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Abstract

We consider a framework for modelling conditional variance (volatility) of a multivariate

time series by common factors. We estimate the factor loading space and the number of factors

by a stepwise algorithm of expanding the “innovation space”. We develop the asymptotic

theory on the proposed estimation method based on the empirical process theory. We further

illustrate the method using both simulated and real data examples. Some novel asymptotic

results on empirical processes constructed from nonstationary random sequences, which pave

the way for the main result, are presented in the Appendix.
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1 Introduction

In this modern information age, high dimensional data are available in various fields including

finance, economics, psychometrics, biomedical signal processing and etc. For instance, macroeco-

nomic series on output or employment are observed for a large number of countries, regions, or

sectors, and time series of financial returns on many different assets are collected routinely. Prac-

titioners frequently face the challenge from modelling high-dimensional time series, as it typically

evolves a large number of parameters such that one runs into the so-called over-parameterization

problem.

One of the effective ways to circumvent the aforementioned problem is to adopt a factor model,

which provides a low-dimensional parsimonious representation for high-dimensional dynamics.

There is a large body of literature on the factor modelling for time series. An incomplete list

includes Sargent and Sims (1977), Geweke (1977), Chamberlain and Rothschild (1983), Forni,

Hallin, Lippi and Reichlin (2002,2004), Bai and Ng (2002), Bai (2003), Hallin and Lǐska (2007),

and Pan and Yao (2008), although all those papers deal with modeling the dynamics of the first

moments or conditional first moments. The literature on modeling conditional second moments

(i.e. volatilities) include, for example, Engle, Ng and Rothschild (1990), Lin (1992), and Hafner

and Preminger (2009). They either assume that the factors are known, or search for factors using

maximum likelihood methods.

In this paper, we consider a new method for factor-modelling for multivariate volatility pro-

cesses. We introduce an innovation expansion method for the estimation of the factor loading

space and the number of factors via expanding the “white noise space” (innovation space) step

by step, which effectively decompose a a high-dimensional nonlinear optimization problem into

several lower-dimensional sub-problems. Asymptotic theory on our approach is developed based

the theory of empirical processes.

The rest of the paper is organized as follows. Section 2 introduces the methodology based on an

innovation expansion algorithm. Section 3 develops asymptotic theory for the proposed method.

Section 4 reports the illustration via both simulated and real data examples. Some novel results on

the convergence of the empirical processes constructed from nonstationary processes are presented

in the Appendix, which pave the way for establishing the main theoretical results in Section 3.
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2 Models and Methodology

2.1 Factor models

Let {Yt} be a d × 1 time series, and E(Yt|Ft−1) = 0, where Ft = σ(Yt,Yt−1, · · · ). Assume that

E(YtY
τ
t ) exists, and we use the notation Σy(t) = Var(Yt|Ft−1). The goal is to model Σy(t) via

a common factor model

Yt = AXt + εt, (2.1)

where Xt is a r × 1 time series, r < d is unknown, A is a d× r unknown constant matrix, {εt} is

a sequence of i.i.d. innovations with mean 0 and covariance matrix Σε, and εt is independent of

Xt and Ft−1.

Model (2.1) assumes that the volatility dynamics of Yt is determined effectively by a lower

dimensional volatility dynamics of Xt plus the static variation of εt, as

Σy(t) = AΣx(t)Aτ + Σε, (2.2)

where Σx(t) = Var(Xt|Ft−1). The component variables of Xt are called the factors. There is

no loss of generality in assuming rk(A) = r. (Otherwise (2.1) may be expressed equivalently in

terms of a smaller number of factors.) Even so model (2.1) is still not completely identifiable,

as (A, Xt) in the model may be replaced by (AΓ, Γ−1Xt) for any r × r invertible matrix Γ.

However the factor loading space M(A), which is a linear space spanned by the columns of A, is

uniquely defined. We may impose a constraint

AτA = Ir, (2.3)

i.e. we require the column vectors of A = (a1, · · · ,ar) to be orthonormal, where Ir denotes the

r × r identity matrix. Note that such an orthonormal A is still not uniquely defined in (2.1).

Nevertheless the sum on the right-hand side of (2.2) can be estimated coherently, although the

terms involved may not be completely separable.

2.2 Estimation of A and r: an innovation expansion method

Note that the factor loading space M(A) is uniquely defined by the model. We are effectively

concerned with the estimation for M(A) rather than the matrix A itself. This is equivalent to

the estimation for orthogonal complement M(B), where B is a d×(d−r) matrix for which (A,B)
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forms a d × d orthogonal matrix, i.e. BτA = 0 and BτB = Id−r (see also (2.3)). Now it follows

from (2.1) that

BτYt = Bτ
εt. (2.4)

Hence BτYt are homoscedastic components since

E{BτYtY
τ
t B|Ft−1} = E{Bτ

εtε
τ
t B|Ft−1} = E{Bτ

εtε
τ
t B} = E{BτYtY

τ
t B} = BτVar(Yt)B.

This implies that

BτE[{YtY
τ
t − Var(Yt)}I(Yt−k ∈ C)]B = 0, (2.5)

for any t, k ≥ 1 and any measurable C ⊂ Rd. For matrix H = (hij), let ||H|| = {tr(HτH)}1/2

denote its norm. Then (2.5) implies that

k0∑

k=1

∑

C∈B

w(C)
∣∣∣∣

n∑

t=k0+1

E[Bτ{YtY
τ
t − Var(Yt)}BI(Yt−k ∈ C)]

∣∣∣∣2 = 0 (2.6)

where k0 ≥ 1 is a prescribed integer, B is a finite or countable collection of measurable sets, and

the weight function w(·) ensures the sum on the right-hand side finite. In fact we may assume

that
∑

C∈B w(C) = 1. Even without the stationarity on Yt, Var(Yt) in (2.6) may be replaced

by Σ̂y ≡ (n − k0)−1
∑

k0<t≤n YtY
τ
t . This is due to the fact BτVar(Yt)B = BτΣεB, and

1

n − k0

n∑

t=k0+1

BτYtY
τ
t B =

1

n − k0

n∑

t=k0+1

Bτ
εtε

τ
t B

a.s.−→ BτΣεB,

see (2.4). Therefore Bτ Σ̂yB is a consistent estimator for BτVar(Yt)B for all t. Now (2.6) suggests

to estimate B ≡ (b1, · · · ,bd−r) by minimizing

Φn(B) =

k0∑

k=1

∑

C∈B

w(C)
∣∣∣∣Bτ 1

n − k0

n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C)B

∣∣∣∣2 (2.7)

=

k0∑

k=1

∑

1≤i,j≤d−r

∑

C∈B

w(C)
{
bτ

i

1

n − k0

n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C)bj

}2

subject to the condition BτB = Id−r. This is a high dimensional optimization problem. Further

it does not explicitly address the issue how to determine the number of factors r. We present an

algorithm which expands the innovation space step by step, and which also takes care of these

two concerns. Note for any bτA = 0,

Zt ≡ bτYt(= bτ
εt)
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is a sequence of independent random variables, and therefore, exhibits no conditional heteroskedas-

ticity. The determination of the r is based on the likelihood ratio test for the null hypothesis that

the conditional variance of Zt given its lagged valued is a constant against the alternative that it

follows a GARCH(1,1) model with normal innovations. See also Remark 1(vii) below.

Put

Ψ(b) =

k0∑

k=1

Φk(b),

Φk(b) =
∑

C∈B

w(C)[bτ 1

n − k0

n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C)b]2,

Ψm(b) =

k0∑

k=1

{
2

m−1∑

i=1

∑

C∈B

w(C)[b̂τ
i

1

n − k0

n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C) b]2 + Φk(b)

}
.

We propose An Innovation Expansion Algorithm for estimating B and r as follows. Let

α ∈ (0, 1) specify the level of the significance tests involved.

Step 1. Compute b̂1 which minimises Ψ(b) subject to the constraint bτb = 1. Let

Zt = b̂τ
1Yt. Compute the 2log-likelihood ratio test statistic

T = (n − k0)
{

1 + log
( 1

n − k0

n∑

t=k0+1

Z2
t

)}
− min

n∑

t=k0+1

{Z2
t

σ2
t

+ log(σ2
t )

}
, (2.8)

where σ2
t = α+βZ2

t−1 +γσ2
t−1, and the minimisation is taken over α > 0, β, γ ≥ 0

and β + γ < 1. Terminate the algorithm with r̂ = d and B̂ = 0 if T is greater

than the top α-point of the χ2
2-distribution. Otherwise proceed to Step 2.

Step 2. For m = 2, · · · , d, compute b̂m which minimizes Ψm(b) subject to the constraint

bτb = 1, bτ b̂i = 0 for i = 1, · · · , m − 1. (2.9)

Terminate the algorithm with r̂ = d − m + 1 and B̂ = (b̂1, · · · , b̂m−1) if T ,

calculated as in (2.8) but with Zt = |b̂τ
mYt| now, is greater than the top α-point

of the χ2
2-distribution.

Step 3. In the event that T never exceeds the critical value (the top α-point of of the

χ2
2-distribution) for all 1 ≤ m ≤ d, let r = 0 and B̂ = Id.

Remark 1. (i) The algorithm grows the dimension of M(B) by one each time until a newly

selected direction b̂m being relevant to the volatility dynamics of Yt. This effectively reduces the

number of the factors in model (2.1) as much as possible without losing the significant information.
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(ii) The minimization problem in Step 2 is a d-dimensional subject to constraint (2.9). It has

only (d − m + 1) free variables. In fact, the vector b satisfying (2.9) is of the form

b = Amu, (2.10)

where u is any (d−m+ 1)×1 unit vector, Am is a d× (d−m+ 1) matrix with the columns being

the (d − m + 1) unit eigenvectors, corresponding to the (d − m + 1)-fold eigenvalue 1, of matrix

Id − BmBτ
m, and Bm = (b̂1, · · · , b̂m−1). Note that the other (m − 1) eigenvalues of Id − BmBτ

m

are all 0.

(iii) We may let Â consist of the r̂ (orthogonal) unit eigenvectors, corresponding to the common

eigenvalue 1, of matrix Id − B̂B̂τ (i.e. Â = Ad−br+1). Note that ÂτÂ = Ibr.

(iv) A general formal d × 1 unit vector is of the form bτ = (b1, · · · , bd), where

b1 =
d−1∏

j=1

cos θj , bi = sin θi−1

d−1∏

j=i

cos θj (i = 2, · · · , d − 1), bd = sin θd−1,

where θ1, · · · , θd−1 are (d − 1) free parameters.

(v) We may choose B consisting of the balls centered at the origin in Rd. Note that EYt−k = 0.

When the underlying distribution of Yt−k is symmetric and unimodal, such a B is the collection

of the minimum volume sets of the distribution of Yt−k, and this B determines the distribution

of Yt−k (Polonik 1997). In numerical implementation we simply use w(C) = 1/K, where K is

the number the balls in B.

(vi) Under the additional condition that

cτA{E(XtX
τ
t |Ft−1) − E(XtX

τ
t )}Aτc = 0 (2.11)

if and only if Aτc = 0, (2.5) is equivalent to

E{(bτ
i YtY

τ
t bi − 1)I(Yt−k ∈ C)} = 0, 1 ≤ i ≤ d − r, k ≥ 1 and C ∈ B.

See model (2.1). In this case, we may simply use Ψ(·) instead of Ψm(·) in Step 2 above. Note

that for b satisfying constraint (2.9), (2.10) implies

Ψ(b) =

k0∑

k=1

∑

C∈B

w(C)
{
uτAτ

m

1

n − k0

n∑

t=k0+1

(YYτ − Σ̂y)I(Yt−k ∈ C)Amu
}2

. (2.12)

Condition (2.11) means that all the linear combinations of AXt are genuinely (conditionally)

heteroscadastic.
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(vii) Note for any bτA = 0, bτYt(= bτ
εt) is a sequence of independent random variables,

and therefore, |bτYt| (or (bτYt)
2) is an uncorrelated time series. This suggests that we may

replace the likelihood ratio test in Step 1 above by the standard Ljung-Box-Piece portmanteau

test applying to |bτYt| (or (bτYt)
2). However, the autocorrelations of, for example, the squared

GARCH(1,1) processes are typically small or very small; see (4.30) of Fan and Yao (2003). This

makes the Ljung-Box-Piece test almost powerless for detecting the dependence in the processes

such as those specified in (4.2) below (unless the sample size is very large). On the other hand,

simulation results in section 3 indicate that the potential of the Gaussian GARCH(1,1) based

likelihood ratio test outlined in Step 1 is wide as it is powerful to detect various types of conditional

heteroscedasticity even with heavy tailed innovations.

(viii) When the number of factors r is given, we may skip all the test steps, and stop the

algorithm after obtaining b̂1, · · · , b̂r from solving the r optimisation problems.

2.3 Estimation for Σy(t)

It is easy to see from (2.1) that

Zt ≡ AτYt = Xt + Aτ
εt,

where Zt only has r(< d) components. Note

Σz(t) ≡ Var(Zt|Ft−1) = Σx(t) + AτΣεA,

and AAτ + BBτ = Id. By (2.2), it holds that

Σy(t) = AΣz(t)Aτ + AAτΣεBBτ + BBτΣεAAτ + BBτΣεBBτ

≡ AΣz(t)Aτ + AAτΣεBBτ + BBτΣε. (2.13)

By (2.1) and the fact BτA = 0, Bτεt = BτYt. Hence a natural estimator for BτΣε may be

defined as

1

n

n∑

t=1

B̂τ
εtε

τ
t =

1

n

n∑

t=1

B̂τ
εtY

τ
t =

1

n

n∑

t=1

B̂τYtY
τ
t .

This leads to a dynamic model for Σy(t) as follows

Σ̂y(t) = ÂΣ̂z(t)Âτ + ÂÂτ Σ̂yB̂B̂τ + B̂B̂τ Σ̂y, (2.14)
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where Σ̂y = n−1
∑

1≤t≤n YtY
τ
t , and Σ̂z(t) is obtained by fitting the data {ÂτYt, 1 ≤ t ≤ n}

with, for example, either the dynamic correlation model of Engle (2002) or the CUC model of

Fan, Wang and Yao (2008).

3 Theoretical properties

In this section we assume that the number of factors r(< d) is known. Let H be the set consisting

of all d × (d − r) matrices H satisfying the condition HτH = Id−r. For H1,H2 ∈ H, define

D(H1,H2) = ||(Id − H1H
τ
1)H2|| = {d − r − tr(H1H

τ
1H2H

τ
2)}1/2. (3.1)

Note that H1H
τ
1 is the projection matrix on to the linear space M(H1), and D(H1,H2) = 0 if

and only if M(H1) = M(H2). Therefore, H may be partitioned into the equivalent classes by

D as follows: the D-distance between any two elements in each equivalent class is 0, and the D-

distance between any two elements from two different classes is positive. Denote by HD = H/D

the quotient space consisting of all those equivalent classes; that is, we treat H1 and H2 as the

same element in HD if and only if D(H1,H2) = 0. Then (HD, D) forms a metric space in the

sense that D is a well-defined distance measure on HD; see Lemma A.1(i) of Pan and Yao (2008).

Furthermore, similar to the proof of Lemma A.1(ii) of Pan and Yao (2008), we may justify that

Φn(·) defined in (2.7), and Φ(·) defined in (3.2) below are well-defined on HD. In fact Φn is a

stochastic process indexed by the metric space HD, and Φ is a deterministic function defined on

HD.

Denote the indicator function of a set C by I(C). To include nonstationary cases in our

asymptotic theory, we introduce the following assumption which holds for a fairly general class of

nonstationary processes; see Escanciano (2007).

Assumption 1. As n → ∞, there exist limits of

(n − k0)−1
n∑

t=k0

E{I(Yt−k ≤ x)}

and

(n − k0)−1
n∑

t=k0

E{YtY
τ
t I(Yt−k ≤ x)}

for x ∈ Rd and k = 1, . . . , k0.
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Remark 2. It is easy to see that Assumption 1 holds for any stationary processes. Furthermore,

it can be shown that it implies

1. EΣ̂y → Σ, where Σ is a nonnegative matrix,

2. (n − k0)−1
∑n

t=k0
E{I(Yt−k ∈ C)} → ak(C) uniformly for Borel measurable sets C, where

ak(C) is a measure, k = 1, . . . , k0,

3. (n−k0)−1
∑n

t=k0
E{YtY

τ
t I(Yt−k ∈ C)} → Σk(C) uniformly for Borel sets C, where Σk(C)

are nonnegative definite matrices depending on C, for k = 1, . . . , k0.

Under Assumption 1, we define

Φ(B) =

k0∑

k=1

∑

C∈B

w(C) ‖ Bτ{Σk(C) − ak(C)Σ}B ‖ . (3.2)

We will use this denotation in our asymptotic theory for the proposed estimation. Our objective

function is Φn(B), which is defined as (2.7). Then our estimator is the minimizer of Φn(B), i.e.

B̂ = arg min
B∈HD

Φn(B).

Under the assumptions listed below, the estimator B̂ is consistent.

Assumption 2. {Yt} is ϕ-mixing in the sense that ϕ(m) → 0 as m → ∞, where

ϕ(m) = sup
k≥1

sup
U∈Fk

−∞
, V ∈F∞

m+k
, P r(U)>0

∣∣P (V |U) − P (V )
∣∣, (3.3)

and F j
i = σ(Yi, . . . , Yj). Furthermore, supt E ‖ Yt ‖2+δ< ∞ for a δ > 0.

Assumption 3. There exists a d × (d − r) (d ≥ r) partial orthonormal matrix B0 which

minimizes Φ(B), and Φ(B) reach its minimum value at a partial orthonormal matrix B if

and only if D(B,B0) = 0.

Assumption 4. Denote the distribution of Yt by Ft. Let F ∗
(n) = 1

n−k

∑n
t=k+1 Ft−k. There exists

a metric M such that

F ∗
(n)(C1△C2) ≤ M(C1, C2).

for any convex sets C1, C2, where C1△C2 = (C1 ∪ C2) \ (C1 ∩ C2). Furthermore, F ∗
(n)

has a probability density function f∗
(n) satisfying that there exist positive constants β0, c0

and N0 such that on the set {x ∈ Rd : ‖x‖ ≥ N0} we have ‖x‖d+β0f∗
(n)(x) ≤ c0 and

supx |f∗
(n)(x)| < ∞.
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Remark 3. When {Yt} are identically distributed (not necessarily stationary), Assumption 4

can be replaced by the following assumption.

Assumption 4’. {Yt} have a common distribution F which has a density function f satisfying

that there exist positive constants β0, c0 and N0 such that on the set {x ∈ Rd : ‖x‖ ≥ N0}

we have ‖x‖d+β0f(x) ≤ c0 and supx |f(x)| < ∞.

Here we give an example to show that there are many non-stationary time series which satisfy

Assumption 4 or Assumption 4’.

Example 1. Assume that {Yt = (Y1,t, Y2,t, · · · , Yd,t)
τ} is 2-dependent sequence of Gaussian

random vectors. That is, for any t, Yt and Yt+m are independent when m ≥ 2, and Yt follows

d-variate normal distribution N(0, Σ). Furthermore, (Y1,t, Y1,t+1) follows a two-variate normal

distribution with mean vector (0, 0)τ and covariance matrix


 1 ρt

ρt 1


 where the correlation ρt is

time-varying. It is easy to see that {Yt} satisfies Assumptions 2 and 4.

The following theorem is the main theoretical result.

Theorem 1. Let C denote the class of closed convex sets in Rd. If the collection B is a count-

able subclass of C, and Assumptions 1-4 hold, then D(B̂,B0)
P→ 0. Furthermore, D(B̂,B0)

a.s.→ 0

provided, in addition, the mixing coefficients in Assumption 2 satisfy Condition (A.7).

Proof. Denote

l∗n(C) =
1

n − k0

n∑

t=k0+1

I(Yt−k ∈ C), (3.4)

and

L∗
n(C) =

1

n − k0

n∑

t=k0+1

(YtY
τ
t )I(Yt−k ∈ C). (3.5)

Note that

|Φn(H) − Φ(H)| ≤
5∑

i=1

Ji(H), (3.6)
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where

J1(H) =

k0∑

k=1

∑

C∈B

w(C)‖Hτ (L∗
n(C) − EL∗

n(C))H‖,

J2(H) =

k0∑

k=1

∑

C∈B

w(C)‖ 1

n − k0

n∑

t=k0+1

E(HτYtY
τ
t HI(Yt−k ∈ C)) − HτΣk(C)H‖,

J3(H) =

k0∑

k=1

∑

C∈B

w(C)‖Hτ (Σ̂y − Σ)H‖ · | 1

n − k0

n∑

t=k0+1

I(Yt−k ∈ C)|,

J4(H) =

k0∑

k=1

∑

C∈B

w(C)‖HτΣH‖ · |l∗n(C) − El∗n(C)|,

J5(H) =

k0∑

k=1

∑

C∈B

w(C)‖HτΣH‖| 1

n − k0

n∑

t=k0+1

EI(Yt−k ∈ C) − ak(C)|.

From the definition of ‖ · ‖, we have ‖ H1H2 ‖≤‖ H1 ‖‖ H2 ‖ for two conformable matrices.

Note that ‖ Hτ ‖=‖ H ‖≤ r. Then, from Lemma A.2 and Assumption 1,

sup
H∈HD

J1(H) ≤ sup
H∈HD

‖ Hτ ‖‖ H ‖ · sup
1≤k≤k0,C∈B

‖ L∗
n(C) − EL∗

n(C) ‖ ·k0

∑

C∈B

w(C)

≤ r2k0 sup
1≤k≤k0,C∈B

‖ L∗
n(C) − EL∗

n(C) ‖ P−→ 0,

and

sup
H∈HD

J4(H) ≤ r2k0 sup
1≤k≤k0,C∈H

‖ 1

n − k0

n∑

t=k0+1

I(Yt−k ∈ C) − 1

n − k0

n∑

t=k0+1

EI(Yt−k ∈ C) ‖

P−→ 0.

Note that, from Assumption 1 and Remark 2, we have

sup
H∈HD

J3(H) ≤ r2k0{‖ Σ̂y − EΣ̂ ‖ + ‖ EΣ̂y − Σ ‖} P−→ 0,

and

sup
H∈HD

Ji(H)
P→ 0

for i = 2, 5. Hence

sup
H∈HD

|Φn(H) − Φ(H)| P→ 0. (3.7)

By the argmax theorem (Theorem 3.2.2 and Corollary 3.2.3 of van der Vaart and Wellner (1996)),

we have D(B̂,B0)
P−→ 0.
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For the strong consistency, if the additional condition (A.7) is satisfied, by Lemma A.2, all

the convergence results above hold almost sure, and therefore

sup
H∈HD

|Φn(H) − Φ(H)| a.s.→ 0. (3.8)

This can imply that D(B̂,B0)
a.s.→ 0. In fact, suppose by contradiction that D(B̂,B0)

a.s.−→ 0

does not hold. Then there exists a δ such that Pr{lim supn→∞ D(B̂,B0) > δ} > 0. Let H′
D =

HD ∩ {B : D(B,B0) ≥ δ}. Thus H′
D is a compact subset of HD. Note that, if (3.8) holds, then

there exists a set of sample points Ω′ satisfying Ω′ ⊂ {lim supn→∞ D(B̂,B0) > δ} and Pr(Ω′) > 0

such that, for each ω ∈ Ω′, one can find a subsequence {B̂nk
(ω)} ⊂ H′

D with B̂nk
(ω) → B ∈ H′

D.

Then, by the definition of B̂,

Φ(B) = lim
k→∞

Φnk
{B̂nk

(ω)} ≤ lim
k→∞

Φ(B0) = Φ(B0)

holds for ω ∈ Ω′ and with a positive probability. Hence, by Assumption 3, D(B,B0) = 0. But

D(B,B0) > δ > 0 because B ∈ H′
D. This is a contradiction.

In the case that {Yt} is stationary, if we make an additional assumption, we can get a result

on the rate of convergence of our estimator.

Assumption 5. There exist positive constants a and c such that Φ(B)−Φ(B0) ≥ a[D(B,B0)]c

for any d × r partial orthonormal matrix B.

Theorem 2. Suppose that the series {Yt} is strictly stationary with E{‖ Yt ‖}2p < ∞ for

some p > 2. Let B be a countable Vapnik-Chervonenkis (V-C) class∗ consisting of closed convex

sets. If Assumptions 2-4 hold and the ϕ-mixing coefficients in Assumption 2 satisfy ϕk = O(k−b)

for some b > p
p−2 . Then

sup
H∈HD

|Φn(H) − Φ(H)| = OP (n−1/2).

If, in addition, Assumption 5 also holds,

D(B̂,B0) = OP (n− 1

2c ).

Proof. Because we assume that {Yt} is stationary in this theorem, EΣ̂y = Σ, and J2(H)

and J5(H) in inequality (3.6) are equal to zero. Denote the (i, j)th element of Σ̂y and Σ by σ̂(i,j)

∗see van der Vaart and Wellner (1996)
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and σ(i,j) respectively. From the Central Limit Theorem for β−mixing sequences, we have

√
n(σ̂(i,j) − σ(i,j))

d−→ Ni,j

where Ni,j is a random variable with Gaussian distribution, i, j = 1, ..., d. Then,

‖ n1/2(Σ̂y − Σ) ‖= OP (1).

This implies that supH∈HD
n1/2J3(H) = OP (1).

But, by Theorem 1 of Arcones and Yu (1994), the process {n1/2(L
∗(i,j)
n (C) −EL

∗(i,j)
n (C), C ∈

B} indexed by C ∈ B converges weakly to a Gaussian process {g(i,j)(C), C ∈ B} which has

uniformly bounded and uniformly continuous paths with respect to the norm ‖ · ‖, where L
∗(i,j)
n (C)

denotes the (i, j)−th element of L∗
n(C). Hence, supH∈HD

n1/2J1(H) = OP (1). By the same way,

we have supH∈HD
n1/2J4(H) = OP (1).

Therefore,

sup
H∈HD

n1/2|Φn(H) − Φ(H)|

≤ sup
H∈HD

n1/2J1(H) + sup
H∈HD

n1/2J3(H) + sup
H∈HD

n1/2J4(H)

= OP (1). (3.9)

Note that, from Assumption 5, (3.9) and the definitions of B0 and B̂,

0 ≤ Φn(B0) − Φn(B̂)

= Φ(B0) − Φ(B̂) + OP (1/
√

n) ≤ −a[D(B̂,B0)]c + OP (1/
√

n).

Then,

D(B̂,B0) = OP (n− 1

2c )

must hold. Otherwise, there is a contradiction. This completes the proof of Theorem 2.

Remark 4. (i) The result of Theorem 2 could be extended to include nonstationary cases if

we can extend the results on the rate of convergence for empirical processes constructed from

stationary mixing sequences to those from nonstationary mixing sequences. This is our future

work which will be presented elsewhere.

(ii) The objective function in (2.7) can be modified to

Λn(B) = sup
1≤k≤k0,C∈B

‖ Bτ 1

n − k0

n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C)B ‖2, (3.10)

13



and under Assumption 1, define

Λ(B) = sup
1≤k≤k0,C∈B

‖ Bτ{Σk(C) − ak(C)Σ}B ‖ (3.11)

where B is a collection of closed convex sets (not necessary to be countable in this case). Then,

the estimator of B0 is
∼

B = arg min
B∈HD

Λn(B). (3.12)

If Assumptions 1-5 hold when Φ is replaced by Λ,
∼

B has the same properties as those of B̂ in

Theorem 1. But, in this case, the condition “ the collection B is a countable class of closed convex

sets” can be replaced by a weaker one “the collection B is the class of all closed convex sets”.

Similarly, the condition on the class B in Theorem 2 can be weakened to “B be a V-C class of

closed convex sets”.

4 Numerical properties

We illustrate the proposed method with both simulated and real data sets. We always set k0 = 30,

α = 5%, and the weight function C(·) ≡ 1. Let B consist of all the balls centered at the origin.

The optimisation problems involved were solved by adopting the Downhill Simplex routine from

the Numerical Recipes of Press et al. (1992).

4.1 Simulated examples

Consider model (2.1) with r = 3 factors, and d×3 matrix A with (1, 0, 0), (0, 0.5, 0.866) (0,−0.866, 0.5)

as its first 3 rows, and (0, 0, 0) as all the other (d − 3) rows. We consider 3 different set-

tings for Xt = (Xt1, Xt2, Xt3)τ , namely, two sets of GARCH(1,1) factors Xti = σtieti and

σ2
ti = αi + βiX

2
t−1,i + γiσ

2
t−1,i, where (αi, βi, γi), for i = 1, 2, 3, are

(1, 0.45, 0.45), (0.9, 0.425, 0.425), (1.1, 0.4, 0.4), (4.1)

or

(1, 0.1, 0.8), (0.9, 0.15, 0.7), (1.1, 0.2, 0.6), (4.2)
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and one mixing setting with two ARCH(2) factors and one stochastic volatility factor:

Xt1 = σt1et1, σ2
t1 = 1 + 0.6X2

t−1,1 + 0.3X2
t−2,1, (4.3)

Xt2 = σt2et2, σ2
t2 = 0.9 + 0.5X2

t−1,2 + 0.35X2
t−2,2,

Xt3 = exp(ht/2)et3, ht = 0.22 + 0.7ht−1 + ut.

We let {εti}, {eti} and {ut} be sequences of independent N(0, 1) or standardised tp-distributed

(p = 4 or 6) random variables. Note that the (unconditional) variance of Xti, for each i, remains

unchanged under the above three different settings. We set k0 = 30, the level of the likelihood

ratio tests at 5%, and the sample size n = 300, 600 or 1000. For each setting we repeat simulation

500 times.

Table 1: Relative frequency estimates of r with d = 5 and normal innovations

r̂
Factors n 0 1 2 3 4 5

GARCH(1,1) with 300 .000 .046 .266 .666 .014 .008
coefficients (4.1) 600 .000 .002 .022 .926 .032 .018

1000 .000 .000 .000 .950 .004 .001

GARCH(1,1) with 300 .272 .236 .270 .200 .022 .004
coefficients (4.2) 600 .004 .118 .312 .500 .018 .012

1000 .006 .022 .174 .778 .014 .006

Mixture (4.3) 300 .002 .030 .166 .772 .026 .004
600 .000 .001 .022 .928 .034 .014
1000 .000 .000 .000 .942 .046 .012

We conducted the simulation with d = 5 first. Table 1 lists for the relative frequency estimates

for r in the 500 replications. When sample size n increases, the relative frequency for r̂ = 3 (i.e.

the true value) also increases. Even for n = 600, the estimation is already very accurate for

GARCH(1,1) factors (4.1) and mixing factors (4.2), less so for the persistent GARCH(1,1) factors

(4.2). For n = 300, the relative frequencies for r̂ = 2 were non-negligible, indicating the tendency

of underestimating of r, although this tendency disappears when n increases to 600 or 1000.

Note that (A,Xt) in model (2.1) may be equivalently replaced by (AΓτ ,ΓXt), where Γ is any

r × r orthogonal matrix. However the linear vector space M(A) spanned by the columns of A is

uniquely determined. To measure the difference between M(A) and M(Â), we define

D(A, Â) = {|(Id − AAτ )Â|1 + |AAτ B̂|1}/d2, (4.4)
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n=1000 n=300 n=600
factors (4.3)
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Errors of estimation for factor space

Figure 1: Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified, respectively, by
(4.1) and (4.2), and mixing factors (4.3). Innovations are Gaussian and d = 5.

0.05

0.10

0.15

0.20

0.25

n=300 n=600 n=1000

Errors of estimation for factor space

Figure 2: Boxplots of D(A, Â) with GARCH(1,1) factors (4.2), Gaussian innovations,
and d = 5. The number of factors r = 3 is known.

where |A|1 denotes the sum of the absolute values of all the elements in matrix A. Note that

M(A) = M(Â) if and only if

(Id − AAτ )Â = 0 and AAτ B̂ = 0.

Figure 1 displays the boxplots of D(A, Â). The estimation was pretty accurate with GARCH
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factors (4.1) and mixing factors (4.3), especially with correctly estimated r. Note with n = 600

or 1000, those outliers (lying above the range connected by dashed lines) typically correspond

to the estimates r̂ 6= 3. The poor performance with GARCH factors (4.2) was largely due the

misestimated r. To highlight this, Figure 2 plotted the boxplots of D(A, Ã) with r = 3 given in

the estimation. It shows that even with n = 300, the estimation for the factor space is accurate

as long as we know the its dimension.

Table 2: Relative frequency estimates of r with d = 5, GARCH(1,1) factors (4.2) and
tp innovations

r̂
p n 0 1 2 3 4 5

6 300 .154 .192 .346 .240 .044 .024
600 .008 .086 .206 .584 .072 .044
1000 .000 .001 .094 .758 .102 .036

4 300 .000 .014 .074 .752 .112 .048
600 .000 .000 .000 .724 .182 .094
1000 .000 .000 .000 .706 .180 .114

0.0

0.2

0.4

0.6

0.8

n=300
p=6

n=600
p=6

n=1000
p=6

n=300
p=4

n=600
p=4

n=1000
p=4

Errors of estimation for factor space

Figure 3: Boxplots of D(A, Â) with GARCH(1,1) factors (4.2), tp innovations and d = 5.

We repeated the above experiments with tp-distributed εti and eti for p = 6 and 4. Note

E|εti|p = E|eti|p = ∞ now. The results with GARCH(1,1) factors (4.2) are reported in Table 2

and Figure 3. One striking feature is that the estimation, especially with n = 300 or 600, is
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more accurate than that for the same model but with Gaussian innovations. Furthemore, the

estimation for A becomes more accurate when n increases. However, with the very heavy tailed

distribution t4, the estimator for r may not be consistent, as the relative frequency for r̂ = 3 when

n = 1000 is smaller than that when n = 600 or 300.

Table 3: Relative frequency estimates of r with GARCH(1,1) factors, normal innova-
tions and d=10 or 20

r̂
Coefficients d n 0 1 2 3 4 5 6 ≥ 7

(4.1) 10 300 .002 .048 .226 .674 .014 .001 .004 .022
10 600 .000 .000 .022 .876 .016 .012 .022 .052
10 1000 .000 .000 .004 .876 .024 .022 .022 .052
20 300 .000 .040 .196 .626 .012 .008 .010 .138
20 600 .000 .000 .012 .808 .012 .001 .018 .149
20 1000 .000 .000 .000 .776 .024 .012 .008 .180

(4.2) 10 300 .198 .212 .280 .248 .016 .008 .014 .015
10 600 .032 .110 .292 .464 .018 .026 .012 .046
10 1000 .006 .032 .128 .726 .032 .020 .016 .040
20 300 .166 .266 .222 .244 .012 .004 .001 .107
20 600 .022 .092 .220 .472 .001 .001 .012 .180
20 1000 .006 .016 .092 .666 .018 .016 .014 .172

0.2

0.4

0.6

0.8

n=300 n=600
d=10, factors (4.1)

n=1000 n=300 n=600
d=20, factors (4.1)

n=1000 n=300 n=600
d=10, factors (4.2)

n=1000 n=300 n=600
d=20, factors (4.2)

n=1000

Errors of estimation for factor space

Figure 4: Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified in (4.1) and (4.2),
normal innovations and d = 10 or 20.

Finally we report the results with d = 10 and 20 in Table 3 and Figure 4. To save the space,
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we only report the results with the two sets GARCH(1,1) factors and Gaussian innovations.

Comparing with Table 1, the estimation of r is only marginally worse than that with d = 5.

Indeed the difference with d = 10 and 20 is not big either. Note the D-measures for different d

are not comparable; see (4.4). Nevertheless, Figure 4 shows that the estimation for A becomes

more accurate when n increases, and the estimation with the persistent factors (4.2) is less accurate

than that with (4.1).

Further experiements with with k0 = 20, 40 or 50 indicate that the procedure is robust with

respect to the values of k0 between 20 and 50. We also did some experiements with the likelihood

ratio test replaced by Ljung-Box-Piece test. While the results with GARCH(1,1) factors (4.1) and

mixing factors (4.2) are comparable with, though not as good as, Table 1, it is less satisfactory

for GARCH (1,1) factors (4.2). For example, the relative frequency for r̂ = 3 with n = 1000 is

merely 0.540.

4.2 Real data examples

Figure 5 displays the daily log-returns of the S&P 500 index, the stock prices of Cisco System

and Intel Corporation in 2 January 1997 – 31 December 1999. For this data set, n = 758

and d = 3. With k0 = 30 and α = 5%, the estimated number of factors is r̂ = 1 with

Âτ = (0.310, 0.687, 0.658). The time plots of the estimated factor Zt ≡ ÂτYt and the

two homoscedastic components B̂τYt are displayed in Figure 6. The P -value of the Gaussian-

GARCH(1,1) based likelihood ratio test for the null hypothesis of the constant conditional variance

for Zt is 0.000. The correlograms of the squared and the absolute factor are depicted in Figure 7

which indicates the existence of heteroscedasticity in Zt. The fitted GARCH(1,1) model for Zt is

σ̂2
t = 2.5874 + 0.1416Z2

t−1 + 0.6509σ̂2
t−1. (4.5)

In contrast, Figure 8 shows that there is little autocorrelation in squared or absolute components

of B̂τYt. The estimated constant covariance matrix in (2.14) is

Σ̂0 =




1.594

0.070 4.142

−1.008 −0.561 4.885




.

The overall fitted conditional variance process is as given in (2.14) with Σ̂z(t) = σ̂2
t defined in

(4.5) above.
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Figure 5: Time plots of the daily log-returns of S&P 500 index, Cisco System and Intel Coprpo-
ration stock prices

Appendix. Lemmas on Empirical Processes of Non-Stationary

Sequences

Suppose that {L∗
n(g), g ∈ G} be a stochastic process indexed by a class of real-valued functions

G. Denote Ln(g) = L∗
n(g) − EL∗

n(g). Suppose we know that

Ln(g) → 0 in probability (A.1)

for any g ∈ G. We are interested in proving a uniform convergence:

sup
f∈G

‖Ln(f)‖ → 0 in probability

as n → ∞. We will use some concepts in the theory of empirical processes. Suppose that D is a

metric on G. For a pair of functions f, g with f ≤ g and D(f, g) ≤ ε, [f, g] := {h ∈ G : f ≤ h ≤ g}
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Figure 6: Time plots of the estimated factor and two homoscedastic compoments for the S&P
500, Cisco and Intel data

is called an ε-bracket, and

NB(ε,G, D) = min{k ≥ 0 : G ⊂
k⋃

j=1

Bj , B1, . . . , Bk are ε− brackets}

is called bracketing numbers of G with respect to the metric D. In the other words, NB(ε,G, D)

denotes the minimal numbers of ε−brackets necessary to cover G. Assume that

NB(ε,G, D) < ∞, ∀ε > 0, (A.2)

there exist some C, α > 0 such that

‖EL∗
n(g1) − EL∗

n(g2)‖ ≤ {D(g1, g2)}α, ∀g1, g2 ∈ G, (A.3)

and for each n, L∗
n(g) is nondecreasing in g:

g1 ≤ g2 ⇒ L∗
n(g1) ≤ L∗

n(g2). (A.4)
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Figure 8: The correlograms of squared and absulote homoscedastic compoments for the the S&P
500, Cisco and Intel data

Lemma A.1 Suppose that Conditions (A.1)-(A.4) hold. Then, as n → ∞,

sup
g∈G

‖Ln(g)‖ → 0 in probability.

22



Proof. The proof is a straightforward generalization of arguments laid out in Pollard (1984).

For a given ε > 0, let [l1, u1], . . . , [lN , uN ] denote the N = NB(ε,G, D) brackets which cover G.

For a given g ∈ G, let l(g) ∈ {l1, . . . , lN} and u(g) ∈ {u1, . . . , uN} be such that l(g) ≤ g ≤ u(g).

Using Conditions (A.3) and (A.4), we have

 Ln(g) = L∗
n(g) − EL∗

n(g) ≤ L∗
n(u(g)) − EL∗

n(g)

≤ L∗
n(u(g)) − EL∗

n(u(g)) + [EL∗
n(u(g)) − EL∗

n(g)]

≤ L∗
n(u(g)) − EL∗

n(u(g)) + Cεα

= Ln(u(g)) + Cεα.

Similarly, we obtain the lower estimate

 Ln(g) ≥ L∗
n(l(g)) − EL∗

n(l(g)) − Cεα = Ln(l(g)) − Cεα.

Consequently, for every given ε, we have

sup
g∈G

‖Ln(g)‖ ≤ max{ max
j=1,...,N

‖Ln(lj)‖, max
j=1,...,N

‖Ln(uj)‖} + Cεα.

Since N is a fixed finite number for a given ε by (A.1), by using (A.2), it follows that the right

hand side in the above inequality is less than 2Cεα when n is large enough.

Remark A.1 If the convergence in (A.1) is almost sure, then the convergence in the result

of Lemma A.1 is also almost sure.

Remark A.2 If Condition (A.4) is changed to “for each n, L∗
n(g) is nonincreasing in g”, the

result of Lemma A.1 still holds.

Lemma A.2 Let {Yt} be a time series and C be the class of (closed) convex sets in Rd.

Under Assumption 2 and Assumption 4, in probability,

1

n − k0

n∑

t=k0+1

{YtY
τ
t I(Yt−k ∈ C) − E[YtY

τ
t I(Yt−k ∈ C)]} → 0, (A.5)

1

n − k0

n∑

t=k0+1

{I(Yt−k ∈ C) − EI(Yt−k ∈ C)]} → 0 (A.6)

uniformly in C ∈ C. Furthermore, if the mixing coefficients ϕ(m) in Assumption 2 satisfy

ϕ(m) =





O(m− b

2b−2
−δ), if 1 < b < 2,

O(m− 2

b
−δ), if b ≥ 2,

(A.7)
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where δ > 0 is a constant, then the convergence in (A.5) and (A.6) is also almost sure.

Proof. We only prove (A.5). (A.6) can be proved in the same way.

Define a process L∗
n(C) as in (3.5) in the proof of Theorem 1, i.e.

L∗
n(C) =

1

n − k0

n∑

t=k0+1

(YtY
τ
t )I(Yt−k ∈ C).

Define

L±
n (C) =

1

n − k0

n∑

t=k0+1

(YtY
τ
t )±I(Yt−k ∈ C).

Then, L∗
n(C) = L+

n (C)−L−
n (C). Here, we use the conventional denotation: x+ denotes max{x, 0}

and x− denotes max{0,−x} = −min{0, x} for a number x, and M± is defined in componentwise

way for a matrix M . Note that {L∗
n(C), C ∈ C} is a process indexed by a class of indicator

functions. We will apply Lemma A.1 to L+
n (C) and L−

n (C) respectively by checking conditions

(A.1)-(A.4) one by one.

Obviously, (A.4) holds for L±
n (C).

To see that condition (A.3) holds, observing that with p, q > 0 such that 1/p + 1/q = 1 and

p < 1 + δ/2 (with δ from Assumption 2), we have the following componentwise inequalities

|EL±(i,j)
n (C1) − EL±(i,j)

n (C2)| = | 1

n − k0

n∑

t=k0+1

E|(YtY
τ
t )±(i,j)(I(Yt−k ∈ C1) − I(Yt−k ∈ C2)|

≤ 1

n − k0

n∑

t=k0+1

E|(YtY
τ
t )±(i,j)(I(Yt−k ∈ C1△C2)|

≤ 1

n − k0

n∑

t=k0+1

(
E|(YtY

τ
t |p)(i,j)

)1/p(
EI(Yt−k ∈ C1△C2)

)1/q

≤ c
(
F (C1△C2)

)1/q

where L
±(i,j)
n denotes the (i, j)th element of L±

n , and c denotes a constant which may be different

at different line. That is, (A.3) holds with α = 1/q.

For (A.2), see Polonik (1997).

(A.1) follows from the law of large number for ϕ−mixing processes; see Theorem 8.1.1 of Lin

and Lu (1997).

Therefore, by Lemma A.1 and Remark A.2, we have

sup
C∈C

‖L∗
n(C) − EL∗

n(C)‖ ≤ sup
C∈C

‖L+
n (C) − EL+

n (C)‖ + sup
C∈C

‖L−
n (C) − EL−

n (C)‖ → 0

in probability.
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The proof of almost sure convergence part follows immediately from Lemma A.1 by noticing

that the almost sure version of condition (A.1) holds under additional assumption (A.7) by the

result of Chen and Wu (1989).
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Hallin, M. and Lǐska, R. (2007). Determining the number of factors in the general dynamic
factor model. Journal of the American Statistical Association, 102, 603-617.

Lin, W.-L. (1992). Alternative estimators for factor GARCH models – a Monte Carlo comparison.
Journal of Applied Econometrics, 7, 259-279.

Lin, Z. Y. and Lu, C. R. (1996). Limit Theory for Mixing Dependent Random Variables. Science
Press/Kluwer Academic Publishers.

Magnus, J.R. and Neudecker, H. (1999). Matrix Differential Calculus with Applications in
Statistics and Econometrics. (Revised edition) Wiley, New York.

Pan, J. and Yao, Q. (2008). Modelling multiple time series via common factors. Biometrika, 95,
365-379.

Peng, L. and Yao, Q. (2003). Least absolute deviations estimation for ARCH and GARCH
models. Biometrika, 90, 967-975.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical Recipes
in C (2nd edition). Cambridge University Press, Cambridge.

Polonik, W. (1997). Minimum volume sets and generalized quantile processes. Stochastic Pro-
cesses and Their Applications. 69, 1-24.

Sargent, T. J. and Sims, C. A. (1977). Business cycle modelling without pretending to have
too much a priori economic theory. In C. A. Sims (ed.), New Methods in Business Cycle
Research, pp. 45-109. Minneapolis: Federal Reserve Bank of Minneapolis.

Tsay, R. (2001). Analysis of Financial Time Series. Wiley, New York.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes.
Springer, New York.

Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing sequences. Ann.
Probab. 22, 94-116.

26


