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Abstract

For normal random walks Sy, Ss, ..., a large deviation approximation is obtained for the
probability of the event that the stochastic process {S,} crosses over the boundary {n(1 —
n/m)}'/? in the time interval mg < n < m;(< m) conditionally on S,,, = Sp, being fixed.
The result is applied to a change-point problem to approximate the significance level of the
two-stage test, which is defined as a stochastic convex combination of the modified likelihood

ratio test and Pettitt’s test.
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1 Introduction

One way to develop approximations for a boundary crossing probability is to write the probability
as an expectation of a conditional boundary crossing probability given an appropriate random
variable, and then to develop a large deviation approximation for the conditional probability.
Such a method has been used with some degree of success, as measured by the accuracy in the
cases that the sample sizes are moderate or even small, by Siegmund (1985, 1986) and James,
James and Siegmund (1987, 1992) etc. It has also been adapted to produce some satisfactory
results for boundary crossing problems of random fields (cf. Siegmund 1986, Yao 1993a,b, etc).
Let Y1, Ys, ... be independent identically distributed N(0,0?) random variables, and S,, =
Y1 + .-+ Y,. Using a likelihood ratio argument, Siegmund (1985, 1986) studied the asymptotic

behavior of the conditional probabilities

P{S, > biy/n(l —n/m) for some mg <n < mq|Sy,, =my}l,

where b; > 0 is a constant. The results were applied to approximate tail probabilities in some
sequential tests and change-point problems. In this paper, we develop large deviation approxima-

tions for the conditional probabilities

P{S, > biy/n(l — n/m) for some mg <n <my | Sy, = Smy =my }, (1.1)

and apply the result to some change-point problems.

Our main result is stated and proved in §2. The proof uses the method of Woodroofe (1982)
which splits the conditional probability into a sum in terms of the first crossing time, and then
evaluates the approximation for each summand. The method of likelihood ratios or mixtures
of likelihood ratios (cf. Siegmund 1985), which seems particularly simple for certain problems,
appears to be difficult to be adapted to the present situation.

Our studying of the conditional probabilities (1.1) is motivated by the following observation on
change-point problems. Since Page (1954) proposed the problem of detecting a parameter change
in the context of quality control, there has been considerable studies on the test of the hypothesis
that Y1,...,Y,, are independent identically distributed random variables against the alternative
that they are independent, but for some value p (1 < p < m), Y1,...,Y), are identically distributed
and Y,.1,...,Y,, are also identically distributed but with a distribution different from that of Y;.

Various statistics, such as the Bayesian statistic (Chernoff and Zacks 1964), the recursive residual



statistic (Brown, Durbin and Evans 1975), Pettitt’s statistic (Pettitt 1980), and the modified
likelihood ratio statistic (Siegmund 1986), were developed. James, James and Siegmund (1987)
compared the different tests, and have shown that no method is overwhelmingly superior to
the others. More specifically, when the change-point p is near 1 or m, the modified likelihood
ratio test performs better than the others; when p is around m/2, Pettitt’s test has the largest
power. They remarked: “one possible conclusion is that one should choose a test statistic on a
subjective basis, depending on where one ‘expect’ a change to take place, should there be one”
(James, James and Siegmund 1987, p.82). Therefore, one possible alternative is to carry out
a preliminary inference to identify the location of the possible change-point before performing
a formal test with a properly chosen statistic. This strategy is particularly justified if there
is no prior information available. In §3, some two-stage tests are defined as stochastic convex
combinations of the (modified) likelihood ratio test and Pettitt’s test. Comparisons of the power
among the different tests are made by simulation. The approximation for the significance level of
a new test is obtained by using Theorem 1 in §2 below. Some technical derivations are relegated
to an appendix.

To simplify the presentation, we use a,, ~ by, to indicate that a,, /b, — 1 as m — oo, and
P{Xecy+ds} =P{X € (y+z,y+z+dz]} = f(y+ z)dz,

where f(.) is the density function of the random variable X.

2 Main Results

Throughout this section, it is always assumed that Yi,...,Y,, are independent standard normal
random variables, and S, =Y1+---+Y,, n=1,...,m. Theorem 1 presents the large deviation
approximations for the conditional boundary crossing probability (1.1), which is not only useful

in estimating the significance level of a two-stage test in §3 below, but also of independent interest.

Theorem 1. Suppose that m — oo, my — 00, and by — oo in such a way that mo/m =ty €
(0, 1/2), b1/y/m = ¢ > 0 fixed. Let m; = m — mg. Then as m — oo,
(i) uniformly for y in closed subintervals of ( cto\/to/(1 — to), 2cto(1 — to) ),

P{S, > biy/n(l — n/m) for some mg <n <my | Sy, = Sm, =my }
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c— 2y 1/2 — 2 m .
- V2 [20150(1 —tp) — y] ”(2 1— 2t0> exp{— m(c - 2y)%};

(ii) uniformly for y in closed subintervals of (2cto(1 — t9), c\/to(1 — to) ),

P{ S, > biy/n(l — n/m) for some mg <n <mq|Smy = Sm, =my }

2

1- 2tO 1-— 2t0 m y
1) V(to(l — to)y) exp{— 5 (1 - 2to)(® — m)}, (2.1)
where
va) = 20 % expl-2 YK B(-gakl D) (@>0), (2:2)
k=0

and ®(-) denotes the standard normal distribution function.

For numerical purposes, it is often sufficient to use the following approximation for the function

v(-) given in (2.2) (see (4.38) of Siegmund 1985),
v(z) = exp(—0.583z) + o(z?).

To prove Theorem 1, the Woodroofe’s method (cf. Chapter 8 of Woodroofe 1982) is adapted.
To simplify the statement, we introduce some notations. For tg = mg/m € (0, 1/2), ¢ = b1 /\/m >

0, and y > 2c¢to(1 — tp), let

1 1
=51~ V14281 —t0)2/y2), t5= S+ V14281~ t)2/y2),

h(t) = (cy/t(1 =) =) /[t(L — 1) — to(L —t0)], ¢ € (0,1).
In fact, the principal contribution to the conditional probability (1.1) comes from the process Sy,
exceeding b;/n(1 — n/m) for some n in a neighbourhood of n = [m/2] when y < 2cto(1 — to)
(see (i) — (iii) of Lemma 1 below), and in two symmetric neighbourhoods centred at ¢ and t}
respectively when y > 2c¢to(1 — tg) (see (iv) — (vi) of Lemma 1 below).
Lemma 1. Let Ay, and A be closed subintervals of (cto+/to/(1 — tg), 2cto(1—tg)), and (2cto(1—
t0), cv/to(1 — tg) ) respectively. As m — oo,

(i) uniformly for |n —m/2| < m™/'2, z € [0, logm], and y € A,
P{S, € by\/n(1—n/m) + dz|Sm, = Smy =my }

2m~1 m 9
~ \/% exp{-m (c — 2y)?} exp{— T (c —2y)x}

X expl—3 (1= 2to) {y(n/m) — (1/2)}] da;
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(ii) uniformly for [n — m/2| < m™/12, and y € A,

P{Sp, > biy/n(l —n/m) + logm|Sm, = Sm, =my }

m

= o(m_1 exp{—m (c— 2y)2}) :

(iii) uniformly for |n — m/2| > m"/2, and y € A;,

P{S, > biy\/n(l—n/m)|Spn, =Sm, =my} = o<m1 exp{—ﬁ (c— 2y)2}) :

(iv) uniformly for |n — mt| < m™/'2 (i =1, 2), z € [0, logm], and y € Ay,

1-— 2t0 ytal(l - 7:0)_1 exp{_m(l _ 2t0)(C2 _ yiz
2rm /e — 42 [Tto(1 — to)] 2

< exp{= sy} expl= (1= 20){(n/m) = ${t])}] do:

(v) uniformly for |n — mtf| < m™/12 (i =1, 2), and y € A,

P{Sp, > biy/n(l —n/m) + logm|Sm, = Sm;, =my }

= o(m1 exp{—%(l — 2t0)(c2 — to(lyi—to))}) ;

(vi) uniformly for |n — mt| > m7/12 (i = 1, 2), and y € A,

P{S, > biy/n(l—n/m),|Sme = Sm, =my }
- m y?
= o(m 1exp{—E(l — 2t9)(c? — m)}) .

Lemma 1 follows from the fact that given S,,, = S,,, = my, the conditional distribution of
Sn (mop < n < my) is normal with mean my and variance (n — mg)[l — (n — mg)/(m — 2my)],
and some standard estimates used, for example, in the proof of Lemma 1 of James, James and

Siegmund (1988).

Proof of Theorem 1. We prove (ii) only. (i) can be shown in a similar but simpler way.

The following decomposition is obvious

P{ S, > biy/n(l — n/m) for some mg <n <my|Smy = Sm, =my }



= / P{S, € biy/n(l =n/m) + dz|Spy = Sm, =my }
n=myg

x P{S; < biy/j (l—j/m) forallmo < j <n| Sm, =my, S, =biy/n(l—n/m)+z}

= > /logm+ > / = pi(m) + p2(m) + p3(m), say, (2.3)

neA; neA; ogm
where Ay = {mo <n <my: |n—mtf| <mT2fori=10r2}, Ap={mo<n<m:n¢gA?}

By the symmetry in ¢} and %3,

p1(m) =2 Z /lo mP{S € biy/n(l —n/m) + dz|Sp, = Sm, = my}

|n—mit; | <m7/12

x  P{Sj <biy/ji(1 —j/m) for all mg < j < n|Sp, = my, S, = biy/n(l —n/m)+x}.(2.4)

Along the same lines in the proof of Lemma 2 in Yao (1993b), it can be proved that given

Smo = my and S, = biy/n(1 —n/m)+z, if S; > bi1/j(1 — j/m) for some my < j < n, this event

with overwhelming probability occurs for some j close to n, say n — (logm)? < j < n. For such a

4, and |n — mt}| < m7/12,

v/n(l—n/m) — \/'—'m:n—'M o(1).

Hence,

P{S; < biy/j(1 —j/m) for all mg < j < n|Sm, = my, Sp, =biy/n(l —n/m)+z}
= P{S,—8S;—(n—j)c(l —2t})/[2y/ti(1 —t5)] > z foralln — (logm)? <j <n
| Sme = my, Sp =bi1y/n(l —n/m)+z} + ofl).

It can also be proved that for n — (logm)? < j < n and |n —mt}| < m™/12, given S,,,, = my, Sp =
biv/n(l — n/m) + =, the process S, —S; — (n — j) (1 — ZtT)/[ZM] (1 =1,2,...) behaves
asymptotically like a normal random walk with the mean value p* = y(1 — 2ty)/[2to(1 —19)]. (See
the brief proof of (9.87) in Siegmund (1985), and also the proof of Lemma 3 of Yao (1993b) for a

more complex result.) Consequently, by Theorem 2.7 of Woodroofe (1982),
P{S; < biy/j(1 —j/m) for all mg < j < n|Sm, = my, Sp, =biy/n(l —n/m)+z}

— P{%lzillle >z} = pwP{V, >z}/E(V.), (2.5)



where V,, = YI' 1 Z;, {Z;} is a sequence of independent N(p*,1) random variables, and 7, =

min{n >1: V, > 0}. By (8.46) of Siegmund (1985) and (2.10) of Siegmund (1986), it holds that

1 [ 1
—_— e P{V., >zlde = ————
E(VT+)/0 Ve >} 2w E(Vry)

{1-Bexp(~3'V;,)} =v(2).  (26)
By Lemma 1 (iv), relations (2.4), (2.5) and (2.6) imply that

1- 2t0 ytal(l - to)_l * * m 2 y2
v(2u*) exp{— —(1 — 2to)(c? — —2
o JE e )] pv(2u*) exp{ 5 ( 0)(

x Y m el (1= 2t0){Y(n/m) — YD)} (2.7)

|[n—mt}|<m7/12

pi(m) = 2

Let ¢(z) = dyp(x)/dx, and ¢(z) = d®y(z)/dz?. Note that (t}) = 0. Thus, the sum in the above

expression is equal to

1 1 . n
> —— exp{—~(1 = 2t0)y(t]) (—= — v/mt})? + O(m~1/*)}
\\/Lm_\/mti\sml/” vm 4 vm
ml/12 .

= [ e 2t + Om Y+ o)

2

o0 1—2¢ y4 T
— expi{— dr
/foo p{ 2 t%(l — t0)2 62t0(1 — to) — y2 }

= \/2_7rt0(1 — to)\/c2t0(1 — t()) — y2 / [y2\/1 — 2t0].

By substituting the RHS of the above expression into (2.7), we have proved that p;(m) is asymp-
totically equivalent to the RHS of (2.1). The proof is completed by establishing the relations

2

m Yy ,
pi(m) =0 (exp{—;(l — 2t0)(c? — m)}) fori=2,3,

which follow from Lemma 1 (v) and (vi) immediately (see (2.3)).

3 Two-Stage Tests for a Change-Point

3.1 Two-stage tests
Let Y1,...,Y,, be independent random variables with Y;, ~N(up,1), and S, =Y +---+Y,,1 <

n < m. A simple change-point problem is to test the following hypotheses

Hy @ pr=...=pm=u

Hy : forsomel <p<m, p1=...=pp=p, fpt1 = ... = i = pt + 0, (3.1)



where u, 0 > 0 are the nuisance parameters. In what follows, Py denotes the probability measure
under hypothesis Hj. For the hypotheses (3.1), the square root of the generalized log likelihood

ratio statistic is calculated to be

Up= max (nSy/m—S,)/y/n(l—n/m) (3.2)

mo<n<mi

for some 1 < my < m1 < m. Here we have generalized the statistic slightly to take the maximum
over mg < n < my instead of over 1 < n < m. This kind of generalization was suggested by
Siegmund (1986) for the following reasons: it is intrinsically difficult to detect a change that
occurs near 1 or m, and the likelihood ratio statistic (before the generalization) pays for its efforts
to do so by giving up power near p = [m/2]. The introduction of mg and m; in the statistic
gives the statistician the flexibility to give up a little power to detect changes occurring near the
two endpoints in return for an increase in power near m/2. To simplify our discussion, we let
mp = m — myg.

Under Hy, the process n S,,/m—Sy,n =1,...,m, is independent of S,,,. Hence the significance
level of the likelihood ratio test with the statistic U; can be expressed as the conditional boundary

crossing probability

P{Ui>b1} = PB{-5Sn,>bi\/n(l —n/m)for somemy<n<m; | Sy =0}
= Py{Sp > biy/n(1l — n/m) for some my <n <my | Sy =0}, (3.3)

where b; > 0 is a constant. The second equality in (3.3) follows from the symmetry of {S,; 1 <
n < m} under the measure Py(-|S,, = 0). By Theorem 11.30 of Siegmund (1985), we have the

following asymptotic approximation

my/m
P{UI2 b} & shioh) [ . t(ll_t)u(bl/\/mt(l—t))dt, (3.4)

mo

where ¢ denotes the standard normal density function, and v(-) is as given in (2.2).

On the other hand, the testing problem (3.1) is invariant under common shift in location of
all the observations. This suggests that one should restrict consideration to invariant procedures,
i.e. those which depend on Y's only through X,, =Y, — Y7, n =2,...,m. For given p and ¢, the

log likelihood ratio of X's under H; relative to Hj is easily calculated to be

§(pSm/m — Sp) — p(1 - p/'m)(52/2.



By differentiating this statistic with respect to d, setting § = 0 and then maximizing over p, we
obtain the score-like statistic

Uy = lgnnzzxm(n Sm/m — Sp) (3.5)

for testing the hypotheses (3.1). This statistic was proposed originally by Pettitt (1980) for
testing a change-point in zero-one observations, and used as a motivation in developing tests of
the hypotheses (3.1) by James, James and Siegmund (1987).

Similar to (3.3), the significance level of Uy can be expressed as
Py(Uy>by) = Py{Sp, >bgforsomel <n<m | S, =0}, (3.6)
where by > 0 is a constant. By equation (10.43) of Siegmund (1985), we have the approximation
Py(Uy > by ) ~ v(4by/m) exp{—2b3/m}. (3.7)

With (3.3) and (3.6), it is easy to see that in order to keep the two tests at the same significance
level, by must be less than b;/n(1 — n/m) in a neighborhood of n = [m/2] for mg near 1 and my

near m (cf. Fig. 1 of Siegmund 1986). Note that under Hj,

E{nSp/m — Sa} = n(l = p/m) t=nsp (3.8)
p(l —n/m)é p<n<m,

which attains the maximum at n = p. Hence it seems intuitively clear that the primary contri-
bution to the power of the test comes from the probability that the process nS,,/m — S, exceeds
the boundary for some 7 in a neighborhood of n = p. Consequently, we can expect that Us has
greater power than U; when p is about m /2, whereas the converse is true for p near the endpoints
1 and m. Some numerical results have lent support to the above heuristic argument (cf. Table 1
of James, James and Siegmund 1987).

From the above discussion, we would desire a test which performs as U; when p is near 1 or m,
and as Uz when p is about m/2. Therefore, it is pertinent to consider the strategy of a two-stage
test. In the first stage, we carry out a preliminary inference to identify the location of a possible
change-point. Then we conduct the test for hypotheses (3.1) using either U; or Us accordingly.
The resulted statistic will be a stochastic convex combination of statistics U; and Us.

There are several ways to carry out the preliminary inference in the first stage. For example,

we may carry out a preliminary test of the hypothesis that p is near either 1 or m against the

alternative that p is around m/2. We define

Zy = Spm/m — Sme/mo,  Zo = (Sm — Smy)/mo — Sm/m.



It is easy to see that under H;

VA 51— £ 1 me
"~ N = , mo| (3.9)
Z §L mom Mmoo

Hence, Z1, or Z5 can be approximately considered as a normal random variable with mean 0 in

the case of p near m, or p near 1 respectively. This suggests the test statistic

U = Lz <hor 22<n}(Ut = b1) + I{z,>h and z,>h) (U2 — b2),

and Hj will be rejected if and only if U > 0. In the above expression, h > 0 is a constant. There
is a drawback to formulate the preliminary inference as a test due to the asymmetry of statistical
tests for hypotheses. As a compensation, we would choose h such that the two kinds of errors in

the preliminary test are about the same. For example, we choose h such that
P{Zy >hand Zy > h|p=mgporm1} = P{Z1 < hor Zy < h|p = [m/2]},

if the above equation has a positive solution. By (3.9), this implies that h > 0 should satisfy the

equation
mmomi mo 2
exp { —_— —2—x122+ T } dri1dzo
/ 2(m? — m) (a1 my 2)
27r\/m —m?
! 0 / exp { %(x% 20y + w%)} dz1dzo, (3.10)
where

Bi(h) = {z1>h—-461—mo/m), zo > h — dmy/m},
By(h) = {z1>h—4(1—[0.5m]/m), o2 > h — 6[0.5m]/m}.

In practice, we use

~

5= (S — )/ (m — ) (3.11)

instead of unknown § in the above expressions, where p is the maximum likelihood estimate of p
under H, i.e.

p = argmax (nSy,/m — Sp)/\/n(l —n/m). (3.12)
1<n<m

Remark 1. For a given test level, there is one degree of freedom in the choice of (b1, b2) in the
two-stage tests. In practice, we can use the values of b; and by determined by (3.4) and (3.7)

respectively as the starting values, then adjust them further using (3.14) below.



Remark 2. It is arguable whether the two-stage test statistic U is a good choice. Intuitively,
the preliminary test defined above is not very effective in identifying the location of the possible
change-point. Two alternative statistics will be given in §3.4 below. We focus on the statistic U
partially because with U it is feasible to pursue the asymptotic approximations, in the form of

large deviations, for the significance levels of the test.

3.2 An approximation for the test level

Based on the Theorem 1 in §2, it is possible to derive an analytic approximation for the significance

level of the test U. Obviously the significance level can be written as
P()(U > O) = P()(U1 >b, Z1<hor Zy < h) +P0(U2 >by, Z1 > h, Zo > h) (3.13)
From Propositions 1, and 2 below, we have the following approximation

Py(U >0) = 2b;p(b) /60 [z /[ty + bty /(xm)] dz

1

m 2b9 C ¢ 2(2¢—y—=2)
+ to\/1—2t0(p(\/m—2mo)/o/oy[ 1—2t0 ]
< el 12250 (v +2%) +yz -2y +2)} dydz,  (3.14)

where tog = mo/m, ( = ba/m, & = toh, & = blm_l/gto\/to/(l——to).

To assess the accuracy of (3.14), we conduct some Monte Carlo experiments with 20000 repli-
cations for m=30, 40 and 50 and h=0.15 and 0.25. The results are recorded in Table 1. These
figures along with similar ones not reported here show that when h is small, the approximation

3.14) offers a reasonably good approximation to the significance level.
y g pp g
(Table 1 is about here)

To justify the approximation (3.14), the following two propositions are established based on
Theorem 1 and some other large deviation approximations for boundary crossing probabilities in
Siegmund (1985, 1986). Their proofs are given in the appendix.

Similar to (3.3), the two terms on the RHS of (3.13) can be expressed as follows

ai(m)

P()(Ulzbl, Z1<hOI‘Z2<h)

= P(gm){smo < mépor Sy, < mé, max Sp/y/n(l—n/m) >b}

mo<n<mi
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= 2P(§m){,5‘m1 < mép, morgf}i{ml Sn/\/m > b}

~ B"{Spy < mép, Sy < mé, max Sp/\/n(L—n/m)>b},  (315)
Py(Ug > ba, Z1 > h, Zy > h)

as(m)

= P™{Sp, > méo, Sm, >méo, max Sp > by}, (3.16)

where Pém) () denotes the conditional probability measure Py(-|S,, = 0).

Proposition 1. Suppose that m — oo, my — 00, by — oo in such a way that mg/m = ty €

(0,1/2), bl/\/’r_n = ¢ > 0 fixed. Let mi = m — myo, fl = Cto\/to/(l - t()). Then for
2cto(1 —to)[1 — (1 — 2t9)//2(1 — 2tp)
o € (51, cto(l = to)l o)/ 0) > (3.17)

(14 2ty — 4t3)

)
ar(m) ~ Zoapbr) [y wly/to+ tofy) dy,

&

where ¢(-) is the standard normal density function, and v(-) is given in (2.2).

Proposition 2. Suppose that m — oo, my — oo, and by — oo in such a way that mg/m =ty €

(0,1/4), and by/m = ¢ > 0 fixed. Let m; = m — myg. Then for & € (0, (),

az(m) ~ tm/lm_ 2, 7 (\/21C\—/;50> /0 /0 ( 2§ — gto_ w))

m {1—t0
1—2ty " 2t

X exp[— (#® +v%) + 2y — 2((z + y)}] dz dy,

where ¢(-) is the standard normal density function, v(-) is given in (2.2).

3.3 Numerical comparisons

A Monte Carlo experiment based on 20000 replications is conducted to compare the power of the
two-stage test U, the modified likelihood ratio test U; (LRT), and Pettitt’s test Us. In each case
the significance level is 0.025, m=40, my=5, and J is set at three different values: (a) §=0.4, (b)
0=0.8, (c) 6=1.2. For the two-stage test, we solve equation (3.10) to obtain h = 0.122, and 0.264
for 6 = 0.8, and 1.2 respectively. For § = 0.4, (3.10) does not have a positive solution, and we
arbitrarily choose h = 0.1. The critical values were determined by (3.14), (3.4) and (3.7) first.
They have been further adjusted such that the differences among the levels of the three tests in

the simulation are not greater than 0.0005. The results are plotted in Figure 1. Note that due
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to the symmetry in the hypotheses (3.1) and the statistics U; and Us, the power functions are
symmetric in p and m — p when m; = m — mg. Thus, only the results with 1 < p < 20 are
reported. The values corresponding to p = 0 are the levels of the tests. These curves illustrate
that the power of the two-stage test is almost always between the powers of the two other tests.
As we pointed out earlier, the two-stage test is appealing only when there is no prior information
available on the location of the possible change-point. Other simulation results, not reported here,
show that the essential pattern is unchanged over a range of significance levels and sample sizes,

although the magnitude of the difference can be more or less.

(Figure 1 is about here.)

3.4 Two alternatives

In order to increase the power of the two-stage test, we may consider some other forms of the
preliminary inference which are able to identify the location of the possible change point more

efficiently. Further, we may use the genuine likelihood ratio statistic

Ui = max (nSp/m — Sp)/\/n(1 —n/m)

1<n<m

instead of the modified likelihood ratio statistic Uj.
We consider a test as follows: First, we evaluate the maximum likelihood estimator of p. When
the estimator is near either 1 or m, we use the likelihood ratio test U;. When the estimator is

near m/2, we use Pettitt’s statistic Uz. This leads to the test statistic

T = Ipcor pom—1y (U7 = b1) + Ini<jcm—13 (U2 — ba),

where 1 < | < m/2 is an integer and p is given as in (3.12). We reject Hy if and only if
T1 > 0. Ideally we would choose [ in such a way that Us has greater power than U7 if and only
if ] < p < m—1. To evaluate the value of [, we may use the analytic approximations of the
power functions with given § for both tests U{ and Us, which were developed by James, James
and Siegmund (1987). A Monte Carlo method can also be used to solve I. In practice, we may
use 6 given as in (3.11) instead of unknown é.

Another alternative is motivated by the following observation. From (3.8), we can see that
under hypothesis Hi, the expectation of (nS,,/m — S,) obtains its maximum at n = p, and is

monotonically decrease when n spreads away from p to both sides. This suggests that we can

12



simply compare the values of (nS,,/m — S,) at typical values of n to determine where p is about.

For example, we may define the test statistic

T = 18, Spymtd<(Z2Sm Smo V(2L S5y} (UT —01)

+ I{%Smfs[m/z]qudz(%Sm—smo)v(%sm—sml)}(% — ba),
where d € R is a constant, mg > 1 is a small integer, and m1 = m — mg. We reject Hy if and only
if Ty > 0. The idea behind the above statistic is that when p is near m/2, it is likely to occur
that Sp, — Simyz) +d > (728m — Smo) V (- Sm — Smy ). We would choose d in such a way that
under H1 E(Sp — Sjmy9)) +d > E(T2Sm — Smo) V E("72Sm — Sm,) when p € [I, m — ] in which

U, has greater power than U;. Therefore, d should satisfy the condition

(- ) B}z (1 152) - 820

In practice, we use 6 given in (3.11) instead of § in the above expression.

Intuitively, the tests 77 and T5 seem more powerful in identifying the location of the possible
change-point in the first stage than the test U. We do not pursue the discussion on 77 and
T further in this paper since, within our knowledge, it seems formidable to develop the large

deviation approximations for the levels of the tests.

Appendix: Proofs of Propositions 1, and 2

(m)

We use the same notation as in Section 3. Further, P; ’(-) denotes the conditional probability

measure Py(-|Sy,, = z).

Proof of Proposition 1. By Theorem 3.11 of Siegmund (1986), it holds that for any y €

(&1, e/to(1 —tp))

Pr(nrzl){sn > biy/n(1 —n/m) for some my < n < m1}

c toc? Y m, o y2
~ A Jto(l—tg) S| 2+ 2 — (R - —T )} Al
o o)y’/< g +t0>exp{ ) (A1)
In fact, the above convergence is uniform for y in any closed subintervals of (&1, ¢v/to(1 — %g)) (cf.
Appendix 1 of Siegmund 1986, and also the proof of Theorem 1 in §2). In the similar but much

simplier way, it can be proved that uniformly for y in closed subintervals of (—o0, &)
2

P,(,{Zl){morélgécml Sn/y/n(l=n/m) > b1} = o (exp{—%(c2 — to(lyi—to)}) . (A.2)
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Note that given S,,, fixed, the process {S,,1 < n < m;} is independent of S,,. Therefore, we

have the following decomposition

Pém){Sml < mé&, Sp > biy/n(l —n/m) for some my < n < mq }

&
= / Pom)(Sm1 € mdy)PT(nZ“){Sn > b1y/n(1 — n/m) for some mg <n <my }

&
+ i Pém)(Sml € mdy)PT(r:Zl){Sn > b1y/n(1 — n/m) for some my < n < my}
3
= aii(m) + aia(m), say. (A.3)

It follows from (A.1) that for any € > 0

13
/ i Pém)(Sml € mdy)P,(nrzl){Sn > b1y/n(1 — n/m) for some mg < n < mq }
13

1(1+¢)
o m c t002 Y m, o 112
~ m — | v — 4+ Z | exp{——(c*f — ———)}d
/51(1+s) vime ( to(1 — to)y> (0 ( y  to Pl 2 ( to(1 — to))} Y
o _1 tocz Y
= b1<p(b1)/ y v — 4+ = | dy = bip(b1)M(e), say. (A.4)
£1(14¢) Y to

Write the integration on the LHS of the above expression as aja(m,e). We have proved that
by tana(m,e)/p(b1) — M(e) for any € > 0. This implies that for any & > 0, there exists

n = n(e,e’) for which
by taga(m,e)/p(b1) > M(e) — €',  for allm > n.
Consequently,
by tana(m) /(b)) > b7 ara(m,e) /(b)) > M(e) — €', foralle > 0and m > n(e, ).

Let ¢ — 0 in the above expression, we have limmin,, . b7 aia(m)/@(b1) > M(0) — &' for any
g’ > 0. Thus, limmin, . b; 'ara(m)/e(b1) > M(0).
Note that the large values of S, are in favour to the event that S, > by {n(1 — n/m)}'/? for

some my < n < mi. Therefore, it holds that for any € > 0

&
aga(m) < : ’ Pém)(Sm1 € mdy)PT(nT?;le){Sn > b1y/n(1 — n/m) for some mg < n < mq }.
1

Applying (A.1) to the RHS of the above expression, we can prove that limmax,, o bl_lalz (m)/p(b1)
< M(0). Therefore, by ci2(m)/w(b1) ~ M(0).

14



By repeating the above argument with (A.2) instead of (A.1), it can be shown that ay1(m) =

o(b1p(b1)). Consequently from (A.3), we have that

m){Sml < mé&y, Sp > biy/n(l —n/m) for some mog <n < my }
&o
~ onalm) ~ hig(on) [y ww/to + Eta/y)dy (A.5)
1
On the other hand, we have that

Po(m)(smo < mé&o, Smy; < mé&y, Sp > biy/n(l —n/m) for some my <n < my}

& réo
P(S > b1y/n(1 — n/m) for some mg < n < mq|Sy,, =mz, S :my>
L[ P (82 biy/n(t = njm) 0 1| Sima -
X Pém)(Sm0 € mdz, Sy, € mdy) + o(bip(br)). (A.6)

Being symmetrical in z and y, the integral in the above equation is equal to twice the integral on
the triangle {(z, y) : & <z <y, & <y <& }. Note that the large values of S, are in favour to
the event that the process {S,} crosses over the boundary. Therefore, for z < y, the conditional

probability in the integrand of (A.6) is less than

P{S, > biy/n(l —n/m) for some my < n < my| Sy, = Sm; =my },

Theorem 1 (i) implies that for all sufficiently large m, the RHS of (A.6) is less than

/50 / c—2y (20—2y)
v
27t/ 2 1—2t0 1 LV 2eto(l —t) —y 1 -2t

m(l — t())

to my? m(c — 2y)?
Sto(1 —210) T - } da. (A7)

1—t0” " 2o(1—ty)  2(1— 2to)

x exp{—

Some algebraic calculation entails that

my? m

St —to) T 30 =219) "

m m
_9y)?2 = M2

where w(y) is a second order polynomial, which is positive for all y < &, under the condition
(3.17). Hence it is easy to see that (A.7) tends to 0 faster than m!/? exp{—mc?/2} as m — .
Therefore the probability on the LHS of (A.6) is o(b1¢(b1)). The conclusion then follows from
(3.15) and (A.5).
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Proof of Proposition 2. Note that given S, = 0, S, and S, are jointly normal. It follows

from some elementary calculation that for any € > 0,
P Smy = m(C — ), Smy > m(C —¢), } = O(m™exp{-mtg}(¢ —e)*}). (A.8)
On the other hand,

m){mfo < Sme <m(¢ —¢), méy < Sy, <m({ —¢), max S, >by}

1<n<m
(—e pC—e
= / Po(m){SmO € mdz, Sy, € mdy}
0 o
X P0 { max Sp > ba| Sy = mzx, Sy, = my}. (A.9)

It is easy to see that the principal contribution to the conditional probability in the above integrand
comes from S, exceeding by with n between mg and m; since ¢y < 1/4. Hence by (8.78) of

Siegmund (1985), the RHS of (A.9) is asymptotically equivalent to

m 2¢y/m (—e pC—¢
tov/T — 26 © < 1—2t0)/ / 22—y —2)/(1 - 2h)

m {1—t0
1— 2ty 2t

X exp[— (2® + %) + zy — 2¢(z + y)}] dz dy. (A.10)

It is easy to prove that on & < z, y < d with d > 2ty(, the function f(z,y) = (1 — to)(z? +
y?)/(2ty) + zy — 2¢(z + y) attains the maximum f(d, d) at + = y = d. This fact implies that the
primary contribution to the integral in (A.10) comes from the values of the both z and y near
&o. Therefore this integral can be taken over { < z, y < (, and the probability (A.8) can be

neglected. Consequently, the proposition follows from (3.16) and (A.8) — (A.10).
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Table 1.

(mo =m/10, my =m —my)

Accuracy of the approximation (3.14)

m h (b1, bo) (3.14) Monte Carlo
(2.07, 7.01) 0.050 0.071
30 0.15 (1.82, 6.50) 0.086 0.114
(1.71, 6.34) 0.175 0.201
(2.07, 7.01) 0.107 0.115
30 0.25 (1.82, 6.50) 0.182 0.186
(1.71, 6.34) 0.270 0.228
(2.67, 7.88) 0.023 0.028
40 0.15 (2.21, 7.22) 0.056 0.081
(1.94, 6.82) 0.146 0.152
(2.67, 7.88) 0.036 0.033
40 0.25 (2.21, 7.22) 0.103 0.102
(1.94, 6.82) 0.204 0.185
(2.33, 7.91) 0.078 0.071
50 0.15 (2.13, 7.41) 0.121 0.115
(1.92, 7.13) 0.180 0.176
(2.33, 7.91) 0.108 0.093
50 0.25 (2.13, 7.41) 0.159 0.143
(1.92, 7.13) 0.225 0.241
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Figure Legend

Figure 1. The plots of the estimated power functions against the change-point form a Monte
Carlo experiment with 20000 replications with m = 40 and my = 5. Diamond solid curve — test
U; Plus dashed curve — test Uy (by = 2.832); Square shorter-dashed curve — test U, (be = 8.022).
(a) § = 0.4. (h = 0.1 and (b1, b2) = (2.825,8.015) for the test U); (b) § = 0.8. (h = 0.122 and
(b1,by) = (2.825,8.017) the test U); (¢) § = 1.2. (h = 0.264 and (by,by) = (2.766,8.017) for the
test U).
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