β̃ − β0) −→L N

(

0,
1

4f2(0)
Σ−1ΩΣ−1

)

,

provided that β̂0 = β0 +Op(n
−1/2).

Remark 3. Although we only deal with the weight function defined in (2.4) explicitly, the

theorem above holds for general weight function gt ≡ g(yt−1, yt−2, · · · ) provided

E{(gt + g2
t )(ξ

2 + ξ3)} <∞, E{(gt + g2
t )(ξ

2
t + ξ3t + ξ4t )} <∞

where ξ =
∑∞

i=0 r
i|y−i|, ξt = C0

∑∞
i=t r

i|yt−i|, 0 < r < 1 and C0 > 0 are constants. For example,

we may use the weights of more general form

gt = (1 +
t−1
∑

k=1

k−α(log k)d|yt−k|)−γ , α > 2, γ ≥ 2, d ≥ 0. (2.8)

The numerical examples in section 3 indicates that the accuracy of the WLADE is not sensitive

with respect to the value of α. However the choice of γ = 2 typically leads a better estimator

than those with γ > 2, at least for model (4.1). Furthermore, it seems that d = 2, 3, 4 behave

almost equally well. However it remains an open question how to choose a weight function in

general such that the resulting estimator is of certain optimality.
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2.3 A Wald test for linear hypotheses

The asymptotic normality of the estimator β̂ stated in Theorem 1 above facilitates the inference

for model (1.1). For example, we may consider a general form of linear null hypothesis

H0 : Γβ0 = κ,

where Γ is a s × (p + q) constant matrix with rank s, and κ is s × 1 constant vector. A Wald

test statistic may be defined as

Zn = (Γβ̂ − κ)′
{

Γ
1

4nf̃2(0)
Σ̂−1Ω̂Σ̂−1Γ′

}−1
(Γβ̂ − κ)

and we reject H0 for large values of Zn. In the above expression,

Σ̂ =
1

n− u

n
∑

t=u+1

w̃tQ̂tQ̂
′
t, Ω̂ =

1

n− u

n
∑

t=u+1

(w̃2
t Q̂tQ̂

′
t), (2.9)

Q̂t is defined in the same manner as Qt but with β0 replaced by β̂, εt replaced by εt(β̂) and

yt = 0 for all t ≤ 0; see (2.6) and (2.7), and f̃(0) is an estimate for f(0) defined as

f̃(0) =
1

bn

n
∑

t=u+1

w̃tK(
εt(β̂)

bn
)
/

n
∑

t=u+1

w̃t, (2.10)

where K(·) is a kernel function on R, bn > 0 is a bandwidth. The theorem below shows that

the asymptotic null-distribution of Zn is χ2
s. It in fact still holds if β̂ in the definition of Zn is

replaced by β̃.

Theorem 3. Suppose conditions A1 – A3 hold. Let kernel function K be bounded, Lipschitz

continuous and of finite first moment. Let bn → 0 and nb4n → ∞ as n → ∞. Then Zn →L χ
2
s

under H0.

3 PROOFS

We use the same notation as in section 2. For any fixed v ∈ Rp+q, put

Sn(v) =

n
∑

t=u+1

wt(|εt(β0 + n−1/2v)| − |εt(β0)|),

S+
n (v) =

n
∑

t=u+1

wt(|εt − n−1/2Q′
tv| − |εt|),

S∗
n(v) =

n
∑

t=u+1

wt(|εt(β0) − n−1/2A′
t(β0)v| − |εt(β0)|).
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We linearize εt(β) around β0, i.e. εt(β) is approximated by

εt(β0) −A′
t(β0)(β − β0),

where At(β) is defined in (2.5).

We denote by “→L” the convergence in distribution, “
P−→” the convergence in probability.

Let C(Rs) be the space of the real-valued continuous functions on Rs (Rudin, 1991). For

probability measures Pn and P on C(Rs), we say that Pn converges weakly to P in C(Rs) if
∫

fdPn →
∫

fdP for any bounded and continuous function f defined on C(Rs). For random

functions Sn, S defined on C(Rs), Sn →L S if the distribution of Sn converges weakly to that of

S in C(Rs) (Billingsley,1999). C denotes a positive constant which may be different at different

places.

3.1 Proof of Theorem 1

Before we prove Theorem 1, we first introduce a proposition which is of independent interest.

Its proof is divided into several lemmas. We always assume that conditions A1 – A3 hold.

Proposition 2. As n → ∞, it holds that Tn(v) −→L T (v) on C(Rp+q), where T (v) =

f(0)v′Σv + v′N , and N denotes a N(0,Ω) random vector.

Lemma 1. It holds that |εt − εt(β0)| ≤ ξt, and |At,i(β0) −Qt,i| ≤ ξt for i = 1, · · · , p + q, where

ξt = C0
∑∞

j=t r
j|yt−j |, 0 < r < 1, C0 is a positive constant, and Qt,i is the i-th component of Qt.

Proof. See page 265-268 in Brockwell and Davis (1991).

Lemma 2. S+
n (v) →L T (v) on C(Rp+q).

Proof. We first prove the convergence for any fixed v. Using the identity

|z − y| − |z| = −ysgn(z) + 2(y − z){I(0 < z < y) − I(y < z < 0)},

which holds for z 6= 0, we have

S+
n (v) = −n−1/2

n
∑

t=u+1

wtQ
′
tvsgn(εt)

+2

n
∑

t=u+1

wt(n
−1/2Q′

tv − εt)[I(0 < εt < n−1/2Q′
tv) − I(n−1/2Q′

tv < εt < 0)]

=: An +Bn.
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Notice that, by Lemma 1, we have |Qt,i| ≤ C
∑∞

j=1 r
j|yt−j | and

|w1/2
t Qt,i| ≤

C
∑∞

j=1 r
j|yt−j |

1 +
∑∞

k=1 k
−α|yt−k|

≤ C

∞
∑

k=1

kαrk. (3.1)

Then, Ew2
t (Q

′
tv)

2 < +∞. But, from conditions A1 and A2, {wtQ
′
tvsgn(εt)} is a stationary

martingale difference sequence. Therefore, applying a martingale central limit theorem (Hall

and Heyde (1980)), we obtain An →L v
′N .

For Bn, let

Wnt = wt(n
−1/2Q′

tv − εt)I(0 < εt < n−1/2Q′
tv)

and Ft−1 = σ(εj , j ≤ t− 1). Then

nEW 2
nt = nE(E(W 2

nt|Ft−1))

= nE(w2
t [

∫ n−1/2Q′

tv

0
(n−1/2Q′

tv − z)2(f(z) − f(0))dz

+

∫ n−1/2Q′

tv

0
(n−1/2Q′

tv − z)2f(0)dz])

≤ nE
(

w2
tB2n

−2(Q′
tv)

4 + w2
tB1n

−3/2(Q′
tv)

3
)

.

Similarly to (3.1), we can obtain

Ew2
t (Q

′
tv)

4 < +∞, Ew2
t (Q

′
tv)

3 < +∞.

Therefore, we have proved that

lim sup
n→∞

nEW 2
nt = 0. (3.2)

On the other hand, on the set {Q′
tv > 0}, we may show that

n
∑

t=u+1

E(Wnt|Ft−1) →
f(0)

2
E[wt(Q

′
tv)

2I(Q′
tv > 0)]

and

V ar
(

n
∑

t=u+1

(Wnt − E(Wnt|Ft−1))
)

→ 0,

see Davis and Dunsmuir (1997). Therefore,

n
∑

t=u+1

Wnt →
f(0)

2
E[wt(Q

′
tv)

2I(Q′
tv > 0)]. (3.3)
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Using the same argument for the second indicator in the summands of Bn, we obtain that

Bn
P→ f(0)v′Σv. (3.4)

So that the finite dimensional distributions of S+
n converge to those of T . But since S+

n has

convex sample paths, this implies that the convergence is in fact on C(Rp+q) (see the proof of

Proposition 1 in Davis and Dunsmuir (1997)).

Lemma 3. S∗
n(v) − S+

n (v)
P−→ 0 uniformly on compact sets.

Proof. Notice that

S∗
n(v) − S+

n (v)

=
n

∑

t=u+1

wt[(|εt(β0) − n−1/2A′
t(β0)v| − |εt(β0)|) − (|εt − n−1/2Q′

tv| − |εt|)]

= −n−1/2
n

∑

t=u+1

wtA
′
t(β0)vsgn(εt(β0)) + n−1/2

n
∑

t=u+1

wtQ
′
tvsgn(εt)

+2
n

∑

t=u+1

wt(n
−1/2A′

t(β0)v − εt(β0))[I(0 < εt(β0) < n−1/2A′
t(β0)v)

−I(n−1/2A′
t(β0)v < εt(β0) < 0)] − 2

n
∑

t=u+1

ωt(n
−1/2Q′

tv − εt)

[I(0 < εt < n−1/2Q′
tv) − I(n−1/2Q′

tv < εt < 0)].

First, we consider

Λ1 = n−1/2
n

∑

t=u+1

wt[Q
′
tvsgn(εt) −A′

t(β0)vsgn(εt(β0)]

= n−1/2
n

∑

t=u+1

wtQ
′
tv

(

sgn(εt) − sgn(εt(β0))
)

+n−1/2
n

∑

t=u+1

wt

(

Q′
tv −A′

t(β0)v
)

sgn
(

εt(β0

)

=: K1 +K2.

By Lemma 1 and the proof of (3.1), we know

|wt

(

Q′
t −A′

t(β0)
)

v| ≤ C‖v‖ξt.
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Then

K2 ≤ n−1/2C‖v‖
n

∑

t=u+1

∞
∑

j=t

rj |yt−j| = n−1/2C‖v‖
n

∑

t=u+1

rt
∞
∑

h=0

rh|y−h| P→ 0.

uniformly on compact sets. For K1, we have

E|K1| ≤ n−1/2
n

∑

t=u+1

E(E(wt|Q′
tv||sgn(εt) − sgn(εt(β0)|

∣

∣Ft−1))

= 2n−1/2
n

∑

t=u+1

E(wt|Q′
tv|P ({εt > 0, εt(β0) < 0} ∪ {εt < 0, εt(β0) > 0}

∣

∣Ft−1))

≤ 2n−1/2
n

∑

t=u+1

E(wt|Q′
tv|P ({0 < εt < ξt} ∪ {−ξt < εt < 0}

∣

∣Ft−1))

= 2n−1/2
n

∑

t=u+1

[E(wt|Q′
tv|

∫ ξt

−ξt

f(x)dx)] ≤ 4B1n
−1/2

n
∑

t=u+1

E(w
1/2
t |Q′

tv| · w
1/2
t ξt)

≤ 4CB1‖v‖n−1/2
n

∑

t=u+1

∞
∑

h=0

(t+ h)αrt+h

≤ 4CB1‖v‖n−1/2[

n
∑

t=u+1

tαrt
∞
∑

h=0

rh +

n
∑

t=u+1

rt
∞
∑

h=0

hαrh] → 0

uniformly on compact sets, because we have the facts

w
1/2
t |Q′

tv| ≤ C‖v‖, w
1/2
t ξt ≤

∞
∑

j=t

rjjα and (t+ h)α ≤ 2α(tα + hα).

Therefore, Λ1
P→ 0 uniformly on compact sets as n→ ∞.

Now we consider

Λ2 =

n
∑

t=u+1

wt(n
−1/2A′

t(β0)v − εt(β0))I(0 < εt(β0) < n−1/2A′
t(β0)v)

−
n

∑

t=u+1

wt(n
−1/2Q′

tv − εt)I(0 < εt < n−1/2Q′
tv)

=

n
∑

t=u+1

wt(n
−1/2A′

t(β0)v − εt(β0) − n−1/2Q′
tv + εt)I(0 < εt(β0) < n−1/2A′

t(β0)v)

+
n

∑

t=u+1

wt(n
−1/2Q′

tv − εt)[I(0 < εt(β0) < n−1/2Q′
tv) − I(0 < εt < n−1/2Q′

tv)]

+

n
∑

t=u+1

wt(n
−1/2Q′

tv − εt)[I(0 < εt(β0) < n−1/2A′
t(β0)v) − I(0 < εt(β0) < n−1/2Q′

tv)]

= D1 +D2 +D3
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By the similar way to the proof for K2, we can obtain that D1
P−→ 0 uniformly on compact sets.

On the other hand, denote ηt = εt(β0) − εt. It can be verified that

|I(0 < εt(β0) < n−1/2Q′
tv) − I(0 < εt < n−1/2Q′

tv)|

≤
(

I(−ηt < εt < 0)) + I(n−1/2Q′
tv − ηt < εt < n−1/2Q′

tv)
)

I(ηt > 0)

+
(

I(0 < εt < −ηt)) + I(n−1/2Q′
tv < εt < n−1/2Q′

tv − ηt)
)

I(ηt < 0).

Then from condition A3 and by the similar way to the proof of Lemma 2, we have

E|D2| ≤
n

∑

t=u+1

E{wtI(Q
′
tv > 0)[I(ηt > 0)

(

∫ 0

−ηt

+

∫ n−1/2Q′

tv

n−1/2Q′

tv−ηt

)

|n−1/2Q′
tv − x|f(x)dx

+I(ηt < 0)
(

∫ −ηt

0
+

∫ n−1/2Q′

tv−ηt

n−1/2Q′

tv

)

|n−1/2Q′
tv − x|f(x)dx]}

≤ C

n
∑

t=u+1

E{wt(|n−1/2Q′
tv|ξt + ξ2t )}

= Cn−1/2
n

∑

t=u+1

E{w1/2
t |Q′

tv| · w
1/2
t ξt} + C

n
∑

t=u+1

E{w1/2
t ξt}2

= D21 +D22

By the same method as for K1, we can obtain that D21 → 0. On the other hand,

D22 ≤ C

n
∑

t=u+1

(

∞
∑

h=0

rh+t(h+ t)α
)2 ≤ C

n
∑

t=u+1

r2t
(

∞
∑

h=0

rhhα +

∞
∑

h=0

rhtα
)2

≤ C
n

∑

t=u+1

r2t
(

∞
∑

h=0

rhhα
)2

+
n

∑

t=u+1

r2t
(

∞
∑

h=0

rhtα
)2 → 0.

Therefore, we have

E|D2| −→ 0. (3.5)

And we can obtain E|D3| −→ 0 similarly to (3.5). Hence Λ2
P→ 0 uniformly on compact sets.

By the same way for Λ2, we have

Λ3 =
n

∑

t=u+1

wt(n
−1/2A′

t(β0)v − εt(β0))I(n
−1/2A′

t(β0)v < εt(β0) < 0)

−
n

∑

t=u+1

wt(n
−1/2Q′

tv − εt)I(n
−1/2Q′

tv < εt < 0)
P−→ 0

uniformly on compact sets. This completes the proof of this lemma.
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Lemma 4. Sn(v) − Tn(v)
P−→ 0 uniformly on compact sets.

Proof. Notice that, we have the fact that under conditions A1 and A2, for any given positive

number M , there exist positive constants C > 0 and 0 < r < 1 such that for sufficiently large n

sup
‖v‖≤M

|εt(β0 + n−1/2v)| ≤ C

∞
∑

j=0

rj|yt−j |,

Now we have

sup
‖v‖≤M

|Sn(v) − Tn(v)| ≤ sup
‖v‖≤M

n
∑

t=u+1

|wt − w̃t|[|εt(β0 + n−1/2v)| + |εt(β0)|].

≤ C

n
∑

t=u+1

∑∞
k=t k

−α|yt−k|
∑∞

j=0 r
j|yt−j |

1 +
∑∞

k=1 k
−α|yt−k|

≤ C

n
∑

t=u+1

∞
∑

k=t

k−α|yt−k|(
∞

∑

j=1

rjjα + |yt|)

≤ C
n

∑

t=u+1

|yt|
∞
∑

h=0

(h+ t)−α|y−h| + C
n

∑

t=u+1

∞
∑

h=0

(h+ t)−α|y−h|

≤ C
(

n
∑

t=u+1

t−α/2(|yt| + 1)
)

∞
∑

h=0

h−α/2|y−h| P−→ 0

as n→ ∞, by conditions A2 and A3 and the fact (h+ t)−α ≤ 2−α(ht)−α/2. This completes the

proof of Lemma 4.

Proof of Proposition 2. For v ∈ Rp+q, define

S∗∗
n (v) =

n
∑

t=u+1

wt(|εt(β0) − n−1/2A′
t(β0)v − n−1v′Ht(β0)v| − |εt(β0)|)

where

Ht(β) = −1

2

∂2εt(β)

∂β∂β′
= (ht(i,j))(p+q)×(p+q).

From the definition of εt(β), we have

θ(B)
∂2εt(β)

∂φi∂φj
= 0, i, j = 1, · · · , p,

θ(B)
∂2εt(β)

∂φi∂θj
= At−j,i(β), i = 1, · · · , p, j = 1, · · · , q,

θ(B)
∂2εt(β)

∂θi∂θj
= At−j,i(β) +At−i,j(β), i, j = 1, · · · , q.
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Similarly, replacing At−i,j (or At−j,i) by Qt−i,j (or Qt−j,i) in the above three equalities, we can

define Xt = (Xt(i,j)). Then,
(

ht(i,j)(β0)
)

can be well approximated by (Xt(i,j)) such that

|Xt(i,j) − ht(i,j)(β0)| ≤ ξt, i, j = 1, · · · , p+ q, (3.6)

which can be proved by the same way as that for Lemma 1.

Notice that

S∗∗
n (v) − S∗

n(v)

=

n
∑

t=u+1

wt(|εt(β0) − n−1/2A′
t(β0)v − n−1v′Ht(β0)v| − |εt(β0) − n−1/2A′

t(β0)v|)

= − 1

n

n
∑

t=u+1

wtv
′Ht(β0)vsgn

(

εt(β0) − n−1/2A′
t(β0)v

)

+2

n
∑

t=u+1

wt

(

n−1v′Ht(β0)v − εt(β0) + n−1/2A′
t(β0)v

)

[I
(

0 < εt(β0) − n−1/2A′
t(β0)v < n−1v′Ht(β0)v

)

−I
(

n−1v′Ht(β0)v < εt(β0) − n−1/2A′
t(β0)v < 0

)

]

= T1 + T2.

Notice that − 1
n

∑n
t=u+1 wtv

′Xtvsgn(εt) → 0, we obtain

T1 = − 1

n

n
∑

t=u+1

wtv
′Xtv[sgn

(

εt(β0) − n−1/2A′
t(β0)v

)

− sgn(εt)] + op(1)

by (3.6). Using the same argument of E|K1| → 0 in Lemma 3, we have T1
P→ 0. Similarly, we

have

T21 =
n

∑

t=u+1

wt(n
−1v′Ht(β0)v − εt(β0) + n−1/2A′

t(β0)v)

I(0 < εt(β0) − n−1/2A′
t(β0)v < n−1v′Ht(β0)v)

=

n
∑

t=u+1

wt

(

n−1v′Xtv − εt + n−1/2Q′
tv

)

I
(

0 < εt(β0) − n−1/2A′
t(β0)v < n−1v′Ht(β0)v

)

+op(1).

Let

T
(1)
21 =

n
∑

t=u+1

wt(n
−1v′Xtv − εt + n−1/2Q′

tv)I(0 < εt − n−1/2Q′
tv < n−1v′Xtv)
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and

T
(2)
21 =

n
∑

t=u+1

wt(n
−1v′Xtv − εt + n−1/2Q′

tv)[I(0 < εt(β0) − n−1/2A′
t(β0)v < n−1v′Ht(β0)v)

−I(0 < εt − n−1/2Q′
tv < n−1v′Xtv)].

Using the same way as the proof of (3.3) and (3.5) for T
(1)
21 and T

(2)
21 respectively, we can

obtain that T21
P−→ 0. The same result holds for the rest term of T2. Thus, it follows that

S∗∗
n (v) − S∗

n(v)
P−→ 0 uniformly on compact sets.

But,

|S∗∗
n (v) − Sn(v)|

= |
n

∑

t=u+1

wt

(

|εt(β0) − n−1/2A′
t(β0)v − n−1v′Ht(β0)v| − |εt(β0 + n−1/2v)|

)

|

≤ 1

n

n
∑

t=1

wt|v′(Ht(β
∗
n) −Ht(β0))v|

where β∗n is between β0 and β0 + n−1/2v. Then, S∗∗
n (v) − Sn(v)

P→ 0 uniformly on compact

sets. Therefore, combining Lemma 3 and Lemma 4, we have Tn(v) − S+
n (v)

P→ 0 uniformly on

compact sets.

By Lemma 2, we obtain that

Tn(v) →L T (v) on C(Rp+q)

as n→ ∞. This completes the proof.

Proof of Theorem 1. Note that the limit process in Proposition 2 has convex sample paths

and a unique minimizer

ξ = −(1/[2f(0)])Σ−1N.

Denote Pn and P be the probability measures on C(Rp+q) induced by Tn and T respectively. By

Skorokhod’s representation theorem ( cf. Pollard (1984), page 71-73), there exists a probability

space (Ω∗,F∗, P ∗) with processes T ∗ and T ∗
n having the distributions P and Pn respectively

such that T ∗
n

a.s.→ T ∗. Hence, there exists a subset Ω′ of Ω∗ with P ∗(Ω′) = 1 such that for any
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ω ∈ Ω′,

sup
v∈K

|T ∗
n(v, ω) − T ∗(v, ω)| → 0. (3.7)

holds for any compact set K. Denote the minimizer of T ∗ by ξ∗. Then ξ∗ has the same

distribution as ξ. For any given positive random variable M , let

ξ∗n(ω) = arg min
‖v−ξ∗(ω)‖≤M(ω)

T ∗
n(v, ω).

Now we show that ξ∗n(ω) → ξ∗(ω). Suppose ξ∗n(ω) → ξ∗(ω) doesn’t hold, then there is a

subsequence n′ such that ξ∗n′(ω) → ξ′(ω) 6= ξ∗(ω) and we know ‖ξ′(ω) − ξ∗(ω)‖ ≤ M(ω). From

the definition of ξ∗n(ω), we have

T ∗
n(ξ∗(ω)) − T ∗

n(ξ∗n(ω)) ≥ 0.

But, on the other hand,

T ∗
n′(ξ∗(ω)) − T ∗

n′(ξ∗n′(ω))

= T ∗
n′(ξ∗(ω)) − T ∗(ξ∗(ω)) + T ∗(ξ∗(ω)) − T ∗(ξ∗n′(ω)) + T ∗(ξ∗n′(ω)) − T ∗

n′(ξ∗n′(ω))

= G1 +G2 +G3.

From (3.7), we can obtain that G1 → 0 and G3 → 0. Noticing that T ∗(v, ω) is continuous, we

have

G2 → T ∗(ξ∗(ω)) − T ∗(ξ′(ω)) < 0.

This is a contradiction. Therefore, ξ∗n
a.s.→ ξ∗.

Define a sequence of local minimizers {ξn} of Tn by

ξn(ω) = arg min
‖v−ξ(ω)‖≤M(ω)

Tn(v, ω).

Then, ξn converges in distribution to ξ. The proof is completed.

3.2 Proof of Theorem 2

We also use the substitution v =
√
n(β − β0). Then, minimizing W̃n(β) is equivalent to mini-

mizing

T̃n(v) =

n
∑

t=u+1

w̃t(|εt(β̂0) −A′
t(β̂

0)(β0 − β̂0 + n−1/2v)| − |εt|).
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Since T̃n(v) has convex sample paths, we only need to prove that T̃n(v) →L T (v) on C(Rp+q)

by Lemma 2.2 in Davis et. al. (1992).

Denote

H̃t(β) =
1

2

p+q
∑

i,j=1

∂2εt(β)

∂βi∂βj
.

By Taylor expansion near β̂0, for any fixed v ∈ Rp+q, we have

εt(β0 + n−1/2v) = εt(β̂
0) −A′

t(β̂
0)(β0 − β̂0 + n−1/2v) + H̃t(β1t)Op(n

−1),

where β1t lies between β̂0 and β0 + n−1/2v. We now have

εt(β̂
0) −A′

t(β̂
0)(β0 − β̂0 + n−1/2v)

= εt(β0 + n−1/2v) − H̃t(β1t)Op(n
−1)

= εt(β0) − n−1/2A′
t(β0)v + H̃t(β2t)Op(n

−1) − H̃t(β1t)Op(n
−1),

where β2t lies between β0 and β0 + n−1/2v. Hence, by a similar way to the proof of Lemma 2

but replacing n−1/2Q′
tv by n−1/2Q′

tv − H̃t(β0)Op(n
−1), we have

T̃n(v) =

n
∑

t=u+1

w̃t[|εt(β0) − n−1/2A′
t(β0)v + H̃t(β2t)Op(n

−1) − H̃t(β1t)Op(n
−1)| − |εt|]

=

n
∑

t=u+1

w̃t(|εt − n−1/2Q′
tv + H̃t(β0)Op(n

−1)| − |εt|) + op(1) −→L T (v).

3.3 Proof of Theorem 3

Based on Theorem 1, Theorem 3 follows immediately from Lemmas 5 & 6 below. We assume

that the conditions of Theorem 3 holds.

Lemma 5. Σ̂
P→ Σ and Ω̂

P→ Ω.

Proof. Denote

θ̂(z) = 1 + θ̂1z + · · · + θ̂qz
q, φ̂(z) = 1 − φ̂1z − · · · − φ̂pz

p.

Then

Q̂t = (Ût−1, · · · , Ût−p, V̂t−1, · · · , V̂t−q)
′
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where Ût and V̂t are determined by

φ̂(B)Ût = εt(β̂), θ̂(B)V̂t = εt(β̂).

Note that, by the definition of εt(β), we have φ̂(B)yt = θ̂(B)εt(β̂) where yt = 0 for t ≤ 0. Hence,

Ût = θ̂−1(B)yt, V̂t = θ̂−2(B)φ̂(B)yt, (yt = 0 for t ≤ 0).

Let

II1 =
1

n− u

n
∑

t=u+1

w̃tQ̂tQ̂
′
t −

1

n− u

n
∑

t=u+1

wtQtQ
′
t, II2 =

1

n− u

n
∑

t=u+1

wtQtQ
′
t.

Then, Σ̂ = II1 + II2. Obviously, II2 → Σ by the ergodic theorem. For II1, we first define

a vector-valued function Qt(β) = (Ut−1(β), · · · , Ut−p(β), Vt−1(β), · · · , Vt−q(β))′ and its compo-

nents are determined as follows

φ(B)Ut(β) = εt, θ(B)Vt(β) = εt.

We denote Q̃t = Qt(β̂) and divide II1 into three terms as follows

II1 =
1

n− u

n
∑

t=u+1

(w̃t − wt)Q̂tQ̂
′
t +

1

n− u

n
∑

t=u+1

wt(Q̂tQ̂
′
t − Q̃tQ̃

′
t)

+
1

n− u

n
∑

t=u+1

wt(Q̃tQ̃
′
t −QtQ

′
t)

= J1 + J2 + J3

It is easy to obtain that J1
P→ 0 by Lemma 1 and the definition of Q̂t. Notice that the (1, 1)th

element of J2

J
(1,1)
2 =

1

n− u

n
∑

t=u+1

wt(Ût−1 − Ut−1(β̂))(Ût−1 + Ut−1(β̂))

and

w
1/2
t |Ût−1 − Ut−1(β̂)| ≤ w

1/2
t ξt ≤ C, w

1/2
t |Ût−1 + Ut−1(β̂)| ≤ C

for some positive constant C and ξt defined in Lemma 1. It follows that J
(1,1)
2

P→ 0, and similarly

we can prove that the rest elements of J2 converges to zero in probability. Hence J2
P→ 0. For

J3, noticing that Qt = Qt(β0), we have

Q̃t −Qt = Qt(β̂) −Qt(β0) =
∂Qt(β

∗)

∂β′
(β̂ − β0).
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where β∗ lies between β̂ and β0. Noticing that w
1/2
t ‖∂Qt(β∗)

∂β′ ‖ ≤ C, w
1/2
t ‖Qt‖ ≤ C and

w
1/2
t ‖Q̃t‖ ≤ C, we obtain that J3

P→ 0. Now it has been proved that Σ̂
P→ Σ.

By the same way we can prove Ω̂
P→ Ω.

Lemma 6. It holds that f̃(0)
P→ f(0).

Proof. Define

f̂(0) =
1

σ̂wbn(n − u)

n
∑

t=u+1

wtK(
εt(β̂)

bn
)

where σ̂w = (n− u)−1
∑n

t=u+1 wt, then

|f̂(0) − f̃(0)| ≤ | 1

σ̂w̃bn(n− u)

n
∑

t=u+1

(w̃t − wt)K(
εt(β̂)

bn
)|

+| σw̃ − σ̂w

σ̂w̃σ̂wbn(n− u)
|

n
∑

t=u+1

wtK(
εt(β̂)

bn
)

≤ C

σ̂w̃bn(n− u)

n
∑

t=u+1

∞
∑

k=t

k−α|yt−k| +Op(1)|
σw̃ − σ̂w

σ̂w̃σ̂wbn
|

≤ op(1) +Op(1)
1

(n − u)bn

n
∑

t=u+1

(w̃t − wt)
P−→ 0

where σ̂w̃ = (n− u)−1
∑n

t=u+1 w̃t. So we need to prove that

f̂(0)
P−→ f(0).

Notice that

|f̂(0) − f(0)| ≤ P1 + P2

where

P1 = | 1

σ̂wbn(n− u)

n
∑

t=u+1

wt(K(
εt(β̂)

bn
) −K(

εt
bn

))|

P2 = | 1

σ̂wbn(n− u)

n
∑

t=u+1

wtK(
εt
bn

) − f(0)|.
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But, Lipschitz continuity of K(x) insures that there exists a positive number L such that |K(x)−
K(y)| ≤ L|x− y| for any x, y, and then, from Theorem 1 and the assumptions on bn, we have

P1 ≤ L

σ̂wb2n(n− u)

n
∑

t=u+1

wt|εt(β̂) − εt|

≤ L

σ̂wb2n(n− u)

n
∑

t=u+1

wt(|εt(β̂) − εt(β0)| + |εt(β0) − εt|)

≤ L

σ̂wb2n(n− u)

n
∑

t=u+1

wt‖β̂ − β0‖‖At(β
∗)‖ +

C

σ̂wb2n(n− u)

n
∑

t=u+1

∞
∑

k=t

rk|yt−k|

≤ C

σ̂wb2n
√
n

√
n‖β̂ − β0‖ +

C

σ̂wb2n(n− u)

n
∑

t=u+1

rt
∞
∑

h=0

rh|y−h| P−→ 0

where β∗ lies between β̂ and β0. For P2, equivalently we need to prove that

I =
1

σ̂wbn(n− u)

n
∑

t=u+1

wtK(
εt
bn

)
P→ f(0). (3.8)

In fact, I = 1
σ̂w
I1 + f(0) where

I1 =
1

bn(n− u)

n
∑

t=1

wtK(
εt
bn

) − 1

n− u

n
∑

t=u+1

wtf(0).

Notice that

EI2
1 =

1

(n− u)2

n
∑

t=u+1

E[wt(
1

bn
K(

εt
bn

) − f(0))]2

+
2

(n− u)2

∑

u+1≤i<j≤n

E[wiwj(
1

bn
K(

εi
bn

) − f(0))(
1

bn
K(

εj
bn

) − f(0))]

= I11 + I12.

But

I11 ≤ 2

n− u
E[w2

t (K
2(
εt
bn

)
1

b2n
+ f2(0))]

=
2

bn(n− u)

∫ ∞

−∞
K2(x)f(bnx)dxE(w2

t ) +
2f2(0)

n− u
Ew2

t → 0

by the assumptions on K(x), and

|I12| =
2

(n− u)2
|

∑

u+1≤i<j≤n

E[wiwj(K(
εi
bn

)
1

bn
− f(0))]

∫ ∞

−∞
K(x)(f(bnx) − f(0))dx|

≤
∫ ∞

−∞
K(x)|f(bnx) − f(0)|dxE[(K(

εi
bn

)
1

bn
+ f(0))] ≤ Cbn −→ 0
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by A3 and the assumptions on K(x). Noticing that σ̂w → Ewt, we have (3.8). The proof of

Lemma 6 is completed.

4 NUMERICAL PROPERTIES

We conducted a simulation study to illustrate the finite sample properties of the proposed

WLADE in the five aspects, namely, (i) its accuracy, (ii) its sampling distribution, (iii) com-

parison with the unweighted LADE, the Whittle estimator (Mikosch et al. 1995), QMLE, and

the Gauss-Newton estimator (Davis 1996), (iv) the selection of α, γ, and d in (2.8), and (v) the

performance of the Wald test statistic Zn.

We generated data from a simple ARMA(1,1) model

yt = φ1yt−1 + εt + θ1εt−1, (4.1)

with t2, Cauchy or N(0, 1) innovation distribution. Unless specified otherwise, we always set

u = 20, α = 3 and d = 0.

Tables 1 and 2 list the means and the standard deviations (SD) of the WLADE for φ1 and

θ1 from the 1000 samples from model (4.1) with sample size n = 200 or 400, and the true value

(φ1, θ1) = (0.4, 0.7), (0.3, 0.5) or (−0.5,−0.5). The estimates are very accurate in general, and

the accuracy increases when the sample size increases from 200 to 400. We also included in the

tables for asymptotic standard deviations (AD) derived from Theorem 1 with (Σ,Ω) replaced

by their estimators in (2.9), and f(0) replaced by (2.10) with the kernel K(x) = e−x/(1 + e−x)2

and the rule-of-thumb bandwidth bn = 1.06×n−1/5 . The values of SD and AD are pretty close

with each other.

To investigate the sampling distributions of the WLADE, we drew 16000 samples of size

n = 400 from (4.1) with (φ1, θ1) = (0.3, 0.5) and t2 or Cauchy innovations. For each sample,

the WLADE for both φ1 and θ1 were obtained. We divided [−6, 6] into small intervals with

equal length 0.2. For each small interval, we computed the (normalized) relative frequency for

the occurrence of the event that the normalized WLADE falls into the interval. Those relative

frequencies are plotted against the center of intervals in Figures 1 and 2. We superimposed the

N(0, 1) density function in the figures, which is the limiting density of the normalized WLADE.
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Even with sample size n = 400, the estimated values of the density functions match their

asymptotic limits very well.

Figure 3 presents the boxplots of the average absolute error (AAE) (|φ̂1 − 0.3|+ |θ̂1 − 0.5|)/2
for the unweighted LADE, the WLADE, the Whittle estimator, the QMLE, and the Gauss-

Newton estimator from 1000 samples with sample size n = 400 drawn from (4.1). Here, we

set d = 2. For the samples with heavy-tailed innovations, i.e. t2 and Cauchy, the WLADE

performed better than the Whittle estimator, QMLE, and Gauss-Newton estimator. In fact, the

improvement from using the WLADE over the above three estimators is more pronounced when

the tails are heavier (i.e. with Cauchy distribution). The Gauss-Newton estimator performed

the best with Gaussian innovations. However it is noticeable that there was an efficiency loss

due to the introduction of weights in the estimation, although such a loss was not significant at

least in the setting used in our simulation.

Since the convergence rate of the WLADE is slower than the Gauss-Newton estimator

(Mikosch et. al 1995, and Davis 1996), we compared the two estimators with large sample size n

between 2000 to 8000. For each setting, 1000 samples were drew from model (4.1) with Cauchy

innovations. The parameters (φ1, θ1) were set at (−0.3, 0.2), (0.3,−0.5), (−0.3, 0.5), (0.1,−0.6),

(0.3, 0.5), (0.6, 0.7), (0.4, 0.6), (−0.4,−0.6), (−0.3,−0.4), and u =
√
n. It turned out that when

φ1θ1 > 0, the WLADE performed better than the Gauss-Newton estimator for all n ≤ 8000.

However, when φ1θ1 < 0, the WLADE was better than the Gauss-Newton estimator only for

n ≤ 3000. The boxplots of the AAE for parameters (φ1, θ1) = (−0.3, 0.2), (−0.3,−0.4), (0.6, 0.7)

are displayed in Figure 4.

We also compared the WLADE using a general form of weights (2.8) with different α, γ, and

d. To this end, we draw 1000 samples from model (4.1) with (φ1, θ1) = (0.3, 0.5) and n = 400.

Figure 5 presents the boxplots of the AAEs with t2, Cauchy and normal innovations. They

suggest that the WLADE is fairly robust with respect to the value of α. However, the WLADE

is more sensitive to γ. It is evident that we should choose γ as smaller as possible, i.e. γ = 2,

which corresponds to the default weight function used in this paper. On the other hand, the

performances with d = 1, 2 and 3 do not differ significantly.

Finally, we approximated the P -value of the Wald test proposed in section 2.3 for testing
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AR(1) against ARMA(1,1) models by the relative frequency P̂ for the occurrence of the event

that the AR(1) null hypothesis was rejected in a simulation with 1000 replications. The data

were generated from (4.1) with (φ1, θ1) = (0.3, 0) or (φ1, θ1) = (0.3, 0.5), and innovation to be

t(2), Cauchy or N(0, 1). We repeated the experiment with sample size equal to, respectively, 200,

400 and 600 for the nominal significance level between 0 and 0.1. Figure 6 plots the difference

between P̂ and the nominal significance level against the nominal level with data generated

from (4.1). With (φ1, θ1) = (0.3, 0), the three panels on the left in Figure 6 indicates that the

χ2-asymptotic approximation for the significance level is accurate, especially for n = 400 and

600. With (φ1, θ1) = (0.3, 0.5), the three panels on the right illustrate that the test is powerful

in detecting the departure from AR(1) hypothesis.
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TABLE 1

Means and Standard Deviations of WLADE for

model (4.1) with t(2) innovations

n=200 n=400

φ1 θ1 φ1 θ1 φ1 θ1
β 0.4092 0.6982 0.4078 0.6959

0.4 0.7 SD 0.1013 0.0831 0.0716 0.0537

AD 0.1156 0.0846 0.0779 0.0574

β 0.3019 0.5038 0.3009 0.4970

0.3 0.5 SD 0.1153 0.1101 0.0916 0.0842

AD 0.1165 0.1144 0.0926 0.0848

β -0.4928 -0.4952 -0.4992 -0.4959

-0.5 -0.5 SD 0.1075 0.1044 0.0705 0.0799

AD 0.1164 0.1201 0.0779 0.0807

TABLE 2

Means and Standard Deviations of WLADE for

model (4.1) with Cauchy innovations

n=200 n=400

φ1 θ1 φ1 θ1 φ1 θ1
β 0.4087 0.6918 0.4095 0.6924

0.4 0.7 SD 0.0787 0.0535 0.0550 0.0382

AD 0.0748 0.0530 0.0498 0.0379

β 0.3095 0.4917 0.3014 0.4936

0.3 0.5 SD 0.0850 0.0776 0.0405 0.0360

AD 0.0806 0.0749 0.0441 0.0371

β -0.4994 -0.4925 -0.5009 -0.4974

-0.5 -0.5 SD 0.0774 0.0849 0.0440 0.0498

AD 0.0754 0.0831 0.0438 0.0478
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Figure 1: Estimated values (×) for the density functions of the normalized φ̂1 (left panel) and θ̂1 (right

panel), together with their asymptotic limit — the N(0, 1) density (solid curves) for model (4.1) with t2

innovations.
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Figure 2: Estimated values (×) for the density functions of the normalized φ̂1 (left panel) and θ̂1 (right

panel), together with their asymptotic limit — the N(0, 1) density (solid curves) for model (4.1) with

Cauchy innovations.
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Figure 3: Boxplots of the AAE of LADE, WLADE, Whittle estimator, QMLE and Gauss-Newton

estimator for model (4.1).
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Figure 4: Boxplots of the AAE of WLADE and Gauss-Newton estimator for model (4.1) for large sample

case.
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Figure 5: Boxplots of AAE of WLADE with different α, γ and d for model (4.1) .
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Figure 6: Simulation results for the Wald test. Differences between approximated P -value and the

nominal significance level is plotted against the nominal level. The data were generated from (4.1) with

(φ1, θ1) = (0.3, 0) for the three panels on the left, and (φ1, θ1) = (0.3, 0.5) for the three panels on the

right.
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