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1 Introduction

It is well known that the pseudo-randomness associated with a deterministic chaotic system has low
dimensional attractors. By contrast, randomness is typically associated with a stochastic system.
It is always an interesting and challenging problem to distinguish between deterministic chaos and
stochastic randomness. Besides the many obvious philosophical implications, into which we shall not
enter, there are important practical consequences. For example, if we accept that the data at hand are
essentially generated by a deterministic dynamical system (DDS), then we can call on a substantial
collection of modern tools, e.g. the Takens embedding, fractal dimension, Lyapunov exponent, map
reconstruction and others, for their analysis and prediction. On the other hand, if the data are
stochastic, a stochastic dynamical system (SDS) will provide a more appropriate model. In fact, in
this case, many of the standard tools in DDS are not directly applicable without modification. For
example, even fundamental notions such as embedding dimension and initial value sensitivity would
have to be carefully re-defined and routine applications of tools designed for a DDS may lead to
misleading conclusions.

What distinguishes a DDS is the fact that it is completely free of (stochastic) dynamic noise (also
called system noise). Let us agree to ignore observation noise in our discussion. In a real practical
situation, we might be willing to relax the ‘purity’ of a DDS by allowing an ‘insignificant’ amount of
dynamic noise because pragmatism might dictate this. We are then faced with the inevitable problem
of detecting operational determinism. In practice, this requires us to develop sufficiently powerful
statistical tools which have a high detection rate of any underlying dynamic noise.

At varying degrees of sophistication, several ingeneous tools have been developed recently for the
above purpose [1-3]. A common feature of these tools is the use of locally valid models over the
reconstructed state space for good short-term prediction. Normally, a DDS would allow the locally
valid models to be really very local (e.g. covering only a very small number of observations) and this
observation forms the basis of the above methods, which differ mainly in the implementation of the
strategy. Either directly or indirectly the above methods have utilised the so-called nearest neighbours.
For example, the most recent nearest-neighbour technique for detecting operational determinism seems
to be due to Casdagli [3], who constructed an ingenious forecasting algorithm using the k nearest
neighbours. He has suggested that ‘a small value of k corresponds to a deterministic approach to
modelling. The largest value of k corresponds to fitting a stochastic linear autoregressive model.
Intermediate values of k correspond to fitting non-linear stochastic models’. It is well known in the

statistical literature that k-nearest neighbours are statistics with complex properties. This is perhaps



one of the reasons why to-date the methods mentioned above have not been given a firm theoretical
foundation. Further, there has been no objective way to assess how small is small for the value of k,
which should be properly addressed since the number of neighbours used in estimation should depend
on the sample size. The calibration effect due to sampling fluctuation should not be overlooked either.

In this paper we propose a new statistical method for detecting operational determinism based on
the use of the bandwidth statistic in the kernel smoothing, and demonstrate its practical utility via
real and simulated data. Taking advantage of the simpler sampling properties of the kernel smoothing,
we have arrived at a conclusion which is almost the same as Casdagli’s mentioned above, the only
difference being the role of the number of nearest neighbours, which is now replaced by the bandwidth.
Furthermore, we have introduced a bootstrap method to assess how small is small for a bandwidth
to claim that the system is operationally deterministic, which also reduce the calibration effect due to
sampling fluctuation. For the sake of brevity, we shall omit some of the more esoteric mathematical
details but make them available to the interested readers upon request.

Let {Y;, —d+1 <t < n} be a sample from a strictly stationary discrete-time time series generated
by an unknown model

Yi=fYi1,...,Ya) t & = f(Xy) + &, (1)

where X; = (Yio1,...,Yi-q)", & = Yy — f(X}) = Vi — E{Y}|X;}. Of interest is to decide whether
€; is small enough to be negligible from a data analytical point of view, based on the observed data
{Y;, —d+1 <t < n}. We call the system operationally deterministic if ¢; is negligible. Obviously,

this includes a purely deterministic system (e; = 0) as a special case.

2 Kernel regression estimation

We start with the estimation of the regressive function f(z) = E{Y1|X; = z}. Given the observations
{Y;; —d+1 <t < n}, one of the conventional nonparametric estimators of f(z) is the Nadaraya-
Watson kernel regression estimator, which can be viewed as the solution of the following local least
squares problem

. L& 9 X —x

fe) = argmin 33 - a)’K (F55).
where K(.) is a kernel function, and A > 0 is the bandwidth. Typically, K(z) \, 0 fairly quickly when
||z|| * 00, and h is small. For example, if K () o« 1 for ||z|| < 1 and K (z) = 0 otherwise, f(z) is the
average of all the Y}s for which || X; — z|| < h. Therefore, similar to the nearest-neighbour method,
the kernel regression is a local average, or more precisely, a locally weighted average in general. It is

clear that the bandwidth A controls the amount of data which is effectively used in the estimation,



and thus plays a role similar to the number of nearest neighbours in the nearest neighbour estimation.
For further discussion of kernel regression, we refer to Hardle [4].

Note that for z around z, we have the approximation

f(2) = f(z) + f(z)(z — ).
This suggests the locally linear regression estimator: fn,h(w) = & , where (&, b) minimize

t=1

It has been pointed out that the locally linear regression method has various advantages over the
conventional Nadaraya-Watson method [5,6]. Intuitively it is easy to understand that the locally
linear fit can accommodate more local variation of the curve f(.) than the locally constant fit.

In kernel regression, the quality of the estimation depends critically on the bandwidth h. For
the purpose of prediction, we would ideally choose h which gives the best prediction for the future

observations {Y,,+1,-.-, Ynin, }, %.€. h minimizes the following mean squared errors:
1 &,
My (h) = . > {fnnXngt) = F(Xna) Pu(Xy),
1

where w(.) is a weight function. We have shown that if model (1) satisfies some mild regularity

conditions and Var(e;) > 0,

4,4 B
M) = 22 [ fPpeu)ds + — [ P@u@is [ K2wdu+o (m+-5). @

as both n and m converge to oo, where f(z) = % (z), 0?(x) = Var(Y1|X; = z), p(z) is the

marginal probability density function of X1, [wuu” K (u)du = 02I; and I, denotes the d x d identity
matrix. In fact, it can be proved that for a (purely) deterministic and ergodic model, (2) still holds
with o?(z) = 0. On ignoring the higher order term on the LHS of the above, the minimizer of M, (h)

is

"I TN o @) e u(e)da ®)

We have three options: (i) use A = h, =~ 0 when the noise is small enough (i.e. o2(z) is small enough)

' | { J K2(u)du [ o*(z)w(z)dz }dﬁ

such that the second term of the RHS of (2) can be ignored; (ii) use h = h,, = oo when the model is
linear (i.e. tr[f(z)] = 0); (iii) use h = hy € (0,00) when the model is nonlinear and stochastic. These
are exactly in the same spirit as Casdagli’s suggestion mentioned before.

Note that h, given in (3) involves several unknown quantities and cannot be directly used in
practice. Various data-driven methods to determine h have been developed among which the cross-
validation approach is the most frequently used method and offers an estimate which is equivalent to

hy, asymptotically, see, for example, [8].



To speed up the computation for the cross-validation method, we propose a modified version as
follows: we first split the sample into two subsets {(X;,Y;) : 1 < ¢ < m}and {(X;,Y;) : m+1 <t <n}.
We estimate f(.) using the first m observations and let it be denoted by fi;, 4(.). We choose h such

that fm,h(.) gives the best prediction for Y; for m + 1 <t < n in the sense that h = Ry, minimizes

: Z {Y: — frnn(X0) P (Xy).

t=m+1

n—m

According to (3), the bandwidth with the whole sample should be

o = (T) g (@)

n

We have proved that hy, and h,, are asymptotically equivalent.

3 Detection for operationally deterministic systems

We now propose a method to detect that system (1) is operationally deterministic. It will be based on
the statistic k, defined as in (4). In practice, the selected bandwidth is always positive. Thus, the event
that the selected bandwidth is close to zero would indicate that model (1) is operationally deterministic.
Of course, it remains to decide how close is close in this context. Furthermore, there exists a potential
danger that the small value of the selected bandwidth is due to sampling fluctuations. To overcome
the problems mentioned above, we propose using the bootstrap method, which is a computational
device to obtain tail-probabilities when the latter do not admit analytical expressions. The basic idea
is to calibrate the h, at hand by reference to the distribution of h, obtained by repeated sampling.
This is another aspect where our method differs from the existing ones [1-3] in that we have taken
particular care to reduce the chance of fortuitous calibration. Note that the bootstrap method is
different from and predates the method of surrogate data. For an elementary account of the former,
see, e.g., Efron and Tibshirani [9]. The following constitutes our bootstrap detector for operational
determinism. We represent the observations {Y;, —d + 1 < ¢t < n} in the form {(X;,Y}),1 <t < n}
with X3 = (Yi1,..., Y 4)".

1. For the given data {(X;,V;),1 <t < n}, obtain the estimate h,, as given in (4).

2. Obtain the locally linear regression estimator fnh() using h = by, and calculate the residuals

A

€t :Y%—fn’;m(Xt) fort=1,...,n.

3. Bootstrap: draw n independent random numbers i1,...,%, from the uniform distribution with

the sample space {1,...,n}, and define € = ¢;, for ¢t = 1,...,n. Form the bootstrap sample
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{(X1,Y), 1 <t <n} with
Y't* — fn,iln (Xt) + EZ.

4. Obtain an estimate h¥ from the sample {(X,Y;*), 1 <t < n} as in Step 1. Especially, the search

for iz’{b around h,, is conducted on finer grids than those used in Step 1.

5. Repeat Steps 3 and 4 N times, and count the frequency of occurrence of the event that ﬁ;; < hy,.
Then the relative frequency a (= frequency/N) is taken as a measure of how plausible the data

are generated by an operationally deterministic model.

Remark. In the above, values of o near to 1 provide evidence of the system being operationally
deterministic; values of a around 0.5 provide evidence of the system being nonlinear and stochastic
(ie. f(z) # 0). Small values of & may be taken to indicate that f(.) is linear, or ¥; is simply the
‘white noise’ (i.e. f(z) =0).

The key idea of the proposed method can be explained as follows. For a noise-free, or an almost
noise-free system, (3) indicates that hy, would take as small a value as computations permit. (Note
that too small an & will cause overflow in computation.) Since the search for i is conducted on finer
grids around iLn, ﬁ; tends to take a slightly smaller value than Fon.

Finally, we note that the above bootstrap detector can be defined in terms of any reasonable

data-driven bandwidth selector.

4 Examples

To illustrate the above method, we report simulation studies for five examples, which include some
purely deterministic models. The application of the detector to four real data sets is reported in
Example 6.

In all the examples below, we search for hn among 100 possible values. We always set K(.) equal
to the Gaussian kernel, and N = 100 for the number of bootstrap replications. For each simulated
model, we replicate the Monte Carlo experiments 100 times. For the first three examples, we always
set n = 300 for the sample size, m = 200 for the estimation of izn, and w(.) equal to the indicator

function of the 90% inner samples. For Examples 3.4 and 3.5, we set n = 500, m = 300 and w(.) = 1.

Example 1. Let
Y = 0.246Y; 1 (16 — Yy 1) + oey, (5)



Table 1. The bootstrap detection for model (5)

~

~

o | Mean(a) Variance(e) | Mean(h,) Variance(h,) | Mean(h%) Variance(h})
0.07 0.5134 0.0750 0.0425 0.0001 0.0436 0.0001
0.04 0.6185 0.1105 0.0354 0.0001 0.0354 0.0001
0.01 0.6618 0.0390 0.0207 0.0000 0.0196 0.0001
0.008 | 0.6831 0.0653 0.0209 0.0000 0.0190 0.0000
0.005 | 0.9558 0.0451 0.0201 0.0000 0.0162 0.0000

Table 2. The bootstrap detection for the regression of Yy = X; 1, on Xy,
where X} is determined by (6)

m | Mean(e) Variance(a) | Mean(h,) Variance(h,) | Mean(h*) Variance(h*)

1 1.0000 0.0000 0.0201 0.0000 0.0124 0.0000

3 0.9834 0.0041 0.0201 0.0000 0.0131 0.0000

5 0.9192 0.0083 0.0694 0.0109 0.0586 0.0098

7 | 0.3882 0.0183 1.6044 1.1220 1.6521 1.1474

9 | 0.3005 0.0273 3.6475 3.1301 3.9109 3.2202

11| 0.2985 0.0279 3.6187 3.1285 3.8787 3.2227

Table 3. The bootstrap detection for the tent map (7) and its time reversal
Mean(e) Variance(a) | Mean(h,) Variance(h,) | Mean(h*) Variance(h*)
Model (7) 0.9596 0.0549 0.0115 0.0000 0.0115 0.0000
Time reversal | 0.3260 0.0248 0.8936 0.4257 1.0378 0.4407




where o > 0 is a constant, and {e;, ¢ > 1}, are independent random variables with the same distribu-
tion as the random variable 0.5, and 7 is equal to the sum of 48 independent random variables each
uniformly distributed on [—0.5,0.5]. According to the central limit theorem, we can treat ¢; as almost
standard normal. However, it has a bounded support [—12, 12]. The simulation has been carried out
for the cases with o equal to five different values between 0.07 and 0.005. The average a-values in 100
replications of the Monte Carlo experiments are reported in Table 1, which show that the bootstrap
detector has no difficulties in identifying the model being nonlinear and stochastic when ¢ > 0.01. But
when o = 0.005, the bootstrap detector shows that we could operationally treat (5) as a deterministic

) is about 0.05% when o = 0.005.

. . . -
model. Note that the noise-to-signal ratio (= A
The means and variances of h,, in the 100 replications , together with their bootstrap counterparts (in

10000 (= 100 x 100) replications), are also included in the table.

Example 2. For the transformed standard logistic model (with coefficient 4)
Xi+1 = 0.25X,(16 — X3), (6)

we consider the cases V; = X1, m = 1,3,5,7,9, and 11. The results are reported in Table 2. We
can see that the bootstrap detector has no difficulties in confirming that we can model X; . as a de-
terministic function of X; for m < 5. However, for m > 7 the a-values are considerably smaller, which

shows that now it will be difficult to model X, as a deterministic function of X; with the given data.

Example 3. For the tent map

aX; 0<X; <05
Xip1 = (7)
a(l - X)) 05<X, <1

with a = 2, time reversal gives the stochastic model
1 1
X = gt §€t(1 - Xt41),

where {€;} is a sequence of independent random variables and €; equals 1 or -1 with equal probability
[10,11]. Therefore, although the original time series is generated from a purely deterministic model,
the reverse time series can be viewed as a sequence generated by a stochastic model. We apply the
bootstrap detector to both original and reversed time series. In our simulation, we use a = 1.9999999
as a surrogate for a = 2 which is unrealisable!!. We set (a;, a,,) = (0.05,5). The results are reported in

Table 3. The detector confirms that the time series from (7) is operationally deterministic. However,



Table 4. The bootstrap detection for model (8)

o | Mean(a) Variance(e) | Mean(h,) Variance(h,) | Mean(h*) Variance(h*)
0.09 | 0.6091 0.2168 0.1391 0.0.0035 0.1407 0.0029
0.07 | 0.5540 0.2262 0.1358 0.0038 0.1431 0.0046
0.05 | 0.8287 0.0764 0.1421 0.0046 0.1054 0.0031
0.03 | 0.9361 0.0512 0.1289 0.0028 0.0910 0.0018
0.01 | 0.9675 0.0190 0.1303 0.0029 0.0851 0.0019

Table 5. The bootstrap detection for the modelling of Y; = Xy, on X,
where X; is determined by (9)

m | Mean(e) Variance(a) | Mean(h,) Variance(h,) | Mean(h*) Variance(h*)

1 0.9425 0.0378 0.1312 0.0026 0.0862 0.0013

3 | 0.9246 0.0353 0.1095 0.0015 0.0773 0.0013

5 | 0.7087 0.1273 0.1240 0.0044 0.1140 0.0068

7 | 0.2884 0.1750 0.3565 0.1704 0.4572 0.0951

9 | 0.3091 0.1867 0.4391 0.2035 0.4907 0.1029

11 | 0.2699 0.1015 0.6999 0.3217 0.8394 0.1572

Table 6. The bootstrap detection for the four real data sets
data set Laser data GSL Sunspot numbers | Measles data
regressors || Yi1, Yi o | Y12, Y04, V36, Yeas | Vi1, Yi0, Yiu | Vi1, Yiu, Yir

n 998 3379 289 151

m 700 2500 200 101

a-value 1.00 1.00 0.43 0.27

Bn 0.1090 0.0713 0.4123 0.3833

Mean(h ) 0.0610 0.0357 0.4162 0.4762
Variance(h?) 0.0000 0.0000 0.0057 0.0065




for the reversed time series the estimated a-value is much smaller than 0.5 (cf. Remark in last section).

Example 4. Let us consider the model
Y; = 20 — 0.0645Y;2 | + 0.3Y;_2 + 45in(0.05Y;_3) + oey, (8)

where o > 0 is a constant, and {¢;} is the same as in (5). The simulation has been carried out for five
different values of o between 0.01 and 0.09. The results are reported in Table 4. The detector confirms
that when o > 0.07, the model is nonlinear and stochastic. However, when ¢ < 0.03, the detector
suggests that we could operationally treat (8) as a deterministic model. Note that when o = 0.03, the

ratio of noise to signal is about 0.11%.

Example 5. For the purely deterministic model
Xip1=1-1.3Y2, +0.3Y;_y + 0.2sin(Y;_3), (9)

we apply the detector to the cases that Y; = Xy, form = 1,3,5,7,9, and 11. The results are reported
in Table 5. For m < 3, it has been identified as an operationally deterministic model. For m > 7, the
detector seems to suggest that it would not be prudent to model X;,, as a deterministic function of
Xi_1,Xt 9 and X;_3 with given data. The detector fails to make a clear suggestion for the case when

m = 5.

Example 6. We have applied the bootstrap to the folowing four real data sets:

(i) NH3-FIR Laser data set. This is the first data set used in the Santa Fe Time Series Prediction
and Analysis Competition. The 1000 data were generated by a physics laboratory experiment (NHj
laser), which is believed to generate Lorenz-like chaos [12]. We have fitted the data with a nonlinear
autoregressive model of order 2, as determined by the cross-validation method [13].

(ii) The Great Salt Lake (GSL) data from Utah [14]. We have fitted the biweekly volume data of
the GSL with a nonlinear autoregressive model with sampling time 12 and order 4. The order was
determined by the cross-validation method.

(ii) Wolf’s annual sunspot numbers (1700-1992). We have fitted the data with the optimal subset
regression model determined by the the cross-validation method, and the optimal regression subset
[15] consists of the lagged variables at lags 1, 2, and 4.

(iii) The monthly New York measles data. In order to avoid possible outliers, we use only the

first 158 points. We have fitted the data, on the natural log base, with the optimal subset regression



model determined by the the cross-validation method, and the optimal regression subset consists of
the lagged variables at lags 1, 4, and 7.

We have standardized the data first in each case. The results of the detection are summarized in
Table 6, which show that the bootstrap detector identifies that both the Laser data the Great Salt
Lake data are operationally deterministic. This conclusion is not surprising as far as the Laser data are
concerned. For the GSL data, Sangoyomi [14] have given an explanation for operational determinism.

For the other two data sets, nonlinear stochastic models are suggested.

References

[1 ] Farmer, J.D. and Sidorowich, J.J., Predicting chaotic time series. Phys. Rev. Lett., 59, 845-848
(1987).

[2 ] Sugihara, G. and May, R.M., Nonlinear forecasting as a way of distinguishing chaos from

measurement errors in time series. Nature, 344, 734-741 (1990).

[3 ] Casdagli, M., Chaos and deterministic versus stochastic non-linear modelling. J. Roy. Statist.

Soc. B, 54, 303- 328 (1992).
[4 ]| Hardle, W., Applied Nonparametric Regression (Cambridge University Press, Cambridge, 1990).

[6 ] Fan, J., Design-adaptive nonparametric regression. J. Amer. Statist. Assoc., 87, 998-1004
(1992).

[6 | Hastie, T. and Loader, C., Local refression: automatic kernel carpentry. Statist Science, 8,

120-143 (1993).
[7 ] Wand, M.P. and Jones, M.C., Kernel Smothing (Chapman & Hall, London, 1995).

[8 ] Hardle, W. and Vieu, P., Kernel regression smothing of time series. J. Time Series Anal., 13,

209-232 (1992).

[9 ] Efron, B. and Tibshirani, R.J., An introduction to the bootstrap, (Chapman & Hall, London,
1993).

[10 | Tong, H. and Cheng, B., A Note on one-dimensional chaotic maps under time reversal. Adv.

Appl. Prob., 24, 219-220 (1992).

10



[11 ] Lawrance, A.J. and Spencer, N.M., Statistical aspects of curved chaotic map models and their
stochastic reversals. In Complex Stochastic Systems and Engineering ed. D. M. Titterington,

55-58, (Clarendon Press, Oxford, 1995).

[12 | Weigend, A.S. and Gershenfeld, N.A., Time Series Prediction. (Addison-Wesley, Reading,
1994).

[13 ] Cheng, B. and Tong, H., On consistent non-parametric order determination and chaos. J. Roy.

Statist. Soc. B, 54, 427-449 (1992).

[14 ] Sangoyomi, T.B., Lall, U. and Abarbanel, H.D.I., Nonlinear dynamics of the Great Salt Lake:

dimension estimation. Water resources Research, 32, 149-159 (1996).

[15 ] Yao, Q. and Tong, H., On subset selection in non-parametric stochastic regression. Statistica

Sinica, 4, 51-70 (1994).

11



