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Abstract
When a conditional distribution has an infinite variance, commonly

employed kernel smoothing estimators such as local polynomial esti-
mator for the conditional mean have a nonnormal limit, which com-
plicates interval estimation since one has to employ different methods
for the cases of finite variance and infinite variance. By estimating
the middle part nonparametrically and the tail parts parametrically
based on extreme value theory, this paper proposes a new estimator
for the conditional mean, which results in a normal limit regardless
of whether the conditional distribution has a finite variance or an in-
finite variance. Hence a naive bootstrap method could be employed
to construct a unified interval regardless of tail heaviness. Similar re-
sult holds for estimating the difference between conditional mean and
conditional median, which is a useful quantity in exploring data.

Key words and phrases: Conditional mean, heavy tail, normal
limit

1 Introduction

Mean and median are two important location parameters in data exploratory
analysis and the difference between mean and median gives a good indication
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of data skewness. When the underlying distribution has a finite variance, the
sample mean has a normal limit. However, when the underlying distribution
has heavy tails with a finite mean, but an infinite variance, the sample mean
has a stable law limit. Therefore, in order to give an interval for a mean,
one has to know whether the underlying distribution has a finite variance or
an infinite variance, which can be done when some additional assumptions
on the underlying distribution are imposed such as heavy tails. Under this
setting, when the tail index is estimated to be less than two, a subsample
bootstrap method could be employed to construct an interval for the mean;
see Hall and Jing (1998).

Instead of using different methods to construct a confidence interval for
the mean of a heavy tailed distribution, Peng (2001) proposed to estimate
the middle part nonparametrically and tail parts parametrically based on
extreme value theory, which results in an estimator always with a normal
limit. Hence one could simply employ a bootstrap method or develop an
empirical likelihood method to construct an interval without separating the
cases of finite variance and infinite variance; see Peng (2004). This idea has
been applied to estimating expected shortfall in risk management by Necir
and Meraghni (2009). This paper aims to further extend this idea in Peng
(2001) to estimating a conditional mean and the difference between condi-
tional mean and conditional median, which are useful quantities in exploring
data.

Suppose that {(Xi, Yi)
T} is a sequence of independent and identically dis-

tributed random vectors and the conditional distribution function F (y|x) =
P (Yi ≤ y|Xi = x) satisfies{

limt→∞
1−F (ty|x)
1−F (t|x)

= y−α(x), y > 0

limt→∞
1−F (t|x)

1−F (t|x)+F (−t|x)
= p(x) ∈ [0, 1],

(1)

where α(x) > 1. Like mean and median, the conditional mean E(Y |X = x)
is of importance in many applications, which includes the random design
regression model as a special case:

Yi = m(Xi) + εi, (2)

where ε′is are independent and identically distributed random variables with
zero mean and satisfy{

limt→∞
P (εi>ty)
P (εi>t)

= y−β, y > 0

limt→∞
P (εi>t)
P (|εi|>t) = p ∈ [0, 1],

(3)
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for some β > 1.
Under model (2) and conditions (3), model (1) holds with α(x) ≡ β,

and it is well-known that a local smoothing estimator for m(x) has a normal
limit and a nonnormal limit for β > 2 and β < 2, respectively, which makes
interval estimation nontrivial at all. However, when εi has a median zero,
i.e., m(x) is a conditional median, Hall, Peng and Yao (2002) showed that
the least absolute deviations estimator has a normal limit for any β > 1,
and so a bootstrap method can be employed to construct an interval without
knowing whether β is larger than 2 or less than 2.

In this paper, we seek new estimators for the conditional mean, and the
difference between conditional mean and conditional median under condi-
tions (1), which should always have a normal limit for any α(x) > 1. There-
fore a bootstrap method can be employed to construct confidence intervals
straightforwardly.

We organize this paper as follows. Section 2 presents the new method
and asymptotic results. A simulation study is given in Section 3. All proofs
are put in Section 4.

2 Main Results

First we propose a new estimator for the conditional mean E(Yi|Xi = x),
which gives a normal limit regardless of whether the conditional distribution
has a finite variance or an infinite variance.

Suppose our observations {(Xi, Yi)
T}ni=1 are independent and identically

distributed random vectors with distribution function F (x, y) and the con-
ditional distribution F (y|x) of Yi given Xi = x satisfies (1). For a given
h = h(n) > 0, define N =

∑n
i=1 I(|Xi − x| ≤ h), let {(X̄j, Ȳj)}Nj=1 denote

those data pairs {(Xi, Yi)}ni=1 such that |Xi − x| ≤ h, and let ȲN,1 ≤ · · · ≤
ȲN,N denote the order statistics of Ȳ1, · · · , ȲN . Obviously, when h → 0 and

hn → ∞, we have N/(nh)
p→ f1(x), where f1 denotes the density of Xi.

Therefore we write N0 = [nh] and say N0 →∞ instead of N
p→∞.

Similar to Peng (2001), we write

E(Yi|Xi = x) =
∫∞
−∞ y dF (y|x) =

∫ 1

0
F−(y|x) dy

=
∫ k/N

0
F−(y|x) dy +

∫ 1−k/N
k/N

F−(y|x) dy +
∫ 1

1−k/N F
−(y|x) dy

:= m1(x) +m2(x) +m3(x),

(4)
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where F−(y|x) denotes the generalized inverse of the conditional distribu-
tion F (y|x), and k = k(N0) → ∞ and k/N0 → 0 as N0 → ∞. Based on
(4) we propose to estimate the first and third terms by a parametric ap-
proximation for F (y|x) via extreme value theory and to estimate the second
term nonparametrically. More specifically, when F−(y|x) ∼ c1y

−1/α1 and
F−(1−y|x) ∼ c2y

−1/α2 as y → 0, the tail indices α1 and α2 can be estimated
by the well-known Hill estimator (Hill (1975))

α̂1 = {1

k

k∑
i=1

log+(−ȲN,i)− log+(−ȲN,k)}−1

and

α̂2 = {1

k

k∑
i=1

log+(ȲN,N−i+1)− log+(ȲN,N−k+1)}−1

with log+ x = log(x∨1). In our simulation, we set α̂1 = 0 when all ȲN,i > −1
for 1 ≤ i ≤ k, and α̂2 = 0 when all ȲN,i < 1 for N − k + 1 ≤ i ≤ N . Note
that as N0 →∞

m1(x)
k
N
F−(k/N |x)

p→
∫ 1

0

y−1/α(x) dx =
α(x)

α(x)− 1

and
m3(x)

k
N
F−(1− k/N |x)

p→
∫ 1

0

y−1/α(x) dx =
α(x)

α(x)− 1
.

Therefore the three terms in (4) can be estimated separately by

m̂1(x) =
k

N
ȲN,k

α̂1

α̂1 − 1
, m̂2(x) =

1

N

N−k∑
i=k+1

ȲN,i, m̂3(x) =
k

N
ȲN,N−k+1

α̂2

α̂2 − 1
,

which leads to our new estimator for the conditional mean m(x) = E(Yi|Xi =
x) as m̂(x) = m̂1(x) + m̂2(x) + m̂3(x). Note that one could also use other tail
index estimators instead of the Hill’s estimator such that the one in Dierckx,
Goegebeur and Guillou (2014).

Like the study of extreme value statistics, in order to derive the asymp-
totic limits for m̂1(x) and m̂3(x), one needs to specify an approximate rate
in (1), which is generally called a second order condition in extreme value
theory; see De Haan and Ferreira (2006). Here we simply assume that there
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exist positive smoothing functions d(x), c1(x), c2(x), α(x) > 1, β(x) such that
for y large enough

|1− F (y|x)− c1(x)y−α(x)|+ |F (−y|x)− c2(x)y−α(x)| ≤ d(x)y−α(x)−β(x) (5)

uniformly in |x − x0| ≤ h. Note that β(x) is slightly smaller than the so-
called second order parameter in extreme value theory, which can be seen
from the inequality for a second order regular variation in De Haan and
Ferreira (2006). Furthermore we assume the following regularity conditions:

• A1) the marginal density f1 of Xi is positive and continuous at x0;

• A2) functions c1(x), c2(x) and α(x) have a continuous second order
derivative at x0, and functions d(x) and β(x) have a continuous first
order derivative at x0;

• A3) the conditional mean function m(x) =
∫ 0

−∞ F (y|x) dy +
∫∞

0
(1 −

F (y|x)) dy has a continuous second order derivative at x0.

To show that the new estimator always has a normal limit, we rely on the
following approximations.

Let H(y) denote the distribution function Ȳi with x = x0, i.e., the condi-
tional distribution of Yi given |Xi−x0| ≤ h. Put Ui = H(Ȳi) for i = 1, · · · , N ,
and so U1, · · · , UN are i.i.d. random variables with uniform distribution on
(0, 1). Let UN,1 ≤ · · · ≤ UN,N denote the order statistics of U1, · · · , UN . De-

fine GN(v) = 1
N

∑N
i=1 1(Ui ≤ v), αN(v) =

√
N{GN(v) − v}, QN(0) = UN,1,

QN(s) = UN,i if i−1
N
< s ≤ i

N
, and βN(s) =

√
N{QN(s)− s}. Then it follows

from Csörgő, Csörgő, Horváth and Mason (1986) that there exists a sequence
of Brownian bridges {BN(u)} such that for any ν ∈ [0, 1/4) and λ > 0{

supUN,1≤u≤NN,N
uν |αN (u)−BN (u)|
u1/2−ν(1−u)1/2−ν

= Op(1)

supλ/N≤s≤1−λ/N
Nν |βN (s)+BN (s)|
s1/2−ν(1−s)1/2−ν = Op(1).

(6)

Theorem 1. Suppose (5) and Conditions A1)–A3) hold. Put N0 = [nh],
α0 = α(x0), β0 = β(x0), and further assume that as n→∞{

k →∞, k/N0 = o(1),
√
kh2(logN0)2 = o(1),

k = o(N
2β0

α0+2β0
0 ),

√
N0

σ(k/N0)
h2 = o(1),

(7)
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where

σ2(s) =

∫ 1−s

s

∫ 1−s

s

(u ∧ v − uv) dH−(u)dH−(v).

Then as n→∞,
√
N

σ(k/N)
{m̂(x0)−m(x0)}

= − ∆2α0

(α0−1)2

∫ 1

0

√
N
k

(
BN ( k

N
s)

s
−BN( k

N
)) ds− ∆2

α0−1

√
N
k
Bn( k

N
)

− ∆1α0

(α0−1)2

∫ 1

0

√
N
k

(
BN (1− k

N
s)

s
−BN(1− k

N
)) ds− ∆1

α0−1

√
N
k
BN(1− k

N
)

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N)
+ op(1)

d→ N(0, 1 + { (2−α0)(2α2
0−2α0+1)

2(α0−1)4
+ 2−α0

α0−1
}I(α0 < 2)),

where m(x0) = E(Yi|Xi = x0),

∆1 = { 2− α0

2(c
2/α0

1 (x0) + c
2/α0

2 (x0))
}1/2c

1/α0

1 (x0)I(α0 < 2)

and

∆2 = { 2− α0

2(c
2/α0

1 (x0) + c
2/α0

2 (x0))
}1/2c

1/α0

2 (x0)I(α0 < 2).

Remark 1. If α(x0) > 2, then as N0 →∞

σ2(k/N)
p→ E(Y 2

i |Xi = x0)− (E(Yi|Xi = x0))2 <∞.

In this case, we require
√
nhh2 → 0, which gives the same rate of convergence

as the local smoothing estimator of a conditional mean without asymptotic
bias. It also follows from the proof of the above theorem that the above H(y)
can be replaced by F (y|x0).

Remark 2. It follows from the above theorem that a naive bootstrap method
can be employed to construct a confidence interval for the conditional mean
regardless of tail heaviness. We refer to Hall (1992) for an overview on
bootstrap method. A review paper on applying bootstrap methods to extreme
value statistics is Qi (2008).

Next we consider estimating the difference between conditional mean and
conditional median, i.e., θ(x) = E(Yi|Xi = x) − F−(1/2|x). Based on the
above estimator for m(x), the proposed estimator for θ is θ̂(x) = m̂(x) −
ȲN,[N/2], and its asymptotic limit is given in the theorem below.
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Theorem 2. Under conditions of Theorem 1 and that the conditional density
function g(y|x) = dF (y|x)

dy
is positive and continuous at y = F−(1

2
|x0) and

x = x0, we have, as n→∞,

√
N

σ(k/N)
{θ̂(x0)− θ(x0)}

= − ∆2α0

(α0−1)2

∫ 1

0
N
k

(
BN ( k

N
s)

s
−BN( k

N
)) ds− ∆2

α0−1

√
N
k
Bn( k

N
)

− ∆1α0

(α0−1)2

∫ 1

0

√
N
k

(
BN (1− k

N
s)

s
−BN(1− k

N
)) ds− ∆1

α0−1

√
N
k
BN(1− k

N
)

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N)
− BN (1/2)

σ(k/N)g(F−( 1
2
|x0)|x0)

+ op(1)
d→ N(0, σ2

θ),

where σ2
θ equals to the variance in Theorem 1 when α0 ≤ 2, and is

1 + 1

4g2(F−(1/2|x0)|x0)
∫ 1
0

∫ 1
0 (u∧v−uv) dF−(u|x0)dF−(v|x0)

+
∫ 1/2
0 u dF−(u|x0)+

∫ 1
1/2(1−u) dF−(u|x0)

g(F−(1/2|x0)|x0)
∫ 1
0

∫ 1
0 (u∧v−uv) dF−(u|x0)dF−(v|x0)

when α0 > 2.

3 Simulation

We conduct a small scale simulation to illustrate the proposed method. To
this end, we let X ′is in (2) be independent U(−1, 1) random variables, and
consider

m(x) = x+ 4 exp(−4x2).

Furthermore in (2) we let εi be independent scaled t-distribution with d
degrees of freedom for d = 1.5 and 3. Then α(x) = d in (1). We re-scale εi
such that its standard deviation is 0.5. We set sample size n = 1000 or 3000,
and choose k = 5, 10, 20, 30, 40 and 50. We use bandwidth h = 0.2 when
n = 1000, and h = 0.1 when n = 3000. This effectively sets the sample sizes
200 and 300, respectively, in the local estimation for m(x) for each given x.

We estimate m(·) on a regular grid of the 19 points between -0.9 and 0.9,
and calculate the root mean square error:

rMSE =
{ 1

19

9∑
j=−9

{m̂(0.1j)−m(0.1j)}2
}1/2

. (8)
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For each setting, we replicate the exercise 500 times. To compare the perfor-
mance with conventional nonparametric regression, we also calculate three
nearest neighbor estimates, namely estimate m(x) by the mean of Yi’s corre-
sponding to those Xi’s within, respectively, h-, h/2- and h/4-distance from
x. Table 1 reports the mean and the standard deviation of rMSE for different
settings over 500 replications. As we expected, the estimation error decreases
when sample size n increases from 1000 to 3000, and the error also decreases
when the tail index, reflected by the degrees of freedom (df), increases. With
t1.5-distributed errors, k = 30 gives a smallest standard deviation, and both
k = 20 and k = 30 perform well. But with t3-distributed errors, k = 5 leads
to the most accurate estimates, which is in line with the theorem that tail
parts do not play a role asymptotically in case of finite variance and so a
smaller k is preferred. For the model with t1.5-distributed errors, the nearest
neighbor estimator is no longer asymptotically normal. Indeed our newly
proposed estimator with either k = 20 or k = 30 performs better than the
nearest neighbor estimator. However for the model with t3-distributed er-
rors, the nearest neighbor estimator is asymptotically normal and is indeed
performs better than the new method.
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(n, h, df) New Estimator NN Estimator
k = 5 k = 10 k = 20 k = 30 k = 40 k = 50 h h/2 h/4

(1000, 0.2, 1.5) Mean 3.674 0.381 0.188 0.200 0.236 0.279 0.218 0.250 0.340
STD 47.66 1.836 0.291 0.053 0.071 0.090 0.447 0.621 0.701

(3000, 0.1, 1.5) Mean 1.546 4.333 0.162 0.138 0.155 0.173 0.201 0.280 0.354
STD 12.92 74.57 0.283 0.022 0.025 0.033 0.345 0.482 0.769

(1000, 0.2, 3) Mean 0.134 0.154 0.208 0.274 0.348 0.428 0.122 0.080 0.103
STD 0.021 0.023 0.033 0.045 0.059 0.072 0.021 .018 0.024

(3000, 0.1, 3) Mean 0.059 0.067 0.105 0.151 0.202 0.255 0.050 0.058 0.079
STD 0.040 0.011 0.016 0.022 0.028 0.036 0.010 0.011 0.015

Table 1: Mean and standard deviation (STD) of rMSE defined in (8) for the proposed new estimator and
the nearest neighbor (NN) estimator in simulation with 500 replications.
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4 Proofs

Proof of Theorem 1. Write

m̂1(x0)−
∫ k/N

0
H−(v) dv

= k
N
H−(UN,k)(

α̂1

α̂1−1
− α0

α0−1
)

+ α0

α0−1

(
k
N
H−(UN,k)− k

N
H−(k/N)

)
+
(
k
N
H−(k/N) α0

α0−1
−
∫ k/N

0
H−(v) dv

)
= k

N
H−(UN,k)

α̂1α0

(α̂1−1)(α0−1)
1
k

∑k
i=1

{
log

H−(UN,i)

H−(UN,k)
− log(UN,i/UN,k)

−1/α0

}
+ k
N
H−(UN,k)

α̂1α0

(α̂1−1)(α0−1)

{
1
k

∑k
i=1 log(UN,i/UN,k)

−1/α0 − 1/α0

}
+ k
N
H−(k/N) α0

α0−1

{
H−(UN,k)

H−(k/N)
− (N

k
UN,k)

−1/α0

}
+ k
N
H−(k/N) α0

α0−1

{
(N
k
UN,k)

−1/α0 − 1
}

+
{
k
N
H−(k/N) α0

α0−1
−
∫ k/N

0
H−(v) dv

}
:= I1 + I2 + I3 + I4 + I5,

m̂3(x0)−
∫ 1

1−k/N H
−(v) dv

= k
N
H−(UN,N−k+1) α̂2α0

(α̂2−1)(α0−1)
1
k

∑k
i=1

{
log

H−(UN,N−i+1)

H−(UN,N−k+1)
− log(

1−UN,N−i+1

1−UN,N−k+1
)−1/α0

}
+ k
N
H−(UN,N−k+1) α̂2α0

(α̂2−1)(α0−1)

{
1
k

∑k
i=1 log(

1−UN,N−i+1

1−UN,N−k+1
)−1/α0 − 1/α0

}
+ k
N
H−(1− k/N) α0

α0−1

{
H−(UN,N−k+1)

H−(1−k/N)
−
(
N
k

(1− UN,N−k+1)
)−1/α0

}
+ k
N
H−(1− k/N) α0

α0−1

{(
N
k

(1− UN,N−k+1)
)−1/α0 − 1

}
+
(
k
N
H−(1− k/N) α0

α0−1
−
∫ 1

1−k/N H
−(v) dv

)
:= III1 + III2 + III3 + III4 + III5

and

m̂2(x0)−
∫ 1−k/N
k/N

H−(v) dv

=
∫ k/N
UN,k

H−(v) dGN(v) +
∫ UN,N−k

1−k/N H−(v) dGN(v)

+H−(1− k/N){GN(1− k/N)− 1 + k/N} −H−(k/N){GN(k/N)− k/N}
−
∫ 1−k/N
k/N

{GN(v)− v} dH−(v)

:= II1 + II2 + II3 + II4 + II5.

Using Conditions A1)–A2), (5) and the fact that |yδ3h − 1| ≤ Mh log y
uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1 and δ3 > 0, where
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M > 0 only depends on δ1, δ2, δ3, since h log n→ 0, we have

|1−H(y)− c1(x0)y−α0 |

= |
∫ x0+h
x0−h

{1−F (y|z)}f1(z) dz

P (|X1−x0|≤h)
− c1(x0)y−α(x0)|

≤ |
∫ x0+h
x0−h

{1−F (y|z)−c1(z)y−α(z)}f1(z) dz

P (|X1−x0|≤h)
|

+|
∫ x0+h
x0−h

{c1(z)y−α(z)−c1(x0)y−α0}f1(z) dz

P (|X1−x0|≤h)
|

≤ M1y
−α0{y−β0 + h2(log y)2}

(9)

uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1, where M1 > 0 is
independent of y. Similarly

|H(−y)− c2(x0)y−α0| ≤M2y
−α0{h2(log y)2 + y−β0} (10)

uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1, where M2 > 0 is
independent of y. Therefore

|H−(1− t)− c1/α0

1 (x0)t−1/α0| ≤M3t
−1/α0{h2(log t)2 + tβ0/α0} (11)

and
|H−(t) + c

1/α0

2 (x0)t−1/α0| ≤M4t
−1/α0{h2(log t)2 + tβ0/α0} (12)

uniformly in t ∈ [n−δ1 , n−δ2 ] for any given 0 < δ2 < δ1 < 1, where M3 > 0
and M4 > 0 are independent of t.

Note that

N

nh

p→ f1(x0), P (ȲN,1 ≥ −n−δ, ȲN,N ≤ nδ)→ 1 (13)

for δ ∈ (0, 1) large enough.
Write

σ2(s) =
∫ 0

H−(s)

∫ 0

H−(s)
{H(u) ∧H(v)−H(u)H(v)} dudv

+
∫ H−(1−s)

0

∫ H−(1−s)
0

{H(u) ∧H(v)−H(u)H(v)} dudv
= 2

∫ 0

H−(s)

∫ 0

v
H(v){1−H(u)} dudv

+2
∫ H−(1−s)

0

∫ v
0
H(u){1−H(v)} dudv

= −2
∫ 0

H−(s)
vH(v) dv − {

∫ 0

H−(s)
H(u) du}2

+2
∫ H−(1−s)

0
v{1−H(v)} dv − {

∫ H−(1−s)
0

(1−H(u)) du}2

= IV1(s) + IV2(s) + IV3(s) + IV4(s).
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Then it follows from (11)–(13) that
IV1(k/N)

(k/N)1−2/α0

p→ 2c
2/α0
2 (x0)

2−α0
, IV2(k/N)

(k/N)1−2/α0

p→ 0,

IV3(k/N)

(k/N)1−2/α0

p→ 2c
2/α0
1 (x0)

2−α0
, IV4(k/N)

(k/N)1−2/α0

p→ 0,

when α0 < 2, and

σ2(k/N)
p→
{

σ2
0 <∞ if α0 > 2
∞ if α0 = 2,

where σ2
0 =

∫ 1

0

∫ 1

0
(u ∧ v − uv) dF−(u|x0)dF−(v|x0). Therefore,

(k/N)1−2/α0

σ2(k/N)

p→ 2− α0

2(c
2/α0

1 (x0) + c
2/α0

2 (x0))
I(α0 < 2). (14)

Now using (6), (9)–(14) and (7), we can show that

√
N

σ(k/N)
{|I1|+ |I3|+ |I5|+ |III1|+ |III3|+ |III5|} = op(1),

√
N

σ(k/N)
I2 = −∆2

α0

(α0−1)2

∫ 1

0

√
N
k
{BN ( k

N
s)

s
−BN( k

N
)} ds+ op(1),

√
N

σ(k/N)
I4 = −∆2

1
α0−1

√
N
k
BN( k

N
) + op(1),

√
N

σ(k/N)
III2 = −∆1

α0

(α0−1)2

∫ 1

0

√
N
k
{BN (1− k

N
s)

s
−BN(1− k

N
)} ds+ op(1),

√
N

σ(k/N)
III4 = −∆1

1
α0−1

√
N
k
BN(1− k

N
) + op(1),

√
N

σ(k/N)
II1 = −∆2

√
N
k
BN( k

N
) + op(1),

√
N

σ(k/N)
II2 = −∆1

√
N
k
BN(1− k

N
) + op(1),

√
N

σ(k/N)
II3 = ∆1

√
N
k
BN(1− k

N
) + op(1),

√
N

σ(k/N)
II4 = ∆2

√
N
k
BN( k

N
) + op(1),

√
N

σ(k/N)
II5 = −

∫ 1−k/N
k/N

BN(s) dH−(v)

σ(k/N)
+ op(1),
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which implies that
√
N

σ(k/N)
{m̂(x0)−

∫ 1

0
H−(v) dv}

= − ∆2α0

(α0−1)2

∫ 1

0

√
N
k

(
BN ( k

N
s)

s
−BN( k

N
)) ds− ∆2

α0−1

√
N
k
Bn( k

N
)

− ∆1α0

(α0−1)2

∫ 1

0

√
N
k

(
BN (1− k

N
s)

s
−BN(1− k

N
)) ds− ∆1

α0−1

√
N
k
BN(1− k

N
)

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N)
+ op(1)

d→ N(0, 1 + { (2−α0)(2α2
0−2α0+1)

2(α0−1)4
+ 2−α0

α0−1
}I(α0 < 2))

(15)
by noting that

E{
√

N
k
BN( k

N
)
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N)
|N}

=

√
N
k

∫ 1−k/N
k/N

k
N

(1−s) dH−(s)

σ(k/N)

=

√
k/N

σ(k/N)
{
∫ 0

H−(k/N)
(1−H(u)) du+

∫ H−(1−k/N)

0
(1−H(u)) du}

p→ { 2−α0

2(c
2/α0
1 (x0)+c

2/α0
2 (x0))

}1/2c
1/α0

2 (x0)I(α0 < 2)

and

E{
√

N
k
BN(1− k

N
)
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N)
|N}

=

√
N
k

∫ 1−k/N
k/N

k
N
s dH−(s)

σ(k/N)

=

√
k/N

σ(k/N)
{
∫ 0

H−(k/N)
H(u) du+

∫ H−(1−k/N)

0
H(u) du}

p→ { 2−α0

2(c
2/α0
1 (x0)+c

2/α0
2 (x0))

}1/2c
1/α0

1 (x0)I(α0 < 2).

It follows from A3) that∫ 1

0
H−(v) dv −

∫ 1

0
F−(v|x0) dv

=
∫ 0

−∞H(v) dv +
∫∞

0
(1−H(v)) dv −

∫ 0

−∞ F (v|x0) dv −
∫∞

0
(1− F (v|x0)) dv

=
∫ x0+h
x0−h

f1(z){
∫ 0
−∞ F (y|z) dy+

∫∞
0 (1−F (y|z)) dy−

∫ 0
−∞ F (y|x0) dy−

∫∞
0 (1−F (y|x0)) dy}dz

P (|X1−x0|≤h)

= O(h2).
(16)

Hence the theorem follows from (15), (16) and (7).

Proof of Theorem 2. The theorem easily follows from the expansions in the
proof of Theorem 1 and the fact that

√
N{ȲN,[N/2] −H−(

1

2
)} =

√
N(GN(1/2)− 1/2)

g(F−(1
2
|x0)|x0)

+ op(1).

13
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