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Abstract

We consider local least absolute deviation (LLAD) estimation for trend func-

tions of time series with heavy tails which are characterised via a symmetric stable

law distribution. The setting includes both causal stable ARMA model and frac-

tional stable ARIMA model as special cases. The asymptotic limit of the estimator

is established under the assumption that the process has either short or long mem-

ory autocorrelation. For a short memory process, the estimator admits the same

convergence rate as if the process has the finite variance. The optimal rate of con-

vergence n
−2/5 is obtainable by using appropriate bandwidths. This is distinctly

different from local least squares estimation, of which the convergence is slowed

down due to the existence of heavy tails. On the other hand, the rate of con-

vergence of the LLAD estimator for a long memory process is always slower than

n
−2/5 and the limit is no longer normal.
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1 Introduction and Models

A substantial literature now exists on using kernel-type smoothers to estimate a smooth

trend in time series data. These methods are important, in part, because they allow

estimation of a smooth trend without prior specification of the form of the trend. A

popular setting which has attracted much attention in the last decade is a fixed-design

regression with dependent ‘errors’, under which the observations Y1, . . . , Yn follow the

model

Yt = m(t/n) + εt, t = 1, . . . n,(1.1)

where m(.) is a smooth function defined on [0,1], and {εt} is a stationary process such

as ARMA time series. If {εt} are correlated but with only short-range dependence in

the sense that its autocorrelation functions are absolutely summable, it has been proved

that nonparametric regression estimators for m(.) are asymptotically normal at the same

convergence rate as in the case of uncorrelated {εt}, although the asymptotic variances

have one more factor due to the dependence in the data; see Hall and Hart (1990). When

there exists a long-range dependence, Hall and Hart (1990) shows that the estimators

have a slower convergence rate for the long-range dependent normal errors; see also

Csörgő and Mielniczuk (1995). Since the mean squared errors of the estimators are

different from those with independent data, research has been carried out to modify

the standard kernel regression techniques, including the bandwidth selection procedures,

to incorporate various dependence structures. This includes Altman (1990), Chiu and

Marron (1991), Truong (1991), Hart (1991, 1994), Herrmann, Gasser and Kneip (1992),
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Roussas, Tran and Ioannides (1992), Tran, Roussas, Yakowits and Truong Van (1996)

for short-range dependence data, and Ray and Tsay (1997) and Robinson (1994, 1997)

for long-range dependence data. A common practice in all the aforementioned literature

is to assume that εt has the zero-mean and a finite variance.

In this paper, we also deal with the kernel regression estimation for function m(.)

but with heavy tailed error terms such that E(ε2
t ) = ∞ or E|εt| = ∞. More specifically,

we assume that in model (1.1) εt is a linear process defined as

εt =
∞∑

j=0

cjZt−j,(1.2)

where {Zt} are independent random variables sharing the same standard symmetric

stable law distribution with index α ∈ (0, 2), i.e. the characteristic function Zt has the

form

E(eitZt) = exp{−|t|α}.

Under the condition

0 <
∞∑

j=0

|cj|α < ∞,(1.3)

the infinite sum in (1.2) is well-defined. Moreover we may say that {εt} has short

memory or long memory according as
∑∞

j=0 |cj|α/2 < ∞ or = ∞ respectively. Note that

E|εt| = ∞ when α ≤ 1 and E(ε2
t ) = ∞ when α < 2, and m(t/n) is the median (as

well as mean when α > 1) of Yt. The setting (1.2) – (1.3) includes the causal stable

ARMA model (Mikosch et al. 1995, and Klüppelberg and Mikosch 1996) and the causal

fractional stable ARIMA model (Kokoszka and Taqqu, 1995, 1996) as special cases. A

causal infinite variance fractional ARIMA(p, d, q) time series may be defined as

Φ(B)εt = Θ(B)(1 − B)−dZt,(1.4)

where d ∈ (0, 1) is a self-similarity parameter, B denotes the backshift operator, Φ(·) and

Θ(·) are polynomials with degrees p and q respectively, and all the roots of the equation
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Φ(z) = 0 are outside the unit circle. Because of the presence of d, the process {εt}

has infinite variance as well as long-range dependence. It in fact admits the MA(∞)-

representation (1.2) with
∑∞

j=0 |cj|α/2 = ∞. For further information on ARMA models

with heavy tails and their applications, we refer to Adler, Feldman and Gallagher (1997)

and Resnick (1997).

It is known that for regression models with heavy tailed noises, the conventional least

squares estimators typically have slow convergence rates, are only consistent when the

tail index α ∈ (1, 2), and even then the limiting distribution is non-normal; see Davis,

Knight and Liu (1992) and references within for parametric regression, and Hall, Peng

and Yao (2002) for nonparametric regression. We consider in this paper the local linear

least absolute deviations estimator for m(·). The asymptotic limit of the estimator is

established for both short and long memory cases (Theorem 2.1 in Section 2 below).

The limit is normal in case of short memory, however it is a stable law in case of long

memory. The proof is based on a combined use of the convex lemma (Pollard 1991) and

the asymptotic results for stable moving average processes of Hsing (1999), Koul and

Surgailis (2001) and Surgailis (2002). When {εt} has short memory, the convergence

rate as well as the first order asymptotic mean and variance are the same as if εt had

a finite variance. We can reproduce the optimal rate of convergence n−2/5 by choosing

the bandwidth of the order n−1/5, which is a folklore in conventional (one-dimensional)

kernel regression. In this sense, the least absolute deviations estimation is adaptive to

heavy tails. However when the process has a long memory, the convergence rate is always

slower than n−2/5 and the limit is no longer normal.

There is a substantial literature on nonparametric regression in the least absolute

deviation setting. Mallows (1980), Velleman (1980), Truong (1989) and Fan and Hall

(1994) addressed local median smoothing for independent data, Tsybakov (1986) and

Fan, Hu and Truong (1994) developed robust methods for fitting local polynomials. In

4



the time series context, Truong and Stone (1992) and Truong (1991, 1992a,b) discussed

robust nonparametric regression for random-design models, Yao and Tong (1994) sug-

gested robust conditional quantile estimation. All of them considered regression models

with random designs and none of them addressed estimation with infinite-variance data.

Hall, Peng and Yao (2002) considered nonparametric least squares as well as least abso-

lute deviations estimation for heavy tailed regressive models with random design under

the assumption that the processes fulfill certain mixing conditions which rule out the

possibility of long memory properties.

2 Estimators and Main Results

Let xt = t/n for t = 1, . . . , n and x ∈ (0, 1) fixed. The local linear least absolute

deviations estimator is defined as m̂(x) = â, where

(â, b̂) = argmin
(a,b)

n∑

t=1

|Yt − a − b(xt − x)|K
(

xt − x

h

)
.

In the above expression, K(·) ≥ 0 is a density function on R1 and h > 0 is a bandwidth.

We write m̂1(x) = b̂ which is an estimator for ṁ(x) ≡ d
dx

m(x).

In the sequel, we always assume that x ∈ (0, 1) is fixed. Let p(·) denote the marginal

density function of εt, σ2
0 =

∫
u2K(u)du, and D(ξ) = I(ξ > 0) − I(ξ ≤ 0). We use C to

denote some generic constant which may be different at different places.

(C1) For fixed x, m(·) has second continuous derivative in a neighbourhood

of x.

(C2) The kernel K is a symmetric, bounded and non-negative function with

support [−1, 1]. Further |K(z1)−K(z2)| ≤ C|z1−z2| for any z1, z2 ∈ R1.

(C3) h = h(n) → 0 and nh3 → ∞ as n → ∞.
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Theorem 2.1. Let Conditions (C1) – (C3) hold for the process defined in (1.1) – (1.3).

(i) If
∑∞

l=0 |cl|α/2 < ∞, then

√
nh{m̂(x) − m(x) − 1

2
h2σ2

0m̈(x)} d−→ N(0, σ2),

where m̈(x) = d2

dx2 m(x), εi,j =
∑j

l=0 clZi−l, and

σ2 = lim
j→∞

E{ 1

2
√

nh p(0)

n∑

i=1

D(εi,j)K(
xi − x

h
)}2.

The limit on the RHS of the above expression exists and is finite.

(ii) Suppose cj/j
−β → b0 as j → ∞ for some β ∈ (α−1, 1). Then

(nh)β−1/α{m̂(x) − m(x) − 1

2
h2σ2

0m̈(x)} d−→ Lα,

where Lα is a stable law with characteristic function

EeitLα = exp{−|t|αbα
0

∫ −1

−∞

(
∫ 1

−1
K(u)(u − v)−β du)α dv}.

(iii) Suppose cj/j
−β → b0 as j → ∞ for some β ∈ (1, 2/α). Let G denote the

distribution function of εi. Then

(nh)1−1/(αβ){m̂(x) − m(x) − 1

2
h2σ2

0m̈(x)} d−→ c+

p(0)
L+

αβ +
c−

p(0)
L−

αβ ,

where

c± = σ∗(
∫ 1

−1
K(s) dt)(

∫ ∞

0
(G∞(±t) − G∞(0))t−1−1/β dt),

G∞(x) = EG(x + Zi),

σ∗ = { bα
0 (αβ − 1)

Γ(2 − αβ) cos παβ
2

βαβ
}1/(αβ),

and L+
αβ and L−

αβ are independent copies of a stable law Lαβ with characteristic function

EeitLαβ = exp{−|t|αβ(1 − isgn(t)tan
παβ

2
)}.

Remark. (i) If {εt} has the short range dependence, i.e.
∑∞

j=0 |cj|α/2 < ∞, Theorem

2.1(i) indicates that the asymptotic distribution of the least absolute deviations estimator
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m̂(·) is of the same form as if εt had a finite variance. Note that the first order asymptotic

approximation for the mean squared error of m̂(x) is

1

4
h4σ4

0{m̈(x)}2 +
1

nh
σ2.

Minimising this approximation over h, we obtain an optimum bandwidth of the order

n−1/5, which is the same as for (one-dimensional) nonparametric regression estimation

with finite variances. By using the optimum bandwidth, the estimator m̂(x) converges

at the rate 1/
√

nh = O(n−2/5).

(ii) In Theorem 2.1(ii) and (iii) the condition cj ∼ b0j
−β implies

∑∞
j=0 |cj|α/2 = ∞.

The asymptotic stable law has been established for the subclass of long memory processes

fulfilling this condition.

3 Proofs

In this section, we always assume the regularity conditions (C1) – (C3) hold. We intro-

duce some notation first.

Let Y ∗
t = Yt − m(x) − ṁ(x)(xt − x), zt = (1, xt−x

h
)T , Kt = K(xt−x

h
), and θ̂ =

√
nh{m̂(x) − m(x), h(m̂1(x) − ṁ(x))}T . For θ = (θ1, θ2)

T , we define

G(θ) =
n∑

t=1

{|Y ∗
t − θT zt/

√
nh| − |Y ∗

t |}Kt,

R(θ) = G(θ) − p(0)(θ2
1 + θ2

2σ
2
0) +

θT

√
nh

n∑

t=1

ztD(Y ∗
t )Kt.

Obviously, θ̂ is the minimiser of G(θ). We split the proof into several lemmas. Lemma

3.1 below follows easily from condition (1.3) and the proof of Lemma 3 of Hsing (1999).

Lemma 3.1. The marginal density of εt is positive and continuous at zero.

Lemma 3.2. Let u and v be real numbers. For 0 < q ≤ 1, |u+v|q ≤ |u|q + |v|q. Further
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for 1 < q < ∞, |u + v|q ≤ 2q−1(|u|q + |v|q) and

||u + v|q − |u|q − |v|q| ≤ |u||v|q−1 + |u|q−1|v|.

Proof. The first two inequalities follow from Lemma 2.7.13 of Samorodnitsky and Taqqu

(1994). The last one follows from the inequalities

|u + v|q ≤ (|u| + |v|)|u + v|q−1 ≤ (|u| + |v|)(|u|q−1 + |v|q−1)

and

|u + v|q ≥ (|u| − |v|)(|u|q−1 − |v|q−1) ≥ ||u| − |v|| × |u + v|q−1.

Lemma 3.3. Let pt(x, y) be the joint density of (ε1, εt) for t > 1. It holds that

supt≥2 pt(0, 0) < ∞.

Proof. Note that the characteristic function of (ε1, εj+1) is

f(t1, t2) ≡ Eei(t1ε1+t2εj+1)

= E[exp{i(t1
∞∑

k=0

ckZ1−k + t2
∞∑

k=0

ckZj+1−k)}]

= E[exp{i
∞∑

k=0

(t1ck + t2ck+j)Z1−k + i
−1∑

l=−j

t2cl+jZ1−l}]

= exp{−
∞∑

k=0

|t1ck + t2ck+j|α −
−1∑

l=−j

|t2cl+j|α}.

We consider the case α ∈ (0, 1] first. By the inverse formula and Lemma 3.2, the

density function pj+1(0, 0) is equal to

lim
x→0

1

x2
{P (ε1 < x, εj+1 < x) − P (ε1 < x, εj+1 < 0) − P (ε1 < 0, εj+1 < x) + P (ε1 < 0, εj+1 < 0)}

= lim
x→0

1

4π2x2

∫ ∫
{e−i(t1x+t2x) − e−it1x − e−it2x + 1}f(t1, t2) dt1dt2

≤
∫ ∫

O(|t1|)O(|t2|) exp{−
∞∑

k=0

|t1ck + t2ck+j|α −
−1∑

l=−j

|t2cl+j|α} dt1dt2

≤
∫ ∫

O(|t1|)O(|t2|) exp{−
∞∑

k=0

|t1|α|ck|α +
∞∑

k=0

|t2|α|ck+j|α −
−1∑

l=−j

|t2|α|cl+j|α} dt1dt2

≤
∫

O(|t1|) exp{−|t1|α
∞∑

k=0

|ck|α} dt1

∫
O(|t2|) exp{−|t2|α(

j−1∑

k=0

|ck|α −
∞∑

l=j

|cl|α)} dt2.
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Note that (1.3) implies

0 <
j−1∑

k=0

|ck|α −
∞∑

l=j

|cl|α ≤
∞∑

k=0

|ck|α

for all large j′s. Hence there exists j0 > 0 such that supj≥j0 pj+1(0, 0) < ∞.

When α ∈ (1, 2), the required inequality can be derived from

|t1ck + t2ck+j|α ≥ |t1ck|α
2

− |t2ck+j|α

in a similar manner and the above relation is implied by Lemma 3.2. This completes the

proof of Lemma 3.3.

Lemma 3.4. As n → ∞, E{R(θ)} → 0.

Proof. Let dt = θT zt/
√

nh. Without loss of generality, we may assume that dt ≥ 0.

Then

{|Y ∗
t − θT zt/

√
nh| − |Y ∗

t |}Kt(3.1)

= Kt[Y
∗
t {I(Y ∗

t > dt) − I(Y ∗
t ≤ dt) − I(Y ∗

t > 0) + I(Y ∗
t ≤ 0)}

+ dt{I(Y ∗
t ≤ dt) − I(Y ∗

t > dt)}]

= −2KtY
∗
t I(0 < Y ∗

t ≤ dt)

+ dtKt{I(Y ∗
t ≤ 0) + I(0 < Y ∗

t ≤ dt) − I(Y ∗
t > 0) + I(0 < Y ∗

t ≤ dt)}

= −dtKtD(Y ∗
t ) + 2Kt(dt − Y ∗

t )I(0 ≤ dt − Y ∗
t < dt).

Note that (C2) implies dt → 0 as n → ∞. We have

E{(dt − Y ∗
t )I(0 ≤ dt − Y ∗

t < dt)} = p(0)d2
t{1 + o(1)}.

Combining the above equation with (3.1) we have

E{(|Y ∗
t − θT zt/

√
nh| − |Y ∗

t | + dtD(Y ∗
t ))Kt} = p(0)Ktd

2
t{1 + o(1)}.

Thus

E{G(θ) +
n∑

t=1

dtD(Y ∗
t )Kt} = p(0)

n∑

t=1

d2
t Kt{1 + o(1)}

→ p(0)
∫ ∞

−∞

(θ1 + θ2u)2K(u)du = p(0)(θ2
1 + θ2

2σ
2
0),
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since nh → ∞. This completes the proof of the lemma.

Lemma 3.5. As n → ∞, R(θ) converges to 0 in probability.

Proof. Note that R(θ) =
∑n

i=1 Tt − p(0)(θ2
1 + θ2

2σ
2
0) with

Tt = Kt[|Y ∗
t − θT zt/

√
nh| − |Y ∗

t | + θT ztD(Y ∗
t )/

√
nh].

It follows from Lemma 3.4 that we only need to prove that
∑n

t=1(Tt −ETt)
P−→ 0. Note

that

P{|
n∑

i=1

(Ti − ETi)| > ε)

≤ 1

ε2

n∑

i=1

E(Ti − ETi)
2 +

2

ε2

n−1∑

i=1

(n − i){E(T1Ti+1) − ET1ETi+1}.

From (3.1) we have

n∑

i=1

ET 2
i =

n∑

i=1

4p(0)Ki
d3

i

3
(1 + o(1))

=
4

3
p(0)

1√
nh

∫
(θ1 + θ2u)3K2(u) du(1 + o(1)) → 0,

n∑

i=1

(ETi)
2 =

n∑

i=1

p2(0)K2
i d

4
i (1 + 0(1))

= p2(0)
1

nh

∫
(θ1 + θ2u)4K2(u) du(1 + o(1)) → 0,

and

n−1∑

i=1

(n − i)|ET1Ti+1|

=
n−1∑

i=1

(n − i)pi+1(0, 0)K1d
2
1Ki+1d

2
i+1(1 + o(1))

≤ sup
j≥1

pj+1(0, 0)nK1d
2
1

n−1∑

i=1

Ki+1d
2
i+1(1 + o(1))

≤ sup
j≥1

pj+1(0, 0)Ch−1K(
1/n − x

h
)
∫

(θ1 + θ2u)2K(u) du(1 + o(1)).
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Note that by (C2)

K((1/n − x − 1/(nh))/h) = 0

as n large enough. Hence by (C2) and (C3)

h−1K(
1/n − x

h
) =

|K((1/n − x)/h) − K((1/n − x − 1/(nh))/h)|
h

≤ C/(nh3) → 0.

Thus by Lemma 3.3
n−1∑

i=1

(n − i)ET1Ti+1 → 0.

By the same arguments as above we have

|
n−1∑

i=1

(n − i)ET1ETi+1| ≤ n
n−1∑

i=1

|ET1ETi+1|

= n
n−1∑

i=1

p2(0)K1d
2
1Ki+1d

2
i+1(1 + o(1)) → 0.

Hence the lemma is proven.

Lemma 3.6. If
∑∞

l=0 |cl|α/2 < ∞, then

lim
l→∞

E(D(ε1) − D(ε1,l))
2 = 0.

Proof. Let W1 = ε1,l and W2 = ε1 −W1. Then W1 and W2 are independent. It follows

from the symmetric distributions of ε1 and ε1,l that

E(D(ε1) − D(ε1,l))
2 = 2P (ε1 > 0, ε1,l < 0).

Let gW1
and GW2

denote the density of W1 and the distribution of W2, respectively. Then

P (ε1 > 0, ε1,l < 0) =
∫ 0

−∞

gW1
(y)[1 − GW2

(−y)] dy.

Note that

GW2
(y) = P (Z1 ≤ (

∑

j>l

|cj|α)−1/αy)
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and gW1
is uniformly bounded (see Lemma 3 of Hsing (1999)). Hence by Potter bounds

(see Geluk and de Haan (1987))

P (ε1 > 0, ε1,l < 0) =
∫ −δ

−∞
gW1

(y)[1 − GW2
(−y)] dy +

∫ 0

−δ
gW1

(y)[1 − GW2
(y)] dy

= O(1 − P{Z1 > (
∑

j>l

|cj |α)−1/α}) + O(δ).

Therefore the lemma follows by letting l → ∞ first, and then δ → 0.

Lemma 3.7. If
∑∞

l=0 |cl|α/2 < ∞, then

1√
nh

n∑

i=1

D(εi)Ki → N(0, σ2
1)

where

σ2
1 = lim

l→∞
E{ 1√

nh

n∑

i=1

D(εi,l)Ki}2

exists and is finite.

Proof. Let F−∞,l be the σ-field generated by {Zi, i ≤ l}. Note that

n∑

i=1

D(εi)Ki −
n∑

i=1

D(εi,l)Ki =
n∑

i=1

{D(εi) − D(εi,l)}KiI(| i/n − x

h
| ≤ 1)

=
[n(x+h)]∑

i=[n(x−h)]

{D(εi) − D(εi,l)}Ki =
[n(x+h)]∑

i=[n(x−h)]

∞∑

j=1

KiUi,j,l,

where

Ui,j,l = {E(D(εi)|F−∞,i−j) − E(D(εi)|F−∞,i−(j+1))}

− {E(D(εi,l)|F−∞,i−j) − E(D(εi,l)|F−∞,i−(j+1))}I(j ≤ l).

Then the lemma follows from Lemma 3.7, the boundedness of Ki and the proof of

Theorem 1 of Hsing (1999).

Lemma 3.8. Suppose cj/j
−β → b0 > 0 as j → ∞, where β ∈ (α−1, 1). Then there

exists δ0 > 0 such that for any δ1 > 0

P{sup
x

(nh)−1+β−1/α|
n∑

i=1

Ki(I(εi ≤ x) − P (εi ≤ x) + p(x)εi)| ≥ δ1} = O((nh)−δ0).
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Proof. It is similar to the proof of Theorem 2.1 in Koul and Surgailis (2001) by replacing

I(−s1 ≤ j ≤ n) and
∑n

t=1∨j (1∧(t−j)−β(1+γ)) in Lemma 4.3 of Koul and Surgailis (2001)

by I(−s1 ≤ j ≤ n)nh and
∑n

t=1∨j (1 ∧ (t − j)−β(1+γ))I([n(x − h)] ≤ t ≤ [n(x + h)]),

respectively.

Lemma 3.9. Suppose cj/j
−β → b0 as j → ∞, where β ∈ (α−1, 1). Then

(nh)−1−1/α+β ∑n
i=1 KiD(εi) converges in distribution to a stable law with characteristic

function

exp{−|t|α(2p(0)b0)
α

∫ −1

−∞
(
∫ 1

−1
K(u)(u − v)−β du)α dv}.

Proof. Define cj = 0 if j < 0. Note that

(nh)−1−1/α+β
n∑

i=1

KiD(εi) = (nh)−1−1/α+β
n∑

i=1

2Ki(I(εi ≤ 0) − 1

2
),

(nh)−1−1/α+β
n∑

i=1

2p(0)Kiεi = (nh)−1−1/α+β
∞∑

j=−∞

n∑

i=1

2p(0)Kici−jZj,

∑∞
l=−∞ ((nh)−1−1/α+β ∑n

i=1 2p(0)Kici−j)
α

=
∑

l≤nx−δnh ((nh)−1−1/α+β ∑n
i=1 2p(0)Kici−j)

α

+
∑

l>nx−δnh ((nh)−1−1/α+β ∑n
i=1 2p(0)Kici−j)

α

= ∆1 + ∆2.

It is easy to check that for any δ > 1

∆1 → (2p(0)b0)
α

∫ −δ

−∞
(
∫ 1

−1
K(u)(u − v)−β du)α dv

and

∆2 ≤
nx+nh∑

l=nx−δnh

(2p(0)(nh)−1−1/α+β sup K(x)
∞∑

j=0

cj)
α → 0.

Hence the limiting characteristic function of (nh)−1−1/α+β ∑n
i=1 2p(0)Kiεi is

exp{−|t|α(2p(0)b0)
α

∫ −1

−∞
(
∫ 1

−1
K(u)(u − v)−β du)α dv}.

Thus Lemma 3.9 follows from Lemma 3.8.
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Lemma 3.10. Suppose cj/j
−β → b0 as j → ∞, where β ∈ (1, 2/α). Let G denote the

distribution function of εi. Then there exists δ0 > 0 such that for any δ1 > 0

P{supx |(nh)−1/(αβ) ∑n
i=1 Ki

(
I(εi ≤ x) − G(x)−

∑∞
j=1 (G(x − bjZi) − EG(x − bjZi))

)
| > δ1} = O((nh)−δ0).

Proof. It is similar to the proof of Lemma 2.3 of Surgailis (2002).

Lemma 3.11. Suppose cj/j
−β → b0 as j → ∞, where β ∈ (1, 2/α). Let G denote the

distribution function of εi. Then

(nh)−1/(αβ)
n∑

i=1

KiD(εi)
d−→ c+L+

αβ + c−L−
αβ ,

where c± and L±
αβ are defined in Theorem 2.1 (iii).

Proof. It follows from Lemma 2.4 of Surgailis (2002) and Theorem 3.1 of Kasahara and

Maejima (1988) that

(nh)−1/(αβ)
n∑

i=1

Ki

∞∑

j=1

(G(−cjZi) − EG(−cjZi))
d−→ c+L+

αβ + c−L−
αβ .

Hence Lemma 3.11 follows from Lemma 3.10 and the fact that

n∑

i=1

KiD(εi) = 2
n∑

i=1

Ki(I(εi ≤ 0) − 1

2
).

Proof of Theorem 2.1. Since R(θ)
P−→ 0, the convex function

G(θ) − (nh)−1/2 θT
∑

1≤i≤n

zi D(Y ∗
i ) Ki

converges to p(0) (θ2
1 + θ2

2σ
2
0). By the convexity lemma (Pollard, 1991), the convergence

is uniform on compact sets in R2. Using the arguments of Pollard (1991, p. 193) we can

show that the difference between the minimiser of θ̂ of G(θ) and the minimiser of

− 1√
nh

θT
n∑

i=1

zi D(Y ∗
i ) Ki + p(0) (θ2

1 + θ2
2σ

2
0)

14



converges to 0 in probability. This implies that

√
nh {m̂(x) − m(x)} =

1

2
√

nh p(0)

n∑

i=1

D(Y ∗
i ) Ki + op(1) .(3.2)

We may assume that m̈(x) > 0. Then

D(Y ∗
t ) = D(εt) + 2I{0 < −εt ≤ m̈(x)(xt − x)2/2 + o(h2)},

and

E(I{0 < −εt ≤ m̈(x)(xt − x)2/2 + o(h2)}) = p(0)m̈(x)(xt − x)2/2{1 + o(1)}.

Hence

1

nh3

n∑

t=1

KtE(I{0 < −εt ≤ m̈(x)(xt − x)2/2}) → 1

2
m̈(x)p(0).

Let Wi = KiI(0 < −εi ≤ m̈(x)(xi − x)2/2). Then

P (| 1

nh3

n∑

i=1

(Wi − EWi)| > ε)

≤ 1

ε2n2h6

n∑

i=1

E(Wi − EWi)
2 +

2

ε2n2h6

n−1∑

i=1

(n − i)(E(W1Wi+1) − EW1EWi+1).

Note that EWi = Kip(0)m̈(x)(xi − x)2/2. We have

1

n2h6

n∑

i=1

(EWi)
2 =

1

n2h6

n∑

i=1

p2(0)K2
i m̈

2(x)
(xi − x)4

4h4
h4(1 + o(1))

=
p(0)2m̈2(x)

4n2

n∑

i=1

1

n2h2
K2

h(xi − 1)4(1 + o(1))

=
p(0)2m̈2(x)

4nh
(
∫

K2(u)u4 du)(1 + o(1)) → 0.

Similarly,

1

n2h6

n∑

i=1

EW 2
i =

1

n2h6

n∑

i=1

K2
i p(0)m̈(x)(xi − x)2/2(1 + o(1))

=
p(0)m̈(x)

2nh3
(
∫

K2(u)u2 du)(1 + o(1)) → 0,
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and

1

n2h6

n−1∑

i=1

(n − i)EW1EWi+1

=
1

n2h6

n−1∑

i=1

K1Ki+1pi+1(0, 0)m̈2(x)
(x1 − 1)2

2

(xi+1 − x)2

2
(1 + o(1))

≤ sup
i≥1

pi+1(0, 0)
m̈2(x)

4
h−1K(

x1 − x

h
)
1

n
(
∫

K(u)u2 du)(1 + o(1))

→ 0.

The last limit was ensured by Lemma 3.3. Combining all the above arguments together,

we have that

√
nh {m̂(x) − m(x) − 1

2
h2σ2

0m̈(x)} =
1

2
√

nh p(0)

n∑

i=1

D(εi)Ki + op(1).

Now the theorem follows from Lemma 3.7, Lemma 3.9 and Lemma 3.11 immediately.

The proof is completed.
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