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1. Introduction

It is well known that deterministic chaos is characterized by the sensitivity to
initial conditions. However, it is increasingly recognized that a purely deterministic
system rarely exists in reality because stochastic noise is ubiquitous; even the com-
puter generation of time series using a purely deterministic chaotic map cannot be
free from rounding errors. Accordingly, it is more pertinent to replace the dynamics
by the transition probabilities from states to states. Indeed, Chan and Tong (1994)
has shown how a deterministic dynamical system which admits a compact attractor
can, in a noisy environment, give rise to an ergodic stochastic system. A convenient
framework for this stochastic system is the Markov chain over general state space.
As a result, nonlinear autoregressive models emerge quite naturally as a realization
of this framework for the study of noisy chaos. Within this considerably enlarged
stochastic framework, a new notion of sensitivity to initial conditions has to be de-
veloped because the distribution of the states should now be more relevant than the
positions of the states (in a single realization). This generalized notion should ideally
have points of contact with conventional statistical inference, because it is intuitively
clear that if we treat the initial value as an unknown parameter, the more information
the state variable at a later time point has about the parameter the more sensitively
the associated conditional distribution depends on the initial value.

Point predictions are only the first step in any serious study of the subject. The
complete picture can only be provided if the predictive distribution is available. It
is therefore of substantial practical importance to estimate the interval predictors
and the predictive distribution from the observed series and, if possible, to provide



indicators of their sensitivity to initial conditions. Being different from the linear
case, the nonlinear prediction has three interesting features: (i) the dependence of
the current position in the state space; (ii) the sensitivity to the current state; and
(iii) the non-monotonicity of the accuracy in multi-step prediction (cf. Yao and Tong
1994).

The rest of the paper is set up as follows. In Section 2, we study chaos in a
stochastic environment, discussing noisy chaos and noise amplification. Section 3
develops nonlinear prediction with a view to the estimation, based on the observed
time series, of the predictive distribution and measures of initial-value sensitivities.
We illustrate our methodology with both simulated data and real data in Section 4.
Some technical conditions are relegated to the appendix.

2. Stochastic Dynamic System

2.1. Noisy Chaos

It is impossible for us to study nonlinear prediction without touching on stochas-
tic chaotic systems, or simply noisy chaos. There has been no generally accepted
definition of chaos in a stochastic system (or even in a deterministic system for that
matter), although the term noisy chaos has appeared in the literature from time to
time. It is often implicitly assumed that by a stochastic chaotic system is meant a
system with a (deterministically) chaotic skeleton (cf. Tong 1990, and others). In-
tuitively, this assumption does make sense when the noise is additive and the ratio
of the noise to the signal in the system is (very) small. However, it does not apply
to non-additive noise systems. Further, it is not always proper even for an additive
noise system, because in a stochastic system, the dynamic noise will, by permeating
through the system dynamics, interact with the system signal throughout the time
evolution. Therefore, a proper description must take account of the effect of the ran-
dom noise. An extreme case is that if the additive noise tends to be overwhelming,
the system would behave like a noise process no matter what the skeleton is.

A discrete-time stochastic dynamical system can be describeed by the equation

Xy = F(Xi-1, &), (1)

for t > 1, where X, denotes a state vector in R¢, F' is a real vector-valued function,
and {e;} is a noise process which satisfies the equality E(e;|Xo,..., Xy 1) = 0. If the
noise is additive, (1) can be written (by an abuse of notation) as follows

Xy = F(Xy—1) + e, (2)

To understand the difficulty in giving a general definition of noisy chaos, let us start
with deterministic chaos first. It is almost impossible to give a precise mathematical
definition of deterministic chaos which encapsulates all that the term implies in the
diverse literature. However, it is widely accepted that the sensitive dependence on



initial conditions is a typical feature of a (deterministic) chaotic system, and which
can be characteristically described in terms of the well-known Lyapunov exponents
(cf. Eckmann and Ruelle 1985, Chatterjee and Yilmaz 1992, Berliner 1992, and the
references therein). We do not attempt to give a rigorous mathematical definition of
chaos for a stochastic system. Instead, as a working definition, we say that a stochastic
dynamic system is chaotic if the (conditional) distribution of the state variable of the
system 1s sensitive to its initial condition.

The above description is very rudimentary, and it needs further careful exposi-
tion. Superficially, it looks similar to the deterministic case. However, in a stochastic
system, we would expect that the conditional distribution of X, given X, = x can,
under certain conditions, depend sensitively on x for some small or moderate rather
than large m because of the accumulation of noise through the time evolution. It
would seem unlikely that after a long time, the stochastic system still has a strong
memory of its initial conditions. This suggests that asymptotics are unlikely to yield a
practically useful characteristic exponent, unless we assume that the different trajec-
tories have the same realization of random noise. Under this assumption, Lyapunov
exponents could be defined in a way very much similar to those in deterministic sys-
tems, which were initially proposed by Crutchfield et al. (1982) and Kifer (1986).
(Also see Nychka et al. 1992). Obviously, the assumption of the same realization of
random noise in different trajectories has an innate drawback in that in practice such
trajectories rarely exist.

One way to manifest the sensitivity of the conditional distribution is to use the
Kullback-Leibler information. To simplify our discussion, we suppose the system
variables are bounded. Let g,,(y|z) denote the conditional density of X, given X, =
x. We suppose that g,,(y|z) is smooth enough in z. For two nearby initial points z,
r+6 € RY, after time m > 1, the divergence of the conditional distribution of X,
is defined as

Ky (r;0) = /{gm(y\x +6) = gm(y|z) }log{gm(ylz + 6)/gm(y|x) }dy. (3)

Note that it is well known that the Kullback-Leibler information is invariant under
one-one differentiable co-ordinate transformations. Therefore, if Z; = ¢(X;) for all ¢,
and ¢(.) is a one-one differentiable transformation on R%, then

Kin(2;0) = K7, (¢(), ¢(x + 0) — ¢(x)),

where K} (.;.) denotes the divergence of conditonal distribution of Z,,, which is de-
fined in the same way as in (3). (Cf. Theorem 2.4.1 of Kullback 1967.)
It is known that for small §, K,,(x;6) has the approximation

K (w;6) = 0" In(2)3 + o([|6]]"), (4)

where

In(@) = [ gm(y]2)3h(v12) /gm(yl2)dy. (5)



and g, (y|z) denotes dg,,(y|z)/dz, §. (y|x) denotes its transpose (cf. §2.6 of Kullback
1967). If we treat the initial value = as a parameter vector of the distribution, I,,(x)
is the Fisher’s information matrix, which represents the information on initial value
Xo = x contained in X,,. Roughly speaking, the more information X,, brings, the
more sensitively the distribution depends on the initial condition. The converse is
also true. Fan, Yao and Tong (1993) has given another measure of sensitivity in the
form of an Ly norm. In theory, there is no difficulty in adopting any norm to measure
the distance between g,,(y|z + §) and g,,(y|x). However, in practice, interpretability
may influence the specific choice.

Besides the divergence of distributions, it is also interesting to look at the diver-
gence in some summarizing characteristics, for example the (conditional) means. For
r € RYand m > 1, let Fy,(z) = E(X,,|Xo = z). Then for § € R4,

Fn(2 4 0) = Fu(2) = F(2)3 + o(]13]]), (6)

where F,(z) denotes dF,,(x)/dz”. For the system with additive noise, F}(z) = F(z),
and it follows from (2) that

Fou(z) = B{F(Xu_1)|Xo = 0} = E{F(F(Xp_s) + em_1)| Xo = 2}

= E{F(...(F(z) +e1)+ ... +ep1)| Xo=2}

By the chain rule of matrix differential, F},(z) can be expressed as

Fu(z) = EY ﬁ F(Xe) | Xo = 2}, (7)

Roughly speaking, assuming that all the factors on the RHS of (7) are of comparable
size, it seems plausible that F,,(z) grows (or decays) exponentially with m. Let 12 (z)
denote the largest eigenvalue of {Fy,(z)}! F,,,(x). It follows from (6) that

[ Fm (2 + 6) = Fin(2)|] < |vm(2)] [[6]] + o([[6]]),

which indicates that the conditional expectation Fy,(z) depends on z sensitively when
|um ()| is large. Since, in practice, the observations will almost certainly be subject to
measurement or rounding errors, it seems necessary to take account of this divergence
in m-step prediction. However, in the context of prediction, the task is usually to
predict one component of X, instead of the whole vector X;. Hence, the above
approximation is rather rough. Let Y; denote the first component of X;. It follows
from (2) that
Y, = f(Xio1) + e,

where f(-), and ¢, denote respectively the first component of F(-) and the first com-
ponent of e;. For m > 1, and z € R% let f,(z) = E(Y,|X, = z). Obviously,
fi(z) = f(x). Then from (6), we have

fm(@ +8) = fn(x) = 6" An(2) + oIl 0 ]]), (8)



where A\, (z) = dfy,(x)/dx. We call A, (.) the m-step Lyapunov-like index, or simply
the m-LI (Yao and Tong 1994). When d = 1,

m

Mne) = vm(z) = BT 3 f(Xi2) | Xo =) = B ﬁ M(Xe) | Xo =g}, (9)

We will see in the Section 3 that the m-LI plays an important role in the pointwise
prediction.

So far we have derived some indices which describe the sensitive dependence of
the conditional distributions on the initial conditions. However, this falls short of a
mathematical definition of noisy chaos. The essential barrier lies with the fact that
the ‘clear’ cutoff between deterministic chaotic systems and deterministic non-chaotic
systems becomes vague after stochastic noise comes into play in the systems. To see
this, let us consider the following two models

Model I: Y, =0.230Y;_1(16 — Y;_1) + 0.4¢; (10)
Model IT: Y, =0.222Y; 1(16 — Y; 1) + 0.4e,

where {¢;} is a sequence of independent random variables with the standard normal
distribution truncated in the interval [—12, 12]. It is known that the skeleton of
Model I is chaotic (cf. Hall and Wolff 1993, for example). However the skeleton of
Model II is not chaotic, but is a limit cycle with period 8. The scatter plots of 3000
data points generated from each of the above models are displayed in Figures 1la and
1b, which show that the difference between these two models is more in quantity than
in quality. The random noise masks the distinction in the structures of the skeletons.

2.2. Noise Amplification

Another intersting feature of a nonlinear system is noise amplification. We mea-
sure the amplification of noise by comparing the conditional variance of the system
variables {X;} (given the initial conditions X,) with the variance of the innovations
{e:}. We will see that the amplification of noise varies with the initial values, and is
not necessarily monotonic in time evolution. In fact, the sensitive dependence on the
initial values and the noise amplification are related to each other, and both of them
are dictated by some functions of the derivatives of F'(.). In this sense, we say that
a small noise is expected to be amplified rapidly through the dynamics if the system
is chaotic.

Deissler and Farmer (1991) studied the noise amplification in a different way.
They considered the distance between the state variables in a purely deterministic
system and the counterparts in the system perturbed by additive system noise. This
approach seems improper in the statistical context, because the underlying determin-
istic skeleton is unknown.

To highlight how nonlinear dynamics amplify noise without going through too
much technical detail, we restrict our discussion here to the one-dimensional system



Figure 1: The scatter plots of Y, against Y; for (a) Model I; (b) Model II.



with additive noise. Suppose that the process begins at the initial value Yy = x € R,
and for t > 1,
Y= f(Yi-1) + &,

where {€;,¢ > 1} is a noise process with mean value 0 and variance 0. Suppose
that ¢, is distributed on a bounded set which is independent of ¢. Then for o2, (z) =
Var(Y;,|Yo = z), it can be proved that as gy — 0,

0 (%) = 05 pm () (1 + 0(1)), (11)
where

(@) = 14+ 3 { T f[f"“’(w)]} | (12)

i=1 | k=j

(Cf. Yao and Tong 1994.) It is easy to see that if the absolute value of f(z) is greater
than 1 for a large range of values of z, u,(z) can be very large for moderate (and
even small) m. The rapid increase of o2 (x) with respect to m is a manifestation of
noise amplification. On the other hand, (12) implies that

pmi1 (%) = 1+ o (2) {F[F ()]},

Thus, fime1(z) < pom(z) if {f[f™ (2)]}2 < 1 = 1/pm(z). By (11), it is possible that
for such = and m, o2, ,(z) < 0Z(z). This suggests that from the same initial value,
the error of an (m+ 1)-step ahead prediction could be smaller than that of an m-step

ahead prediction in some cases (cf. Tong 1990, Yao and Tong 1994).

3. Nonlinear Prediction

By using the ideas developed in Section 2, we study the prediction of nonlinear
time series. From (11), we expect that the ‘error bounds’ of the prediction will vary
with the initial value. This is a typical feature of nonlinear (but not necessarily
chaotic) model. If the model is stochastically chaotic, (12) indicates that a small
noise could be amplified quickly when the system starts at some initial values, which
means that the m-step prediction based on these initial values could be unreliable
even for small m. Further, when the system is chaotic, a small change in the initial
value z would lead to considerable divergence in the states at time m (cf. (8) and
(9)). In this case, it is worth our while to take account of the error in prediction
because there is always some measurement error in the initial value.

Since we do not assume any specific form of the model, we choose as our technical
tool the nonparametric kernel regression method based on locally linear fit (or simply,
locally linear regression, cf. Fan 1992) to estimate both the prediction functions and
their derivatives (i. e. the Lyapunov-like indices) simultaneously. However, it does
not mean that our results only hold for these particular estimates. In specific practical
applications, parametric (nonlinear) models would be more appealing provided that
they could be properly justified. Our results can be easily extended to these cases.



3.1. Model

Suppose that {Y;, —oo < t < oo} is a one-dimensional strictly stationary time
series, which has the property that given {Y;, ¢ < t}, the conditional distribution
of Y;;, depends on {Y;, i < ¢} only through X;, where X; = (V;,Y;_1,...,Yiq11)”.
Given the observations {Y;, —d + 1 <t < n}, we shall predict the random variables
Yoim for m =1,2,.... In fact, the time series model can be considered a special case
of a stochastic dynamical system. To see this, let f(z) = E(Y1|Xo = x). Then Y; can
be expressed as

Y, = f(Xim1) + e, (13)
where ¢, = Y; — f(X;_1). Define FI(X;_1) = (f(Xi21),Ys1,...,Yiea1)?, e =
(€:,0,...,0)T. Then equation (2) holds. In what follows, the time series model is

said to be chaotic if the corresponding stochastic dynamic system is chaotic.
To study the m-step prediction, we define

fm(z) = E(Yn | Xo=1),

for z € R? and m > 1. Tt follows from (13) that for all ¢, Y;,,, can be expressed as

Yiem = fm(Xt) + egTBm

with
E{ et+m | Y, <t} = a.s. (14)

3.2. Point Predictors

It is easy to see from (14) that the (theoretical) least squares predictor of Y, .,
based on {Y;,t < n} is f,(X,), which only depends on the latest vector X, =
(Y, ..., Yu_4:1)". In what follows, an estimator of the function f,, () is constructed
by using the locally linear regression method, which also produces an estimator of
the m-LI \,,,(z) = df.,(z)/dz. The idea of the locally linear regression is very simple:
for a small shift § € R?, the equality (8) holds. Hence, based on the observations
(Y 4,Y 441,...,Ys) , the estimation problem can be described as a weighted least-
squares problem, namely finding f,,, and \,, to minimize

3 {Yorw = fule) = M) (%o - 2)) K () (15)

where K(-) is a probability density function on R¢, and h = h(n) is a bandwidth.
Simple calculation yields

Jm(@) = {To(e) — ST (2) S5 (@) T (@)}/{So(2) — ST (2) Sy (2)Su(x) + h*},  (16)
Am(@) = {S2(2) — S1(2)ST (2)/So(x)} {51 (2)To()/So(w) — Ta(2)}, (17)



n—m t=1 n—m t=1
1 " Xi—=x
Sua) = 2 - Xt)K( - ) (@ — X)7, (18)
and
1 "L Xi—zx 1 "L X — .’1?)
b() n—m t:zl H ( h ) (@) n—m = (=X ¥t ( h

(19)
For technical reasons, we add h? into the denominator in (16), which has little
effect for large n.

Theorem 1. Assume that conditions (Al) — (A7) hold for some m > 1, which are
listed in Appendix.
(i) For z € {p(z) > 0} and § € R¢

B B{[Voim — F(O) X = 248} = (4 0) + (T An (@)} 4 Ry 5., (20)
where R, = o(|| § [|?) as || § [|[= 0, Am(z) = dfim(x)/dz™ is the m-LI, and o2 (z) =
Var(Y,,| Xo = ).

(ii) For z € {p(z) > 0}, as n — 00, A, (z) converges to A, (z) in probability.

For the proof, we can easily adapt the arguments in Yao and Tong (1994) which
were based on different assumptions on the mixing condition. The first part of The-
orem 1 shows that the mean-squared error of the predictor f,, at the initial value
x, which has a small shift from the true but unobservable value X, = = + 9, can
be decomposed into two parts: (i) the conditional variance; (ii) the error due to the
small shift at the initial value which is related to the m-LI. When § = 0, i. e. X, is
fully known, equation (20) becomes

lim B{ Yo = fn@) | Xu =2} = 0h(0) as,

which shows that the accuracy of the prediction in a nonlinear (but not necessarily
chaotic) model does depend on the initial value x, which is strikingly different from
the case of a linear prediction. When the measurement error § is small but not zero,
such as rounding errors in measurement etc., usually the right hand side of (20) is
dominated by the conditional variance o2, (x + ) = o2,(z) + O(|| 6 ||). However, for
a chaotic system, the m-LI A, (z) can be very large for some values of z (cf. (7)
and (8)), in which case the term {67 \,,(z)}? can no longer be ignored. In this sense,
we say that the m-step prediction is sensitive to the initial values when the model is
chaotic. In fact, the asymptotic decomposition (20) dose not depend on the special



choice of f,. It holds for any estimator which converges to f,, in mean square. Qur
preference for the locally linear regression stems mainly from the fact that it offers
a natural and convenient estimator for \,, by virtue of the weighted least-squares
formulation around (15).

In (13), the noise term ¢, is not necessarily homogeneous as indicated in the second
expression in (9). However, if it is, 0?(x) = o? is a constant. In this case, the variation
of the asymptotic mean-squared prediction error is dictated by A;(z).

Theorem 1 (i) says that ), is a weakly consistent estimator of the m-LI A,,. In
fact, the estimate of A\, can be improved by using the locally quadratic regression
instead of the locally linear regression (cf. Fan et. al. 1993). We use the latter for
the simplicity in calculation.

To use (20) in practice, we need to estimate the conditional variance o2 (). In
principle, we can use the locally linear regression method to estimate the second
conditional moment E(Y2| X, = z) by

Gn(2) = {Vo(@) — ST (@)Sy " (2)Va(2)}/{So(x) — ST ()55 (2) S1 ()},

where Si(-), k = 0,1,2, are as given in (18), and Vi(-), £ = 0,1, are defined in the
same way as Ty (-) with Y2 replacing Vi, (cf. (19)). Now, we get an estimator for

2
oz,

G (@) = () = [fu (@), (21)

where fm is given in (16). However, any smooth regression method would suggest
using different bandwidths for the first and second conditional moments. In practice,
for the sake of convenience, we tend to adopt the same bandwidth whilst bearing in
mind the possibility of misleading results sometimes (cf. Yao and Tong 1994). Note
that the positivity of 62 () cannot always be guaranteed even if the same bandwidth
is used in estimating the first and second conditional moments.

The discussion in Section 2.2 offers us a tentative way to estimate a ‘profile’ of
02 (r) when the noise terms are small. In the case d = 1, it is easy to see from (11)
that the variation of o,,(z) is dominated by the variation of the functions p,,(z).
Equation (12) suggests the following estimator for fi,,,

m

fm(z) =1 —i—i { k:_ ML fi(@)] } ;

where f, and \; are given in (16) and (17). Simulations show that this estimator is
quite good in small-noise experiments (cf. Yao and Tong 1994).

3.3. Interval Predictors

In a stochastic system, an interval predictor is much more relevant than a point
predictor, especially in the case of a relatively large noise. A natural way to construct



a predictive interval is to estimate the conditional percentiles of Y,, given X,. Specif-
ically, for o € [0, 1], the 100a-th conditional percentiles of Y;, given Xo = z € R% is
defined as

€am(T) = arg min ;) <o E{R,(Y,,—a) | Xo=1z},

where the loss function

Raly) = { S v (22)

It is well known that the relation o = P{Y}, < &,.,(z)|Xo = z} holds. Therefore,
given {Y;, t <n}, Y will be in the interval [£4/2m(Xn), §1—a/2,m(Xn)] With prob-
ability 1 — . In fact, the conditional distribution of Y,,,, given X, is determined by
the values of &,y (Xy) for 0 < a < 1.

Similar to Section 3.2, we use the locally linear regression to estimate &, (.) as

well as its derivative fam() € R®. More precisely, we use the estimators éam(x) =a

and éa,m(x) = b, by setting (@, b) as the minimizer of the function (with respect to a
and b respectively)

Xt—$>

- (23

S Ro{Yipm — a — b1 (X, — 2)} K (
t=1
where K(.) is a probability density function on R¢, and h = h(n) is a bandwidth.

Unlike (15), (23) does not have an explicit solution for (@, b). Moreover, since R, (y)
is not differentiable at y = 0, either a smooth approximation of R,(.) or a more
complicated software development seems necessary in order to compute the estimates
numerically (cf. Bloomfield and Steiger 1983).

An alternative approach is to change the loss function (22) to a quadratic function

— 2 0
aw-{ L sy

for w € [0, 1], the 100 w-th conditional expectile of Y;, is defined as
Tum(T) = arg min ;o E{Q.Yn—a)| Xo=2x},

(cf. Neway and Powell 1987). Obviously, in the case w = %, this definition reduces
to the conditional mean E(Y|X = z). Since @Q,(.) has a continuous first derivative,
T.m(x) satisfies the equation

E{L,(Yy — Tum(z)) | Xo =2} =0,
where

@ ={ 57" 15D (24



Consequently, we have

W= E{ |Ym - Tw,m(x)h Y, < Tw,m(x) | Xo=uw }
E{ ‘Ym—Tw,m(x” ‘XO:J;} ’

(25)

where E{X; A} denotes E{XI4}, and I4 is the indicator function of the set A.
Notice that for &, ,,(.), we can rewrite the relation

E{L Yy <&am(z) [ Xo==}
o= .

(26)

Comparing the above two expressions, we can see that given X, = x, the percentile
€am () specifies the position below which 100a% of the (probability) mass of Y,
lies; while the expectile 7, ,,(z) determines, again given X, = z, the point such that
100w% of the mean absolute distance between it and Y, comes from the mass below
it. Based on this interpretation, 7, ,,(z) can also be used to construct a predictive
interval: given {Y;, ¢ < n}, predict Y7, to lie in the interval [7,,/2.m(X7n), Ti—w/2,m(X0n)]
with 100(1 — w)% ‘coverage’.
To estimate 7, ,,(.), we minimize the function

n_ Xi—=x
wAYiem —a— b1 (X, — )} K [ & ,
S Qufl¥im — o~ V(X -0} K (Z4)

and define the estimators 7., ,, () = @, T m(2) = b. It is easy to see that {7, m (), Twm(z)}
satisfies the following equation

I L Yism = Fuom (@) — (X — 2)T 7 (2) } K (252) =0,
?:_lm(Xt - m)Lw{Y;t+m - 7ﬁw,m(iﬁ) - (Xt - CU)TTw’m(.Z')}K (%) =0.

Here, L, (.) is the piecewise linear function defined by (24). Based on this relation,
it is easy to construct a fast iterative algorithm to computing {7, ,.(2), Twm(z)} (cf.
Yao and Tong 1992). Although a predictive interval based on conditional expectiles
is convenient to compute, it does not have the conventional probability interpretation
in general. However, if we think that the conditional expectation is a good point pre-
dictor, [7.,/2,m(Xn), Ti—w/2,m(Xn)] could be considered a reasonable interval predictor
extended from the conditional expectation. Yao and Tong (1992) has pointed out
that, in a special case, the above asymmetric least squares approach can be used to
estimate conditional percentiles directly.

Theorem 2. Assume that conditions (A3) — (A8) listed in Appendix hold for some
m > 1.
(i) For z € {p(z) > 0},

V nhd{éa,m(l“) - é-a,m(x) - h2:u’1} _d) N(O’ 0-%)’



VIR (€ (2) = Eaun(z) = iz} % N(0,52),
where

% /uuT{fam(a:)uK(u) du + o(1),

M1 —Uotr{gam( )} + 0(1)’ Ha = 20'0

a(l —a) fuu” K?(u)du
P(2)05[gm (Eam(2)[2)]?

o2 = a(l —a) [ K*(u)du
L p(@) g (Eam(2) )]
(ii) For x € {p(z) > 0},

22:

V nhd{fw,m(@ - 7_w,m(x) - h2N3} i N(O, 032,);
Vhtt2 {7, 0 (x) = T m () — hiig} 5 N(0,5y4),

where
1 1
M3 = §0§tr{7':w,m($)} + o(1), P = 207 /UuTTwm(x)“K(“) du + o(1),
s K2(u)duVar{Qw(Ym — Tum(2))|Xo = z}
0-3 — )
p(z)y?
fuuTK2(u)duVar{Qw(Ym — Tum(2))| Xo = =}
E4 = 2 2 b
p(x)aofy

and 7 = 20P{Yin < T () Xo = 2} +2(1 — 0) P{Yin > 7o ()| Xo = ).

Using the convexity lemma (cf. Pollard 1991), Yao and Tong (1992) proved The-
orem 2 (ii) in the special case d = 1. The multidimensional case is technically more
involved, but contains no fundamentally new ideas for the current version. Theorem
2 (i) can be proved in a similar way (also see Fan, Hu and Truong 1992).

Theorem 2 gives the asymptotic normality of the the estimators for the condi-
tional percentiles, expectiles and their derivatives. Notice that 71/om(z) = fm(x) and

T10,m(T) = Am(2). Therefore, Theorem 2 (ii) also includes the asymptotic normality
of the point estimators as a special case. As shown in the theorem, the ‘asymptotic
bias’ is of the order of h? for the estimators §am and 7, ., and order of h for the
estimators of their derivatives; they come from the error in the local approximation
of the underlying curve by a linear function. A locally quadratic fit will improve the
estimation for the derivatives (cf. Fan et. al. 1993). However, it creates further
complications in practical implementation.
We use the following two kinds of intervals to predict Y, .., from {Y}, t < n}

[ga/2,m(Xn): gl—a/Q,m(Xn)]’ (27)

[f-W/Q,m(Xn): 7A—17w/2,m(Xn)]- (28)



The interval (27) is based on the conditional percentiles, which has the conventional
probability interpretation. The interval (28) does not have any probability meaning.
Relations (25) and (26) show that the interval (28) is constructed in the same way as
(27) except that we use the mean distance instead of the probability mass.

From Theorem 1, we have learned that in nonlinear prediction, we should take
account of two kinds of error: the error caused by the stochastic noise, which varies
over the state space, and the error caused by a small shift in the initial value. In the
context of interval prediction, the first kind of error can be tentatively represented by
the width of the interval. To monitor the second kind of error, i.e. the sensitivity of
the predictive intervals, we can use the estimates of the derivatives of the conditional
percentiles or expectiles. The estimates presented in the next subsection also offer
measures for the sensitivity.

3.4. Estimates of I,(x)

To estimate the Fisher information I,,(x) as given in (5), we use the method pro-
posed by Fan, Yao and Tong (1993). For simplicity, let us discuss the first order case,
i.e. d =1, noting that the generalisation to the higher order cases is straightforward.

Notice that )
dr/gm(y|x
Ry L)
dz
We first construct the estimators for 1/g.,(y|z) and its derivative first. Let ¢, (z,y)

denote \/gm (y|x).
For given bandwidths h; and hs, let

Cn (X3, Ys) = #{(X4, Y2),1 <t < ¢ |[Xy — Xi[| < hiand Vi — Yiem| < ho},

Cn(Xi) =#{X:, 1 <t <, : || Xy — Xil| < i},
for 1 <4 <n. Then

Zy = /Cun( X4, Y) [{Cm(X,) ho}

is a natural estimate of ¢, (z,y) at (z,y) = (X, Y;). Fitting it into the context of
locally linear regression, we estimate ¢, (z,y) and its derivative with respect to z,
denoted by ¢(z,y), by using §,(z,y) = & and c}m(a:,y) = b, where (a, I;) are the
minimizer of the function

n-m Xi—z V-
}:{Zt—a—bT(Xt—:r)}QK( t= T 1 y),
t=1 hl h2

K being a probability density function on R%*!. Consequently, we estimate I,,(z) by

In(@) = 4 [{d(2, )} dy.



For further discussion of this estimation, we refer to Fan, Yao and Tong (1993).

4. Examples

We have shown, via asymptotics, that the performance of nonlinear prediction is
influenced by the initial values. In this section, we use two simulated models and two
real data sets to illustrate the finite-sample behaviour. We use Gaussian kernel in our
estimation.

4.1. Logistic Map

We begin with the simple one-dimensional model (10). In fact, its skeleton is
a transformed logistic map with the coefficient 3.68(=16 x 0.23). We adopt the
transformation in order to enlarge the dynamic range of the model. A sample of 1200
is generated from model (10). Note that o%(x) = 0.16 (also cf. Fig. 1(a)); therefore
the one-step prediction is uniformly good for different initial values. Hence, the case is
not reported here. The scatter plots of Y;,,,, for m = 2, 3,4, against Y; are displayed
in Fig. 2, which show obvious change of the variability of Y;,,, with respect to the
different values of Y;. For example, in the case m = 3, the variability of Y;,,, is at
its largest when Y; is around 8, and at its smallest when Y; is about 5.6 and 10.4 (see
Fig. 2(b)). We use the first 1000 observations to estimate the unknown functions.
The last 200 observations are used to demonstrate the quality of prediction. The
predicted values for those 200 observations together with their absolute prediction
errors and estimated conditional variance 62,(x) (cf. (21)) are plotted in Fig. 3 for
the cases of two, three, and four steps ahead. Since rounding errors in the calculation
are below 1076, the accuracy is dominated by the conditional variance. For example,
Fig. 3(b) shows that the three-step-ahead prediction is at its worst when the initial
value is around 8, and at its best when the initial value is near 5.6 or 10.4, which
is in agreement with the observation from Fig. 2(b). Similar remarks apply to the
two-step and the four-step predictions.

To see how a small shift in the initial values affects the prediction, we round the
initial value z to the nearest value from amongst [z], [z] + 0.5, and [z] + 1, where [z]
denotes the integer part of x. Hence, |§| < 0.5. Fig. 4 shows that for m = 1,2, the
absolute prediction error increases as |An(z)| increases, which is consistent with the
asymptotic conclusion presented in Theorem 1. There, 5\m() is estimated by using
(17).

Fig. 5 presents the predictive intervals constructed by the estimated conditional
percentiles &,,,(.), together with 200 real values. To estimate the conditional per-
centiles, we use the multidimensional downhill simplex method (cf. §10.5 of Press et.
al. 1992). Fig. 5 shows that the width of the interval varies with respect to the initial
value. For example, in the case of m = 3, the width attains its maximum around
x = 8, and its minimum about z = 5.6 and 10.4 (cf. Fig. 5(b)). Notice that the
presented intervals are supposed to contain the predicted values with probability 0.9;



Figure 2: The scatter plots of Y;,,, against Y; for Logistic map: (a) m
(c) m=4



Figure 3: The plots of the 200 m-step predicted values of Logistic map, and the
corresponding absolute prediction errors against their initial values, as well as the
estimated conditional variance 62 (z): (a) m = 2 (h = 0.25); (b) m = 3 (h = 0.2);
(¢) m =4 (h =0.18). Diamonds — predicted values; impulses — absolute prediction
errors; solid curve — 62, ().



Figure 4: The plots of the 200 m-step predicted values of Logistic map, and the
corresponding absolute prediction errors against their rounded initial values, and the
estimated function |An(z)|; (a) m =1 (h = 0.32); (b) m = 2. Diamonds — absolute
prediction errors; solid curve — |Ap,(z)].



Figure 5: The predictive interval [50_05%(:5), 50_957,”(3:)], and 200 real values for Lo-
gistic map. (a) m =2 (h = 0.5); (b) m = 3 (h = 0.42); (c) m =4 (h = 0.37). Solid
curve — &p.o5,m(x); dotted curve — &p o5, (); diamonds — real values.



Figure 6: The predictive interval [79.05m (%), 70.95m ()], and 200 real values for Lo-
gistic map. (a) m =2 (h = 0.25); (b) m =3 (h=10.2); (c) m =4 (h = 0.18). Solid
curve — 7o.05,m(2); dotted curve — 7,05, (z); diamonds — real values.



Figure 7: The estimated Fisher information I, (z), and the derivatives of conditional
percentiles and expectiles for Logistic map. (a) m =1 (h1 = 0.61, hy = 0.24 for
Ii(x)); (b) m =2 (hy =0.57, hy = 0.22 for I5(z)). Solid curve — I,,,(x); dashed curve

— {(50.05,m(x))2 + (5.0_95,m($))2}1/2; dotted curve — {(}0_05,m(x))2 + (%0.95,m($))2}1/2-



we notice that about 10% of the 200 samples lie outside the intervals. The predictive
intervals constructed by the estimated conditional expectile 7,,,,,(.) are displayed in
Fig. 6.

To monitor the sensitivity of the predictive interval to the initial value, we plot
the three sensitive measures in Fig. 7. It shows that the profiles of the Fisher infor-
mation I (2), {(€0.05,m(2))? + (€0.05,m(2))*}'/* and {(T0.05,m(2))? + (To.gs,m(x))?}/
are generally quite similar. Comparing Fig. 7(b) with Fig. 5(a), or Fig. 6(a), we can
see that where the sensitive measures are large, small shift will lead to a relatively
large change in the intervals (e.g. z near 5 and 11), and vice versa. (Also see Fig. 4.)

4.2. Hénon Map

We clothe a Hénon map with dynamic noise to obtain
Y, = 6.8 —0.19Y72, +0.28Y;_5 + 0.2¢, > 1, (29)

where €, t > 1, are as described in equation (10). A sample of 1200 observations
is generated from this model. The first 1000 observations are used for estimation,
and the remaining 200 observations for checking the prediction. Although there are
two components for each initial value (or rather initial vector), we only plot the data
against its first component, namely Y;_; of (Y;_1,Y;_2). Fig. 8 reports the predicted
values together with the corresponding true values. The estimated values of the
conditional variance at these points are shown in Fig. 9, which indicate the accuracy
of the prediction. (Note the occasional negative estimates as discussed in Section
3.1.) For example, when the first component of the initial value is near —6.8 or 6.5,
the two-step prediction is good (compare Fig. 8 (a) with Fig. 9 (a)). It can also be
seen in Fig. 8 that when the first component of the initial value is near 0, the curve
has two branches depending on the signs of the second component. The prediction is
evidently better when the second component is negative.

In Fig. 10, we have rounded the first half of the checking sample in the same way
as in Fig. 4. (Using the complete checking sample would clutter the figure with too
many points.) Note that A, is a two-dimensional vector now and we plot || A, ||
instead of .

Table 1 reports the two-step and three-step ahead predictive intervals for the first
10 checking sample. Here we use the interval predictor [50 05,m. £0.95 .m), which contains
the predicted variable with probability 0.90 theoretically. The bandwidth is chosen
as 0.53 for two-step prediction and 0.48 for three-step prediction. It has so happened
that in both cases of m = 2, and 3, 1 out of 10 true values lies outside the estimated
interval. The results also show that the width of the interval varies considerably with
respect to the initial values. For example, for the case m = 2, the shortest interval
in the table is [4.27, 4.76] with the width 0.49, and the largest interval is [-7.76, -

5.67] with the width 2.09. We also report the values of {||€y 5% + [/€0.05.m/1*}"/2
as our sensitive measures, although we could not see their effects in the reported
results because the rounding errors in the calculation are below 1076. We can also



Figure 8: The plots of the 200 m-step predicted values for Hénon Map, and the
corresponding true values against the first component of their initial values: (a)
m =2 (h = 0.47); (b) m = 3 (h = 0.45). Diamonds — predicted values; crosses —
true values.



Figure 9: The plots of the 200 estimates values of 62, against the first component of
their initial values for Hénon Map: (a) m = 2; (b) m = 3.



Figure 10: The plots of the 100 absolute prediction errors and the corresponding
estimated values || A, | against the first component of their first (rounded) initial
values for Hénon Map: (a) m = 1 (h = 0.5); (b) m = 2. Diamonds — predicted
errors; crosses — || Ap || (Note that some of the initial values, after rounding, may
be coincident. This leads to fewer crosses than diamonds in some columns.)



Table 1: Interval prediction for Henon map

Initial values Two-step ahead prediction Three-step ahead prediction
Y. Y. | Yo PI SM | Vi3 PI SM
-6.49 8.12 | 4.99 [3.80, 5.00] 1.00 | 2.24 [2.36, 4.27] 2.56
1.19 -6.49 | 2.24 [2.27, 3.51] 2.01 | 6.84 [5.63, 7.16] 3.00
499 1.19 | 6.84 [6.45, 7.26] 2.44 | -1.42 [-2.57,-0.42] 6.80
224 499 |-142 [-3.39,-1.44] 4.09 | 8.27 [6.27, 8.28] 2.55
6.84 224 | 827 [7.06, 8.38] 1.68 | -7.12 [-7.08,-3.96] 4.82

-1.42  6.84 | -7.12 [-7.76,-5.67] 2.57 |-1.03 [-2.65, 2.94] 6.07

[

[

[

[

8.27 -1.42 | -1.03 [-0.15,1.52] 5.44 | 4.36 [2.29, 4.96] 2.44
-7.12  8.27 | 4.36 [4.27, 4.76] 2.04 | 2.74 [1.96, 3.17 1.94
-1.03  -7.12 | 2.74 [1.48, 3.28] 3.90 | 6.35 [5.98, 8.03] 4.31
436 -1.03 | 6.35 [5.94, 6.81] 2.54 | 0.19 [-1.44, 0.83] 6.15

PI: predictive interval; SM: sensitive measure.

use conditional expectiles to construct predictive intervals. The results are similar
and are therefore omitted here.

4.8. Lynx Data

We present the results of pointwise prediction for m = 1 and 2 for the Canadian
lynx data for 1821-1934 (listed in Tong 1990) in Table 2. Here, we choose d = 4. We
use the data for 1821-1924 (i.e. n = 104) to estimate f,(-), A () etc., and the last
10 data to check the predicted values. The bandwidth is chosen as 0.55 for one-step
prediction and 0.50 for two-step prediction. The column under 63 is not complete due
to the omission of a negative estimate. Roughly speaking, the prediction is reasonably
good though there is evidence of under-prediction. For the case of one-step ahead,
the prediction errors are less than 0.1 when || A;(z) || is less than 1. They tend to be
larger when || A;(z) || is ‘large’. Occasionally (e.g. in 1934) the error is small even
though || A1 () || is ‘large’. For the two-step prediction, 62 and || As || provide some
indication of the prediction reliability. Typically, in 1927 the values of both 63 and
| Az || are large, and the error of the prediction is also large.

We also perform the interval prediction using conditional percentiles to this data
set. The results are reported in Table 3. The bandwidth is chosen as 0.57 for one-step
prediction and 0.51 for two-step prediction. We use the predictor [£.05m, &o.95,m]- In
the case m = 1, two predictive intervals (out of the ten) do not cover the true values.
In the case m = 2, although all the intervals contain the corresponding true values,
the widths of the intervals are considerably larger than those in the case m = 1
(except for the year 1925).



Table 2: Point prediction of the Canadian lynx data (on natural log scale)

Year | True value | error (f;) || Ay || | error (f2) 62 || A2 ||
1925 8.18 -0.05 0.58 -0.13 0.08 0.77
1926 7.98 -0.23 2.67 -0.39 0.69 1.04
1927 7.34 -0.16 2.49 -0.60 1.99 4.21
1928 6.27 0.22 3.12 0.13 1.60  2.30
1029 6.18 -0.43 1.94 -0.45 0.61 3.42
1930 6.90 -0.28 2.34 -0.60 - 3.38
1931 6.91 -0.19 1.23 -0.46 0.37 235
1932 7.37 0.02 0.70 -0.21 1.17  1.43
1933 7.88 -0.26 1.21 -0.22 0.08 0.59
1934 8.13 -0.07 2.28 -0.22 0.51 2.02

Table 3: Interval prediction of the Canadian lynx data (on natural log scale)

Year | True value Predictive interval
m=1 m =2
1925 8.18 [7.88, 8.67] | [7.84, 8.36]
1926 7.98 [7.35, 8.27] | [6.89, 8.47]
1927 7.34 [6.48, 7.88] | [5.92, 7.58]
1928 6.27 [5.68, 8.09] | [4.77, 8.47]
1929 6.18 [4.97, 6.35] | [4.76, 7.29]
1930 6.50 [5.75, 6.43] | [5.31, 6.53]
1931 6.91 [5.99, 6.97] | [6.28, 7.41]
1932 7.37 [7.04, 7.63] | [6.65, 7.87]
1933 7.88 [7.07, 7.83] | [7.31, 8.07]
1934 8.13 [7.55, 8.40] | [7.22, 8.32]




Table 4: Point prediction of the sunspot numbers
Year | True value | error (f;) || A1 || | error(MARS)
1979 155.4 - 8.88 2.64 -21.67
1980 154.7 -47.26 6.32 -9.24
1981 140.5 - 5.83 2.98 -10.55
1982 115.9 -32.0 12.59 -12.58
1983 66.6 2.80 1.10 15.76
1984 45.9 1.01 0.96 -2.59
1985 17.9 17.94 1.16 2.75
1986 13.4 -2.57 0.64 -7.66
1987 29.2 -19.73 0.92 -2.82
1988 100.2 -53.67 3.92 -24.27
1989 157.6 35.56 8.27 -9.32
1990 142.6 34.51 9.84 4.38
1991 145.7 -11.63 3.08 -27.90
1992 94.3 -10.40 11.35 12.98

4.4. Sunspot Data

In many respects, the Wolf’s annual sunspot numbers are known to be quite a
challenging set of data (see e.g. Tong 1990). We use the data for 1700-1978 (i.e.
n = 279) to estimate the predictor function and its related functions, and the data
for 1979-1992 (i.e. 14 points) to check the prediction reliability as monitored by

| A; |- In the fitting, we adopt d = 4 and h = 6.43. The results are summarized

in Table 4. The overall impression is that || A; || tends to be small (around 1 say)
for the ‘trough-years’ and large for the ‘peak-years’. With the exception of 1985 and
1987, the prediction reliability is fairly closely monitored by reference to || A; ||

We also fit this data set by using the MARS method with linear base functions
(cf. Friedman 1991, Lewis and Stevens 1991). Using the sunspot data in the period
1700-1978, the selected model is

Y; = 181.67 — 0.23Y; 3+ 0.86(Y;_; — 190.2)" — 1.93(Y;_o — 79.7)~
—0.0023(Y;_o — 79.7) " (Yi_g — 190.2) " — 0.0081(Y;_1 — 190.2) (V;_5 — 92.6)
—0.0043Y;_1Y;_5(Y;_ — 21.3) ",

where x— = z if x < 0, and 0 otherwise. The prediction errors of this model for
the sunspot data in the period 1979-1992 are reported in the last column of Table 4.
Again, we have better prediction in the ‘trough-years’ than the ‘peak-years’.

5. Appendix: The Regularity Conditions

To discuss the asymptotic properties of the estimators, we need the following



assumptions.

(A1) All second partial derivatives of f,,(x) are bounded and continuous.

(A2) The conditional variance o2, (z) = Var(Y,,|Xo = ) is bounded and continu-
ous.

(A3) The joint density of distinct elements of (X7, Y7, X, Y%) is bound by a con-
stant independent of .

(A4) X; has the probability density function p, and |p(z) —p(y)| < C ||z —y ||
for any z,y € R%.

(A5) The precess {Y;} is p-mixing, i.e., p; = SUPyeqo  veas Corr(U,V) — 0, as

j — oo, where &7 is the o-field generated by {Yi, k =1,...,7}. Further, we assume
that Y 72, pr < oo.

(A6) K(-) is a continuous density function with a bounded support in R¢, and
[zK(z)dz =0, [ z2T K (x)dx = 0214, where I; denotes the d x d identity matrix.

(A7) The bandwidth h — 0, nh**¢ — oo, and (logn)/(nh?) — 0.

(A8) For any compact subset B € R%, there exists a constant ¢ such that for any
T,y € B, | [22gm(2|z)dz — [2%9m(z|y)dz| < ||z — yl||, where g,,(y|z) denotes the
conditional density of Y,, given Xj.
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