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Abstract

We propose two new types of nonparametric tests for investigating multivariate regression
functions. The tests are based on cumulative sums coupled with either minimum volume sets
or inverse regression ideas; involving no multivariate nonparametric regression estimation. The
methods proposed facilitate the investigation for different features such as if a multivariate re-
gression function is (i) constant, (ii) of a bathtub shape, and (iii) of a given parametric form.
The inference based on those tests may be further enhanced through associated diagnostic plots.
Although the potential use of those ideas is much wider, we focus on the inference for multivariate
volatility functions in this paper, i.e. we test for (i) heteroscedasticity, (ii) the so-called “smiling
effect”, and (iii) some parametric volatility models.The limit behavior of the proposed tests is
investigated, and practical feasibility is shown via simulation studies. We further illustrate our
methods with some real financial data.
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1 Introduction

We propose and study two types of nonparametric tests for investigating if a multivariate regression

function is, for instance, constant, of a bathtub shape, or of a particular parametric form. The

methodology has the potential to be useful in various contexts, including regression analysis and the

analysis of time series. All the procedures proposed are associated with diagnostic plots.

In terms of methodology, our approach may be seen as a generalization of the classical goodness-

of-fit tests for distribution functions (such as the Kolmogorov-Smirnov test) to those for regression

functions. While most the classical goodness-of-fit tests for one-dimensional distribution functions

are asymptotically distribution-free under the null hypotheses, this nice property is typically lost in

multivariate cases. This explains the difficulties in directly applying, for example, the Kolmogorov-

Smirnov tests for multivariate distribution functions (Polonik 1999). We circumvent this problem by

using either minimum volume (MV) sets or an inverse regression idea. With MV sets, we effectively

test a multivariate function in term of a single-indexed empirical process. The tests based on inverse

regression rely on several one-dimensional empirical processes. Therefore the asymptotic distribution-

free properties may be restored. The idea of using MV sets was initially proposed by Polonik (1999)

for the goodness-of-fit tests for multivariate distribution functions.

We illustrate the new methods in the context of testing various features of volatility functions,

which is particularly relevant to analysing financial time series. Let {Yt} be a strictly stationary and

ergodic time series defined by

Yt = σtεt, (1.1)

where σt ≥ 0 is Ft−1-measurable, Ft denotes the σ-algebra generated by {Yt−k, k ≥ 0}, and {εt} is

a sequence of independent and identically distributed random variables with mean 0, E(ε2t ) < ∞,

E|εt| = 1. Furthermore, we assume that εt is independent of Ft−1. Now it is easy to see that

E(Yt|Ft−1) = 0, and E(|Yt|
∣∣Ft−1) = σt. Hence σt ≡ σ(Yt−1, Yt−2, · · · ) is a regression function of

|Yt| on Yt−1, Yt−2, · · · , and is called a volatility function. In fact (1.1) is a standard setting for

modelling volatilities of financial returns (see, e.g. Morgan, 1996, p.92), although the conventional

assumption is E(ε2t ) = 1. This implies E(Y 2
t |Ft−1) = σ2

t . We adopt the parameterization implied by

the condition E|εt| = 1 instead, in order to conduct the inference based on the absolute returns |Yt|,
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which significantly relaxes the moment conditions required for the inference based on the squared

returns Y 2
t .

We will consider three types of null hypotheses on σt, i.e. homoscedasticity (against heteroscedas-

ticity), a so-called “smile effect” and a specified parametric form such as ARCH models. For the

first two cases, our tests are asymptotically distribution-free under the null hypotheses. However the

tests for parametric models are no longer distribution-free due to the presence of the estimators for

the parameters in the test statistics, for which we adopt two bootstrap methods to approximate the

P -values of the tests.

The rest of the paper is organized as follows. Section 2 deals with the tests for homoscedasticity.

Section 3 extends the ideas for testing parametric forms of volatility functions. The tests for a

bathtub shaped volatility (i.e. “smiling factor”) is discussed in section 4. Numerical illustration with

both simulated and real data is presented in section 5. Theoretical properties of the test statistics

are derived in section 6.

2 Tests for homoscedasticity

In this section we deal with the tests for the homoscedasticity hypothesis

H0 : σ(·) ≡ νy, νy > 0 is a constant. (2.1)

Conventional practice is to test the null hypothesis (2.1) against a specified parametric form such as

ARCH models; see, e.g., section 4.2 of Fan and Yao (2003) and references therein. More recently, a

nonparametric approach has been adopted for testing for conditional heteroscedasticity for univariate

volatility functions; see Chen and An (1997) and Läıb (2003). In terms of methodology, the available

tests may be classified into two categories: tests solely based on analyzing residuals (Engle 1982, Lee

1991, McLeod and Li 1993, and Horváth et al. 2001), and tests based on residual-regression (Chen

and An, 1997, Stute, 1997, Koul and Stute, 1999, and Läıb, 2003). The latter is based on the fact

that under the null-hypothesis (2.1), it holds that

E{( |Yt| − E|Yt| ) I(Xt ≤ x ) } = 0 for all x ∈ R
p, (2.2)
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where Xt = (Yt−1, · · · , Yt−p)
′ (p ≥ 1), and Xt ≤ x denotes that each component of Xt is not greater

than the corresponding component of x. All the work mentioned above in the second category deals

with univariate regressor only. The methods proposed in this paper may be viewed as an attempt

to extend these methods from the second category to multivariate cases.

Our new tests are based on the observation that if hypothesis (2.1) holds then F ≡ G, where

F (·) denotes the distribution function of Xt, and G is a distribution function defined as

G(x) = ν−1
y E{|Yt|I(Xt ≤ x)}, (2.3)

where νy = E|Yt|. It is easy to see that G(·) is a well-defined probability measure. Thus hypothesis

(2.1) may be viewed as a hypothesis on two probability distributions. However we do not have ob-

servations directly from distribution G. Note that F (x) and G(x) may be estimated by, respectively,

Fn(x) =
1

n

n∑

i=1

I(Xt ≤ x), Gn(x) =
1

n ν̂y

n∑

i=1

|Yt|I(Xt ≤ x),

where ν̂y = n−1
∑

1≤t≤n |Yt|. Hence, we may test hypothesis (2.1) using the statistic

sup
x

ν̂y

∣∣∣Gn(x) − Fn(x)
∣∣∣ = sup

x

∣∣∣
1

n

n∑

i=1

{
|Yt| − ν̂y

}
I(Xt ≤ x)

∣∣∣, (2.4)

When p = 1, tests of this type have been extensively explored by, among others, Chen and An

(1997), Stute (1997), Stute et al. (1998), Koul and Stute (1999) and Läıb (2003). For p > 1 the

null-distribution of the test statistic (2.4) depends on the underlying distribution. Note that the lack

of the (asymptotic) distribution-free property may cause non-trivial difficulties in determining the

critical values of the tests since the null hypothesis (2.1) is not simple.

We construct the tests using minimum volume (MV) sets or an inverse regression idea. A re-

markable gain for these new approaches is that the null-distributions of our test statistics are asymp-

totically distribution-free even when p > 1. Note that for testing the null hypothesis (2.1), one may

simply let p = 1 (i.e. Xt = Yt−1) in (2.4). We argue that the tests with p > 1 are significantly more

powerful than those with p = 1 when σt depends on several lagged values of Yt. Numerical results

in section 5 provide convincing evidence to support this argument. Note for GARCH(1,1) processes,
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σt effectively depends on Yt−k for all 1 ≤ k <∞.

2.1 Tests based on MV sets

We first introduce the concept of minimum volume (MV) sets. A MV set under a distribution H on

Rp indexed by α ∈ [0, 1] is defined as

MH(α) := arg min
A⊂Rp

{Leb(A) : H(A) ≥ α}, (2.5)

where Leb(A) denotes the Lebesgue measure of A. Obviously MH(α) is a set of minimum Lebesgue

measure among the sets of H-measure not smaller than α. When H possesses a probability density

function h which has no flat parts (see (2.9) below), MV sets exist and are essentially unique (up to

H-nullsets). In fact, in this case MH(α) = {x : h(x) ≥ λα } for an appropriate level λα ≥ 0. In the

following we assume that both F and G posses pdf’s f and g, respectively.

One of the reasons to use MV sets for constructing our tests is that they are capable of discrimi-

nating different distributions. Suppose that both f and g do not have flat parts in the sense of (2.9).

Polonik (1999) showed that F = G if and only if (F − G){MF (α)} = 0 and (F − G){MG(α)} = 0

for all α ∈ [0, 1].

Estimators for MV sets under F may be obtained by replacing F in (2.5) by the estimator Fn.

In order to obtain a reasonable estimator, we need to restrict candidate sets A in (2.5) to be in a

class of selected sets (to avoid “oversmoothing”). Let C be a set consisting of appropriate subsets of

Rp. An estimator for MF (α) may be defined as

M̂C,Fn(α) := arg min
A∈C

{Leb(A) : Fn(A) ≥ α}, (2.6)

which is called an empirical MV set in C. We should choose C such that it contains all the MV sets

under both F and G. Then hypothesis (2.1) holds if and only if E{|Yt| − νy

∣∣Xt ∈ A} = 0 for all

A ∈ C; see also (2.2). The latter is equivalent to

(G− F )(A) = 0 for all A ∈ C. (2.7)
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Let M̂C,Gn(α) be the empirical MV sets in C under Gn; see (2.6). Put

∆̂n(C) = (Fn −Gn)(C). (2.8)

Relation (2.7) suggests that we may define a test statistic

T1 = sup
α∈(0,1]

[
|∆̂n(M̂C,Fn(α))| + |∆̂n(M̂C,Gn(α))|

]
,

and reject hypothesis (2.1) for large values of T1.

We will assume that C is chosen such that MF (α) ∈ C and MG(α) ∈ C for all α. This assumption

may be interpreted as a correctly chosen model. In addition, for technical reasons we always assume

that ∅ ∈ C. The general idea is that the class C should be rich enough to distinguish F from G

when H0 does not hold. On the other hand, C may not be too rich, so that all the MV sets may be

consistently estimated by their empirical counterparts. Complexity of the class C may be measured

by its metric entropy which leads to the covering integral IB(C) defined in (6.1) below. Most results

below require a finite covering integral which restricts C from being too large; see further discussion in

section 6. Another condition which restricts C from being too large is (C2) which is also introduced

in section 6. In our applications, in order to make the computation attainable, we typically let C

consist of all ellipsoids. This effectively imposes a shape constraint on the underlying distributions.

We will use the following assumptions:

(A1) F and G have bounded and continuous Lebesgue densities f and g respectively.

(A2) The densities f and g have no flat parts, i.e.

sup
λ>0

F {x ∈ R
p : |f(x) − λ | ≤ η } → 0 as η → 0. (2.9)

and the same holds with (F, f) replaced by (G, g).

Theorem 2.1 Let the class C be such that (C2)Fn , (C2)Gn and (6.1) hold. Assume further MF (α) ∈
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C and MG(α) ∈ C for all α, and that (A1) and (A2) hold. Then if F = G we have as n→ ∞

√
n ν̂ 2

y

σ̂ 2
y

T1
D→ 2 sup

α∈[0,1]
|B(α)|

where σ̂ 2
y = n−1

∑
1≤t≤n Y

2
t − ν̂ 2

y , and B denotes a standard Brownian bridge process. On the other

hand, if F 6= G, then P (T1 > c) → 1 as n→ ∞ for some constant c > 0.

Combining the theorem above and (9.39) of Billingsley (1999), we have the approximation:

P
(√

n ν̂ 2
y

σ̂ 2
y

T1 > z
)

≈ 2
∞∑

k=1

(−1)k−1 exp
{
− k2z2

2

}
. (2.10)

Diagnostic plots. The test based on statistic T1 naturally leads to two diagnostic plots α →
(
Gn{M̂C,Gn(α)}, Fn{M̂C,Gn(α)}

)
and α →

(
Gn{M̂C,Fn(α)}, Fn{M̂C,Fn(α)}

)
which are called

CC-plots (Polonik 1999). They may be viewed as a generalization of the standard QQ-plots for

univariate distributions to multivariate distributions. Under null hypothesis (2.1), both plots should

be approximately a 45o straight line.

2.2 Tests based on inverse regression

Although the test T1 is based on an empirical process with single index, we still need to compute

the MV sets in Rp. In this subsection, we swap the roles of Yt and Xt; leading to a test based on

one-dimensional sets only. The key idea is to use an inverse regression equation, i.e. under the null

hypothesis (2.1),

E
[
(Zt − νy) I{|Yt| < y}

]
= 0 for all y ≥ 0, (2.11)

where Zt = ( |Yt−1|, . . . , |Yt−p| )′, and νy is a p × 1 vector with all elements equal to νy = E|Yt|.

Hence we may define a test statistic

T2 =
1

n
max
1≤j≤p

sup
x

∣∣∣
n∑

t=1

(
|Yt−j | − ν̂y,j

)
I(|Yt| ≤ x)

∣∣∣,

and reject hypothesis (2.1) for large values of T2, where ν̂y,j = n−1
∑

1≤t≤n |Yt−j |.
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Theorem 2.2 Let p be fixed. Suppose
√
n (ν̂y,j − νy ) = OP (1), j = 1, . . . , p. If (2.11) holds, then

we have as n→ ∞ that √
n ν̂ 2

y

σ̂ 2
y

T2
D→ max

1≤j≤p
sup

0≤α≤1
|Bj(α)| ,

where B1, · · · , Bp denote p independent standard Brownian bridge processes. On the other hand, if

(2.11) does not hold, then P (T2 > c) → 1 for some constant c > 0.

Due to the independence of the limiting Brownian bridge processes, it holds that

P{ max
1≤j≤p

sup
0≤α≤1

|Bj(α)| ≥ z} = 1 −
[
1 + 2

∞∑

k=1

(−1)k exp
{
− 2 k2z2

} ]p
,

see, e.g., (9.39) of Billingsley (1999).

Note that (2.11) in general does not imply F = G. Therefore, in principle the test T2 is powerless

to reject hypothesis (2.1) for the processes which fulfill (2.11) but not (2.1). We argue that such a

situation is rare in practice. The advantage of using one-dimensional sets in T2 brings in consider-

able convenience in practice, in spite of the fact that it is not an omnibus test for the conditional

heteroscedasticity.

Diagnostic plots. It is easy to see that under the null hypothesis (3.1), the plots

y →
( 1√

n

n∑

t=1

|Yt−j |I(|Yt| ≤ y),
ν̂y,j√
n

n∑

t=1

I(|Yt| ≤ y)
)
, j = 1, · · · , p

should all approximately be 45o lines through the origin.

3 Tests for parametric heteroscedasticity

The methods presented in above may be formally extended to testing for the parametric heteroscedas-

ticity hypothesis

H0 : σt = σ0(Xt,θ0) for some θ0 ∈ Θ, (3.1)

where Xt = (Yt−1, · · · , Yt−p)
′, Yt is defined by (1.1), the form of function σ0 > 0 is known, and

Θ ⊂ Rq, and p, q ≥ 1 are integers. For example, for q = p+1 and σ0(x,θ)
2 = θ1+θ2x

2
1+ · · ·+θp+1x

2
p,
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we test the validation of ARCH(p) model.

3.1 Tests based on MV sets

Put Gθ(A) = 1
νθ

E
{

|Yt |
σ0(Xt, θ) I(Xt ∈ A )

}
where νθ = E{|Yt|/σ0(Xt,θ)} is a normalizing constant,

and Eθ denotes expectation taken with σ(·) = σ0(·,θ) in (1.1). It is easy to see that Gθ(·) is a

well-defined probability measure on Rp. Furthermore, the null hypothesis (3.1) holds if and only if

Gθ0 ≡ F. The latter is equivalent to (Gθ0 − F )(A) = 0 for all A ∈ C, if, for example, C contains all

the MV sets under F and Gθ0. Hence we may construct a test statistic based on a sample version

of the above expression. To this end, let θ̂ be an estimator for θ0, and define

e
t,bθ

= |Yt |
/
σ0(Xt, θ̂), (3.2)

G
n,bθ

(A) =
1

n ν̂bθ

n∑

t=1

e
t,bθ
I(Xt ∈ A ), (3.3)

where ν̂bθ
= 1

n

∑n
t=1 et,bθ. Let M̂C,Fn(α) and M̂

C,bθ
(α) be the empirical MV set under, respectively, Fn

and G
n,bθ

; see (2.6). For α ∈ [0, 1], put ∆̂
n,bθ

(C) = (G
n,bθ

− Fn)(C), and define the test statistic as

T3 = sup
α∈(0,1]

{∣∣∆̂
n,bθ

(M̂C,Fn(α))
∣∣ +

∣∣∆̂
n,bθ

(M̂
C,bθ

(α))
∣∣}.

Due to the presence of the estimator θ̂, the asymptotic null-distribution of the statistic T3 depends

on the underlying processes in a rather implicit manner. This becomes clear from the following result

about the processes ∆̂
n,bθ

(M̂C,Fn(α)) and ∆̂
n,bθ

(M̂
C,bθ

(α)), respectively. To formulate this result we

need the following assumptions on the volatility function.

(V1) σ0(x, ·) is differentiable at θ0 for every x with Eθ0

(
∂

∂θk
σ0(Xt,θ0)

) 2
< ∞, and |σ0(x,θ0| ≥ ǫ

for some ǫ > 0.

(V2) With Bc/
√

n(θ0) :=
{
τ ∈ Rq : |τ − θ0| ≤ c√

n

}
we have:

(a) there exists functions b1(·), . . . , bp(·) with Eb 2
k (Xt) <∞, k = 1, . . . , p, such that for each c > 0
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as n→ ∞

sup
1≤t≤n

sup
τ∈Bc/

√
n(θ0)

∣∣∣
∂

∂θk
σ0(Xt, τ ) − ∂

∂θk
σ0(Xt,θ0)

bk(Xt)

∣∣∣ = oP (1) for all k = 1, . . . , p.

(b) sup
1≤t≤n

sup
τ∈Bc/

√
n(θ0)

∣∣∣∣
σ0(Xt, τ )

σ0(Xt,θ0)
− 1

∣∣∣∣ = oP (1).

Further let

Wn(C) :=
1√
n

n∑

t=1

( |εt| − 1 ) [ I(Xt ∈ C) − F (C) ], C ∈ C, (3.4)

and assume that

(C1) the class C is such that {Wn(C); C ∈ C } is asymptotically equicontinuous with respect to

dF (C,D) = F (C ∆D).

We need another condition related to the complexity of C. For a (in general random) distribution H

we define condition (C2)H as

(C2)H sup
α∈[0,1]

|H(MH(α)) − α| = oP (1). (3.5)

This condition for instance holds (for continuous underlying distributions F and G) with H = Fn or

H = Gn for C the class of all balls or ellipsoids in Rd.

Theorem 3.1 Assume that (A1) and (A2) hold, and that σ0(x, ·) satisfies (V1) and (V2). Sup-

pose that
√
n (θ̂ − θ0) = OP (1). Let C be such that MF (α) ∈ C for all α ∈ [0, 1], that IB(C) < ∞

(cf. (6.1)) and that (C1) and (C2)
Gn,bθ

hold. Then, under the null hypothesis (3.1) we have the

following:

√
n ∆̂

n,bθ
(M̂

C,bθ
(α)) = Wn(MF (α)) + (

√
n (θ̂ − θ0) )′ bθ0(MF (α)) + oP (1) as n→ ∞, (3.6)

where the oP (1)-term is uniform in α, and bθ0(MF (α)) = Eθ0

[ σ̇0(Xt,θ0)
σ0(Xt,θ0) ( I(Xt ∈ MF (α)) − α )

]
.

The same expansion (3.6) holds for ∆̂
n,bθ

(M̂C,Fn(α)) if we assume (C2)Fn (rather than (C2)
Gn,bθ

).

Moreover, {Wn(MF (α)), α ∈ [0, 1]}, considered as a process in ℓ∞([0, 1]), converges in distribution
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to {Var(|εt|)B(α), α ∈ [0, 1]}, where {B(α), α ∈ [0, 1] } denotes a standard Brownian bridge.

This result shows that the asymptotic behavior of ∆̂
n,bθ

cannot be used to compute P -values of the

corresponding test T3 directly, because in general, under H0 the asymptotic distribution of T3 will

depend on the underlying process as well as the particular estimator θ̂. This is due to the second

term on the r.h.s. of (3.6), which would vanish if we would not need to estimate θ (i.e. θ̂ = θ0).

Assumption (C1) holds, for instance, under appropriate mixing conditions together with the

assumption of C having a finite bracketing integral (cf. Doukhan et al. 1995). However, there are

certainly various types of assumptions that can be used to assure (C1) to hold, and this is the reason

for making (C1) an assumption rather than to formulate one set of sufficient conditions.

3.2 Tests based on inverse regression

Based on the same idea as for T2, we may test the null hypothesis (3.1) using the statistic

T4 = max
1≤j≤p

sup
x

1

n

∣∣∣
n∑

t=1

(|Yt−j | − ν̂y,j)I(et,bθ0
≤ x)

∣∣∣.

where e
t, bθ

is defined in (3.2), and ν̂yj = n−1
∑

1≤i≤n |Yi−j |. Similar to Theorem 3.1 we have the

following expansion for the process underlying T4. Recall the definition of Bc/
√

n(θ0) given above.

Theorem 3.2 Suppose that
√
n (θ̂−θ0) = OP (1), and that

√
n (ν̂y −νy) = OP (1), and assume that

σ(·) satisfies (V1) and (V2). Then, under the null hypothesis (3.1) we have as n→ ∞

1√
n

n∑

i=1

{
Zt − ν̂y

}
I( e

t, bθ
≤ y ) =

1√
n

n∑

i=1

{
Zt − νy

}
( I( εt ≤ y) − Fε(y) )

+ y f(y) (
√
n ( θ̂ − θ0 ) )′ a0 + oP (1), (3.7)

where a0 = (a0,j , j = 1, . . . , p)′, and a0,j = Eθ0

({
|Yt−j | − νy

} σ̇0(Xt,θ0)
σ0(Xt,θ0)

)
. Moreover,

[ Cov(Zt) ]−1/2 1√
n

n∑

i=1

{
Zt − νy

}
( I( εt ≤ y) − Fε(y) ) →D (B1,Fε(α), . . . , Bp,Fε(α))′,

where {Bj,Fε(α), α ∈ [0, 1] }, j = 1, . . . , p denote p independent Brownian bridges with
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Cov(Bj,Fε(α), Bj,Fε(β)) = Fε(α ∧ β) − Fε(α)Fε(β).

Again, the term involving θ̂ − θ0 on the r.h.s. of (3.7) makes the asymptotic null-distribution of T4

depend on the underlying process. Below we propose to approximate the null-distributions of both

T3 and T4 by some bootstrap methods.

One alternative would be to apply a martingale transform to the (estimated) empirical processes

to make their sampling distributions independent of underlying processes; see Khmaladze (1981,

1988). This method has been successfully applied in dealing with processes indexed by a real param-

eter; see, for example, Stute (1997), Stute et al. (1998) and Koul and Stute (1999). Although the

asymptotic expansion presented in Theorems 3.1 and 3.2 indicate that an application of this method

is feasible, there are several issues to be explored before this method can actually be considered

seriously in the present context. One is the practical implementation of the method to multivariate

cases, and another is to conduct a detailed theoretical power study for our tests, in order to make

sure that the transformation method does not lead to a significant loss of power. These studies go

beyond the scope of this manuscript and will be conducted elsewhere.

3.3 Bootstrap tests

For bootstrap tests for a composite null hypothesis, ideally the bootstrap sample should be drawn

from the ‘representative’ distribution of the null hypothesis, which determines the significance levels

for the tests. This may be achieved easily if the null-distribution of a test statistic is distribution-

free, as then the bootstrap sample may be draw from any distribution under the null hypothesis.

In general, we typically replace the ‘representative’ distribution by the distribution under the null

hypothesis which is the ‘closest’ to the observations (Hinkley 1988, Hall and Wilson 1991). As we

have pointed out above, the asymptotic distributions of both T3 and T4 are not distribution-free. We

outline below the two bootstrap methods to estimate the P -values of the tests.

Parametric bootstrap test. Under some circumstances we may assume that the distribution of

innovations εt in model (1.1) is known, say, F1. The bootstrap sample may be drawn from the

equation

Y ∗
t = σ0(X

∗
t , θ̂)ε

∗
t , (3.8)
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where X∗
t = (Y ∗

t−1, · · · , Y ∗
t−p)

′, θ̂ is an estimator for θ, and {ε∗t } ∼i.i.d. F1.

Nonparametric bootstrap test. If the distribution of εt in model (1.1) is unknown, we may

adopt a nonparametric bootstrap method as follows: define the residuals ε̂t = Yt/σ(Xt, θ̂), and draw

bootstrap sample from (3.8) but now {ε∗t } are independent drawn from the residuals {ε̂t}.

With a bootstrap sample, T ∗
3 (or T ∗

4 ) is computed in the same manner as T3 (or T4) with {Yt}

replaced by {Y ∗
t }. The bootstrap estimate for the P -value is the relative frequency of the occurrence

of the event T3 > T ∗
3 (or T4 > T ∗

4 ) in a repeated bootstrap sampling with B times, where B > 0 is a

large integer.

The nonparametric bootstrap test outlined above is more general than the parametric one. It

may still apply when the innovation distribution F1 is known. However some power-loss may be

expected then, since the residuals ε̂t, and therefore also bootstrap innovations ε∗t , will not behave

like a random sample from F1 if the null hypothesis (3.1) does not holds; see the numerical examples

in table 5.1 in section 5.

The following result justifies the parametric bootstrap procedure. For a given θ we denote by

Yt,θ a stationary solution to

Yt = σ0(Xt,θ) εt.

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 with F = Gθ0 and G = Gθ hold

uniformly in θ ∈ Uc/
√

n(θ0) = {θ : ‖θ − θ0‖ ≤ c n−1/2 } for any choice of c > 0. In addition we

assume that uniformly in θ ∈ Uc/
√

n(θ0)

(i) there exist realizations Yt,θ and Yt,θ0 on the same probability space such that

sup
1≤t≤n

| |Yt,θ| − |Yt,θ0 | | = oP (1) as n→ ∞; (3.9)

(ii) the estimator θ̂ is such that

√
n (θ̂ − θ) =

1√
n

n∑

i=1

h(εt)ψθ(Xt,θ) + oP (1) as n→ ∞, (3.10)

with Eh(εt) = 0, σ2
h = Eh2(εt) < ∞, and ψθ is a Lipschitz continuous q-vector of measur-

able functions satisfying E
[
ψθ0

(Xt,θ0)
]2
< ∞ and

∥∥ψθ(x) − ψθ0(x)
∥∥ ≤ K(x)‖θ − θ0‖ for a

12



measurable function K with supθ∈Uc/
√

n(θ0) EK2(Xt,θ) <∞;

(iii) the pdf’s gθ(·) are Lipschitz continuous uniformly in θ ∈ Uc/
√

n(θ0), and gθ(x) is continuous

in θ0 for all x;

(iv) σ̇0(x,θ) is continuous in both x and θ ∈ Uc/
√

n(θ0), and there exist a q-vector of measurable

functions a with |σ̇0(x,θ)| ≤ a(x) and supθ∈Uc/
√

n(θ) Ea(Xt,θ) <∞.

Then we have as n→ ∞ that

sup
x∈R

|P (T ∗
3 ≤ x|X1, . . . ,Xn) − P (T3 ≤ x)| → 0 in probability.

Remark: An estimator θ̂ that allows for the required expansion (3.10) with h(εt) = ε2t can be found

in Hall and Yao (2003), p. 304, for the quasi-maximum-likelihood estimator of a GARCH-model

(with of course the ARCH-model being a special case). One of the crucial assumptions is (i). It

holds, for instance, for power-ARCH(p)-models with index 1. This can be seen by observing that if

|Yt,θ| is a solution to |Yt| = σ0(Xt,θ)|εt| with σ0(Xt,θ) = a +
∑p

j=1 bj |Yt−j | with θ = (a, b1, . . . , bp)

then, if
∑p

j=1 bj < 1 with bj ≥ 0 we have

|Yt,θ| = a|εt| + a

∞∑

ℓ=1

∑

1≤j1,...,jℓ≤p

bj1 · · · bjℓ
|εt| |εt−j1 | · · · |εt−j1−···jℓ

|

:= a|εt| + aΦ(b1, . . . , bp, |εt|, |εt−1|, |εt−2|, . . .).

Using the same sequence of random variables εt and by changing the parameter θ to θn we can see

that the corresponding Yθn satisfies

|Yt,θ| − |Yt,θn | = (a− an) |εt| + (a− an)Φ(b1, . . . , bp, |εt|, |εt−1|, |εt−2|, . . .)

+ an

[
Φ(b1, . . . , bp, |εt|, |εt−1|, |εt−2|, . . .) − Φ(b1,n, . . . , bp,n, |εt|, |εt−1|, |εt−2|, . . .)

]
.
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Clearly, the first two summands are OP (n−1/2) if θ̂ − θ = OP (n−1/2). Observe further that

Φ(b1, . . . , bp, |εt−1|, |εt−2|, . . .)−Φ(bn,1, . . . , bn,p, |εt−1|, |εt−2|, . . .)

=
∞∑

ℓ=1

∑

1≤j1,...,jℓ≤p

(bj1 · · · bjℓ
− bn,j1 · · · bn,jℓ

) |εt−j1 | · · · |εt−j1−···−jℓ
|.

Next write bj1 · · · bjℓ
−bn,j1 · · · bn,jℓ

= cℓn,1 (b1−bn,1)+ · · ·+cℓn,p (bp−bn,p) where cℓn,i either equals zero,

or cℓn,i = cn,1 · · · cn,ℓ−1 with cn,i ∈ {b1, . . . , bp, bn,1, . . . , bn,p}. We can now conclude that condition (i)

holds if we assume that for all c > 0 we have for n large enough that E
(
Φ(̃b1, . . . , b̃p, |εt|, |εt−1|, . . .)

)2+δ
<

∞ uniformly in ‖b̃− b‖ < c/
√
n for some δ > 0.

To assure the assumed equicontinuity of Wn(C), C ∈ C we need the index class C to be not

too rich, in the sense that the so-called ‘uniform bracketing integral’ is finite. Without going into

further detail here, we can say that this assumption is fulfilled for the class of ellipsoids that we are

proposing to use in the applications. An estimator θ̂ that allows for the required expansion (3.10)

with h(εt) = ε2t can be found in Hall and Yao (2003), p. 304, for the quasi-maximum-likelihood

estimator of a GARCH-model (with the ARCH-model being a special case). Besides assumptions

on the complexity of C, validity of (ii) in general requires assumptions on the dependence of the Yt.

Explicit conditions can be found in Doukhan et al. (1995), for instance.

4 Is higher volatility associated with rarer events?

In this section, we continue to explore the relationship between the two probability measures F

and G in order to investigate some qualitative characteristics of the volatility function σt under the

general framework (1.1). We will provide a statistical test to check whether the financial market is

more volatile at occurrence of rarer events, which is reflected in GARCH models. For example, a

simple ARCH(1) specifies volatility function as σ2
t+1 = a+ bY 2

t (a, b ≥ 0). Therefore large positive or

large negative values of Yt lead to large values of σ2
t+1, while the chance of having excessive returns

(i.e. |Yt| is excessively large) is small.

We use the same notation as in section 2. To facilitate our discussion, we assume σt = σ(Xt),

where σ(·) is an unknown function. Recall f(·) is the density function of Xt and MF (α) is the MV
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set of F ; see (2.5). The measure G admits the density function g(·) = ν−1
y σ(·)f(·); see the definition

of G(·) in (2.3). We consider to test the null hypothesis

H0 : F{MF (α)} = G{MF (α)} for all α ∈ (0, 1) (4.1)

against the one-sided alternative

H1 : F{MF (α)} ≥ G{MF (α)} for all α ∈ (0, 1), (4.2)

and the inequality holds strictly for some α ∈ (0, 1).

When the above H0 is rejected, it indicates that the probability mass under G is more spreading-out

than that under F . Note that g(·) ∝ σ(·)f(·). Hence the G-measure is more spreading-out than the

F -measure when σ(·) makes the probability mass thinner where f(·) is large, and thicker where f(·)

is small. This phenomenon will occur when, for example, f is unimodal and decays to 0 at boundaries

and σ(·) is a U -shape curve. The latter feature is termed “smiling effect” in volatility literature; see,

for example, Härdle and Tsybakov (1997). It reflects the stylized feature that a financial market is

more volatile when returns are large, either positively or negatively. Note that we only compare the

two measures over the MV sets under F since we only look for the evidence that G is more spread-out

than F in relation to the central areas of the data, which is reflected by the MV sets under F .

Hypothesis (4.2) (ignoring the strict inequalities) defines an integral stochastic order. In fact, by

interpreting the probabilities in (4.2) as expected values of indicator functions of the MV sets, and

taking linear combinations, one can see that (4.2) implies inequalities of the form
∫
h(x) dG(x) ≤

∫
h(x)dF (x) for functions h whose level sets (i.e. the sets {x : h(x) ≥ λ }, λ ≥ 0) are MV sets of f.

This means that (4.2) defines in integral stochastic order with generator consisting of all functions

with level sets in {MF (α), α ∈ [0, 1] }. Recall that level sets of f are MV sets, and hence every

(positive) function with each if its level set also being a level set of f is a member of the class of

generators. This implies many integral relations between f and g, as for instance (by taking h = fk)

we obtain
∫
fk g ≤

∫
fk+1. See, e.g. Müller and Stoyan (2002) for details on integral stochastic

orders.

We should reject the null hypothesis (4.2) when (F −G){MF (α)} takes large positive values for
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some α ∈ (0, 1). Therefore we may define a test statistic as

T5 =

∫ 1

0

{
∆̂n(M̂C,Fn(α)) }+dα

where ∆̂n is defined as in (2.8), and we reject (4.2) for some large values of T5.

Theorem 4.1 Suppose that the conditions of Theorem 2.1 hold, and F ≡ G. Then as n → ∞, it

holds that
√

n

σ̂ 2
y /ν̂

2
y

T5
D→

∫ 1

0
(B(α) )+ dα,

where B(α) is the standard Brownian bridge, and σ̂y and ν̂y are the same as in (2.10).

We tabulate the high quantiles of the random variable
∫ 1
0 (B(α) )+ dα below, which were obtained

from a Monte Carlo simulation.

α 0.900 0.925 0.950 0.975 0.990 0.995

quantile 0.383 0.388 0.478 0.563 0.670 0.717

Remark 4.2 The setting (4.1) and (4.2) implicitly implies that we are concerned with the processes

for which F{MF (α)} ≥ G{MF (α)} for all α. In practice, we may apply a pre-test with the test

statistic T6 =
∫ 1
0 { ∆̂n(M̂C,Fn(α)) }−dα, where x− = max(−x, 0). Obviously, T6 shares the same

asymptotic distribution as T5. We should not proceed with the test T5 if the pre-test with T6 is

significant (i.e., for example, T6 > 0.478; see the table above).

Diagnostic plots. The CC-plots discussed in section 2.1 also serve as a diagnostic plot associated

with the test T5. Now, however, we are only interested in one-sided deviations.

5 Numerical illustration

We illustrate the proposed tests with numerical examples. For tests T1 and T5, we always choose

M̂C,Fn(α) among the sets with balls as their images under the mapping Xt → S−1/2(Xt − X̄), where

X̄ and S denote, respectively, the sample mean and the sample covariance matrix of {Xt}; see

(2.6). We choose M̂C,Gn(α) among the sets also with balls as their images but under a different

mapping Xt → S
−1/2
g (Xt − X̄g), where X̄g and Sg denote the mean and the covariance matrix of the
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distribution Gn. For test T3, M̂C,bθ
(α) are defined in the same manner as M̂C,Gn(α) with Gn replaced

by G
n,bθ

defined in (3.3).

Before we proceed to numerical experiements, we would like to point out that the tests proposed

in this paper do not facilitate a direct comparison with the existing methods. As indicated in the

beginning of section 2, the existing methods based on the residual-regression idea are for univariate

Xt for which there is no point to adopt the MV-set or inverse regression. On the other hand, those

parametric tests based on the residuals obtained from fitting ARCH/GARCH models with Gaussian

innovation cannot apply to heavy-tailed Models I and II in (5.1) below, and would be in disadvantage

when applying to a ‘wrong’ model such as Model III.

5.1 Simulated examples

First we deal with tests T1, T2 and T5 with the data generated from three different models:

I. Yt = et,

II. Yt = σtet, σ2
t = 0.5 + 0.1Y 2

t−1 + 0.8σ2
t−1, (5.1)

III. Yt = σtεt, σt = 0.5 + 0.2|Yt−1| + 0.75σt−1,

where εt be independent N(0, 1) random variables, and et be independent t3-distributed random

variables. The processes defined by model I is a sequences of i.i.d. random variables with E|Yt|3 = ∞,

which roles out the use of conventional parametric testing methods; see section 4.2.6 of Fan and

Yao (2003). Model II is a GARCH(1,1) with heavy tailed innovations. Model III defines a power

GARCH(1,1) model with power index equal to 1.

For sample sizes 50, 100, 200 and 500, we applied the tests with p = 1, 2, 4 and 6. For each setting,

we replicated the simulation 500 times. The relative frequencies of rejecting the null hypotheses at

level 10%, 5% and 1% are listed in Tables 1 – 3.

Table 1 contains the results from applying tests to the independent t3 observations. It indicates

that the asymptotic approximations (2.10), (2.12) and Theorem 4.1 are adequate. The asymptotic

approximations (2.10) and Theorem 4.1 remain the same for different values of p. With the range of

sample sizes specified in the simulation, Table 1 suggests that overall those two approximations work
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Table 1: Relative frequencies of rejecting null hypotheses; the three numbers in each entry
corresponding to, respectively, the significance level 10%, 5% and 1%. The observations
are drawn from Model I.

p n T1 T2 T5

1 50 .04 .00 .00 .05 .02 .00 .08 .03 .00
100 .04 .01 .00 .04 .01 .00 .11 .05 .01
200 .07 .04 .01 .07 .03 .00 .09 .05 .02
500 .07 .03 .00 .06 .03 .00 .10 .05 .01

2 50 .03 .01 .00 .05 .02 .01 .07 .07 .00
100 .04 .02 .00 .04 .01 .00 .09 .04 .01
200 .04 .01 .00 .07 .03 .00 .10 .05 .01
500 .06 .03 .00 .08 .03 .00 .10 .05 .01

4 50 .04 .01 .00 .04 .02 .01 .07 .03 .00
100 .05 .03 .00 .04 .03 .01 .08 .03 .00
200 .05 .02 .00 .04 .03 .00 .07 .04 .01
500 .06 .03 .01 .07 .04 .01 .10 .05 .01

6 50 .09 .04 .01 .04 .02 .01 .05 .02 .00
100 .06 .03 .00 .03 .02 .01 .05 .01 .00
200 .06 .02 .00 .04 .02 .00 .07 .04 .01
500 .07 .03 .01 .06 .04 .01 .09 .05 .01

Table 2: Legend is as for Table 1. The observations are drawn from Model II:
GARCH(1,1) model with t3-distributed innovations.

p n T1 T2 T5

1 50 .11 .05 .01 .23 .16 .05 .34 .27 .13
100 .43 .33 .16 .57 .48 .33 .66 .60 .44
200 .80 .74 .60 .89 .82 .74 .92 .89 .81
500 1.00 1.00 .98 1.00 1.00 .99 1.00 1.00 1.00

2 50 .14 .07 .01 .25 .18 .06 .46 .35 .17
100 .55 .45 .30 .62 .41 .35 .80 .73 .58
200 .92 .88 .79 .92 .89 .77 .97 .96 .93
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 50 .16 .10 .01 .20 .14 .04 .50 .40 .22
100 .62 .56 .38 .60 .51 .34 .87 .79 .65
200 .95 .93 .86 .92 .89 .78 .98 .97 .95
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 50 .14 .07 .01 .17 .12 .06 .46 .36 .19
100 .64 .55 .37 .58 .48 .32 .86 .81 .70
200 .96 .94 .88 .95 .90 .79 .99 .98 .96
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

18



Table 3: Legend is as for Table 1. The observations are generated from Model III:
power-GARCH(1,1) model with Gaussian innovations.

p n T1 T2 T5

1 50 .10 .05 .01 .14 .08 .03 .32 .24 .09
100 .28 .20 .08 .34 .24 .11 .60 .49 .28
200 .61 .49 .30 .61 .52 .32 .84 .74 .58
500 .96 .93 .84 .96 .92 .80 .99 .99 .95

2 50 .10 .06 .01 .14 .08 .02 .39 .28 .12
100 .37 .24 .10 .31 .20 .11 .71 .60 .35
200 .73 .65 .46 .65 .55 .37 .92 .87 .73
500 .99 .99 .95 .97 .95 .84 1.00 1.00 .99

4 50 .12 .07 .02 .14 .07 .01 .40 .29 .13
100 .41 .29 .15 .33 .23 .10 .73 .64 .41
200 .80 .71 .53 .61 .51 .31 .93 .88 .79
500 1.00 0.99 .98 .97 .95 .82 1.00 1.00 1.00

6 50 .10 .06 .01 .14 .09 .03 .36 .25 .12
100 .38 .28 .14 .29 .21 .09 .70 .60 .40
200 .75 .69 .52 .62 .52 .32 .93 .89 .76
500 .99 .99 .97 .96 .91 .83 1.00 1.00 0.99

about equally well for p between 1 and 6. Note that the reported relative frequencies are almost

always smaller than the nominal levels. This will underplay the potential power of the tests.

With the data generated by the two heteroscedastic models, i.e. Models II and III, our tests

demonstrate the power in rejecting both the null hypotheses (2.1) and (4.2); see Tables 2 and 3. In

fact the power of rejection increases as the sample size n increases. Note that for both Models II and

III, σt depends on infinite number of lagged values of Yt, Tables 2 and 3 show that the tests with

p = 6 and 4 are more powerful than those with p = 1 and 2 in most cases.

The diagnostic plots associated with the tests T1 and T5 are presented in Figure 1, and those

associated with the test T2 are displayed in Figure 2. To save the space we only presented the plots

with n = 200 and p = 2. For each of Models I – III, five samples were randomly selected. Under

the null hypothesis (2.1), those plots are closely around the diagonal line y = x; see the top row in

both Figures 1 and 2. When there exists heteroscedasticity, some parts of the curves drifted away

from the diagonal line; see Rows 2 and 3 in Figures 1 and 2. The departure is more pronounced for

GARCH(1,1) model with heavy tailed innovations.

For testing the null hypothesis (4.2) against one-sided alternative (4.1) with statistic T5, we look
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Figure 1: Diagnostic plots associated with tests T1 and T5 (with p = 2): solid lines – Gn{M̂C,Fn(α)}
against Fn{M̂C,Fn(α)} for α ∈ (0, 1); dashed lines – Gn{M̂C,Gn(α)} against Fn{M̂C,Gn(α)} for α ∈
(0, 1); dotted lines – straight line y = x. Each row represents 5 randomly selected samples (with
n = 200) from, from top to bottom, each of Models I – III.

for the one-sided departure of the solid curves under the diagonal y = x in Figure 1. This is evident in

most plots in Rows 2-3 there. This indicates that “smiling effect” may well exist for all the processes

defined by Models II and III, and again such an effect is more pronounced for the GARCH(1,1)

model with t3 innovations.

Table 4: Simulation results for parametric bootstrap (PB) and nonparametric bootstrap
(nonPB) tests based on T3 and T4. The three numbers in each entry are the relative
frequencies of rejecting the ARCH(2) null hypothesis, corresponding to, respectively, the
level α = .10, .05 and .01.

Model n T3 (PB) T3 (nonPB) T4 (PB) T4 (nonPB)

ARCH(2) 200 .11 .05 .01 .10 .05 .01 .10 .04 .01 .12 .05 .01
(with t3-innovation) 200 .00 .00 .00 .11 .04 .01 .09 .03 .00 .11 .04 .01

ARCH(3) 200 .21 .11 .04 .12 .06 .02 .09 .04 .02 .07 .03 .01
500 .30 .24 .12 .19 .12 .04 .13 .06 .01 .08 .04 .01

GARCH(1,1) 200 .97 .96 .87 .96 .94 .86 .45 .22 .06 .40 .21 .05
500 1.00 1.00 1.00 1.00 1.00 1.00 .94 .80 .35 .92 .73 .26

PGARCH(1,1) 200 1.00 1.00 1.00 .99 .99 .99 .62 .12 .00 .68 .20 .00
500 1.00 1.00 1.00 1.00 1.00 1.00 .96 .63 .00 .97 .72 .00
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Figure 2: Diagnostic plots associated with test T2 (with p = 2): 1√
n

∑
t |Yt−j |I(|Yt| ≤ y) against

bνy,j√
n

∑
t I(|Yt| ≤ y) for y > 0. Solid lines – j = 1, dashed lines – j = 2, dotted lines – straight line

y = x. Each row represents 5 randomly selected samples (with n = 200) from, from top to bottom,
each of Models I-III.

We also conducted a simulation study on bootstrap tests with test statistics T3 and T4 for testing

a specified null hypothesis (3.1) with σ2
t = c + a1Y

2
t−1 + a2Y

2
t−2, i.e. Yt is a ARCH(2) model. We

applied both the parametric bootstrap test with normal distribution F1, and the nonparametric

bootstrap test outlined in section 4.3. Samples of size n = 200 or 500 were generated from model

(1.1) with different forms of σt. For each setting, we drew 400 samples, and repeated bootstrap

sampling also B = 400 times.

Table 4 reports the relative frequencies of rejecting the null hypothesis of ARCH(2) model in the

400 replications at the significance levels 10%, 5% and 1%. The first row contains the results for

an ARCH(2) process with Gaussian innovation and the coefficients (c, a1, a2) = (0.5, 0.4, 0.5). Now

the null hypothesis H0 is true. Both parametric and nonparametric bootstrap methods provide very

accurate estimates for the significance levels. The results for the same model but with t3-innovations

are reported in the second row of the table. As expected, the nonparametric bootstrap method still

provide accurate estimates for the significance levels. However the parametric bootstrap method

failed with statistic T3. This was due to the use of a wrong innovation distribution in bootstrapping.
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Figure 3: Time plots of daily returns of Shanghai Composite Index and Hong Kong Hang Seng Index
in 3 August 1998 – 30 December 2003.

In Table 4, Rows 3–4 list the results for an ARCH(3) model with Gaussian innovations and

the coefficients (c, a1, a2, a3) = (0.5, 0.3, 0.2, 0.4), Rows 5-6 for for GARCH(1,1) model IV but with

Gaussian innovations, and the last two rows for power-GARCH(1,1) model V. Even with sample size

n = 500, all the tests lack the power to tell the ‘subtle’ difference between ARCH(3) and ARCH(2).

On the other hand, the tests based on MV sets (i.e. T3) are considerably more powerful than the tests

based inverse regression (i.e. T4). Furthermore, the nonparametric bootstrap tests are almost always

less powerful than the parametric bootstrap tests which used the correct innovation distribution in

bootstrap samplings.

5.2 Real data examples

Now we illustrate the tests with two real data sets: the returns of daily close prices of Shanghai

Composite Index and Hong Kong Hang Seng Index in 3 August 1998 – 30 December 2003; see

Figure 3. We applied the tests to the whole series (n = 1139), as well as to the three subseries (for

each of the two data sets) in 3 August 1998 – 30 June 2000, 3 July 2000 – 31 May 2002 and 3 June

2002 – 30 Dec 2003 with sample sizes, respectively, 400, 395 and 344.

For the returns of Shanghai Composite Index, the tests T1 and T2 with p = 1, 2 and 4 are all
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Figure 4: Diagnostic plots associated with T1 and T2 (with p = 4) for returns of Shanghai Composite

Index. Row I: Gn{M̂C,Fn(α)} against Fn{M̂C,Fn(α)} for α ∈ (0, 1) – solid lines; Gn{M̂C,Gn(α)}
against Fn{M̂C,Gn(α)} for α ∈ (0, 1) – dashed lines. Rows II-V: 1√

n

∑
t |Yt−j |I(|Yt| ≤ y) (y > 0)

against
bνy,j√

n

∑
t I(|Yt| ≤ y) for j = 1, 2, 3, 4. Dotted lines are diagonal y = x.

significant at the level 1% for the whole series and the first subseries, and T1 and T2 with p = 2 and

4 are significant at the level 1% for the second and the third subseries. The test T1 with p = 1 is

not significant (with P -value greater than 0.1) for both the second and the third subseries while T2

with p = 1 is significant at level 5% for both the subseries. This indicates that there is overwhelming

evidence to reject the null hypothesis of a constant volatility function. It also echoes the observation

in the simulation study that the tests with p > 1 are more powerful than those with p = 1 for
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Figure 5: Diagnostic plots associated with T1 and T2 (with p = 4) for returns of Hang Kong Hang Seng

Index. Row I: Gn{M̂C,Fn(α)} against Fn{M̂C,Fn(α)} for α ∈ (0, 1). Rows II-V: 1√
n

∑
t |Yt−j |I(|Yt| ≤

y) against
bνy,j√

n

∑
t I(|Yt| ≤ y) (y > 0) for j = 1, 2, 3, 4. Dotted lines are diagonal y = x.

rejecting (2.1) when σ(·) depends on more than one lagged values. Figure 4 displayed the associated

diagnostic plots. It clearly indicates the evidence of the departure for the null hypothesis for the

whole series as well as all the three subseries.

We also applied the tests T3 and T4 for testing the null hypothesis of an ARCH(2) model σ2
t =

a0 +a1Y
2
t−1 +a2Y

2
t−2. The quasi-MLE for (a0, a1, a2) for the three subseries were, respectively (1.906,

0.405, 0.128), (1.380, 0.118, 0.325) and (0.848, 0.239, 0.335), which were very different from each

other. The nonparametric bootstrap tests with both T3 and T4 and the parametric bootstrap test
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Figure 6: Diagnostic plots associated with T3 for subseries of both Shanghai Composite returns and
Hang Kong Hang Seng returns. Solid lines – G

n,bθ
{M̂C,Fn(α)} against Fn{M̂C,Fn(α)} for α ∈ (0, 1);

dashed lines – G
n,bθ

{M̂
C,bθ

(α)} against Fn{M̂C,bθ
(α)} for α ∈ (0, 1); dotted lines – y = x.

with T4 using Gaussian innovation distribution do not reject the null hypothesis of ARCH(2) model

for Subseries I and II with minimum P -value 0.27. The parametric bootstrap test with T3 yields the

P -values 0.08 and 0.41 for Subseries I and II with Gaussian innovation distribution, and P -values

0.24 and 0.57 with t7 innovation distribution. Overall there is no significant evidence to against

ARCH(2) model for the first two subseries. For subseries III, the parametric bootstrap test with T3

using either Gaussian or t7 innovation distributions yields the P -value 0.00 while the nonparametric

bootstrap test with T3 yields the P -value 0.02; indicating the null hypothesis of ARCH(2) should be

rejected. The associated diagnostic plots are displayed in Figure 6. It indeed shows a certain degree

of the inadequacy of ARCH(2) model for Subseries III.

Interestingly the returns of Hong Kong Hang Seng Index showed drastically different behavior.

For example, the test T1 was not significant with p = 1, 2 for all three subseries, and was only

significant with p = 4 for Subseries II at level 5% and Subseries III at level 10% only. The test T2

was significant for all the three subseries with p = 2, 4 at the level 5% or 10%, was not significant

with p = 1. For the whole series, both T1 and T2 were significant at level 5% with p = 1, and were

significant at level 1% with p = 2, 4. One may argue that the substantial increase in significance might

be due the non-stationarity rather than a genuine conditional heteroscedasticity. The associated
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diagnostic plots are displayed in Figure 5. In contrast to Figure 4, Figure 5 indicates little evidence

of the departure from the null hypothesis, especially for the three subseries.

We further fitted ARCH(2) model to the three subseries. The estimated coefficients for (a0, a1, a2)

were, respectively (5.279, 0.012, 0.000), (2.438, 0.109, 0.047) and (1.589, 0.000, 0.000). This also

supports a constant conditional variance model for Subseries I and III. Not surprisingly both the

parametric (with Gaussian innovation distribution) and nonparametric bootstrap tests with both T3

and T4 are not significant; indicating that the null hypothesis of an ARCH(2) model could not be

rejected for all three subseries. The diagnostic plots in Figure 6 reinforces this argument.

Finally we applied test T5 to explore the existence of ‘smiling effect’ in the subseries of those

two data sets. We first applied the pre-test T6 to examine the evidence against the prerequisite

F{MF (α)} ≥ G{MF (α)} for any α; see Remark 4.2. The P -values of the pre-test with p = 1, 2 and

4 are always greater than 0.1. Hence we may proceed with the test T5 now.

For Shanghai composite returns, T5 is siginificant with p = 2, 4 at level 1% for all the three

subseries. It is significant with p = 1 at level 1% for Subseries I, at level 5% for Subseries II, and

not significant for Subseries III; see also the plots in Row I in Figure 4. Overall there is evidence to

indicate that the ‘smiling effect’ exists with all the three subseries.

Again the Hang Kong Hang Seng returns show different behavior. The tests T5 with p = 1, 2 and

4 are all not significant even at the level 10% for Subseries I and III, are significant at level 5% for

Subseries II. The diagnostic plots in Figure 5 (Row I) show that there might be some evidence for

F{MF (α)} > G{MF (α)} for some α for Subseries II. However the departure from the diagonal is

much less pronounced than that for Shanghai composite returns; see Figure 4.

6 Asymptotic theory

In this section we present the proofs of the theoretical result formulated above. We first introduce the

notion of metric entropy and covering integral which are used to control richness of C. Assume that for

a given ε > 0 there exists a partition {C1, . . . ,CN } of C such that for each k = 1, . . . , N there exist sets

C∗,k and C∗
k with Ck = {C ∈ C : C∗,k ⊂ C ⊂ C∗

k } and
√
F (C∗

k \ C∗,k ) < ε, and let NB(ε, C, L2(F ) )

denote the smallest such N. Then the metric entropy is defined as the logarithm of NB(ε, C, L2(F ) ).
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Further let H(ε) = HB(ε, C, L2(F )) be such that logNB(ε, C, L2(F ) ) ≤ HB(ε, C, L2(F )). The

covering integral then is

IB(C) :=

∫ 1

0

√
HB(ε, C, L2(F ) ) d ε < ∞. (6.1)

When F = Gθ we write IB(C,θ). Observe that with this notation we have IB(C) = IB(C,θ0).

There exist many classes C having a finite covering integral, as for instance intervals, balls, ellipsoids,

rectangles, certain classes of sets with smooth boundaries, the class of convex sets in R2 etc. Notice,

however, that the condition of a finite covering integral might depend on the underlying distribution

F . We refer to standard textbooks on empirical process theory for further details.

Proof of Theorem 2.1. We first prove the second part. We will show below that for any α ∈ [0, 1]

we have

Gn(M̂C,Fn(α)) −G(MF (α)) = oP (1), (6.2)

and the same result holds if in (6.2) we replace Gn, G by Fn, F, respectively, or if we replace Fn, F

by Gn, G, respectively. Suppose for the moment that (6.2) actually holds. Then under H1 there

exist α0 > 0 with either F (MF (α0) ) 6= G(MF (α0) ) or F (MG(α0) ) 6= G(MG(α0) ). It follows that

as n→ ∞ we have

T1 ≥ |(Gn − Fn)( M̂C,Fn(α0) ) | + |(Gn − Fn)( M̂C,Gn(α0) ) |

→p |G(MF (α0) ) − F (Mf (α0) ) | + |G(MG(α0) ) − F (Mg(α0) ) | > 0.

It remains to prove (6.2). To this end first notice that Gn(M̂C,Fn(α))−G(MF (α)) = (Gn(M̂C,Fn(α))−

G(M̂C,Fn(α)) )+(G(M̂C,Fn (α))−G(MF (α)) ). The latter summand is oP (1) since we have |G(M̂C,Fn(α))−

G(MF (α)) | ≤ G( M̂C,Fn(α)∆MF (α) ) = oP (1) (by Proposition 6.1). Further notice that for any set

A the assumed ergodicity of Yt implies that Gn(A) → G(A) almost surely. Using the standard

bracketing trick (see e.g. Pollard 1984, or van der Vaart and Wellner 1995) we can conclude that

supC∈C | (Gn − G )(A) | = oP (1). In particular this implies that sup0≤α≤1 |(Gn − G )(M̂C,Fn(α))| =

oP (1). This shows (6.2). The proof of (6.2) with Gn, G replaced by Fn, F (and with Fn, F replaced

by Gn, G) is analogous.
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Now we prove the first assertion. We have

√
n ∆̂n(M̂C,Fn(α)) =

1√
n ν̂y

n∑

i=1

( |Yt| − νy )
(
I(Xt ∈ M̂C,Fn(α) ) − F (M̂C,Fn(α))

)

+
1

ν̂y

√
n (ν̂y − νy) (Fn − F )(M̂C,Fn(α)). (6.3)

Notice that under the null hypothesis σ(·) = νy and hence |Yt| = νy |εt|. It follows by the law of large

numbers that Fn(A) → F (A) almost surely. Using the standard bracketing trick (notice that our

assumptions imply a finite bracketing number) we can conclude that supC∈C | (Fn−F )(A) | = oP (1).

Hence, under H0 (6.3) is oP (1) uniformly in α and
√
n

bνy

νy
∆̂n(M̂C,Fn(α)) = Bn(M̂C,Fn(α)) + oP (1),

where

Bn(C) =
1√
n

n∑

t=1

( |εt| − 1 ) [1{νy · (εt−1, . . . , εt−p)
′ ∈ C} − F (C) ].

Since Bn(C) is a sum of m-dependent random variables, stochastic equicontinuity of the C-indexed

process Bn (with respect to dF (C,D) = F (C∆D)) follows from Doukhan et al.(1995). This

together with uniform consistency of M̂C,Fn(α) (Proposition 6.1) implies that Bn(M̂C,Fn(α)) =

Bn(MF (α)) + oP (1). Further, since under H0 we have MF (α) = MG(α) for all α we hence can

approximate both
√
n ∆̂n(M̂C,Fn(α)) and

√
n ∆̂n(M̂C,Gn(α)) by the same process Bn(MF (α)). Now

notice that the summands in Bn(MF (α)) have mean zero, are uncorrelated and p-dependent. Hence,

the finite dimensional distributions of Bn converge to mean zero Gaussian distributions. The covari-

ance of Bn(MF (α)) and Bn(Mf (β)) can easily be calculated as γ(α, β) = Var(|εt|)
(
F (MF (α) ∩

Mf (β)) − F (MF (α))F (Mf (β))
)

= Var(|εt|) ( min(α, β) − αβ ). Up to the constant Var(|εt|) this is

the covariance functions of a Brownian Bridge. The asserted limit of T1 now follows by applying a

continuous mapping theorem.

Proof of Theorem 2.2. Notice that T2 is the maximum of the suprema of the components of the

vector-valued process 1√
n

∑n
t=1

(
Zt−ν̂y

)
I( |Yt| ≤ y ). Since F = G (underH0) we have σ0(·,θ) = νy.
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It follows that

1√
n

n∑

t=1

(
Zt − ν̂y

)
I(|Yt| ≤ y) =

1√
n

n∑

t=1

(Zt − νy )
[
I
(
|εt| <

y

νy

)
− F|ε|

( y

νy

)]
(6.4)

+
√
n (ν̂y − νy )

1

n

n∑

t=1

(
I( |εt| ≤

y

νy
) − F|ε|(

y

νy
)
)
. (6.5)

The centered sum of indicator functions in (6.5) tends to zero in probability uniformly in y by

Glivenko-Cantelli theorem. Since by assumption
√
n (ν̂y,j − νy ) = OP (1), the term (6.5) is oP (1)

uniformly in α. Now, Zt = νy ( |ε|t−1, . . . , |ε|t−p)
′. Hence, using Doukhan et al (1994, 1995), we can

conclude that each component of the vector on the r.h.s. in (6.4) converges to a Gaussian process.

The components can easily be seen to be uncorrelated, leading to independent Gaussian processes

in the limit. Calculation of the covariance structure is straightforward, and an application of the

continuous mapping theorem completes the proof.

Proof of Theorem 4.1. In the proof of Theorem 2.1 we showed that if F = G then both the pro-

cesses
√
n ∆̂n(M̂C,Fn(α)) and

√
n ∆̂n(M̂C,Gn(α)) converge to the same process, a standard Brownian

Bridge times the constant Var(|εt|). An application of continuous mapping theorem concludes the

proof.

Proof of Theorem 3.1. We have

√
n ∆̂

n,bθ
(M̂

C,bθ
(α)) =

√
n (G

n,bθ
− Fn)(M̂

C,bθ
(α))

=
1

ν̂bθ

√
n

n∑

t=1

( |Yt|
σ0(Xt, θ̂)

− ν̂bθ

)
I(Xt ∈ M̂

C,bθ
(α) )

=
1

ν̂bθ

√
n

n∑

t=1

( σ0(Xt,θ0) |εt|
σ0(Xt, θ̂)

− 1
)

[ I(Xt ∈ M̂
C,bθ

(α) ) − Fn(M̂
C,bθ

(α)) ]

=
1

ν̂bθ

√
n

n∑

t=1

( |εt| − 1 ) [ I(Xt ∈ M̂C,bθ
(α) ) − F (M̂

C,bθ
(α)) ] (6.6)

+
1

ν̂bθ

√
n

n∑

t=1

( σ0(Xt,θ0)

σ0(Xt, θ̂)
− 1

)
|εt| [ I(Xt ∈ M̂

C,bθ
(α) ) − F (M̂

C,bθ
(α)) ] + rn, (6.7)

where rn = (Fn−F )(M̂
C,bθ

(α)) 1
bνbθ

√
n

∑n
i=1

(
σ(Xt) |εt|
σ0(Xt,bθ)

−1
)
. We will see below, that rn = oP (1). Write

(6.6) as 1
bνbθ

Zn(M̂
C,bθ

(α)) where Zn(C) = 1√
n

∑n
t=1( |εt|−1 ) [ I(Xt ∈ C )−F (C) ]. It is straightforward
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to see that ν̂bθ
→ 1 in probability (cf. proof of Proposition 6.1). By assumption {Zn(C), C ∈ C }

is asymptotically equicontinuous with respect to the (pseudo) metric dF (C,D) = F (C∆D). Since

we also have supα F ( M̂
C,bθ

(α)∆MF (α)) = oP (1), (see Proposition 6.1) we obtain Zn(M̂
C,bθ

(α)) =

Zn(MF (α)) + oP (1) (uniformly in α), and Zn(MF (α)) is the first term in the asserted expansion. It

hence remains to consider (6.7). By performing a one-term Taylor expansion of σ0(x, ·) we obtain

that

σ0(Xt,θ0)

σ0(Xt, θ̂)
− 1 = (θ̂ − θ0 )′

σ̇0(Xt,θ0)

σ0(Xt, θ̂)

+
(θ̂ − θ0 )′

σ0(Xt, θ̂)

∫ 1

0

(
σ̇0(Xt,θ0 + α (θ̂ − θ) ) − σ̇0(Xt,θ0)

)
dα

=

[
(θ̂ − θ0 )′

σ̇0(Xt,θ0)

σ0(Xt,θ0)

+
(θ̂ − θ0 )′

σ0(Xt,θ0)

∫ 1

0

(
σ̇0(Xt,θ0 + α (θ̂ − θ) ) − σ̇0(Xt,θ0)

)
dα

]
· (1 + oP (1))

=

[
(θ̂ − θ0 )′

σ̇0(Xt,θ0)

σ0(Xt,θ0)
+

(θ̂ − θ0 )′

σ0(Xt,θ0)
b(Xt) · oP (1)

]
· (1 + oP (1))

where the last two equality utilize (V2)(b) and (V1), respectively, and where b(·) = (b1(·), . . . , bp(·))

(cf. (V1)).

Plugging this into (6.7) we get

1√
n

n∑

t=1

( σ0(Xt,θ0)

σ0(Xt, θ̂)
− 1

)
|εt| I(Xt ∈ M̂

C,bθ
(α) )

=

[
(√

n (θ̂ − θ0)
)′ ( 1

n

n∑

t=1

σ̇0(Xt,θ0)

σ0(Xt,θ0)
|εt| I(Xt ∈ M̂

C,bθ
(α) )

)
(6.8)

+
(√

n (θ̂ − θ0)
)′ 1

n

n∑

t=1

|εt|
b(Xt)

σ0(Xt,θ0)
I(Xt ∈ M̂

C,bθ
(α) ) · oP (1)

]
(1 + oP (1)). (6.9)

First observe that our assumptions assure that the sum in (6.9) in absolute value is less than

or equal to c 1
n

∑n
t=1 |εt| |b(Xt)| → cE|b(Xt| < ∞ for some c > 0. In particular this implies

that the sum in (6.9) is OP (1) uniformly in α. Next we consider (6.8). We write the sum in

(6.8) as Sn( M̂
C,bθ

(α) ) where Sn(C) = 1
n

∑n
t=1

σ̇0(Xt,θ0)
σ0(Xt,θ0) |εt| I(Xt ∈ C ). It remains to show that
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Sn(M̂
C,bθ

(α)) → b0(MF (α)). This can be seen as follows. First notice that by definition of bθ0(C)

we have E(Sn(C)) = bθ0(C). Ergodicity implies that ‖Sn(C) − bθ0(C)‖ = oP (1), and a standard

bracketing argument shows that this convergence holds uniform over C ∈ C. Now we write

‖Sn(M̂
C,bθ

(α)) − bθ0(MF (α))‖ ≤ ‖Sn(M̂
C,bθ

(α)) − bθ0(M̂C,bθ
(α))‖ + ‖bθ0(M̂C,bθ

(α)) − bθ0(MF (α))‖

≤ sup
C∈C

‖Sn(C) − bθ0(C)‖ + ‖bθ0(M̂C,bθ
(α)) − bθ0(MF (α))‖

= oP (1) + ‖bθ0(M̂C,bθ
(α)) − bθ0(MF (α))‖.

The map C ∋ C → bθ0(C) is continuous with respect to F (C∆D), because an application of

Cauchy-Schwatrz inequality gives ‖bθ0(C)−bθ0(D)‖ ≤ c
√
F (C∆D) for some c > 0. By again using

(uniform) consistency of M̂
C,bθ

(α) as estimators of MF (α) we obtain that also supα ‖bθ0(M̂C,bθ
(α))−

bθ0(MF (α))‖ = oP (1).

It remains to show that rn = oP (1) (cf. (6.7)). This follows from 1√
n

∑n
i=1( |εt| − 1) = OP (1), and

|(Fn − F )(M̂
C,bθ

(α))| ≤ supC∈C |(Fn − F )(C)| = oP (1). The latter again follows by using a standard

bracketing argument together with the assumed ergodicity of Xt.

The same proof holds for
√
n ∆̂n(M̂C,Fn(α)) by replacing M̂

C,bθ
(α) through M̂C,Fn(α).

Proof of Theorem 3.2. We have

1√
n

n∑

t=1

( |Yt−j | − ν̂y ) I( e
t,bθ
< y )

=
1√
n

n∑

t=1

( |Yt−j | − νy )
[
I
(
εt < x

σ0(Xt, θ̂)

σ0(Xt,θ0)

)
− P ( e

t,bθ
< y )

]

+
√
n ( ν̂y − νy)

1

n

n∑

t=1

[
I( e

t,bθ
< y ) − P ( e

t,bθ
< y )

]
,
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and for the main term on the right-hand side we have

1√
n

n∑

t=1

( |Yt−j | − νy )
[
I
(
εt < y

σ0(Xt, θ̂)

σ0(Xt,θ0)

)
− P ( e

t,bθ
< y )

]

=
1√
n

n∑

t=1

( |Yt−j | − νy )
[
I
(
εt < y

σ0(Xt, θ̂)

σ0(Xt,θ0)

)
− Fε

(
y
σ0(Xt, θ̂)

σ0(Xt,θ0)

) ]
(6.10)

+
1√
n

n∑

t=1

( |Yt−j | − νy )
[
Fε

(
y
σ0(Xt, θ̂)

σ0(Xt,θ0)

)
− Fε(y)

]
(6.11)

+ (Fε(y) − P ( e
t,bθ
< y ) )

1√
n

n∑

t=1

( |Yt−j | − νy ) . (6.12)

First notice that (6.12) is oP (1) uniformly in y. This can be seen as follows. We have

|Fε(y) − P ( e
t,bθ
< y ) | =

∣∣∣∣∣Fε(y) − EFε

(
y
σ0(Xt, θ̂)

σ0(Xt,θ0)

) ∣∣∣∣∣

≤ E

∣∣∣∣∣Fε(y) − Fε

(
y
σ0(Xt, θ̂)

σ0(Xt,θ0)

) ∣∣∣∣∣ . (6.13)

Our assumptions imply that for each fixed y we have y σ0(Xt,bθ)
σ0(Xt,θ0)

→ y in probability, and hence an

appropriate version of the dominated convergence theorem implies that (6.13) converges to zero for

each fixed y. Uniformity of this convergence follows by using a monotonicity argument. Since by

assumption ν̂y − νy = OP ( 1/
√
n ) the assertion follows.

Next we show that the term in (6.11) converges (uniformly in y) to y f(y) (
√
n ( θ̂ − θ0 ) )′A .

To see this apply the mean value theorem to see that the term in (6.11) equals

y f(y)
1√
n

n∑

t=1

( |Yt−j | − νy )
( σ0(Xt, θ̂)

σ0(Xt,θ0)
− 1

)
(6.14)

+
1√
n

n∑

t=1

( |Yt−j | − νy ) ( f(ξt) − f(y) ) y
( σ0(Xt, θ̂)

σ0(Xt,θ0)
− 1

)
(6.15)

with ξt between y σ0(Xt,bθ)
σ0(Xt,θ0) and y. The same arguments as used to analyze (6.7) in the proof of
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Theorem 3.1 show that we can write (6.14) as

y f(y)
(√

n (θ̂ − θ0)
)′ 1

n

n∑

t=1

( |Yt−j | − νy )
σ̇0(Xt, θ̂)

σ0(Xt,θ0)
(6.16)

+ y f(y)
(√

n (θ̂ − θ0)
)′ 1

n

n∑

t=1

( |Yt−j | − νy ) b(Xt) · oP (1) (6.17)

By the ergodic theorem the sum in (6.16) converges to its (finite) expectation, and hence (6.17) is

oP (1). Using the ergodic theorem again we obtain the difference of the term in (6.16) and the second

term in the expansion (3.7) converges to zero. It remains to show that the term in (6.15) is oP (1).

Using similar arguments as above this term can be written as

(√
n (θ̂−θ0)

)′ 1

n

n∑

t=1

( f(ξt) − f(y) ) y ( |Yt−j | − νy )
σ̇0(Xt,θ0)

σ0(Xt,θ0)
(6.18)

+ y f(y)
(√

n (θ̂ − θ0)
)′ 1

n

n∑

t=1

( f(ξt) − f(y) ) y ( |Yt−j | − νy ) b(Xt) · oP (1). (6.19)

We now show that both of these terms are oP (1). First, using the fact that σ0(Xt,bθ)
σ0(Xt,θ) − 1 = oP (1)

we can argue as in Horváth et al. (2001) to show that sup1≤t≤n supy | ( f(ξt) − f(y) ) y | = oP (1).

(See proof of (4.5) in Horváth et al.) As above it follows that (6.19) is oP (1). It remains to show

that 1
n

∑n
t=1

∣∣∣ ( |Yt−j | − νy ) σ̇0(Xt,θ0)
σ0(Xt,θ0)

∣∣∣ = OP (1). This, however, follows from an application of the

ergodic theorem since E
∣∣ σ̇0(Xt,θ0)

σ0(Xt,θ0)

∣∣ | (|Yt| − νy) | < ∞ (by Cauchy-Schwartz’s inequality). We have

shown that (6.15) is oP (1).

Finally we turn to (6.10). The idea here is the following. Let

Zn(y, τ ) =
1√
n

n∑

t=1

( |Yt−j | − νy )
[
I
(
εt < y

σ0(Xt, τ )

σ0(Xt,θ0)

)
− Fε

(
y
σ0(Xt, τ )

σ0(Xt,θ0)

) ]
. (6.20)

Notice that the expression in (6.10) equals Zn(y, θ̂). We will show that for each C > 0 we have

sup
y

sup
τ∈Tn,C

|Zn(y, τ ) − Zn(y,θ0) | = oP (1). (6.21)

Since θ̂ is a
√
n-consistent estimator this implies that (6.10) as a process has the same limit as
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the process Zn(y,θ0) = 1√
n

∑n
t=1 ( |Yt−j | − νy ) ( I( εt < y ) − Fε(y) ), which has the asserted limit

distribution (as we will see below).

In order to show (6.21) we consider {Zn(y, τ ), y ∈ R, τ ∈ Tn,C } and construct a sequence of

nested partitions Pk = {P1,k, . . . ,PNk ,k } of the index space R × Tn,C such that as n, k → ∞

sup
y

sup
τ∈Tn,C

|Zn(y, τ )−Zn(y,θ0) | ≤ max
1≤j≤N(2−k)

sup
(y1,τ1), (y2,τ2)∈Pj,k

|Zn(y1, τ 1) − Zn(y2, τ 2) | = oP (1),

(6.22)

which of course implies (6.21). We now construct the partition and show the two properties asserted

in (6.22). To this end we use results of Nishiyama (2000) (Theorem 4.2, Corollary 4.3; see also

Nishiyama 1996).

Write Zn(y, τ ) =
∑n

t=1 ξt(y, τ ) and observe that the random variables ξt(y, τ ) = 1√
n

( |Yt−j | −

νy )
[
I
(
εt < y σ0(Xt,τ)

σ0(Xt,θ0)

)
−Fε

(
y σ0(Xt,τ)

σ0(Xt,θ0)

) ]
form a sequence of martingale differences with respect to

the filtration Ft = σ(εt, εt−1 ...). We now construct the sequence of partitions mentioned above. Fix

C, η > 0, and with r(Xt, τ ) = σ0(Xt, τ )/σ0(Xt,θ0) let An = {m < sup1≤t≤n supτ∈Tn,C
r(Xt, τ ) <

M } where m,M > 0 are chosen such that P (An) > 1 − η for n large enough. Further re-

call that f is Lipschitz continuous. Let c > 0 denote the Lipschitz constant. Then we find

the partition Pk as follows. Let y1 = F−1
ε (2−k)/M and define yj = y1 + j 2−k/M c. Let N be

the largest integer such that yN < F−1
ε (1 − 2−k)/m, and let yN+1 = 1

m F−1
ε (1 − 2−k). Then

y0 = 0 < F−1
ε (2−k)/M = y1 < y2 < · · · < yN < yN+1 = F−1

ε (1 − 2−k)/m < yN+2 = ∞. It

follows that Pj,k = (yj, yj+1]×Tn,C defines a partition of the index space R × Tn,C such that on the

set An we have Fε(yj+1 r(Xt, τ )) − Fε(yj r(Xt, τ )) < c ( yj+1 − yj ) r(Xt, τ ) < 2−k for j = 1, . . . , N

and Fε(y1 r(Xt, τ )) − Fε(y0 r(Xt, τ )) < Fε(F
−1
ε (2−k) r(Xt, τ )/M) < 2−k, and similarly we have

Fε(yN+2 r(Xt, τ )) − Fε(yN+1 r(Xt, τ )) < 2−k. Since Eεt < ∞ we have max(F−1
ε (2−k), F−1

ε (1 −

2−k) ) = O(1/2−k). Hence, logN = logN(2−k) ≤ C( log(1/2−k) )2 =: H(2−k) for some constant

C > 0, and we obviously have
∫ 1
0

√
H(δ) dδ < ∞. It remains to verify conditions [L2′] and [PE′] of

Nishiyama. With ξ̄t = supy,τ |ξt(y, τ )| ≤ 1√
n
| | |Yt−j | − 1 | we have for every η > 0

n∑

t=1

ξ̄2t I( ξ̄t > η ) ≤ 1

n

n∑

t=1

(|Yt−j | − 1) 2 I( | |Yt−j | − 1 | > √
n η ) = oP (1).
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and the latter holds, since the Yt have finite second moments. This verifies Nishiyama’s condition

[L2′]. In order to check [PE′] let P1,k, . . . ,PN+1,k denote the partition constructed above at level

2−k as constructed above. Nishiyama’s condition [PE′] requires that

sup
k

max
1≤j≤N(2−k)

√∑n
t=1Et−1(Pj,k)

2−k
= OP (1), (6.23)

where Et−1(Pj,k) = E
( [

sup(y1,τ1),(y2,τ2)∈Pj,k
( ξt(y1, τ 1) − ξt(y2, τ 2) )2

]
|Ft−1

)
≤ 2/n

(
( |Yt−j | −

1 )2 (Fε(yk+1 r(Xt, τ )) − Fε(yk r(Xt, τ )) ) 2
)
. By construction of the partitions we have on An that

Et−1(Pj,k) ≤ 2/n ( |Yt−j | − 1 )2 2−2k, and hence (6.23) holds since 1
n

∑n
t=1( |Yt−j | − 1 )2 = OP (1). By

Nishiyama’s result we now have that for all ε, δ > 0 there exists a k such that

P
(

max
1≤j≤N(2−k)

sup
(y1,τ1), (y2,τ2)∈Pj,k

|Zn(y1, τ 1) − Zn(y2, τ 2) | > δ
)
< ε. (6.24)

This is the second property asserted in(6.22). The first property in (6.22), i.e. the inequality, follows

directly from the construction of the partition. This proves (6.21). Asymptotic normality of the

finite dimensional distributions follows from the martingale convergence theorem, and calculation of

the asserted covariance structure is a simple exercise.

The asserted convergence in distribution of T2 is an easy consequence of the just verified first result of

the theorem, and follows essentially by observing that if F = G we have σ0(·) = νy, and by applying

a continuous mapping theorem.

Proposition 6.1 Suppose that (A1) and (A2) hold, and that NB(ǫ,C, L2(F )) <∞ for all ǫ > 0.

(i.a) If C is such that (C2)Fn holds, and that MF (α) ∈ C for all 0 ≤ α ≤ 1, then

sup
α∈[0,1]

F (M̂C,Fn(α)∆MF (α)) = oP (1), .

(i.b) The statement of (i.a) also holds with F and Fn replaced by G and Gn, respectively.

(ii) Suppose that C is such that (C2)G
n,bθ

holds, and that MF (α) ∈ C for all 0 ≤ α ≤ 1. In addition
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assume (V2.a) and suppose that
√
n(θ̂ − θ0) = OP (1), then under hypothesis (3.1)

sup
α∈[0,1]

F (M̂
C,bθ

(α)∆MF (α)) = oP (1).

Proof. We first prove the assertion for M̂C,Fn(α). Since by assumption (2.9) holds and MF (α)

is in C, we know that for each α ∈ [0, 1] there exists a unique λα ≥ 0 with MF (α) = {x : f(x) ≥ λα }.

The proof of Proposition 3.5 in Polonik (1995) shows that if we letHλ(C) = F (C)−λLeb(C), then the

assertion follows once we have shown that supα |Hλα(MF (α))−Hλα(M̂C,Fn(α)) | = oP (1), and this is

what we show now. For each α let α̂ = min{ 0 ≤ η ≤ 1 : Fn(Mf (η)) ≥ α } and let β̂α = Fn(Mf (α̂)).

Notice that by definition we have α̂ = F (MF (α̂)), and hence, since supα | (Fn −F )(MF (α)) | = oP (1)

we obtain supα | β̂α − α̂ | = oP (1). The fact that supα | (Fn − F )(MF (α)) | = oP (1) follows from

supα | (Fn − F )(MF (α)) | ≤ supC∈C |(Fn − F )(C)| = oP (1), and the latter follows from the assumed

ergodicity of the underlying process and the finiteness of the bracketing number by using the standard

bracketing trick (see e.g. Pollard, 1984, or van der Vaart and Wellner 1995). Further we have

0 ≤ Hλα(MF (α)) −Hλα(M̂C,Fn(α))

= [Hλα(MF (α)) −Hλα(MF (α̂)) ] + [Hλα(MF (α̂)) −Hλα(M̂C,Fn(α)) ]

=: I + II.

Now, by definition β̂α = Fn(MF (α̂)) ≥ α, and hence Leb(M̂C,Fn(α)) ≤ Leb(MF (α̂)). It follows that

II = F (MF (α̂)) − F (M̂C,Fn(α)) − λα ( Leb(MF (α̂)) − Leb(M̂C,Fn(α)) ) ≤ F (MF (α̂)) − F (M̂C,Fn(α))

= α̂− Fn(M̂C,Fn(α)) + (Fn − F )(M̂C,Fn(α)).

Consequently,

0 ≤ I + II ≤ I + (α̂− α) + (Fn(M̂C,Fn(α)) − α) + sup
C∈C

|(Fn − F )(C)|

= I + (α̂− α) + oP (1).

In order to see that supα |α̂ − α| = oP (1) we show that supα |β̂α − α| = oP (1). (Recall that we

already have seen above that supα |β̂α − α̂| = oP (1).) Notice that for every 0 ≤ α ≤ 1 and ǫ > 0
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we have oP (1) = supα (Fn − F )(MF (α) | ≥ |Fn(MF (min{α + ǫ, 1})) − F (MF (min{α + ǫ, 1})) | =

|Fn(MF (min{α + ǫ, 1})) − min{α + ǫ, 1} |. This means that for every fixed ǫ > 0 we have with

probability tending to one that Fn(MF (min{α + ǫ, 1})) ≥ α uniformly in α. It follows that with

probability tending to one we have (uniformly in α) that β̂α ≤ min(α + ǫ, 1). Since ǫ > 0 was

arbitrary and we also have α ≤ β̂α (see above) we can conclude that supα |β̂α − α| = oP (1).

It remains to show that I = oP (1) uniformly in α. Observe that by assumption the maps α→ λα,

α→ Leb(MF (α)) and α→ Hλα(MF (α)) are continuous. In particular we have Hλα(MF (α)) → 1 as

α → 1. We have seen above that supα |α̂ − α| = oP (1). Hence, for each η > 0 there exists an ǫ > 0

such that for α > 1 − ǫ we have 1 ≥ Hλα(MF (α)) > 1 − η as well as 1 ≥ Hλα(MF (α̂)) > 1 − 2η

with probability tending to one as T → ∞. Hence for each η there exists an ǫ > 0 such that

P [ supα>1−ǫ |Hλα(MF (α))−Hλα(MF (α̂)) | > 2η ] → 0. Further, for a given ǫ > 0 there exist a K > 0

such that supα≤1−ǫ Leb(MF (α)) < K <∞. The function α→ Leb(MF (α)) is (uniformly) continuous

on [0, 1 − ǫ]. It follows that I = |Hλα(MF (α)) − Hλα(MF (α̂)) | ≤ |F (MF (α)) − F (MF (α̂)) | +

λα |Leb(MF (α)) − Leb(MF (α̂)) | = |β̂α − α| + λα |Leb(MF (α)) − Leb(MF (α̂)) | = oP (1), because

0 ≤ λα ≤ supx f(x) < ∞, uniformly in α. This concludes the proof of (i.a). The proof for (i.b) is

mutatis mutandis the same.

In order to see (ii), the key point is to show that (under the present assumptions) we have

sup
C∈C

|(G
n,bθ

− F )(C)| = oP (1) as n→ ∞. (6.25)

Then, the above proof can be repeated mutatis mutandis by observing that under (3.1) we have

Gθ0 = F. Property (6.25) can be seen as follows. We first argue that

sup
C∈C

|(Gn,θ0 − F )(C)| = oP (1).

Observe that under (3.1) we have Gn,θ0(C) = 1
n

∑n
t=1 |εt| I(Xt ∈ C). Since εt is independent from Xt

we have E(Gn,θ0(C)) = F (C). Ergodic theorem implies that Gn,θ0(MF (α)) → F (MF (α)) for all α,

and the usual bracketing trick implies that the convergence is uniform in α. Property (6.25) follows
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once we have shown that

sup
C∈C

|(Gn,θ0 −G
n,bθ

)(C)| = oP (1).

We have

(Gn,θ0 −G
n,bθ

)(C) =
1

ν̂bθ
n

n∑

t=1

( |Yt|
σ0(Xt,θ0)

− |Yt|
σ0(Xt, θ̂)

)
I(Xt ∈ C) +

( 1

ν̂bθ

− 1

ν̂θ0

) 1

n

n∑

t=1

|εt|

=: IC + II

As for IC we have from (V2.b) that on the set Bn = {√n(θ̂ − θ0) < c}

| IC | ≤ 1

ν̂bθ
n

n∑

t=1

∣∣∣ 1 − σ0(Xt,θ0)

σ0(Xt, θ̂)

∣∣∣ |εt| I(Xt ∈ C) = oP (1)
1

ν̂bθ
n

n∑

t=1

|εt|.

Again using (V2.b) it is easy to see that ν̂bθ
− ν̂θ0 = oP (1) and ν̂θ0 = 1

n

∑n
t=1 |εt| → 1 in probability.

Since by assumption
√
n(θ̂− θ0) = OP (1) we can choose c so that P (Bn) becomes arbitrarily small.

Hence we can conclude that supC∈C IC = oP (1). The fact that also II = oP (1) follows by using

similar arguments.

Proof of Theorem 3.3. First, a close inspection of the proof of Theorem 3.1 shows that under the

present assumptions expansion (3.6) holds with the oP (1)-term being uniform in the ‘true’ parameter

θ′0 ∈ Bc/
√

n(θ0) for any c > 0. Since for c → ∞ we have Pθ0

(
θ̂ ∈ Bc/

√
n(θ0)

)
→ 0 as n →

∞, expansion (3.6) also holds with Fθ0
-probability arbitrarily close to 1 in the bootstrap world

(conditional on X1, . . . ,Xn) where the true parameter is θ̂. For each θ let Yt,θ denote realizations

from our model under θ and let Xt,θ = (|Yt−1,θ|, . . . , |Yt−p,θ|)′. The main term of expansion (3.6)

under θ can then be expressed as

1√
n

n∑

t=1

( |εt| − 1 ) [ I(Xt,θ ∈MGθ
(α)) − α ] + (

√
n (θ̂ − θ) )′ bθ(MGθ

(α))

= Wn,θ(MGθ
(α)) + (

√
n (θ̂ − θ) )′ bθ(MGθ

(α))

=: (I)θ,α + (II)θ,α, (6.26)

where Wn,θ(C) denotes the process defined in (3.4) using Xt,θ. We will show that for any sequence
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{θn} ⊂ Uc/
√

n(θ0) there exist realizations of Yt,θn , t = 1, . . . , n and Yt,θ0 , t = 1, . . . , n such that we

have both

sup
α∈[0,1]

∣∣ (I)θn,α − (I)θ0,α

∣∣ = oP (1) and sup
α∈[0,1]

∣∣ (II)θn,α − (II)θ0,α

∣∣ = oP (1).

This then implies the result. First we consider term (I). We have to show that

sup
α∈[0,1]

∣∣∣Wn,θn(MGθn
(α)) −Wn,θ0(MGθ0

(α))
∣∣∣ = oP (1). (6.27)

Since by assumption Wn,θn and Wn,θ0 are asymptotically equicontinuous, it follows that the process

Zn(α) := Wn,θn(MGθn
(α)) −Wn,θ0(MGθ0

(α)), α ∈ [0, 1] is asymptotically equicontinuous. It order

to see (6.27) it thus suffice to show that the finite dimensional distributions of Zn(α) converge to

zero. To see that, observe that Zn(α) is a sum of mean zero, uncorrelated random variables. Thus

we have to show that Var(Zn(α)) → 0 as n→ ∞ for each α ∈ [0, 1]. We have

Var(Zn(α) = Var
[
( |εt| − 1 ) [ I(Xt,θn ∈MGθn

(α)) − I(Xt,θ0 ∈MGθ0
(α)) ]

]

= Var(|εt|)Var
[
I(Xt,θn ∈MGθn

(α)) − I(Xt,θ0 ∈MGθ0
(α))

]
.

and hence it is sufficient to show that

lim
n→∞

P
(
Xt,θn ∈MGθn

(α), Xt,θ0 ∈MGθ0
(α)

)
= 0 for all α ∈ [0, 1], (6.28)

where Yt,θn , t = 1, . . . , n and Yt,θ0 , t = 1, . . . , n are realizations with sup1≤t≤n | |Yt,θn | − |Yt,θ0| | =

oP (1). Such realizations exist by assumption. In order to see (6.28) we will use our assumption that

gθ are uniformly Lipschitz. Let L denote the corresponding Lipschitz constant. Since MGθ
(α) =

{x : gθ(x) ≥ λθ,α} for some λθ,α > 0, we have for any x ∈ Rd and η > 0 that

{
x ∈MGθ

(α), x + η ∈MGθ
(α)

}
⊂

{
λθ,α − Lη ≤ gθ(x) ≤ λθ,α + Lη

}
=

{
|gθ(x) − λθ,α| ≤ Lη

}
.

This implies the following. Let η > 0 be fixed, and let An(η) denote the set where the oP (1)-term is
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less than or equal to η > 0. Then we of course have P (Ac
n(η)) = o(1) as n→ ∞ and we obtain

P
{
Xt,θ0 ∈MGθn

(α), Xt,θn ∈MGθn
(α)

}

= P
{
Xt,θ0 ∈MGθn

(α), Xt,θ0 + oP (1) ∈MGθn
(α)

}

≤ P
{
(Xt,θ0 ∈MGθn

(α), Xt,θ0 + oP (1) ∈MGθn
(α), An(η)

}
+ P (Ac

n(η))

≤ Gθ0

{
|gθn(x) − λθn,α| ≤ Lη

}
+ o(1)

= o(1) + o(1) as n→ ∞. (6.29)

The last equality uses the fact that

Gθ0

{
|gθn(x) − λθn,α| ≤ Lη

}

≤ Gθ0

{
|gθn(x) − λθn,α| ≤ Lη, |gθn(x) − gθ0(x)| ≤ Lη

}
+Gθ0

{
|gθn(x) − gθ0(x)| ≤ Lη

}

≤ Gθ0

{
|gθ0(x) − λθn,α| ≤ 2Lη

}
+Gθ0

{
|gθn(x) − gθ0(x)| ≤ Lη

}

≤ sup
λ>0

Gθ0

{
|gθ0(x) − λ| ≤ 2Lη

}
+Gθ0

{
|gθn(x) − gθ0(x)| ≤ Lη

}
= o(1).

The first term in the last line is o(1) because of (A2), and the fact that second term is o(1) follows

from an application of the dominated convergence theorem. This completes the proof of (6.27).

Now we consider term (II). To simplify notation we present the proof for the case q = 1. Using

representation (3.10) we write

(II)θn,α−(II)θ0,α =
[
bθn(MGθn

(α)) − bθ0(MGθ0
(α))

] 1√
n

n∑

t=1

h(εt)ψθn(Xt,θn) (6.30)

+ bθ0(MGθ0
(α))

1√
n

n∑

t=1

h(εt)
(
ψθn(Xt,θn) − ψθ0(Xt,θ0)

)
+ oP (1). (6.31)

First we consider the sum in (6.31). Write ψθn(Xt,θn) − ψθ0(Xt,θ0) =
[
ψθn(Xt,θn) − ψθ0(Xt,θn)

]
−

[
ψθ0(Xt,θn) − ψθ0(Xt,θ0)

]
. For the latter we have to consider differences of the form ψθ0(Xt,θ0 +

oP (1)) − ψθ0(Xt,θ0). Since the assumed Lipschitz continuity of ψθ0
implies that supx |ψθ0(x + η) −

ψθ0(x + η)| ≤ Lη for some L > 0, we obtain that |ψθ0(Xt,θn)− ψθ0(Xt,θ0)| = oP (1). An application
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of the dominated convergence theorem gives

Var
[ 1√

n

n∑

t=1

h(εt)
(
ψθn(Xt,θ0) − ψθ0(Xt,θ0)

) ]
= σ2

h Var[ψθ0(Xt,θn) − ψθ0(Xt,θ0)] = o(1). (6.32)

As for the term involving differences of the form ψθn(Xt,θn) − ψθ0(Xt,θn) we have

1√
n

n∑

t=1

h(εt)
[
ψθn(Xt,θn) − ψθ0(Xt,θn)

]

≤ √
n|θn − θ0|

1

n

n∑

t=1

∣∣h( εt) − E(h(εt)
∣∣K(Xt,θ0) = o(1) ·OP (1) = oP (1). (6.33)

Combining (6.32) and (6.33) shows that the sum in (6.31) is oP (1). It remains to consider the term

on the right hand side of (6.30). We have already shown above that the sum in (6.30) behaves like

the sum with Xt,θn replaced by Xt,θ0 , and thus this sum is OP (1). The proof is completed once we

have shown that

sup
α∈[0,1]

∥∥bθn(MGθn
(α)) − bθ0(MGθ0

(α))
∥∥ = o(1) as n→ ∞.

We have

bθn(MGθn
(α)) − bθ0(MGθ0

(α))

= E
[ σ̇0(Xt,θn ,θn)

σ0(Xt,θn ,θn)
(I(Xt,θn ∈MGθn

(α) − α) − σ̇0(Xt,θ0 ,θ0)

σ0(Xt,θ0 ,θ0)
(I(Xt,θ0 ∈MGθ0

(α) − α)
]

= E
[ σ̇0(Xt,θn ,θn)

σ0(Xt,θn ,θn)
(I(Xt,θn ∈MGθn

(α) − I(Xt,θ0 ∈MGθ0
(α))

]
(6.34)

+ E
[( σ̇0(Xt,θn ,θn)

σ0(Xt,θn ,θn)
− σ̇0(Xt,θ0 ,θ0)

σ0(Xt,θ0 ,θ0)

)
(I(Xt,θ0 ∈MGθ0

(α) − α)
]

(6.35)

An application of Cauchy-Schwarz inequality together with (6.29) shows that (6.34) is oP (1) uni-

formly in α. Our assumptions also assure that we can apply dominated convergence theorem to see

that also (6.35) is oP (1) uniformly in α. This completes the proof.

41



References

Billingsley, P. (1999). Convergence of Probability Measures (2nd edit). Wiley, New York.

Chen, M. and An, H.Z. (1997). A Kolmogorov-Smirnov type test for conditional heteroskedasticity
in time series. Statistics and Probability Letters, 33, 321-331.

Doukhan, P. Massart, P., and Rio, E. (1994): A functional central limit theorem for strongly mixing
processes. Ann. Inst. Henri Poincaré, Probab. et Statist. 30, 63-82.
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