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Abstract

Often for a non-regular parametric hypothesis, a tractable test statistic involves a nui-
sance parameter. A common practice is to replace the unknown nuisance parameter by its
estimator. The validality of such a replacement can only be justified for an infinite sample in
the sense that under appropriate conditions the asymptotic distribution of the statistic under
the null hypothesis is unchanged when the nuisance parameter is replaced by its estimator
(Crowder, 1998). We propose a bootstrap method to calibrate the error incurred in the sig-
nificance level, for finite samples, due to the replacement. Further, we have proved that the
bootstrap method provides the more accurate estimator for the unknown actual significance

level than the nominal level. Simulations demonstrate the proposed methodology.
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1 Introduction

For some hypothesis testing problems, relevant statistics with tractable sampling distributions
often depend on some nuisance parameters. It is a common practice to replace the unknown
nuisance parameters with their estimators; such a practice has been asymptotically justified by
Randles (1982) and Pierce (1982) for regular parametric tests and by Crowder (1998) for some
non-regular cases. However, to the best of our knowledge, little attention has been paid to
the issue of quantifying the deviation from the nominal significance level due to the use of an
estimated nuisance parameter based on a finite sample, which is practically the more relevant
case. In this paper, we propose a bootstrap method to estimate the actual significance levels of
tests involving estimated nuisance parameters. The finding is alarming; the actual significant
level could be quite different from the nominal level. We have proved that the new estimator
for the actual significance level is of higher order accuracy than the nominal level. We have
conducted two simulation studies, in which the test statistics are functions of extreme sample
values. Results of the studies lend further support to the above claim.

Our approach is related to (though not the same as) the bootstrap calibration method first
proposed by Loh (1987) and subsequently refined in Loh (1988, 1991). Loh’s idea is to improve a
confidence set, based on an asymptotic approximation, by correcting its nominal level following
a bootstrap argument. Its validality is proved by appealing to Edgeworth expansions. The same
idea is readily applied to hypothesis tests. We argue that it is particularly pertinent to adopt
bootstrap approach in the context of tests based on estimated nuisance parameters. However,
we are unable to provide an analytic formula to correct the nominal level since we deal with
non-regular cases in which Edgeworth expansions are not available.

Although our primary concern is on non-regular cases such as those studied by Crowder
(1998), the methodology is directly applicable to regular cases, for which Theorem 1 in Section
2 below can be easily derived from readily available Edgeworth expansions (Hall, 1992). Since
the test statistics concerned in this paper are not always asymptotically normal, our proof of
Theorem 1 is to establish an analogue of Edgeworth expansion (up to the first two terms) for
non-regular statistics. De Haan and Resnick (1996) derived such an analogue for extreme sample
values in a more systematic way, which, unfortunately, does not apply to the more complex cases
covered in this paper.

The paper is organised as follows. We introduce the new method and the main result
in Section 2. Simulation results are reported in Section 3. All the technical arguments are

relegated to the Appendix.



2 Methodology and main results

Let Y7,---,Y, be independent observations from a population which belongs to the parametric
family P(-|6,1), where (8,1) € RP x R? are parameters. We assume that P is known up to some

unknown parameters and are interested in testing the hypothesis on parameter 6 only, namely
Hy: 0 =0y vs H1:9€®, (21)

where 0y € ©, O is a subsets of RP, and 9 plays the role of a nuisance parameter.

Suppose that we have a test statistic

1

To(¥) = Tn(Y1,- -+, Yn39), (2.2)

and its asymptotic distribution under the null hypothesis Hy, denoted by F', is known. We
reject Hy if T;,()) > F~'(c), where F~!(a) denotes the upper-a point of distribution F, and
a € (0,1) is the nominal significance level of the test. In practice, the nuisance parameter 1) is

unknown and is estimated by an appropriate estimator

P =PV, Y. (2.3)

~

Typically, the distribution of T}, (¢) is difficult to derive even asymptotically. A common practice
is to reject Hy when T}, (1)) > F~'(a). Therefore the significance level of this modified test is

an = P{ Tn()) > F*(c) | 60, %0}, (2.4)

which is unknown and which could be quite different from the nominal level «; see the examples
in Section 3. In the above expression, 9y denotes the (unknown) true value of 9. Crowder (1998)
proved that |a, — | — 0 as n — oo if T},(-) is a reasonably smooth function and P N Yo
sufficiently fast.

To calibrate the discrepancy between «, and «, we adopt a bootstrap scheme: draw in-
dependent samples Y7*,---,Y;* from distribution P(-|6y, %), let ¢* = ¢(Y},---,Y*) (see (2.3)
above), and define

b = P{ T (Y], -, Y 9%) > F~Ya)}, (2.5)

where P* denotes the conditional probability measure of {Y}*,---,Y*} given the sample {Y1,---,Y,},
F~1(a) is the upper-a point of distribution function of T}, (Y7, -+, Y;*; ) under P*, and T}, is
given as in (2.2). Theorem 1 below ensures that &, is a better estimator for «,, than «. This
means that we should regard the test as one with the significance level &, although it was orig-
inally constructed at the nominal level a. In practice, we estimate &, by the relative frequency

of the event {T),(Y7*,---,Y; 1&*) > F’_l(a)} in a repeated bootstrap sampling.



Theorem 1. Under conditions (C1) — (C3) listed in the Appendix, |G, — ap| = op(|a — ay|)

as n — 00.

3 Simulation

In this section, we demonstrate the proposed bootstrap method through the same examples as
those studied by Crowder (1998). We repeat the simulation 100 times for each of the three
different sample sizes n = 50, n = 100 and n» = 200 and for each example. We always repeat
the bootstrap sampling 10,000 times. We always set the nominal level o = 0.05, and estimate
the actual significance level oy, through a simulation with 10,000 replications. We measure the

improvement in the accuracy of the bootstrap estimator by the ratio

A

Ry, = |6n — ap/|a — anl.

Obviously, &, is closer to a, than a when R, < 1. The smaller is the value of R,,, the larger is

the improvement.

Example 1. Suppose Y7, ---, Y, are independent observations from the distribution
1 —expik? — (k4 &y)” >0
F(y; v,&,K) = p{ (s + &) } Y , v>0,k>0,6>0. (3.1
0 y<0

As in Crowder (1998) , we consider two tests, namely
Hy: v=1vs H: v>1, (3.2)

and

Hy: k=0vs H: k>0. (3.3)

Note that the associated likelihood-based methods are non-regular: x = 0 is on the boundary
of the parameter space, and k disappears from the likelihood but not from the score function
when v =1 (Crowder 1990, 1998).

First, we consider the tests for hypotheses in (3.2), and let x = 2. Under the null hypothesis
Hy, the distribution (3.1) reduces to 1—exp(—£y) with & playing the role of a nuisance parameter.
The test statistic previously suggested in Crowder (1990, 1998) is Ty, () = £Y(y,) — logn, where
Y(n) = max{Y1, Ya,---, Y, }. It is easy to see that under the null hypothesis the distribution of
T, (€) is {1—n~" exp(—t)}" — exp{—e~*}; the maximum likelihood estimator of £ is £ = n/ anl Y.

i=

A~

Crowder (1998) shows that T},(£) shares the same asymptotic distribution as 7T),(¢). Note that



F(y; v,&, k) is an increasing function of v. Therefore T, (&) is stochastically decreasing with
respect to v when k > 1. This leads to the reject region {Tn(é) < 2zq}, where z, is the lower
a-point of the asymptotic distribution of T,,(¢).

In our simulation, we set the true value of £ at 1. The simulation results with 100 replications
and three different sample sizes, namely 50, 100 and 200, are presented in the third column of
Table 1 and Fig.1(a). The simulated values for the actual significance «,, are quite different
from the nominal level @ = 0.05, even with the sample size n = 200. The bootstrap estimator
&y, is always much closer to a;, than «. Fig.1(a) shows that the improvement of the knowledge
on the actual significance level through bootstrap is quite dramatic, although the smaller is the
sample size, the larger is the improvement.

Consider now the second setting (3.3). The distribution (3.1) under Hy reduces to F(y; v,&) =
1- exp{ — (&y)” }, y > 0. Now both v and ¢ are nuisance parameters. We use the same test
statistic T, (£, v) = n(€Y(y))” as Crowder (1990, 1998), where Y(;) = min{Y3, ---, Y, }. Its
asymptotic distribution under the null hypothesis is 1 — exp(—t). It can be proved that the

maximum likelihood estimator (£,7) is the solution of the equations
n
n—g 3 Y =0
i=1

_n
v 4 Y {logYi - &y long} =0.
i=1

Moreover, Ty, (£, 7) has the same asymptotic distribution as that of T}, (¢, v); see Crowder (1998).
Note that F'(y; v,&,k) is an increasing function of k. Therefore T),(£,v) is stochastically
decreasing with respect to x. Further, the rejection region is Tn(f , D) < z,, where z, is the
lower-a point of the asymptotic distribution of T,, (¢, v).
In our simulation, we set £ = 1, v = 2. The results are summarised in the fourth column of
Table 1 and Fig.1(b). Now the asymptotic distribution provides a better approximation in the
sense that the actual level «,, is much closer to « than that in the previous case. However, the

improvement from using bootstrap is still significant; see Fig.1(b).

Example 2. Let Yi,---,Y,, be the independent observations from the distribution

v1—1
1—|1+ - >
F(y; ¥,&v) = [ {(y ¢)/§}] yzy v >0, &>0.
0 y<y
We consider the test of the following hypotheses on the parameter ¢:
Hy: €=1vs H: £<1. (3.4)



Table 1: The simulated values for the actual significance level o, and the means
and standard deviation of the bootstrap estimator &,. The nominal level o = 0.05.

Test for (3.2) Test for (3.3) Test for (3.4) Test for (3.4)
v=1 v=2
n=>50 Qn 0.0114 0.0401 0.0690 0.0408
E(éay) 0.0119 0.0413 0.0687 0.0408
STD(dy,) 0.0010 0.0042 0.0026 0.0020
n=100 oy, 0.0240 0.0466 0.0656 0.0432
E(éap) 0.0230 0.0453 0.0627 0.0430
STD(dy,) 0.0017 0.0019 0.0027 0.0024
n=200 o, 0.0296 0.0479 0.0609 0.0432
E(én) 0.0300 0.0462 0.0576 0.0427
STD(éy,) 0.0026 0.0014 0.0034 0.0029

The parameter 19 plays the role of a nuisance parameter. We assume that the value of v is given
to simplify the derivation. This problem is non-regular in the sense that the parameter 1 defines
a boundary of the sample space; see Smith (1985) and Crowder (1998). Further, different values
of v lead to different behaviour of the test. It is easy to see that the score test statistic is
Toi6,0) = 0=/ 3" h(Vis 91,0,
=1

where h(y; ¥,&v) = (6%) log{(a%)F(y; ¥, €,v)}. We use ¢ = Y1y = min{Yy,---,Y,} to
estimate the nuisance parameter.

First, we consider the case v = 1. It can be proved that T},(%, 1) is asymptotically normal
with mean 0 and variance 1/3 under the null hypothesis, and Tn(aﬁ, 1) shares the same asymptotic
distribution as T (1, 1); see Crowder (1998). Further, we will reject the null hypothesis if
31/ 2Tn(1ﬁ, 1,1) < zo, where z, is the lower-a point of the standard normal distribution. The
simulation with 9 = 0 yields the results reported in the fifth column in Table 1. Now the
nominal level under-estimates the actual significance level by 0.011 for n = 200 and by 0.019 for
n = 50. The boxplots of simulated values of R,, are depicted in Fig.1(c), which demonstrates a
substantial improvement by bootstrap.

Finally, we consider the case with v = 2. It can be proved that under the null hypothesis, the
asymptotic distributions of Tn(d},2) and T),(v,2) are no longer the same; see Crowder (1998).
This case is beyond the scope of Theorem 1. (In fact, the condition o,A, — 0 is no longer
fulfilled now; see condition (C2) in the Appendix.) However, our simulation suggests that the
bootstrap method can still provide more accurate estimates for the actual significance level than

the nominal value of a; see the last column Table 1 and Fig.1(d).



(a) Test for (3.2)
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(c) Test for (3.4) with v=1
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Figure 1: The box-plots of ratios R, = |&n — an|/|a — ap| for Examples 1 and 2. Bootstrap

n=50 n=100 n=200

(b) Test for (3.3)
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(d) Test for (3.4) with v=2
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provides a better estimator for o whenever R, < 1.

Appendix

Conditions

n=50 n=100 n=200

(C1) There exists a sequence of positive numbers {c,} for which (¢) — )/, = Op(1)

under the distribution P(-|6y, ).

(C2) There exist sequences of positive numbers {\,} and {4, } such that under the

distribution P(-|6y, )

{Tn () — Ta(¥)} /A0 — 0,

To(4) /60 > ¢,




and 7, = O(\,), 00 = 0(Ay), and o, A, — 0, where
To($) = OTu($) /0%, () = B{Tu()l60, ¥}, Tu() = PTu(y) /099"

(C3) Let Gp(z|y; %) be the conditional distribution of 7.1 (1)(%) — 9)/(0nAn) given
Ty (%) = y under P(-|6p, ). Then, the limit functions

b1y, %) = nli_{go_(o'nAn)ilGn( - (O'n/\n)ilh/; d’)

and
ba(y, ) = lim (o ha) ™" (1= G ((onha) 7 lys ¥))

exist and are continuous with respect to .

Condition (C1) is usually fulfilled with a good estimator (such as an MLS) with o,, — 0.
Under condition (C2), the Statistic 7}, is smooth. (C3) assumes the tails of the limit distribution

of ‘normalised’ 1ﬁ decays fast enough and is continuous with .
Proof of Theorem 1
Unless specified, P(-) stands for the population P(-|6y,) in the sequel. Let
. T 1 . T
A= (Tal) = 1) + 5 — ) Tal),
where 11 lies between 1 and 1. It follows from a Taylor’s expansion that Tn(iﬂ) = Tn(v¥) +
77 — ) + An (1) — ). Therefore
P{T, @) <t} = P{Tu(@)+71 (- v) + Aa(h —9) <1}
= P{Ta() + 7L ($ — ) + An(dh —9) <1, An(dh — ) <0}
A (D

Let J; and J2 denote the two terms on the RHS of the above expression respectively. Then,

3 = P{Tu@)+71 @ —9) <t, Au($—9) <0}
+ P{t<To(®) + 70 (4 — %) <t— An(h —9), An(dh — ) <0},

and the second term on the RHS of the above expression is equal to

P{t <Tu() +m (b —9) <t —Anou(h — 90", An( — ) <0}

= PLe< L)+ TG - 9) <t (Tad) — 1) onld -~ D)ts At~ ) <0
+ 0(6,02) = o(onhn)-



Thus, we have that

Ji = P{Tn(¢) + TE(& - Qﬁ) <t, An(qﬁ - ¢) < 0} + O(Un)\n)'

The similar arguments lead to

Jo = P[Tn("p) + Tg("ﬁ - ’lﬂ) <t, An("‘& - 710) > 0] + O(Un)\n)'

Combing the above two equations, we have that

P{T,($) <t} = P{Tu(y) + 7 ( — ) <t} + 0(ondn)- (A1)
On the other hand, the following decompositions are obvious.
P{T,(y) + 7 (=) <t}
P{Ta () + 77 (4 —9) <t, 77 (h — ) <O} + P{To(¥) + 71 (b — ) <t, 77 ($—9) >0}

m; + my,

>

my = P{T,() <t, 77 —9) <0} + P{t <Tu(y) <t —onrl (=) /om, 72 (h —9) <0}

mip 1 +mjpo,

1>

2
I

P{T,(¥) <t, 7 (b —9) > 0} = P{t = ourl (4 — $) /00 < Tu(®)) <1, 7 (% — %) > 0}

my1 — My9.

1>

It is easy to see that
P{T, () + 7 (i — ) <t} = P{To() <t} +my5 — myy,

P{Tn('ﬁz) < t} = P{Tn("p) < t} +m;o —mgo+ O(O'n)‘n)- (A'Q)

Moreover, it follows from condition (C3) that

iy = o [ Tt - 9) " (4, $)AF () + 0(0nn),

= o [ ;@ — 9) " ol $)AF(y) + 0(nAn).

Thus, we have that
an = P{Ta() <F @)} +oud ([ (6 -)7 010, 0)IPW)
- [ -9 0l dEW) + o), (A)

9



which leads to
o, —a=0 (Un)\n + (P{Tn(w) < F_l(a)} — a)) .

Note that &, can be seen as «,, if 1& is treated as the true value of 1. Thus
1 * 1 7
an = P{La) <F @)} +ouda ([t 0) 010D W)
t N
- [ =90 W) + o). (A4)

—0o

It follows from (A.3), (A.4) and conditions (C1) and (C3) that &, — a@ = op(opA,). Therefore,

by, — an = op(a, — ).
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