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ABSTRACT

For a change in the mean value parameters of a normal linear model, a class of detecting
methods is proposed, which are asymptotically optimal in an appropriate sense. If there

exists no nuisance parameters, the Cusum procedure is included in this class.

1. INTRODUCTION AND MAIN RESULT

Suppose a process produces a potentially infinite sequence of independent observations
Y1, Y2, - - .- Initially the process is ‘under control’ in the sense that the effects are the same.
At some unknown time m the process may change and the effects become ‘out of control’.
The observer would like to infer from the y's that this change has taken place as soon as
possible. Of course the rate of false alarm should be kept low.

Most of the literature on this problem considers the case that the observations before the
change and after the change are identically distributed. This means that y1, ..., ym,—1 have
density function fy while ¥, Ymy1, ... have density fy # fo, and fo is known. For this
setup, Page (1954) proposed the Cusum procedure. Lorden (1971) proved an asymptotic op-

timality property of the Cusum procedure. He formulated the problem as follows: Find the
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stopping time N which minimizes E{(N —m + 1)*|y1,...,ym—1; the change occurs at m}
under the restriction that E{N | no change occurs} > 7. Lorden considered the asymptotic
case as 7 — oo. When fy is known, the class of asymptotically optimal procedures in-
cludes the Cusum procedure. When fy is unknown, however fy, and fy can be embedded
into an exponential family of distributions, Lorden (1971) gives a feasible asymptotically
optimal procedure. Recently, Moustakides (1986) showed that the Cusum procedure is
also optimal for a finite v. Other research on the problem has been done by Shiryayev
(1963) and Roberts (1966). Pollak (1985) showed that the Shiryayev-Roberts procedure is
asymptotically optimal as v — oo under the modified criteria that sup,, E{N — m|N >
m; the change occurs at m} = min. Pollak and Siegmund (1985) showed that the differ-
ence in the speed of detection between the Cusum and the Shiryayev-Roberts procedures is
small.

In this article, a non-i.i.d. situation is considered: the observations y's are from a
normal linear model. Similar results to Lorden (1971) will be shown for this case. Since
covariants arise very often in some practical situations, this model has wide applications in
econometrics (Quandt 1960), industrial reliability (Worsley 1983), and general regression
prediction (Hinkley 1971) etc..

For a given sequence of p x 1 explanatory vectors 1, Z2, ..., we assume that the

observations y's satisfy the equations

Y =z + e, fori=1,...,m—1; 1)
yi = z5(B+0) + ey, fori=m,m+1,...,
where e1, ea, ... are i.i.d. N(0, 1) variables; 3, 6 are p-dimensional column vectors; 3 is

known, 6 # 0 and m are unknown; z} denotes the transpose of z;. Let P, ¢ denote the
corresponding probability measure and E,, g the expectation under this measure. We allow
m to take the value infinite to indicate the case of no change. We simply write Py, and F.
We also write Y, = (y1,---,yn)’, and X, = (z1,...,2,)".

As a possible detecting procedure, we consider a stopping time N with respect to the
observed sequence {y,}. Thus the event {N = n} is determined by y1,...,y, (i.e. belongs
to the sigma-field generated by y1,...,yn). N may take the value infinity. If N is finite
almost everywhere, we call it a stopping rule. The optimality problem we put as Lorden
(1971) did. That is, if N is a stopping time, define

Dypo(N) = esssup Epp{ (N —m+1)" | Yiu_1 },

Dy(N) = sup Dy o(IN).

m>1

We want to minimize Dy(N) over all stopping times which satisfy the constraint:

Eo.N > v > 0.
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We show that the following theorem, similar to Lorden’s results (1971), holds under an

assumption on the explanatory vectors.

ASSUMPTION. As n — oo,

1 k+n
— Z ziz; — M uniformly for all k > 0, (2)
" itk

where M is a p X p positive definite matrix. We write ug = ' M80/2.
The uniformity of the convergence in (2) also entails the fact that for any 6 # 0, there

exists a common upper bound for (z6)2, (z46)?, .... This fact will be used several times

in our arguments.

THEOREM. Let assumption (2) hold. For every sequence of stopping time {T'(y), v > 1}
with

E T(y) > ~v forally>1, (3)
the following relation holds
log ~y
Dy{T(v)} > . (14+0(1)) forall@#0, asy — oo. 4)
9

Furthermore, there exists such a sequence {T'(7),y > 1} for which (4) holds with equality.

In fact, the T'(7y) for which (4) holds with equality can be constructed in terms of some
one-sided sequential tests for the null hypothesis # = 0 against the alternative 8 # 0 in the
following way. Assume {N(a), a € (0,1)} is a sequence of such tests with the properties
that Poo{N(a) < oo} < afor all @ < 1, and

1
EiyN(a) ~ “;ﬂ asa— 0, foralld#0.
9

Let Ni(a) be the stopping time obtained by applying N(a) to yg, yxs1, --- k= 1,2,....
Obviously, it holds that

1
EioNip(a) ~ “Lﬂ asa— 0, foralld#0, and k > 1. (5)
0

If this convergence is uniform in k, it can be shown that the stopping time defined by
T(y) = min{Nk(a) +k—1} (6)

with v = 1/a, satisfies the inequality (3), and furthermore the relation (4) holds with
equality. Lemma 6 in Section 6 presents a feasible example of such a sequence {N(a), 0 <
a <1}
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The proof of the theorem is postponed to Section 4. Section 3 offers the asymptotic the-
ory for the simple case where 6 is fixed. In this case one can see that the Cusum procedure
is asymptotically optimal. The arguments need some elementary lemmas on stopping times
of non-i.i.d. random variables. Since they are of some independent interests, we state them

separately in Section 2.

2. SOME LEMMAS ON STOPPING TIMES

In this section, we assume that &, &, ... are independent random variables. Let

Sp = >, &. Some lemmas are in order.

LEMMA 1. Assume that 7 is a topping rule with respect to {£,}, and ET < oo. Let
sup,,>1 Elé,| < oo. If p = EE, for all n > 1, then ES, = p ET.

LEMMA 2. Suppose that {7(a), a € (0,1)} is a sequence of stopping rules with respect to
{&€:}. Suppose further E7(a) — 0o as a — 0. Let sup,,5; E|é,| < 0o, and £ 377 | B&, — p
as n — oo with y finite. Then ES. (4 /ET(a) — pas a — 0.

LEMMA 3. Assume that the second moments of random variables {£,} have a common
bound, and X 37" | E¢, — p as n — co. For b > 0, define 7, = inf{n > 1|5, > b}.

(i) If p < 0 and P{¢&, < 0} > 0 for every n > 1, then P{m, = o0} > 0.

(ii) If p > 0, then 7, < oo a.s., and 7,/b — p ! a.s. as b — oo. Also it holds that
supyso E(Sr, —b) < 0co. Moreover if ET, < oo for all b > 0, then E7,/b — p~* as b — oo.

(iii) If min,> E(§, A ¢,) > 0 for some positive bounded constants ¢, ¢z, ..., then
Emny < K < oo for all b > 0 with K = (b + maxy>1 ¢,)/ ming>1 E(&y, A cy) > 0.

Lemma 1 presents a modification of Wald’s equation, which weakens the assumption that
the £'s are identically distributed. For our application, the £’s have different expectations.
If their average values tend to a finite limit, Lemma 2 shows that Wald’s equation holds
asymptotically. Lemma 3 (ii) is a renewal theorem for non-identically distributed random
variables. Although the present form is rather crude, it is sufficient for our application.
More refined results can be found in Chow & Robbins (1963). The proofs of these three
lemmas contain the standard techniques on stopping times only, which are omitted here.

The following Lemmas 4 and 5 are related to a sequential testing problem. Now we

assume that 71, 72, ... are independent random variables. Consider the testing problem
Hy: 1y ~ fon against Hyi: 0, ~ fin,

where fo, and fin,, n = 1,2,..., are density functions. Let &, = log{fin(nn)/fon(nmn)}-
The one-sided sequential probability ratio test is defined as N(a) = inf{n > 1| Y7 & >
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|log a|}. Stopping means rejection of Hy. By the Wald’s likelihood ratio identity (cf. Propo-
sition 2.24 of Siegmund 1985), Py{N(a) < oo} < a. If the sequence {&,, n > 1} satisfies
the conditions in Lemma 3, then E1N(a) ~ |loga|/uw as @ — 0. Lemma 4 below shows
that |loga|/p is asymptotically the lower bound for any stopping time N which satisfies
the inequality Py(N < 00) < a. This means that the one-sided sequential probability ratio
test N(«) is asymptotically optimal.

LEMMA 4. Suppose that {r(a), 0 < a < 1} is a family of one-sided sequential tests with
Py{r(a) < oo} < afor all 0 < a < 1. Let &, =log{fin/fon}, n > 1, satisfy the conditions

of Lemma 2 with g > 0 under the hypothesis H;. Then liminf,_,o E17(a)/|loga| > p~ 1.

PrOOF. We need only to consider the case that Ei7(a) < oo. Hence 7(a) < oo a.s.
under H;. With this we can easily show that Po{r(a) < oo} = Ejexp{—S;(}. By
Jensen’s inequality, —log Po{7(a) < E1S;(s)- Hence |loga| < E1S; (). By Lemma 2,
E1S;(a) ~ pEiT(a). O

LEMMA 5. Suppose that =37 | Eyi{log(f1i/foi)} = p with p finite. Then for any two

sided sequential test with a stopping time N and error probabilities a1, as,
(L +e)EiN > (1 - az)|logas| — C(e),
where € > 0 is arbitrary, and C(g) is a finite constant.

ProoF. Let E;N < co. By Wald’s inequality (cf. Proposition 2.39 of Siegmund 1985),

1—
EiSy > (1—as) log a2

(6]
+ a2 log ,
a1 1-— a1

where S, = Y1 log{fii/foi}. Notice that as log(l — 1) ' is non-negative, and (1 —
az) log(l — as) + as log ay attains its minimum value —log2 at as = 1/2. Thus E; Sy >
(1 —a2) log|ai| —log2. In terms of Lemma 1, we can prove that for any € > 0, there exists
C(e) > 0 such that

—C(e)+(p—e)ELN < E1Sn < (u+e)E1N +C(e).

The conclusion follows immediately. O

3. ASYMPTOTIC THEORY

This section discusses a simple case that 6 in model (1) is fixed. Since § is known, there
is no loss of generality in assuming # = 0. Hence under P, the y1, y2, ... are identically

distributed. To simplify the notation a little, we omit the 8 as subscript and write P,,, E,,,
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and D(.) instead of Py, 9, En,0, and Dy(.).

PROPOSITION 1. Let N be a stopping time with respect to y1, y2, - .. such that P, (N <
o0) < a for some a € (0,1). For k =1,2,..., let Ny denote the stopping time obtained by
applying N to yk, Yk+1, -- -, and define

N* = min{ N, +k—-1|k=1,2,...}.
Then N* is a stopping time with D(N*) < Sup,,>1 EmNm, and EcN* > ot
ProOF. Notice that {N* < n} is the union of {N; < n}, {N, <n-—-1}, ..., {N, <1},

which are determined by y1, ... yn. Hence N* is a stopping time and {N* >m — 1+ k} is
a subset of {N,, > k}, which implies that

D(N*) = supess sup Ep{ (N* —m +1)" | Yip_1 } < sup Epn(Np).

Since y1, ya, ... are i.i.d. under P, the inequality E,,N* > a~! follows along the same
lines as those in Theorem 2 of Lorden (1971). O

Consider the hypotheses Hy that y1, y2, - .. are i.i.d. N(0, 1) variables against H; that
Y1, Y2, - -- are independent and y; ~N(6'z;, 1). A one-sided sequential probability ratio test
can be defined as

N(a) = inf{n>1]S, > |logal}, (7)

where S, = Y1 | & and & = 0'z;(y; — 0'z;/2). By the Wald’s likelihood ratio identity,
Po{N(a) < oo} < a. Since under assumption (2), the second moments of {’s have a
common bound, it is easy to see that Pi{N(a) < co} =1 from Lemma 3. Denote by N (a)
the stopping time obtained by applying N(a) to yx, Yxi1, --.. For v = a~!, define

N*(y) = inf{Ng(a)+k—-1|k=1,2,...}. €)
Then N*(y) can be expressed by
* =i > — >
N*(y) = inf{n >1] 1rSnkaLan(Sn Sk) >log~v},
which is a generalized Cusum procedure (cf. Lorden 1971, Siegmund 1985 §2.6).

PROPOSITION 2. Under assumption (2), limsup,,_,,, D{N*(y)}/logy < p~!

N*(7) is defined as in (8), and p = 6'M6/2.

, where

ProoF. By Proposition 1, we need only to show that

En Np(a) ~ |logal/p uniformly form >1, asa — 0. 9)
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Let pu; = Er& = (0'z;)?/2. By assumption (2), L3  u; — p. Furthermore by the

' n
uniformity of the convergence in (2), sup,,>; E1/s| < 0o, and there exists a positive integer
d such that

1 1 k+d 3
—u < = ;< = for all k > 0.
gh = di—;—luz < g, fora k>0

Let So =0, Z,, = Spda — S(n—1)as » > 1. Then under Py, Z, is normally distributed with
mean v, and variance 2v,, where v, = Z;f(nfl)dﬂ wi > pd/2 > 0. Let 74 = inf{n >
1| Y7, Z; > |logal }. Obviously, N(a) < d- 7, as.. Let Ky > 0 such that

v = (ud)"?[(pd)'/? /2 + K:i{1 - 3(K1)} - p(K1)] > 0,

where ¢(.) denotes the standard normal density and ®(.) its distribution function. Let
Z!, = ZnNvpn+Ki1v/2vy,), some integration operation entails that 0 < v < Eq Z], < Ky < 00,
where Ko = 3ud/2 + K1(3ud)'/?. By Lemma 3 (iii), F17o < (|loga| + K»)/v < oo.

Consequently,
EIN(Oz) < d-Eit, < K3 < 00, (10)

where K3 = d(|loga| + K2)/v. Therefore from Lemma 3 (ii), (9) holds for N(a). By the
definition of Ny, (a) and (7), (9) also holds for all Ny, (a), for m > 1. Its uniformity of the

convergence follows from the uniformity assumption in (2). O

By Proposition 2,
limsupinf D(N)/logy < ', (11)

y—00
where the infimum is taken over N with E, N > 7. Proposition 3 shows that the limit of
the inf D(N)/log~ equals u~!. Hence the Cusum procedure N*(7) defined in (8) is asymp-
totically optimal.

PROPOSITION 3. Under assumption (2), it holds that inf D(N) ~ log~vy/u as v — oo,
where u = 0'M6/2, and the infimum is taken over N with E,,N > ~.

PROOF. By the virtue of (11), we need only to show that for any € € (0,1), there is a
constant C'(g) > 0 such that for every stopping time N,
(u+e)D(N) > (1—¢)log{EN}—Cl(e). (12)
For fixed ¢, define Tp =0 < 11 < T3 < ... as follows:
T, = inf{k >Tk_1|(Sk — St,,_,) > |loge|} fork>1,

where S, = 31" | &, & = —0'z;(y; — 0'z;/2). Let R = inf{k > 1|T} > N}. Following the
proof of Theorem 3 of Lorden (1971) with Lemma 5 instead of the Wald’s theorem, we have
that

(k+e)D(N) > (1-¢)log{ExR} — C(e), (13)
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where C(e) > 0 depends only on e, which is guaranteed by the uniformity in (2).

It is easy to show that T,, — T},_1, n = 1,2,..., are independent, and

oo
Po{Ty—Ti=n} = Y Pu{Ti =k} Po{T{¥ =n} forn>1,
k=1
where Tl(k) is Ty applied to Yg+1, Yk+2, ---- By Lemma 3 (ii), Tl(k) < 00 a.s. under Py
for all £ > 1. Consequently, To — T} < oo a.s. under P, also. The similar arguments to
relation (10) imply that
BT < K < oo, (14)

where K is equal to K3 in (10) with € instead of a. From the uniformity of the convergence
in (2), the inequality (14) holds for all Tl(k), k=1,2,.... Hence

Po(Ty = k) B, TP < K.

NE

Eo(Ty=Ti) = ) nPy(Ta—Ti=n) =

n=1

=~
Il

1

Similarly, we can show that Ex (T, — T,—1) < K for all £ > 1. Notice that {R > n} is
determined by {Ty, — Tk—1, k =1,...,n — 1}, which is independent to T}, — T,,—1. Hence

ExTr =FEo » (Tn—To1) Itrsny = Y Eoo(Tn = Tno1) Po{R>n} < K - ExR.

n=1 n=1

From the definition of R, log{EccN} < log{ExxTr} < log{ExR} + log K. The relation
(12) follows from this inequality and (13) immediately. O

4. PROOF OF THEOREM

The relation (4) follows directly from Proposition 3. From the following Lemma 6, there
exists a sequence of stopping time {N(a), 0 < a < 1} for which P{N(a) < >} < «,
and (5) holds uniformly for £ > 1. Define T'(y) as in (6). Proposition 1 implies that
T(v) is a stopping time, and for which the inequality (3) holds, and further D{T'(y)} <
SUP,,>1 Em,o{Nm ()} with a = y~'. Since the convergence in (5) is uniform, the inequality
(4) holds for T'() with equality.

LEMMA 6. Let §, = |logal !, and hy = |loga| + log(|log a|***8), where p is the

dimension of the vector §. Define
1
N(a) = inf{n>1| sup (0'X)Y,— QG'X;LXHH) > ha }s
[[0n]|>0a

where 0, = n~/?(X! X,)'/26. Then under assumption (2), Po{N(a) < o} < a for
0 < a < ap, where ag € (0,1) is a constant. Furthermore, the relation (5) holds uniformly
for k> 1.
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PROOF. Let Z, = n'/?(X}, X,,) 72X Yy, For n < ng = [2ha/82], sup) g, ||>s. (0" XY —
20'X! X,,0) > hq if and only if

. n _
||Zn|| > ||91ﬂ£6 {§||6n||+ha||0n|| 1} = (2han)1/2- (15)

Under P, the random variable ||Z,||? /n has the distribution x?(p). Hence
1
Po{N(a) =n} < POO{E||ZH||2 > 2ho} < 3hPe e,

Consequently,
P {N(a) <ng} < 3nghPe "= = o(a/|logal). (16)

For n > ng, the infimum in (15) is attained at a point with ||6,|| = 4. Since ngd?2/4 +

(ha/6a)? > ho — 62 /4, some elementary algebra estimates entail that

Pyo{no < N(a) < o0} < i P, {l||Z ||2>(ﬁ5 +n—1/2h_0‘)2}
o) 0 ~ W o] n n = 2 a (Sa

! 2
< M4 eyt oxp(hy + 22} = O(a/|loga).

Based on this and (16), we can choose a sufficiently small ag € (0,1) such that P, {N(a) <
oo} < a for all a € (0, ap).
To show (5), we define

1
Ny(a) = inf{n>1|60'X]Y, — 50'X;Xn0 > hy} for#0.

Since d, | 0 as a — 0, 6, > J, for all sufficiently small a, large n and fixed 8 # 0. Hence
by Lemma 3,
ha'E1gN(a) < hy'E1gNg(a) — py'  asa— 0.

Lemma 4 and (3) imply that |loga| ™' E1sN(a) — ,ua_l. Tt is easy to see that
h;lEkygNk(a) — u;l, for k> 1,

where Ni(«) is the stopping time obtained by applying N(«) to yg, Yg+1, - -.- The unifor-
mity in convergence of (2) guatantees that the convergence in the above limit is also uniform
forall k> 1.0
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